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Ising models on Zd

Andrea Montanari Lecture 5 - 10/8/2007

This lecture lies a bit outside the line of our course, in that we shall consider a non-mean field setting. More
precisely, we let G = (V,E) be a square grid of side

√
N and consider the Ising model on such a grid:

µ(x) =
1

Z(β)
exp

{
β

∑
(ij)∈E

xixj

}
, (1)

and will prove the following result.

Theorem 1. Let X be a random configuration form the two-dimensional Ising model (1) and X = N−1
∑N

i=1 Xi

denote its magnetization.
Then there exist two inverse temperatures β1 > β2 > 0, such that the following happens. If β > β1

(‘low-temperature’), then there exist δ(β) > 0 such that

E|X| ≥ δ(β) . (2)

If β < β2 (‘high-temperature’), then, for any δ > 0

lim
N→∞

P{|X| ≤ δ} = 1 . (3)

Our proofs will be based on two classical argument as found in [Gri64] (low temperature) and [Fis67] (high
temperature). While the above statement and our proofs refer to the two-dimensional case, the techniques
are more general.

1 Low temperature: Peierls argument

The dual lattice of G is the graph G∗ = (V ∗, E∗) constructed as follows. Imagine to draw G on a plane,
using the standard embedding of Z2 in R2. Then, for each edge (i, j) in the original lattice G, draw a
perpendicular edge of length 1, centered at the midpoint of (i, j). These are the edges of the G∗. Its vertices
are the endpoints of such edges (only whenever two endpoints coincide, the vertices do coincide as well).

The number of vertices in the dual lattice is |V ∗| = (
√

N + 1)2 − 4.
A Peierls contours configuration is a set C = {C1, . . . , Cn} of directed paths Ci in G∗ that satisfy the

following conditions:

(i) Each path is either closed or has on the boundary (degree-one vertices) of G∗.

(ii) No two paths cross each other.

(iii) Whenever two paths share a vertex, each of them bends to the right.

(iv) Whenever path Ci is ‘directly inside’ path Cj , the two paths have opposite orientations.

In the last point, by ‘directly inside’ we mean the following. If Ci and Cj are closed paths, then it must be
that Ci is inside Cj but not inside any other path Ck which in turn is inside Cj . If they are not closed, we
first close them around the lattice and then require the same condition to be satisfied.

To a given Peierls contours configuration we associate the probability

µ∗(C) =
1

Z∗(β)

∏
C∈C

e−2β|C| . (4)
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Lemma 2. There is a one-to-one correspondence between Ising model configurations and Peierls contours
configurations. Further, under this correspondence, the Ising measure µ(x) is mapped to the Peierls one
µ∗(C).

Given an Ising configuration x, the corresponding Peierls contours separate the vertices with xi = +1
from those with xi = −1.

Proof By figures.

Proof [Theorem 1, low temperature.] For the sake of simplicity we shall prove that P{|X| = 0} is bounded
as in the statement. The cases P{|X| = k} with |k| ≤ Nδ can be treated analogously and the thesis (2)
follows by union bound.

First notice that the number of Peierls contours C with |C| = l is upper bounded as

n(l) ≤ |V ∗|3l ≤ N 3l+1 . (5)

This is showed by first choosing a starting point (for which there are |V ∗| possibilities), and then a length-l
non-reversing walk in Z2.

The second remark is that, for any contour C

µ∗(C ∈ C) ≤ e−2β|C| , (6)

where |C| denotes the length of C. This is proved by writing

µ∗(C ∈ C) =
∑

C3C e−2β|C|∑
C′ e−2β|C′| , (7)

and noticing that, for each configuration C in the numerator, there exists a configuration C′ = C \ C in
the denominator. The bound follows by restricting the sum in the denominator to such terms and using
|C′| = |C| − |C|.

Given a contours configuration C, any contour C ∈ C divides V in two subsets: those inside C and those
outside C. If C is closed, the definition of ‘inside’ and ‘outside’ is obvious. If it is not closed, we will call
‘inside’ the smallest of the two subsets in which C divides V (an arbitrary convention can be chosen if they
are equal).

