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Preface

These are the lecture notes for a year long, PhD level course in Probability Theory
that I taught at Stanford University in 2004, 2006 and 2009. The goal of this
course is to prepare incoming PhD students in Stanford’s mathematics and statistics
departments to do research in probability theory. More broadly, the goal of the text
is to help the reader master the mathematical foundations of probability theory
and the techniques most commonly used in proving theorems in this area. This is
then applied to the rigorous study of the most fundamental classes of stochastic
processes.

Towards this goal, we introduce in Chapter [ the relevant elements from measure
and integration theory, namely, the probability space and the o-algebras of events
in it, random variables viewed as measurable functions, their expectation as the
corresponding Lebesgue integral, and the important concept of independence.

Utilizing these elements, we study in Chapter Plthe various notions of convergence
of random variables and derive the weak and strong laws of large numbers.

Chapter Bl is devoted to the theory of weak convergence, the related concepts
of distribution and characteristic functions and two important special cases: the
Central Limit Theorem (in short cLT) and the Poisson approximation.

Drawing upon the framework of Chapter [l we devote Chapter Hl to the definition,
existence and properties of the conditional expectation and the associated regular
conditional probability distribution.

Chapter B deals with filtrations, the mathematical notion of information progres-
sion in time, and with the corresponding stopping times. Results about the latter
are obtained as a by product of the study of a collection of stochastic processes
called martingales. Martingale representations are explored, as well as maximal
inequalities, convergence theorems and various applications thereof. Aiming for a
clearer and easier presentation, we focus here on the discrete time settings deferring
the continuous time counterpart to Chapter

Chapter @ provides a brief introduction to the theory of Markov chains, a vast
subject at the core of probability theory, to which many text books are devoted.
We illustrate some of the interesting mathematical properties of such processes by
examining few special cases of interest.

Chapter [ sets the framework for studying right-continuous stochastic processes
indexed by a continuous time parameter, introduces the family of Gaussian pro-
cesses and rigorously constructs the Brownian motion as a Gaussian process of
continuous sample path and zero-mean, stationary independent increments.
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6 PREFACE

Chapter @ expands our earlier treatment of martingales and strong Markov pro-
cesses to the continuous time setting, emphasizing the role of right-continuous fil-
tration. The mathematical structure of such processes is then illustrated both in
the context of Brownian motion and that of Markov jump processes.

Building on this, in Chapter @l we re-construct the Brownian motion via the in-
variance principle as the limit of certain rescaled random walks. We further delve
into the rich properties of its sample path and the many applications of Brownian
motion to the cLT and the Law of the Iterated Logarithm (in short, LIL).

The intended audience for this course should have prior exposure to stochastic
processes, at an informal level. While students are assumed to have taken a real
analysis class dealing with Riemann integration, and mastered well this material,
prior knowledge of measure theory is not assumed.

It is quite clear that these notes are much influenced by the text books [Bil95)
Dur03l, Wil91l, [KaS97| I have been using.

I thank my students out of whose work this text materialized and my teaching as-
sistants Su Chen, Kshitij Khare, Guoqgiang Hu, Julia Salzman, Kevin Sun and Hua
Zhou for their help in the assembly of the notes of more than eighty students into
a coherent document. I am also much indebted to Kevin Ross, Andrea Montanari
and Oana Mocioalca for their feedback on earlier drafts of these notes, to Kevin
Ross for providing all the figures in this text, and to Andrea Montanari, David
Siegmund and Tze Lai for contributing some of the exercises in these notes.

AMIR DEMBO

STANFORD, CALIFORNIA
APriL 2010



CHAPTER 1

Probability, measure and integration

This chapter is devoted to the mathematical foundations of probability theory.
Section [[Ilintroduces the basic measure theory framework, namely, the probability
space and the o-algebras of events in it. The next building blocks are random
variables, introduced in Section as measurable functions w — X (w) and their
distribution.

This allows us to define in Section [[3 the important concept of expectation as the
corresponding Lebesgue integral, extending the horizon of our discussion beyond
the special functions and variables with density to which elementary probability
theory is limited. Section [[4] concludes the chapter by considering independence,
the most fundamental aspect that differentiates probability from (general) measure
theory, and the associated product measures.

1.1. Probability spaces, measures and o-algebras

We shall define here the probability space (€2, F, P) using the terminology of mea-
sure theory.

The sample space € is a set of all possible outcomes w € €2 of some random exper-
iment. Probabilities are assigned by A — P(A) to A in a subset F of all possible
sets of outcomes. The event space F represents both the amount of information
available as a result of the experiment conducted and the collection of all events of
possible interest to us. A pleasant mathematical framework results by imposing on
F the structural conditions of a o-algebra, as done in Subsection [LT.Jl The most
common and useful choices for this o-algebra are then explored in Subsection
Subsection provides fundamental supplements from measure theory, namely
Dynkin’s and Carathéodory’s theorems and their application to the construction of
Lebesgue measure.

1.1.1. The probability space (£, F, P). We use 2 to denote the set of all
possible subsets of Q. The event space is thus a subset F of 2, consisting of all
allowed events, that is, those events to which we shall assign probabilities. We next
define the structural conditions imposed on F.

DEFINITION 1.1.1. We say that F C 2% is a o-algebra (or a o-field), if
(a) Q€ F,

(b) If A € F then A° € F as well (where A°=Q\ A).

(c) If A; € F fori=1,2,3,... then also | J; A; € F.

REMARK. Using DeMorgan’s law, we know that (|J, AS)¢ = (), Ai. Thus the
following is equivalent to property (c) of Definition [Tk
(¢’) If Ay € F for i =1,2,3,... then also (), A; € F.

7



8 1. PROBABILITY, MEASURE AND INTEGRATION

DEFINITION 1.1.2. A pair (Q,F) with F a o-algebra of subsets of Q) is called a
measurable space. Given a measurable space (2, F), a measure u is any countably
additive non-negative set function on this space. That is, p : F — [0,00], having
the properties:

(a) u(A) > u(@) =0 for all A € F.
(b) 1(U,, An) = >, 11(Ap) for any countable collection of disjoint sets A, € F.

When in addition () = 1, we call the measure p a probability measure, and
often label it by P (it is also easy to see that then P(A) <1 for all A € F).

REMARK. When (b) of Definition is relaxed to involve only finite collections
of disjoint sets A,, we say that u is a finitely additive non-negative set-function.
In measure theory we sometimes consider signed measures, whereby p is no longer
non-negative, hence its range is [—oo, oo], and say that such measure is finite when
its range is R (i.e. no set in F is assigned an infinite measure).

DEFINITION 1.1.3. A measure space is a triplet (Q, F, u), with u a measure on the
measurable space (2, F). A measure space (0, F, P) with P a probability measure
is called a probability space.

The next exercise collects some of the fundamental properties shared by all prob-
ability measures.

EXERCISE 1.1.4. Let (Q,F,P) be a probability space and A, B, A; events in F.
Prove the following properties of every probability measure.

(a) Monotonicity. If A C B then P(A) < P(B).

(b) Sub-additivity. If A C U;A; then P(A) <. P(4;).

(c) Continuity from below: If A; T A, that is, Ay C Ay C ... and U;A; = A,
then P(A;) T P(A).

(d) Continuity from above: If A; | A, that is, Ay D Ay D ... and N;A; = A,
then P(A;) | P(A).

REMARK. In the more general context of measure theory, note that properties
(a)-(c) of Exercise [T hold for any measure u, whereas the continuity from above
holds whenever p(A;) < oo for all ¢ sufficiently large. Here is more on this:

EXERCISE 1.1.5. Prove that a finitely additive non-negative set function p on a
measurable space (0, F) with the “continuity” property

B,eF, B,l0, u(B,) <o = u(B,)—0

must be countably additive if 1(Q) < co. Give an example that it is not necessarily
so when p(Q) = oo.

The o-algebra F always contains at least the set €2 and its complement, the empty
set (. Necessarily, P(Q) = 1 and P(#) = 0. So, if we take Fy, = {0,Q} as our o-
algebra, then we are left with no degrees of freedom in choice of P. For this reason
we call Fy the trivial o-algebra. Fixing 2, we may expect that the larger the o-
algebra we consider, the more freedom we have in choosing the probability measure.
This indeed holds to some extent, that is, as long as we have no problem satisfying
the requirements in the definition of a probability measure. A natural question is
when should we expect the maximal possible o-algebra F = 2 to be useful?

EXAMPLE 1.1.6. When the sample space §2 is countable we can and typically shall
take F = 2. Indeed, in such situations we assign a probability p,, > 0 to eachw €
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making sure that ) . pw = 1. Then, it is easy to see that taking P(A) = 3 4 Pw
for any A C Q results with a probability measure on (Q,2%). For instance, when
Q is finite, we can take p, = ﬁ, the uniform measure on ), whereby computing
probabilities is the same as counting. Concrete examples are a single coin toss, for
which we have Oy = {H, T} (w = H if the coin lands on its head and w = T if it
lands on its tail), and F, = {0,Q,H, T}, or when we consider a finite number of
coin tosses, say m, in which case Q, = {(w1,...,wpn) :w; € {H,T},i=1,...,n}
is the set of all possible n-tuples of coin tosses, while F, = 2" is the collection
of all possible sets of n-tuples of coin tosses. Another example pertains to the
set of all non-negative integers Q = {0,1,2,...} and F = 2%, where we get the
Poisson probability measure of parameter A > 0 when starting from py = Xk—’;ef)‘ for

k=0,1,2,...

When € is uncountable such a strategy as in Example [LTH will no longer work.
The problem is that if we take p, = P({w}) > 0 for uncountably many values of
w, we shall end up with P(2) = co. Of course we may define everything as before
on a countable subset € of  and demand that P(A) = P(AN Q) for each A C €.
Excluding such trivial cases, to genuinely use an uncountable sample space {} we
need to restrict our o-algebra F to a strict subset of 2.

DEFINITION 1.1.7. We say that a probability space (2, F,P) is non-atomic, or
alternatively call P non-atomic if P(A) > 0 implies the existence of B€ F, B C A
with 0 < P(B) < P(A).

Indeed, in contrast to the case of countable 2, the generic uncountable sample
space results with a non-atomic probability space (c.f. Exercise [LI.Z7). Here is an
interesting property of such spaces (see also [Bil95, Problem 2.19]).

EXERCISE 1.1.8. Suppose P is non-atomic and A € F with P(A) > 0.

(a) Show that for every e > 0, we have B C A such that 0 < P(B) < e.
(b) Prove that if 0 < a < P(A) then there exists B C A with P(B) = a.

Hint: Fiz e, | 0 and define inductively numbers x,, and sets G, € F with Hy = (),
H, = UgenGg, 2, = sup{P(G) : G C A\H,, P(H, UG) < a} and G,, C A\H,
such that P(H, |JGr) < a and P(G,) > (1 — €,)xy,. Consider B = UGy.

As you show next, the collection of all measures on a given space is a convex cone.

EXERCISE 1.1.9. Given any measures {un,n > 1} on (Q,F), verify that p =

220:1 Cnlin 18 also a measure on this space, for any finite constants ¢, > 0.

Here are few properties of probability measures for which the conclusions of Ex-
ercise [Tl are useful.

EXERCISE 1.1.10. A function d : X x X — [0,00) is called a semi-metric on
the set X if d(z,z) = 0, d(z,y) = d(y,x) and the triangle inequality d(x,z) <
d(z,y) + d(y, z) holds. With AAB = (AN B°) U (A°N B) denoting the symmetric
difference of subsets A and B of Q, show that for any probability space (Q, F,P),
the function d(A, B) = P(AAB) is a semi-metric on F.

EXERCISE 1.1.11. Consider events {A,} in a probability space (Q, F,P) that are
almost disjoint in the sense that P(A, N Ay) = 0 for all n # m. Show that then
P(UpL 4,) = ZOO P(A4y).

n=1
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EXERCISE 1.1.12. Suppose a random outcome N follows the Poisson probability
measure of parameter A > 0. Find a simple expression for the probability that N is
an even integer.

1.1.2. Generated and Borel g-algebras. Enumerating the sets in the o-
algebra F is not a realistic option for uncountable Q2. Instead, as we see next, the
most common construction of o-algebras is then by implicit means. That is, we
demand that certain sets (called the generators) be in our o-algebra, and take the
smallest possible collection for which this holds.

EXERCISE 1.1.13.

(a) Check that the intersection of (possibly uncountably many) o-algebras is
also a o-algebra.

(b) Verify that for any o-algebras H C G and any H € H, the collection
HE ={Ae€G:ANH € H} is a o-algebra.

(c) Show that H — HH is non-increasing with respect to set inclusions, with
H® = H and H® = G. Deduce that HT9H = HH 0 HH’ for any pair
H,H eH.

In view of part (a) of this exercise we have the following definition.

DEFINITION 1.1.14. Given a collection of subsets A, C Q (not necessarily count-
able), we denote the smallest o-algebra F such that A, € F for all a € T either by
o({As}) or by o(An,a €T), and call 0({An}) the o-algebra generated by the sets
A,. That is,
c({Au})=N{G: GC2%isao—algebra, A, €G VaeTl}.

EXAMPLE 1.1.15. Suppose Q =S is a topological space (that is, S is equipped with
a notion of open subsets, or topology). An example of a generated o-algebra is the
Borel o-algebra on S defined as o({O C S open }) and denoted by Bs. Of special
importance is Bg which we also denote by B.

Different sets of generators may result with the same o-algebra. For example, tak-
ing Q = {1,2,3} it is easy to see that o({1}) = ¢({2,3}) = {0, {1},{2,3},{1,2,3}}.

A o-algebra F is countably generated if there exists a countable collection of sets
that generates it. Exercise [[T.T1dshows that Bg is countably generated, but as you
show next, there exist non countably generated o-algebras even on 2 = R.

EXERCISE 1.1.16. Let F consist of all A C Q such that either A is a countable set
or A° is a countable set.

(a) Verify that F is a o-algebra.
(b) Show that F is countably generated if and only if 2 is a countable set.

Recall that if a collection of sets A is a subset of a o-algebra G, then also o(A) C G.
Consequently, to show that o({As}) = o({Bs}) for two different sets of generators
{A,} and {Bg}, we only need to show that A, € o({Bg}) for each o and that
Bg € o({A,}) for each (. For instance, considering By = o({(a,b) : a < b € Q}),
we have by this approach that Bg = o({(a,b) : a < b € R}), as soon as we
show that any interval (a,b) is in Bg. To see this fact, note that for any real
a < b there are rational numbers ¢, < r, such that ¢, | a and 7, T b, hence
(a,b) = Un(gn,m™) € Bg. Expanding on this, the next exercise provides useful
alternative definitions of 5.
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EXERCISE 1.1.17. Verify the alternative definitions of the Borel o-algebra B:
o{(a,b):a<beR}) =0({[a,b]:a<beR})=0c({(—00,b]:beR})
=o0({(—00,b] : b€ Q}) =0({O CRopen})

If A CRisin B of Example [[TTH we say that A is a Borel set. In particular, all
open (closed) subsets of R are Borel sets, as are many other sets. However,

PROPOSITION 1.1.18. There exists a subset of R that is not in B. That s, not all
subsets of R are Borel sets.

PROOF. See [Bil95l page 45]. O

EXAMPLE 1.1.19. Another classical example of an uncountable 2 is relevant for
studying the experiment with an infinite number of coin tosses, that is, Qoo = QY
for Q. = {H, T} (indeed, setting H=1 and T =0, each infinite sequence w € Qoo
is in correspondence with a unique real number x € [0,1] with w being the binary
expansion of x, see Exercise [LZ13). The o-algebra should at least allow us to
consider any possible outcome of a finite number of coin tosses. The natural o-
algebra in this case is the minimal o-algebra having this property, or put more
formally Fo. = o({Apr,0 € Q¥ k=1,2,...}), where Ap = {w € Qoo : w; = 0,0 =
1...,k} for0=(61,...,60k).

The preceding example is a special case of the construction of a product of mea-
surable spaces, which we detail now.

ExXAMPLE 1.1.20. The product of the measurable spaces (Q;, F;), i = 1,...,n is
the set Q@ = Qq X - - - X Q,, with the o-algebra generated by {A1 X ---x A, + A; € Fi},
denoted by Fy x --- Fp,.

You are now to check that the Borel o-algebra of R? is the product of d-copies of
that of R. As we see later, this helps simplifying the study of random vectors.

EXERCISE 1.1.21. Show that for any d < oo,
B]Rd =Bx--- XBZO’({(al,bl) X oo X (ad,bd):ai <bi€R7i=17...,d})

(you need to prove both identities, with the middle term defined as in Example

IZ).

EXERCISE 1.1.22. Let F = 0(Aq,a € T') where the collection of sets A, a € T is
uncountable (i.e., T' is uncountable). Prove that for each B € F there exists a count-
able sub-collection {Aq,,j = 1,2,...} C {Aa,a € T'}, such that B € 0({Aq,,j =
1,2,...}).

Often there is no explicit enumerative description of the o-algebra generated by
an infinite collection of subsets, but a notable exception is

EXERCISE 1.1.23. Show that the sets in G = o({[a,b] : a,b € Z}) are all possible
unions of elements from the countable collection {{b}, (b,b+1),b € Z}, and deduce
that B #G.

Probability measures on the Borel o-algebra of R are examples of regular measures,
namely:
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EXERCISE 1.1.24. Show that if P is a probability measure on (R, B) then for any
A € B and € > 0, there exists an open set G containing A such that P(A) + € >
P(G).

Here is more information about Bga.

EXERCISE 1.1.25. Show that if u is a finitely additive non-negative set function
on (RY, Bga) such that p(R%) = 1 and for any Borel set A,

w(A) =sup{p(K): K C A, K compact },

then p must be a probability measure.

Hint: Argue by contradiction using the conclusion of Exercise LA To this end,
recall the finite intersection property (if compact K; C R® are such that N, K; are
non-empty for finite n, then the countable intersection (;—, K; is also non-empty).

1.1.3. Lebesgue measure and Carathéodory’s theorem. Perhaps the
most important measure on (R, B) is the Lebesgue measure, A. It is the unique
measure that satisfies A\(F) = >, _, (bx — ax) whenever F' = J; _, (ak, b] for some
r<ooand a; < by <as <bg--- <b,. Since A(R) = oo, this is not a probability
measure. However, when we restrict 2 to be the interval (0, 1] we get

EXAMPLE 1.1.26. The uniform probability measure on (0,1], is denoted U and
defined as above, now with added restrictions that 0 < a1 and b, < 1. Alternatively,
U is the restriction of the measure \ to the sub-o-algebra B 1) of B.

EXERCISE 1.1.27. Show that ((0,1], B(o,1}, U) is a non-atomic probability space and
deduce that (R, B, \) is a non-atomic measure space.

Note that any countable union of sets of probability zero has probability zero, but
this is not the case for an uncountable union. For example, U({z}) = 0 for every
x € R, but U(R) = 1.