We now divide the set of Ising configurations in two subsets

P(+) All the vertices i ∈ V with xi = −1 lie inside some contour.

P(−) All the vertices i ∈ V with xi = +1 lie inside some contour.

It is clear that P(+) and P(−) are in one-to one correspondence under the mapping {xi} 7→ {−xi}. Further
any configuration x is either in P(+) or in P(−).

If we denote by IP(±) the indicator function on P(±), and by N− the number of vertices i ∈ V , with
xi = −1, we obtain

E|X| = E{|X| IP(+)}+ E{|X| IP(−)} ≥ E{X IP(+)} − E{X IP(−)} = (8)

= 2E{X IP(+)} = 1− 2
N

E{N− IP(+)} . (9)

If x ∈ P(+), N− is upper bounded by the number of vertices that are inside at least one contour, which
is in turn not larger than

∑
C∈C |Ci|2. Therefore

E|X| ≥ 1− 2
N

E

{∑
C∈C

|C|2
}

= 1− 2
N

∑
C

|C|2µ∗(C ∈ C) ≥

≥ 1− 2
N

∑
`≥2

`2n(`)e−2β` ≥ 1− 2
∑
`≥2

`2(3e−2β)` .
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It is clear that the last expression is larger than, say, 1/2 for all β large enough.

2 High-temperature expansion

As in the low-temperature case, the first step consists in proving an appropriate ‘geometrical’ representation
of the sums involved in taking expectation with respect to the Ising model. To this purpose, given a subset
U ⊆ V of vertices, we let

ZU (β) ≡
∑

x∈{+1,−1}V

∏
i∈U

xi exp
{

β
∑

(ij)∈E

xixj

}
. (10)

Lemma 3. For U ⊆ V , let G(U) denote the set of subgraphs of G that have odd-degree in U and even degree
(eventually vanishing) elsewhere. Then (denoting by E(F ) the set of edges of the subgraph F and by |E(F )|
its size)

ZU (β) = 2|V |(coshβ)|E|
∑

F∈G(U)

(tanh β)|E(F )| . (11)

Proof Follows from the identity

exp
{

β
∑

(ij)∈E

xixj

}
= (cosh β)|E|

∏
(i,j)∈E

(1 + xixj tanh β) (12)

expanding the product on the right hand side and summing over x.

Lemma 4. For i, j ∈ V , let d(i, j) denote their graph theoretical distance. There exists β2 > 0 such that,
for all β ≤ β2, there exists constants A(β), λ(β) ≥ 0 with λ(β) ≤ 1, such that

E{XiXj} ≤ A(β) λ(β)d(i,j) . (13)

Proof By the previous Lemma, and writing t = tanhβ < 1, we have

E{XiXj} =

∑
F∈G({i,j}) t|E(F )|∑
F ′∈G(∅) t|E(F ′)| . (14)

Notice that, for each connected component of the subgraph F , the sum of the degrees of its vertices is even.
As a consequence, any F ∈ G({i, j}) includes a path, call it Fij , connecting i to j. Call the set of such paths
P(i, j). Further denote by G(∅;Fij) the set of subgraphs in G(∅) that have no edge in common with Fij .
Then we have

E{XiXj} ≤
∑

Fij∈P(i,j)

t|E(Fij)|

∑
F ′∈G(∅;Fij)

t|E(F ′)|∑
F ′∈G(∅) t|E(F ′)| ≤

∑
Fij∈P(i,j)

t|E(Fij)| . (15)

The number of paths in P(i, j) of length l is upper bounded by 3l, and their minimal length d(i, j). Therefore

E{XiXj} ≤
∑

l≥d(i,j)

(3t)l ≤ (1− 3t)−1 (3t)d(i,j) (16)

which proves the thesis.

3



Proof [Theorem 1, high temperature.] Notice that

E{X2} =
1

N2

∑
i,j∈V

E{Xi, Xj} ≤
1

N2

∑
i,j∈V

A λd(i,j) ≤ A

N

∑
j∈Z2

λd(i,j) ≤ A

N

∞∑
d=0

8d λd (17)

Since the last sum converges for λ < 1, we have E{X2} ≤ C(β)/N for some constant C(β) and all β < β2,
whence the thesis follows.
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