As we have seen in Example it is often impossible to explicitly specify the
value of a measure on all sets of the o-algebra F. Instead, we wish to specify its
values on a much smaller and better behaved collection of generators A of F and
use Carathéodory’s theorem to guarantee the existence of a unique measure on F
that coincides with our specified values. To this end, we require that A be an
algebra, that is,

DEFINITION 1.1.28. A collection A of subsets of Q is an algebra (or a field) if
(a) Qe A,
(b) If A € A then A° € A as well,
(c) If A,B € A then also AUB € A.

REMARK. In view of the closure of algebra with respect to complements, we could
have replaced the requirement that 2 € A with the (more standard) requirement
that § € A. As part (c) of Definition amounts to closure of an algebra
under finite unions (and by DeMorgan’s law also finite intersections), the difference
between an algebra and a o-algebra is that a o-algebra is also closed under countable
unions.

We sometimes make use of the fact that unlike generated o-algebras, the algebra
generated by a collection of sets A can be explicitly presented.

EXERCISE 1.1.29. The algebra generated by a given collection of subsets A, denoted
f(A), is the intersection of all algebras of subsets of Q containing A.
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(a) Verify that f(A) is indeed an algebra and that f(A) is minimal in the
sense that if G is an algebra and A C G, then f(A) CG.

(b) Show that f(.A) is the collection of all finite disjoint unions of sets of the
form (;L, Aij, where for each i and j either A;; or AS; are in A.

We next state Carathéodory’s extension theorem, a key result from measure the-
ory, and demonstrate how it applies in the context of Example

THEOREM 1.1.30 (CARATHEODORY’S EXTENSION THEOREM). If g : A — [0, 00]
is a countably additive set function on an algebra A then there exists a measure
woon (Q,0(A)) such that p = po on A. Furthermore, if uo(Q) < oo then such a
measure [ 1S unique.

To construct the measure U on Bg 1y let = (0,1] and
A={(a1,b1]U---U(ap,b;] : 0< a1 < by <---<a,<b <1,r<oo}

be a collection of subsets of (0, 1]. It is not hard to verify that A is an algebra, and
further that o(A) = B (c.f. Exercise [LTT7 for a similar issue, just with (0, 1]
replaced by R). With Uy denoting the non-negative set function on A such that

(1.1.1) Uo( U(ak,bk]) :Z(bk—ak)7

k=1 k=1
note that Up((0,1]) = 1, hence the existence of a unique probability measure U on
((0,1], B(g,1)) such that U(A) = Uy(A) for sets A € A follows by Carathéodory’s
extension theorem, as soon as we verify that

LEMMA 1.1.31. The set function Uy is countably additive on A. That is, if Ay is a
sequence of disjoint sets in A such that Uy Ay, = A € A, then Ug(A) = >, Uo(Ay).

The proof of Lemma [CT3T is based on

EXERCISE 1.1.32. Show that Uy is finitely additive on A. That is, Ug(Uj_, Ax) =
Y iy Uo(Ay) for any finite collection of disjoint sets Aq, ..., A, € A.

Proor. Let G, = Uj_, Ar and H, = A\ G,. Then, H, | 0 and since
Ay, A € A which is an algebra it follows that GG,, and hence H,, are also in A. By
definition, Uy is finitely additive on A, so

Uo(A) = Uo(Hy) + Uo(Gn) ::[Qﬂffn)4‘§£:176@4k)-
k=1
To prove that Uy is countably additive, it suffices to show that Uy(H,,) | 0, for then

Uo(4) = lim Up(Gn) = lim > Uo(Ar) =D Us(Ar).

k=1 k=1
To complete the proof, we argue by contradiction, assuming that Uy(H,,) > 2¢ for
some € > 0 and all n, where H,, | () are elements of A. By the definition of A
and Uy, we can find for each ¢ a set J; € A whose closure J, is a subset of H, and
Uo(Hy \ Jp) < €27¢ (for example, add to each aj, in the representation of Hy the
minimum of €27¢/r and (by — ay)/2). With Uy finitely additive on the algebra A
this implies that for each n,

UO( U(HZ\JZ)) < iUo(Hg\Jg) <e.

(=1
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As H, C Hy for all £ <n, we have that

Hn\ﬂJe: U(Hn\Je)Q U(HZ\JZ)-

<n <n <n

Hence, by finite additivity of Uy and our assumption that Ug(H,,) > 2¢, also
Uo(() Je) = Uo(Hn) = Uo(Hn \ ) Je) = Uo(Hn) — Uo(| (He \ J2)) > €.

L<n <n L<n
In particular, for every n, the set (,., J¢ is non-empty and therefore so are the
decreasing sets K,, = [),<,, J¢. Since K,, are compact sets (by Heine-Borel theo-

rem), the set NeJp is then non-empty as well, and since Jy is a subset of H, for all
¢ we arrive at Ny H, non-empty, contradicting our assumption that H, | 0. O

REMARK. The proof of Lemma [[LT31 is generic (for finite measures). Namely,
any non-negative finitely additive set function ug on an algebra A is countably
additive if puo(H,) | 0 whenever H,, € A and H,, | (). Further, as this proof shows,
when 2 is a topological space it suffices for countable additivity of uo to have for
any H € A a sequence Ji € A such that J;, C H are compact and uo(H \ Ji) — 0
as k — oo.

EXERCISE 1.1.33. Show the necessity of the assumption that A be an algebra in
Carathéodory’s extension theorem, by giving an example of two probability measures
w # v oon a measurable space (U, F) such that p(A) = v(A) for all A € A and
F =o0(A).

Hint: This can be done with Q = {1,2,3,4} and F = 2.

It is often useful to assume that the probability space we have is complete, in the
sense we make precise now.

DEFINITION 1.1.34. We say that a measure space (0, F,u) is complete if any
subset N of any B € F with u(B) = 0 is also in F. If further u = P is a probability
measure, we say that the probability space (Q, F,P) is a complete probability space.

Our next theorem states that any measure space can be completed by adding to
its o-algebra all subsets of sets of zero measure (a procedure that depends on the
measure in use).

THEOREM 1.1.35. Given a measure space (0, F,u), let N = {N : N C A for
some A € F with u(A) = 0} denote the collection of p-null sets. Then, there
exists a complete measure space (2, F,T), called the completion of the measure

space (Q, F, ), such that F={FUN:F € F,NeN} and i = pu on F.

PROOF. This is beyond our scope, but see a detailed proof in [Dur03] page
450]. In particular, F = o(F,N) and (AU N) = u(A) for any N € N and A € F
(c.f. [Bil95, Problems 3.10 and 10.5]). O

The following collections of sets play an important role in proving the easy part
of Carathéodory’s theorem, the uniqueness of the extension .

DEFINITION 1.1.36. A m-system is a collection P of sets closed under finite inter-
sections (i.e. if I € P and J € P thenINJ € P).
A M-system is a collection L of sets containing Q@ and B\ A for any AC B A,B € L,
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which is also closed under monotone increasing limits (i.e. if A; € L and A; 7 A,

then A € L as well).
Obviously, an algebra is a m-system. Though an algebra may not be a A-system,

PROPOSITION 1.1.37. A collection F of sets is a o-algebra if and only if it is both
a T-system and a \-system.

PROOF. The fact that a o-algebra is a A-system is a trivial consequence of
Definition [CTIl To prove the converse direction, suppose that F is both a n-
system and a A-system. Then €2 is in the A-system F and so is A¢ = Q\ A for any
A € F. Further, with F also a m-system we have that

AUB=Q\ (A°NB%) e F,

for any A, B € F. Consequently, if A; € F then so are also G,, = A;U---UA, € F.
Since F is a A-system and G, T |, A4, it follows that | J; A; € F as well, completing
the verification that F is a o-algebra. 0

The main tool in proving the uniqueness of the extension is Dynkin’s m— \ theorem,
stated next.

THEOREM 1.1.38 (DYNKIN’S m — A THEOREM). If P C L with P a w-system and
L a A-system then o(P) C L.

PROOF. A short though dense exercise in set manipulations shows that the
smallest A-system containing P is a w-system (for details see [Wil91l Section A.1.3],
or either the proof of [Dur03, Theorem A.2.1], or that of [Bil95, Theorem 3.2]). By
Proposition [LT37 it is a o-algebra, hence contains o(P). Further, it is contained
in the A-system L, as £ also contains P. O

REMARK. Proposition [CT31 remains valid even if in the definition of A-system
we relax the condition that B\ A € £ for any A C B A, B € L, to the condition
A¢ € L whenever A € L. However, Dynkin’s theorem does not hold under the
latter definition.

As we show next, the uniqueness part of Carathéodory’s theorem, is an immediate
consequence of the m — A\ theorem.

PROPOSITION 1.1.39. If two measures py and ps on (Q,0(P)) agree on the 7-
system P and are such that p1(Q) = pa(Q) < 0o, then u1 = ua.

PrOOF. Let L = {A € 0(P) : u1(A) = p2(A)}. Our assumptions imply that
P C L and that Q € L. Further, o(P) is a A-system (by Proposition [LT37), and
if AC B, A, B € L, then by additivity of the finite measures pu; and ps,

p1(B\ A) = p1(B) — p1(A) = p2(B) — p2(A) = p2(B\ A),

that is, B\ A € L. Similarly, if A; T A and A; € L, then by the continuity from
below of p1 and pe (see remark following Exercise [LT4),

pi(A) = lim g (An) = lim po(An) = p2(4),

so that A € £. We conclude that £ is a A-system, hence by Dynkin’s w — A theorem,
o(P) C L, that is, u1 = pe. O
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REMARK. With a somewhat more involved proof one can relax the condition
11 () = p2(Q) < oo to the existence of A,, € P such that 4, T Q and p1(4,) < 0
(c.f. [Dur03l Theorem A.2.2] or [Bil95, Theorem 10.3] for details). Accordingly,
in Carathéodory’s extension theorem we can relax po(§2) < oo to the assumption
that po is a o-finite measure, that is po(A,) < oo for some A, € A such that
A, 19, as is the case with Lebesgue’s measure \ on R.

We conclude this subsection with an outline the proof of Carathéodory’s extension
theorem, noting that since an algebra A is a m-system and 2 € A, the uniqueness of
the extension to o(A) follows from Proposition Our outline of the existence
of an extension follows [Wil91l Section A.1.8] (for a similar treatment see [Dur03]
Pages 446-448], or see [Bil95, Theorem 11.3] for the proof of a somewhat stronger
result). This outline centers on the construction of the appropriate outer measure,
a relaxation of the concept of measure, which we now define.

DEFINITION 1.1.40. An increasing, countably sub-additive, non-negative set func-
tion p* on a measurable space (1, F) is called an outer measure. That is, p* : F —
[0, 00], having the properties:

(a) p*(0) =0 and p*(Ay) < u*(A2) for any Ay, Ay € F with Ay C As.
(b) " (U, An) <>, 1 (Ay) for any countable collection of sets A,, € F.

In the first step of the proof we define the increasing, non-negative set function
p(E) = inf{z po(Ay): E C UAn,An € A},
n=1 n

for E € F = 2, and prove that it is countably sub-additive, hence an outer measure
on F.

By definition, p*(A) < po(A) for any A € A. In the second step we prove that
if in addition A C (J,, A, for A, € A, then the countable additivity of j9 on A
results with ig(A) < > po(Ay). Consequently, u* = o on the algebra A.

The third step uses the countable additivity of g on A to show that for any A € A
the outer measure p* is additive when splitting subsets of €2 by intersections with A
and A°. That is, we show that any element of A is a p*-measurable set, as defined
next.

DEFINITION 1.1.41. Let A be a non-negative set function on a measurable space
(Q,F), with A(®) = 0. We say that A € F is a A-measurable set if \(F) =
MENA)+ MNFNAC) for all F € F.

The fourth step consists of proving the following general lemma.

LEMMA 1.1.42 (CARATHEODORY’S LEMMA). Let u* be an outer measure on a
measurable space (0, F). Then the p*-measurable sets in F form a o-algebra G on
which p* is countably additive, so that (2, G, u*) is a measure space.

In the current setting, with A contained in the o-algebra G, it follows that o(.A) C
G on which p* is a measure. Thus, the restriction p of u* to o(A) is the stated
measure that coincides with g on A.

REMARK. In the setting of Carathéodory’s extension theorem for finite measures,
we have that the o-algebra G of all p*-measurable sets is the completion of o(A)
with respect to u (c.f. [Bil95l Page 45] or [Dur03, Theorem A.3.2]). In the context



1.1. PROBABILITY SPACES, MEASURES AND o-ALGEBRAS 17

of Lebesgue’s measure U on B(q 1], this is the o-algebra E(O,l] of all Lebesgue mea-
surable subsets of (0,1]. Associated with it are the Lebesgue measurable functions
f (0,1 — R for which f~!(B) € Bg for all B € B. However, as noted for
example in [Dur03l Theorem A.3.4], the non Borel set constructed in the proof of
Proposition [CTIY is also non Lebesgue measurable.

The following concept of a monotone class of sets is a considerable relaxation of
that of a A-system (hence also of a o-algebra, see Proposition [LT31).

DEFINITION 1.1.43. A monotone class is a collection M of sets closed under both
monotone increasing and monotone decreasing limits (i.e. if A; € M and either

A;TAorA; | A then Ae M).

When starting from an algebra instead of a m-system, one may save effort by
applying Halmos’s monotone class theorem instead of Dynkin’s m — A theorem.

THEOREM 1.1.44 (HALMOS’S MONOTONE CLASS THEOREM). If A C M with A
an algebra and M a monotone class then o(A) C M.

PRrROOF. Clearly, any algebra which is a monotone class must be a o-algebra.
Another short though dense exercise in set manipulations shows that the intersec-
tion m(A) of all monotone classes containing an algebra A is both an algebra and
a monotone class (see the proof of [Bil95, Theorem 3.4]). Consequently, m(A) is
a o-algebra. Since A C m(.A) this implies that o(A) C m(A) and we complete the
proof upon noting that m(A4) C M. a

EXERCISE 1.1.45. We say that a subset V of {1,2,3,---} has Cesdro density (V)
and write V € CES if the limit

FY(V) = lim n71|Vﬂ{1,2,3,~-~ an}‘7

exists. Give an example of sets Vi € CES and Vo € CES for which V1 NV, ¢ CES.
Thus, CES is not an algebra.

Here is an alternative specification of the concept of algebra.

EXERCISE 1.1.46.
(a) Suppose that Q € A and that AN B¢ € A whenever A, B € A. Show that

A is an algebra.

(b) Give an example of a collection C of subsets of Q such that Q € C, if
A € C then A° € C and if A,B € C are disjoint then also AUB € C,
while C is not an algebra.

As we already saw, the o-algebra structure is preserved under intersections. How-
ever, whereas the increasing union of algebras is an algebra, it is not necessarily
the case for o-algebras.

EXERCISE 1.1.47. Suppose that A, are classes of sets such that A, C Api1-

(a) Show that if A, are algebras then so is |y, An.
(b) Provide an ezample of o-algebras A, for which |J,—, Ay, is not a o-
algebra.
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1.2. Random variables and their distribution

Random variables are numerical functions w — X (w) of the outcome of our ran-
dom experiment. However, in order to have a successful mathematical theory, we
limit our interest to the subset of measurable functions (or more generally, measur-
able mappings), as defined in Subsection [[Z1] and study the closure properties of
this collection in Subsection Subsection is devoted to the characteriza-
tion of the collection of distribution functions induced by random variables.

1.2.1. Indicators, simple functions and random variables. We start
with the definition of random variables, first in the general case, and then restricted
to R-valued variables.

DEFINITION 1.2.1. A mapping X : Q +— S between two measurable spaces (2, F)
and (S,S) is called an (S,S)-valued Random Variable (R.V.) if

X !'B):={w:X(w)eB}eF VB e S.
Such a mapping is also called a measurable mapping.

DEFINITION 1.2.2. When we say that X is a random wvariable, or a measurable
function, we mean an (R, B)-valued random variable which is the most common type
of R.V. we shall encounter. We let mF denote the collection of all (R, B)-valued
measurable mappings, so X is a R.V. if and only if X € mF. If in addition Q is a
topological space and F = o({O C Q open }) is the corresponding Borel o-algebra,
we say that X : Q +— R is a Borel (measurable) function. More generally, a random
vector is an (R, Bga)-valued R.V. for some d < oo.

The next exercise shows that a random vector is merely a finite collection of R.V.
on the same probability space.

EXERCISE 1.2.3. Relying on Exercise [LLZ1 and Theorem [LZA, show that X :
Q — R? is a random vector if and only if X(w) = (X1(w),..., Xa(w)) with each
X;:Q—RaR.V.

d
Hint: Note that X '(By x ... x Bg) = (| X; *(By).
i=1

We now provide two important generic examples of random variables.

JLweA
C |0we A
Indeed, {w : Ix(w) € B} is for any B C R one of the four sets §, A, A° or Q
(depending on whether 0 € B or not and whether 1 € B or not), all of whom are
in F. We call such R.V. also an indicator function.

EXAMPLE 1.2.4. For any A € F the function I4(w) is a R.V.

EXERCISE 1.2.5. By the same reasoning check that X (w) = Zﬁ;l cnla, (W) is a

R.V. for any finite N, non-random ¢, € R and sets A,, € F. We call any such X
a simple function, denoted by X € SF.

Our next proposition explains why simple functions are quite useful in probability
theory.

PROPOSITION 1.2.6. For every R.V. X (w) there exists a sequence of simple func-
tions X, (w) such that X, (w) — X (w) as n — oo, for each fized w € Q.
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PROOF. Let
n2"—1
fn(x) =nlg>n + Z k27"1(k2*”,(k+1)2*”] (I) )

k=0
noting that for R.V. X > 0, we have that X,, = f,,(X) are simple functions. Since
X > Xpp1 > X, and X(w) — Xp(w) < 27" whenever X (w) < n, it follows that

Xn(w) = X (w) as n — oo, for each w.
We write a general R.V. as X (w) = X4 (w) — X_(w) where X (w) = max(X (w),0)

and X_(w) = —min(X(w),0) are non-negative R.V.-s. By the above argument
the simple functions X,, = fn(X4) — fn(X_) have the convergence property we
claimed. g

Note that in case F = 2%, every mapping X : Q + S is measurable (and therefore
is an (S,S)-valued R.V.). The choice of the o-algebra F is very important in
determining the class of all (S,S)-valued R.V. For example, there are non-trivial
o-algebras G and F on 2 = R such that X(w) = w is a measurable function for
(Q, F), but is non-measurable for (€2, G). Indeed, one such example is when F is the
Borel o-algebra B and G = o({[a,b] : a,b € Z}) (for example, the set {w : w < a}
is not in G whenever a ¢ Z).

Building on Proposition [C2Z0 we have the following analog of Halmos’s monotone
class theorem. It allows us to deduce in the sequel general properties of (bounded)
measurable functions upon verifying them only for indicators of elements of -
systems.

THEOREM 1.2.7 (MONOTONE CLASS THEOREM). Suppose H is a collection of
R-valued functions on Q such that:

(a) The constant function 1 is an element of H.

(b) H is a vector space over R. That is, if h1,ha € H and c1,c2 € R then
Clhl + CQhQ 1s in H.

(¢) If hy, € H are non-negative and hy, 1 h where h is a (bounded) real-valued
function on §, then h € H.

If P is a w-system and Iy € H for all A € P, then H contains all (bounded)
functions on Q that are measurable with respect to o(P).

REMARK. We stated here two versions of the monotone class theorem, with the
less restrictive assumption that (¢) holds only for bounded h yielding the weaker
conclusion about bounded elements of mo(P). In the sequel we use both versions,
which as we see next, are derived by essentially the same proof. Adapting this
proof you can also show that any collection H of non-negative functions on 2
satisfying the conditions of Theorem [[Z7 apart from requiring (b) to hold only
when ¢1h1 4+ coha > 0, must contain all non-negative elements of mo(P).

PROOF. Let £L={A CQ: 14 € H}. From (a) we have that Q € £, while (b)
implies that B\ A is in £ whenever A C B are both in £. Further, in view of (c)
the collection L is closed under monotone increasing limits. Consequently, L is a
A-system, so by Dynkin’s 7-A theorem, our assumption that £ contains P results
with o(P) C L. With H a vector space over R, this in turn implies that H contains
all simple functions with respect to the measurable space (€, o(P)). In the proof of
Proposition [[Z8 we saw that any (bounded) measurable function is a difference of
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two (bounded) non-negative functions each of which is a monotone increasing limit
of certain non-negative simple functions. Thus, from (b) and (c) we conclude that
‘H contains all (bounded) measurable functions with respect to (2, o(P)). O

The concept of almost sure prevails throughout probability theory.

DEFINITION 1.2.8. We say that two (S,S)-valued R.V. X and Y defined on the
same probability space (0, F,P) are almost surely the same if P{w : X(w) #
Y(w)}) = 0. This shall be denoted by X = Y. More generally, same notation
applies to any property of R.V. For example, X (w) > 0 a.s. means that P({w :
X (w) < 0}) = 0. Hereafter, we shall consider X and Y such that X “2'Y to be the
same S-valued R.V. hence often omit the qualifier “a.s.” when stating properties
of R.V. We also use the terms almost surely (a.s.), almost everywhere (a.e.), and
with probability 1 (w.p.1) interchangeably.

Since the o-algebra & might be huge, it is very important to note that we may
verify that a given mapping is measurable without the need to check that the pre-
image X ~!(B) is in F for every B € S. Indeed, as shown next, it suffices to do
this only for a collection (of our choice) of generators of S.

THEOREM 1.2.9. If § = 0(A) and X : Q — S is such that X Y(A) € F for all
Aec A, then X is an (S,S)-valued R.V.

PROOF. We first check that S = {B € & : X Y(B) € F} is a o-algebra.

Indeed,
a). § € S since X~1(0)) = 0.
b). If A € 8 then X~'(A) € F. With F a o-algebra, X ~1(A¢) = (X71(4) e F.
Consequently, A€ € S.
c). If A, € S for all n then X~1(A,) € F for all n. With F a o-algebra, then also
XU, An) =U,, X 1(A,) € F. Consequently, | J,, A, € S.

Our assumption that A C §, then translates to S = o(A) C §, as claimed. O

The most important o-algebras are those generated by ((S,S)-valued) random
variables, as defined next.

EXERCISE 1.2.10. Adapting the proof of Theorem L2, show that for any mapping
X : QS and any o-algebra S of subsets of S, the collection {X ~Y(B) : B € S} is
a o-algebra. Verify that X is an (S,S)-valued R.V. if and only if {X *(B) : B €
S} C F, in which case we denote {X *(B) : B € S} either by o(X) or by FX and
call it the o-algebra generated by X.

To practice your understanding of generated o-algebras, solve the next exercise,
providing a convenient collection of generators for o(X).

EXERCISE 1.2.11. If X is an (S,S)-valued R.V. and § = o(A) then o(X) is
generated by the collection of sets X ~*(A) := {X1(A): A e A}.

An important example of use of Exercise [[ZT1] corresponds to (R, B)-valued ran-
dom variables and A = {(—o0,z] : z € R} (or even A = {(—o0,z] : € Q}) which
generates B (see Exercise [LITT), leading to the following alternative definition of
the o-algebra generated by such R.V. X.
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DEFINITION 1.2.12. Given a function X : Q — R we denote by o(X) or by FX

the smallest o-algebra F such that X (w) is a measurable mapping from (2, F) to
(R, B). Alternatively,

o(X)=o({w: X(w) <a},aeR) =o({w )<ahq€Q).

X(w

), that is, random variables
< n) (or FX), denote the
are measurable on (2, F).

More generally, given a random vector X = (X1,..., X,
Xi1,...,X,, on the same probability space, let 0( Jk
smallest o-algebra F such that Xp(w), k = 1,...,n
Alternatively,

c( X, k<n)=oc({w: Xp(w) <a}l,ae R k<n).

Finally, given a possibly uncountable collection of functions X, : Q1 — R, indezed
by v € T, we denote by (X, € T) (or simply by FX), the smallest o-algebra F
such that X (w), v € I' are measurable on (2, F).

The concept of o-algebra is needed in order to produce a rigorous mathematical
theory. It further has the crucial role of quantifying the amount of information
we have. For example, o(X) contains exactly those events A for which we can say
whether w € A or not, based on the value of X (w). Interpreting Example [CTT9 as
corresponding to sequentially tossing coins, the R.V. X,,(w) = w, gives the result
of the n-th coin toss in our experiment 2., of infinitely many such tosses. The o-
algebra F,, = 2 of Example [[TH then contains exactly the information we have
upon observing the outcome of the first n coin tosses, whereas the larger o-algebra
F. allows us to also study the limiting properties of this sequence (and as you show
next, F. is isomorphic, in the sense of Definition [CZZ4, to Bjg 11).

EXERCISE 1.2.13. Let F. denote the cylindrical o-algebra for the set Qo = {0, 1}
of infinite binary sequences, as in Example LTI4.
(a) Show that X (w) = >_0° wn2™™ is a measurable map from (Qoo, Fe) to
(10,1], By.).
(b) Conversely, let Y(x) = (w1,...,Wn,...) where for each n > 1, w,(1) =1
while wy(x) = I(|2"x] is an odd number) when x € [0,1). Show that
Y = X~ is a measurable map from ([0, 1], Bjo 1)) to (Qoo, Fe).

Here are some alternatives for Definition [LZT2

EXERCISE 1.2.14. Verify the following relations and show that each generating
collection of sets on the right hand side is a w-system.
(a) o(X)=0c({w: X(w) <a},a €R)
(b) o(Xp,k<n)=c({w: Xp(w) <ag,1 <k<n},ag,...,a, €R)
(¢c) o(X1,X2,...) =0({w : Xp(w) < ax,1 <k <m},a1,...,am € Rym €
N)
(d) U(leXQa e ) = U(Un U(Xk’ k< n))

As you next show, when approximating a random variable by a simple function,
one may also specify the latter to be based on sets in any generating algebra.

EXERCISE 1.2.15. Suppose (2, F,P) is a probability space, with F = o(A) for an
algebra A.
(a) Show that inf{P(AAB): A€ A} =0 for any B € F (recall that AAB =
(AN BS)U(A°NB)).
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(b) Show that for any bounded random variable X and € > 0 there exists a
simple function Y = 25:1 cnla, with A, € A such that P(|X = Y| >
€) <e.

EXERCISE 1.2.16. Let F = o0(Aq,a € T') and suppose there exist wq # wa € Q
such that for any a € T, either {w1, w2} C Ay or {w1,wa} C AS.
(a) Show that if mapping X is measurable on (2, F) then X (w1) = X (w2).
(b) Provide an explicit o-algebra F of subsets of Q@ = {1,2,3} and a mapping
X : Q — R which is not a random variable on (2, F).

We conclude with a glimpse of the canonical measurable space associated with a
stochastic process (Xy,t € T) (for more on this, see Lemma [ZT7).

EXERCISE 1.2.17. Fizing a possibly uncountable collection of random variables X,
indezed by t € T, let FX = o(Xy,t € C) for each C C T. Show that

= U #
c countable
and that any R.V. Z on (Q, FX) is measurable on FZX for some countable C C T.

1.2.2. Closure properties of random variables. For the typical measur-
able space with uncountable ) it is impractical to list all possible R.V. Instead,
we state a few useful closure properties that often help us in showing that a given
mapping X (w) is indeed a R.V.

We start with closure with respect to the composition of a R.V. and a measurable
mapping.

PROPOSITION 1.2.18. If X : Q+— S is an (S, S)-valued R.V. and f is a measurable
mapping from (S,S) to (T,T), then the composition f(X): Q+— T is a (T,T)-
valued R.V.

PROOF. Considering an arbitrary B € 7, we know that f~1(B) € S since f is
a measurable mapping. Thus, as X is an (S, S)-valued R.V. it follows that

[FXOI7H(B) =X (f1(B) e F.
This holds for any B € 7, thus concluding the proof. g

In view of Exercise we have the following special case of Proposition [CZTH,
corresponding to S = R™ and T = R equipped with the respective Borel o-algebras.

COROLLARY 1.2.19. Let X;, i = 1,...,n be R.V. on the same measurable space
(Q,F) and f : R™ — R a Borel function. Then, f(X1,...,Xy) is also a R.V. on

the same space.

To appreciate the power of Corollary [LZT9, consider the following exercise, in
which you show that every continuous function is also a Borel function.

EXERCISE 1.2.20. Suppose (S, p) is a metric space (for ezample, S = R™). A func-
tion g : S + [~00, 0] is called lower semi-continuous (l.s.c.) if liminf ., .0 9(y) >
g(x), for all x € S. A function g is said to be upper semi-continuous(u.s.c.) if —g
15 l.s.c.

(a) Show that if g is l.s.c. then {x : g(x) < b} is closed for each b € R.
(b) Conclude that semi-continuous functions are Borel measurable.

(c) Conclude that continuous functions are Borel measurable.
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A concrete application of Corollary [CZT9 shows that any linear combination of
finitely many R.V.-s is a R.V.

EXAMPLE 1.2.21. Suppose X; are R.V.-s on the same measurable space and c¢; € R.
Then, Wy(w) = Y1, ¢;Xi(w) are also R.V.-s. To see this, apply Corollary [LZ13
for f(x1,...,2,) = > 1, ¢;iw; a continuous, hence Borel (measurable) function (by
Ezercise [LZ210).

We turn to explore the closure properties of mJF with respect to operations of a
limiting nature, starting with the following key theorem.

THEOREM 1.2.22. Let R = [—o0, 00] equipped with its Borel o-algebra
Bg =0 ([—00,b): beR).
If X; are R-valued R.V.-s on the same measurable space, then

inf X,,, supX,, liminfX,, limsupX,,

n—00 n— oo

are also R-valued random wvariables.

PrOOF. Pick an arbitrary b € R. Then,
{w:inf Xp(w) < b} = [ J{w: Xa(w) <b} = [ X,/ '([~00,b)) € F.
n=1 n=1

Since By is generated by {[—o00,b) : b € R}, it follows by Theorem [CZ that inf,, X,
is an R-valued R.V.
Observing that sup,, X, = —inf,,(—X,,), we deduce from the above and Corollary
[CZTA (for f(z) = —x), that sup,, X,, is also an R-valued R.V.
Next, recall that
W = lﬂngn = sup [lgin} .
By the preceding proof we have that Y, = inf;>, X, are R-valued R.V .-s and hence
so is W =sup,, ;.
Similarly to the arguments already used, we conclude the proof either by observing
that
Z = limsup X,, = inf {sup Xl} ,
n—00 n Li>n

or by observing that limsup,, X, = — liminf,,(—X,,). O

REMARK. Since inf,, X, sup,, X,, limsup,, X,, and liminf,, X,, may result in val-
ues £oo even when every X, is R-valued, hereafter we let mJF also denote the
collection of R-valued R.V.

An important corollary of this theorem deals with the existence of limits of se-
quences of R.V.

COROLLARY 1.2.23. For any sequence X,, € mF, both
Qp ={w € Q:liminf X, (w) = limsup X,,(w)}

and
Q) = {w € Q:liminf X, (w) = limsup X,,(w) € R}

n—00 n— oo

are measurable sets, that is, Qg € F and Q1 € F.
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ProoOF. By Theorem[[LZZZwe have that Z = lim sup,, X,, and W = lim inf,, X,
are two R-valued variables on the same space, with Z(w) > W (w) for all w. Hence,
O ={w:Z(w)-W(w)=0,Z(w) € R,IW(w) € R} is measurable (apply Corollary
2T for f(z,w) =2z —w), asis Qo = WL ({oo}) U Z71({—00}) U Q. O

The following structural result is yet another consequence of Theorem

COROLLARY 1.2.24. For anyd < co and R.V.-s Y1, ..., Yy on the same measurable
space (Q,F) the collection H = {h(Y1,...,Yq);h : R? — R Borel function} is a
vector space over R containing the constant functions, such that if X,, € H are
non-negative and X, T X, an R-valued function on 2, then X € H.

Proor. By Example [LZ21] the collection of all Borel functions is a vector
space over R which evidently contains the constant functions. Consequently, the
same applies for H. Next, suppose X,, = h,(Y1,...,Yy) for Borel functions h,, such
that 0 < X, (w) T X(w) for all w € Q. Then, h(y) = sup,, hn(y) is by Theorem
an R-valued Borel function on R?, such that X = h(Y7,...,Yy). Setting
h(y) = h(y) when h(y) € R and h(y) = 0 otherwise, it is easy to check that h is a
real-valued Borel function. Moreover, with X : 2 — R (finite valued), necessarily
X =h(Y1,...,Yy) as well, so X € H. O

The point-wise convergence of R.V., that is X, (w) — X (w), for every w € Q is
often too strong of a requirement, as it may fail to hold as a result of the R.V. being
ill-defined for a negligible set of values of w (that is, a set of zero measure). We
thus define the more useful, weaker notion of almost sure convergence of random
variables.

DEFINITION 1.2.25. We say that a sequence of random variables X,, on the same
probability space (Q, F,P) converges almost surely if P(p) = 1. We then set
Xoo = limsup,,_,. Xn, and say that X,, converges almost surely to X, or use the
notation X, 25 Xoo.

REMARK. Note that in Definition [[2Z2H we allow the limit X (w) to take the
values +oo with positive probability. So, we say that X,, converges almost surely
to a finite limit if P(Q1) = 1, or alternatively, if X, € R with probability one.

We proceed with an explicit characterization of the functions measurable with
respect to a g-algebra of the form o(Yy, k < n).

THEOREM 1.2.26. Let G = o(Yy, k < n) for some n < oo and R.V.-s Y1,...,Y,
on the same measurable space (0, F). Then, mG = {g(Y1,...,Y,) : g : R"
R is a Borel function}.

ProOF. From Corollary [LZT9 we know that Z = g(Y3,...,Y},) is in mG for
each Borel function g : R™ +— R. Turning to prove the converse result, recall
part (b) of Exercise [[ZT4 that the o-algebra G is generated by the m-system P =
{Aq 1 a = (0ou,...,a,) € R*} where In, = ho(Y1,...,Y,,) for the Borel function
ha(y1,- - yn) = [1i—q Lye<as- Thus, in view of Corollary [ZZZ4, we have by the
monotone class theorem that H = {g(¥1,...,Ys) : ¢ : R" — R is a Borel function}
contains all elements of mgG. O

We conclude this sub-section with a few exercises, starting with Borel measura-
bility of monotone functions (regardless of their continuity properties).
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EXERCISE 1.2.27. Show that any monotone function g : R +— R is Borel measur-
able.

Next, Exercise implies that the set of points at which a given function g is
discontinuous, is a Borel set.

EXERCISE 1.2.28. Fiz an arbitrary function g : S — R.
(a) Show that for any § > 0 the function g.(z,d) = inf{g(y) : p(z,y) < d} is
u.s.c. and the function g*(x,d) = sup{g(y) : p(z,y) < &} is L.s.c.
(b) Show that Dy = {x : supy, g« (x, k™) < infy g*(x, k~1)} is exactly the set
of points at which g is discontinuous.
(c) Deduce that the set Dy of points of discontinuity of g is a Borel set.

Here is an alternative characterization of B that complements Exercise [[220]

EXERCISE 1.2.29. Show that if F is a o-algebra of subsets of R then B C F if
and only if every continuous function f : R — R is in mF (i.e. B is the smallest
o-algebra on R with respect to which all continuous functions are measurable).

EXERCISE 1.2.30. Suppose X,, and X are real-valued random variables and
P{w :limsup X, (w) < Xoo(w)}) =1.
Show that for any e > 0, there exists an event A with P(A) < e and a non-random
N = N(e), sufficiently large such that X, (w) < Xoo(w)+¢ for alln > N and every
w € A°.

Equipped with Theorem you can also strengthen Proposition [CZ0

EXERCISE 1.2.31. Show that the class mF of R-valued measurable functions, is
the smallest class containing SF and closed under point-wise limits.

Finally, relying on Theorem it is easy to show that a Borel function can
only reduce the amount of information quantified by the corresponding generated
o-algebras, whereas such information content is invariant under invertible Borel
transformations, that is

EXERCISE 1.2.32. Show that o(g(Y1,...,Ys)) C o(Yi,k < n) for any Borel func-
tion g : R™ — R. Further, if Y1,...,Y, and Z1, ..., Z,, defined on the same proba-
bility space are such that Zy, = g (Y1,...,Yn), k=1,....m andY; = hi(Z1, ..., Znm),
1 = 1,...,n for some Borel functions g : R® — R and h; : R™ — R, then
o(Y1,....Yn)=0(Z1,...,Zm).

1.2.3. Distribution, density and law. As defined next, every random vari-
able X induces a probability measure on its range which is called the law of X.

DEFINITION 1.2.33. The law of a real-valued R.V. X, denoted Px, is the proba-
bility measure on (R, B) such that Px(B) = P({w : X(w) € B}) for any Borel set
B.

REMARK. Since X is a R.V., it follows that Px(B) is well defined for all B € B.
Further, the non-negativity of P implies that Px is a non-negative set function on
(R, B), and since X ~1(R) = €, also Px(R) = 1. Consider next disjoint Borel sets
B;, observing that X ~1(B;) € F are disjoint subsets of { such that

X*l(U B;) = UX*(BZ-) :
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Thus, by the countable additivity of P we have that
Px(JB:) =P(JX'(B) =D P(X (B)) =Y Px(Bi).

This shows that Px is also countably additive, hence a probability measure, as
claimed in Definition

Note that the law Px of a R.V. X : Q@ — R, determines the values of the
probability measure P on o(X).

DEFINITION 1.2.34. We write X 2 Y and say that X equals Y in law (or in
distribution), if and only if Px = Py.

A good way to practice your understanding of the Definitions and [CZ34 is

by verifying that if X “=" Y, then also X 2y (that is, any two random variables
we consider to be the same would indeed have the same law).

The next concept we define, the distribution function, is closely associated with
the law Px of the R.V.

DEFINITION 1.2.35. The distribution function Fx of a real-valued R.V. X is
Fx(a) =P{w: X(w) < a}) =Px((—o0, a)) Va € R

Our next result characterizes the set of all functions F' : R — [0,1] that are
distribution functions of some R.V.

THEOREM 1.2.36. A function F : R — [0,1] is a distribution function of some
R.V. if and only if
(a) F is non-decreasing
(b) limy oo F'(z) =1 and limy—,_ oo F(z) =0
(c) F is right-continuous, i.e. limy), F(y) = F(z)

PROOF. First, assuming that F' = Fx is a distribution function, we show that
it must have the stated properties (a)-(c). Indeed, if x < y then (—oo, 2] C (—o0,y],
and by the monotonicity of the probability measure Px (see part (a) of Exercise
[CTA), we have that Fx(z) < Fx(y), proving that Fx is non-decreasing. Further,
(—oo,z] T R as z T oo, while (—oo,z]| | 0 as x | —oo, resulting with property (b)
of the theorem by the continuity from below and the continuity from above of the
probability measure Px on R. Similarly, since (—oo,y] | (—oo,x] as y |  we get
the right continuity of Fx by yet another application of continuity from above of
Px.

We proceed to prove the converse result, that is, assuming F' has the stated prop-
erties (a)-(c), we consider the random variable X ~(w) = sup{y : F(y) < w} on
the probability space ((0,1],B,1},U) and show that Fx- = F. With I having
property (b), we see that for any w > 0 the set {y : F(y) < w} is non-empty and
further if w < 1 then X~ (w) < 00, 80 X~ : (0,1) — R is well defined. The identity

(1.2.1) {w: X (w)<z}={w:w < Fa)},

implies that Fx-(z) = U((0, F(z)]) = F(z) for all x € R, and further, the sets
(0, F(x)] are all in B(g 1), implying that X ~ is a measurable function (i.e. a R.V.).
Turning to prove [CZI)) note that if w < F(z) then z ¢ {y : F(y) < w} and so by

definition (and the monotonicity of F'), X~ (w) < z. Now suppose that w > F(x).
Since F is right continuous, this implies that F(x + ¢) < w for some € > 0, hence
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by definition of X~ also X ~(w) > x + € > z, completing the proof of ([CZI]) and
with it the proof of the theorem. O

Check your understanding of the preceding proof by showing that the collection
of distribution functions for R-valued random variables consist of all F': R+ [0, 1]
that are non-decreasing and right-continuous.

REMARK. The construction of the random variable X ~(w) in Theorem [[2Z3d is
called Skorokhod’s representation. You can, and should, verify that the random
variable X (w) = sup{y : F(y) < w} would have worked equally well for that
purpose, since X T(w) # X~ (w) only if X*(w) > ¢ > X~ (w) for some rational g,
in which case by definition w > F(q) > w, so there are most countably many such
values of w (hence P(X™* # X~) = 0). We shall return to this construction when
dealing with convergence in distribution in Section An alternative approach to
Theorem [CZ3A is to adapt the construction of the probability measure of Example
[CTZ8 taking here 2 = R with the corresponding change to A and replacing the
right side of (L) with >, _, (F(bx) — F(ak)), yielding a probability measure P
on (R, B) such that P((—ooc, a]) = F(a) for all « € R (c.f. [Bil95, Theorem 12.4]).

Our next example highlights the possible shape of the distribution function.

ExampPLE 1.2.37. Consider FExample [LI0 of n coin tosses, with o-algebra F, =
2% sample space 0, = {H, T}", and the probability measure P, (A) = Y owed Do
where p, = 27" for each w € Q,, (that is, w = {w1,wa, -+ ,wy} for w; € {H,T}),
corresponding to independent, fair, coin tosses. Let Y (w) = I, —py measure the
outcome of the first toss. The law of this random variable is,

1 1
Py(B) = 51(0en} + 5lp1em)

and its distribution function is

1, a>1
(1.22) Fy(a) =Py((-00,a]) =P, (Y(w)<a)=4¢3, 0<a<1
0, a<0

Note that in general o(X) is a strict subset of the o-algebra F (in Example [LZ37
we have that o(Y") determines the probability measure for the first coin toss, but
tells us nothing about the probability measure assigned to the remaining n — 1
tosses). Consequently, though the law Px determines the probability measure P
on o(X) it usually does not completely determine P.

Example[[237is somewhat generic. That is, if the R.V. X is a simple function (or
more generally, when the set {X (w) : w € 2} is countable and has no accumulation
points), then its distribution function F'y is piecewise constant with jumps at the
possible values that X takes and jump sizes that are the corresponding probabilities.
Indeed, note that (—oo,y] 1 (—oo,x) as y 1 x, so by the continuity from below of
Px it follows that

Fx(x7) = lim Fx(y) = P({w: X(w) <2}) = Fx(z) - P{{w: X(w) = =}),
for any R.V. X.

A direct corollary of Theorem [L2Z30 shows that any distribution function has a
collection of continuity points that is dense in R.
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EXERCISE 1.2.38. Show that a distribution function F' has at most countably many
points of discontinuity and consequently, that for any x € R there exist y, and zy
at which F is continuous such that zx | x and yi T x.

In contrast with Example [CZ37 the distribution function of a R.V. with a density
is continuous and almost everywhere differentiable, that is,

DEFINITION 1.2.39. We say that a R.V. X (w) has a probability density function
fx if and only if its distribution function Fx can be expressed as

(1.2.3) Fx(a) = /_a fx(z)dx, Va € R.

By Theorem[LZ30 a probability density function fx must be an integrable, Lebesgue
almost everywhere non-negative function, with fR fx(x)dx = 1. Such Fx is contin-

uous with ddL;‘(:U) = fx(x) except possibly on a set of values of x of zero Lebesgue
measure.

REMARK. To make Definition precise we temporarily assume that probabil-
ity density functions fx are Riemann integrable and interpret the integral in (CZ3)
in this sense. In Section we construct Lebesgue’s integral and extend the scope
of Definition to Lebesgue integrable density functions fx > 0 (in particular,
accommodating Borel functions fx). This is the setting we assume thereafter, with
the right-hand-side of (CZ3) interpreted as the integral A(fx; (—00,a]) of fx with
respect to the restriction on (—oo, a] of the completion \ of the Lebesgue measure on
R (c.f. Definition [C309 and Example [[360). Further, the function fx is uniquely
defined only as a representative of an equivalence class. That is, in this context we
consider f and g to be the same function when A({z : f(z) # g(z)}) = 0.

Building on Example we next detail a few classical examples of R.V. that
have densities.

EXAMPLE 1.2.40. The distribution function Fy of the R.V. of Example L 120 is
1, a>1

(1.2.4) Fyla)=P{U<a)=PUc[0,a])=¢a, 0<a<1
0, a<0

1,0<u<1
and its density is fy(u) = 07 t; U <
, otherwise

The exponential distribution function is

F(sc)—{o’””go ,

1—e ™ x>0

0, z<0
corresponding to the density f(x) = { : - 0 whereas the standard normal
e, T >

distribution has the density
2
$lz) = (2m) Ve T,

with no closed form expression for the corresponding distribution function ®(x) =
J¥ ¢(u)du in terms of elementary functions.
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Every real-valued R.V. X has a distribution function but not necessarily a density.
For example X = 0 w.p.1 has distribution function Fx(a) = 14>0. Since Fx is
discontinuous at 0, the R.V. X does not have a density.

DEFINITION 1.2.41. We say that a function F is a Lebesgue singular function if
it has a zero derivative except on a set of zero Lebesgue measure.

Since the distribution function of any R.V. is non-decreasing, from real analysis
we know that it is almost everywhere differentiable. However, perhaps somewhat
surprisingly, there are continuous distribution functions that are Lebesgue singular
functions. Consequently, there are non-discrete random variables that do not have
a density. We next provide one such example.

EXAMPLE 1.2.42. The Cantor set C is defined by removing (1/3,2/3) from [0, 1]
and then iteratively removing the middle third of each interval that remains. The
uniform distribution on the (closed) set C' corresponds to the distribution function
obtained by setting F(x) = 0 for x < 0, F(z) = 1 forx > 1, F(z) = 1/2 for
x € [1/3,2/3], then F(x) = 1/4 for x € [1/9,2/9], F(x) = 3/4 for z € [7/9,8/9],
and so on (which as you should check, satisfies the properties (a)-(c) of Theorem
[CZ34). From the definition, we see that dF/dx = 0 for almost every x ¢ C and
that the corresponding probability measure has P(C¢) = 0. As the Lebesgue measure
of C' is zero, we see that the derivative of F is zero except on a set of zero Lebesgue
measure, and consequently, there is no function f for which F(x) = ffoo fly)dy
holds. Though it is somewhat more involved, you may want to check that F is
everywhere continuous (c.f. [Bil95 Problem 31.2]).

Even discrete distribution functions can be quite complex. As the next example
shows, the points of discontinuity of such a function might form a (countable) dense
subset of R (which in a sense is extreme, per Exercise [[2Z3]).

EXAMPLE 1.2.43. Let ¢q1,q2, ... be an enumeration of the rational numbers and set
F(z) =271 «)()
i=1

(where 1ig, ooy(x) = 1 if x > ¢; and zero otherwise). Clearly, such F' is non-
decreasing, with limits 0 and 1 as x — —oo and x — 00, respectively. It is not hard
to check that F is also right continuous, hence a distribution function, whereas by
construction F is discontinuous at each rational number.

As we have that P({w : X (w) < a}) = Fx(«) for the generators {w : X (w) < a}
of o(X), we are not at all surprised by the following proposition.

PROPOSITION 1.2.44. The distribution function Fx uniquely determines the law
PX OfX.

ProoOF. Consider the collection 7(R) = {(—00,b] : b € R} of subsets of R. It
is easy to see that m(R) is a m-system, which generates B (see Exercise [LTI7).
Hence, by Proposition [LT39, any two probability measures on (R, B) that coincide
on m(R) are the same. Since the distribution function Fx specifies the restriction

of such a probability measure Px on w(R) it thus uniquely determines the values
of Px(B) for all B € B. O

Different probability measures P on the measurable space (£, F) may “trivialize”
different o-algebras. That is,



30 1. PROBABILITY, MEASURE AND INTEGRATION

DEFINITION 1.2.45. If a o-algebra H C F and a probability measure P on (Q, F)
are such that P(H) € {0,1} for all H € H, we call H a P-trivial o-algebra.
Similarly, a random variable X is called P-trivial or P-degenerate, if there exists
a non-random constant ¢ such that P(X # ¢) = 0.

Using distribution functions we show next that all random variables on a P-trivial
o-algebra are P-trivial.

PROPOSITION 1.2.46. If a random variable X € mH for a P-trivial o-algebra 'H,
then X s P-trivial.

PROOF. By definition, the sets {w : X (w) < a} are in H for all @ € R. Since H
is P-trivial this implies that Fx (o) € {0, 1} for all & € R. In view of Theorem [[Z30
this is possible only if Fix(«) = 14>, for some non-random ¢ € R (for example, set
c¢=inf{a: Fx(a) = 1}). That is, P(X # ¢) = 0, as claimed. O

We conclude with few exercises about the support of measures on (R, B).

EXERCISE 1.2.47. Let p be a measure on (R,B). A point x is said to be in the
support of 1 if u(O) > 0 for every open neighborhood O of x. Prove that the support
is a closed set whose complement is the maximal open set on which u vanishes.

EXERCISE 1.2.48. Given an arbitrary closed set C C R, construct a probability
measure on (R, B) whose support is C.

Hint: Try a measure consisting of a countable collection of atoms (i.e. points of
positive probability).

As you are to check next, the discontinuity points of a distribution function are
closely related to the support of the corresponding law.

EXERCISE 1.2.49. The support of a distribution function F is the set Sp = {x € R
such that F(x +€) — F(x —¢€) > 0 for all € > 0}.

(a) Show that all points of discontinuity of F(-) belong to S, and that any
isolated point of S (that is, x € Sp such that (x — §,x + ) N Sp = {z}
for some § > 0) must be a point of discontinuity of F(-).

(b) Show that the support of the law Px of a random variable X, as defined
in Exercise[I.217 is the same as the support of its distribution function
Fx.

1.3. Integration and the (mathematical) expectation

A key concept in probability theory is the mathematical expectation of ran-
dom variables. In Subsection [C3J] we provide its definition via the framework
of Lebesgue integration with respect to a measure and study properties such as
monotonicity and linearity. In Subsection we consider fundamental inequal-
ities associated with the expectation. Subsection is about the exchange of
integration and limit operations, complemented by uniform integrability and its
consequences in Subsection [C34 Subsection [C3H considers densities relative to
arbitrary measures and relates our treatment of integration and expectation to
Riemann’s integral and the classical definition of the expectation for a R.V. with
probability density. We conclude with Subsection [L3:0 about moments of random
variables, including their values for a few well known distributions.
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1.3.1. Lebesgue integral, linearity and monotonicity. Let SF denote
the collection of non-negative simple functions with respect to the given measurable
space (S, F) and mF, denote the collection of [0, co]-valued measurable functions
on this space. We next define Lebesgue’s integral with respect to any measure p
on (S, F), first for ¢ € SF,, then extending it to all f € mF,. With the notation
p(f) == Js f(s)du(s) for this integral, we also denote by fo(-) the more restrictive
integral, defined only on SF, so as to clarify the role each of these plays in some of
our proofs. We call an R-valued measurable function f € mJF for which u(|f|) < oo,
a p-integrable function, and denote the collection of all u-integrable functions by
LY(S, F, i), extending the definition of the integral u(f) to all f € LY(S,F, u).

DEFINITION 1.3.1. Fiz a measure space (S,F, ) and define u(f) by the following
four step procedure:

Step 1. Define po(Ia) := p(A) for each A € F.

n

Step 2. Any ¢ € SF4 has a representation ¢ = Y, ¢;1a, for some finite n < oo,
=1

non-random ¢; € [0,00] and sets A; € F, yielding the definition of the integral via

n

po(p) = Z ap(Ar)

=1
where we adopt hereafter the convention that oo x 0 =0 x oo = 0.

Step 3. For f € mF, we define

p(f) = sup{po(p) : p € SF4, 0 < f}.

Step 4. For f € mF let f+ = max(f,0) € mF4 and f- = —min(f,0) € mF,.
We then set u(f) = p(f+) — u(f-) provided either pu(fy) < oo or u(f-) < co. In
particular, this applies whenever f € LY(S,F,u), for then u(f+) + u(f-) = p(|f|)
is finite, hence p(f) is well defined and finite valued.

We use the notation [g f(s)du(s) for p(f) which we call Lebesgue integral of f
with respect to the measure (.

The expectation E[X] of a random variable X on a probability space (2, F,P) is
merely Lebesgue’s integral [ X (w)dP(w) of X with respect to P. That is,
Step 1. E[I4] =P(A) for any A € F.
Step 2. Any ¢ € SF, has a representation ¢ = > ¢;14, for some non-random

=1
n < 0o, ¢; > 0 and sets A; € F, to which corresponds

E[(p] = iclE[IAL] = iClP(Al)-
=1 =1

Step 3. For X € mF, define
EX =sup{EY : Y € SF,,Y < X}.

Step 4. Represent X € mF as X = X, — X_, where X; = max(X,0) € mF, and
X_ = —min(X,0) € mF,, with the corresponding definition

EX=EX, -EX_,
provided either EX| < co or EX_ < o0.
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REMARK. Note that we may have EX = oo while X (w) < oo for all w. For
instance, take the random variable X (w) = w for Q = {1,2,...} and F = 2% If
P(w=k)=ck 2 with c=[Y;—, k~?]7! a positive, finite normalization constant,
then EX =c¢) o, k™! = o0.

Similar to the notation of u-integrable functions introduced in the last step of
the definition of Lebesgue’s integral, we have the following definition for random
variables.

DEFINITION 1.3.2. We say that a random wvariable X is (absolutely) integrable,
or X has finite expectation, if E|X| < oo, that is, both EX < oo and EX_ < oo.
Fizing 1 < g < oo we denote by L1(Q), F,P) the collection of random variables X
on (Q,F) for which ||X||, = [E|X|1"? < co. For example, L*(Q, F,P) denotes
the space of all (absolutely) integrable random-variables. We use the short notation
L7 when the probability space (Q, F,P) is clear from the context.

We next verify that Lebesgue’s integral of each function f is assigned a unique
value in Definition [[3] To this end, we focus on g : SF4 — [0, 00] of Step 2 of
our definition and derive its structural properties, such as monotonicity, linearity
and invariance to a change of argument on a p-negligible set.

LEMMA 1.3.3. po(p) assigns a unique value to each p € SF. Further,

a). puo(p) = po(¥) if p, v € SF are such that p({s : o(s) # ¥(s)}) = 0.
b). wo is linear, that is

po(e + 1) = po(p) + po(¥) to(cp) = cpo(p),

for any v, € SFy and ¢ > 0.
¢). wo is monotone, that is po(w) < po(v) if ¢(s) < Y(s) for all s €S.

PrOOF. Note that a non-negative simple function ¢ € SF | has many different
representations as weighted sums of indicator functions. Suppose for example that

(1.3.1) > ala(s)=> dils,(s),
=1 k=1

for some ¢; > 0, dp, > 0, A, € F, B € F and all s € S. There exists a finite
partition of S to at most 2"+™ disjoint sets C; such that each of the sets A; and
By, is a union of some Cj, i = 1,...,2"T™. Expressing both sides of (C3]) as finite
weighted sums of I¢,, we necessarily have for each ¢ the same weight on both sides.
Due to the (finite) additivity of x over unions of disjoint sets C;, we thus get after
some algebra that

(1.3.2) ZCzH(Al) = deH(Bk)-
=1 k=1

Consequently, po(p) is well-defined and independent of the chosen representation
for ¢. Further, the conclusion (L32) applies also when the two sides of (L3
differ for s € C as long as p(C) = 0, hence proving the first stated property of the
lemma.

Choosing the representation of ¢ 4 1 based on the representations of ¢ and
immediately results with the stated linearity of pg. Given this, if ¢(s) < 1(s) for all
s, then ¢ = ¢+ for some ¢ € SF., implying that 1o(¢)) = po(¢) + p0(§) > po(p),
as claimed. O
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REMARK. The stated monotonicity of po implies that p(-) coincides with pg(-) on
SF4. As po is uniquely defined for each f € SFy and f = fi when f € mF,, it
follows that u(f) is uniquely defined for each f € mFy U L(S,F, ).

All three properties of o (hence p) stated in Lemma for functions in SF
extend to all of mF, U L. Indeed, the facts that p(cf) = cu(f), that u(f) < u(g)
whenever 0 < f < g, and that u(f) = u(g) whenever pu({s: f(s) # g(s)}) = 0 are
immediate consequences of our definition (once we have these for f,g € SF,). Since
f < g implies fy < gy and f_ > g_, the monotonicity of u(-) extends to functions
in L' (by Step 4 of our definition). To prove that u(h + g) = u(h) + p(g) for all
h,g € mF, U L! requires an application of the monotone convergence theorem (in
short MON), which we now state, while deferring its proof to Subsection

THEOREM 1.3.4 (MONOTONE CONVERGENCE THEOREM). If 0 < h,,(s) T h(s) for
all s €S and hy, € mFy, then u(hy) T ph) < oo.

Indeed, recall that while proving Proposition [CZ8 we constructed the sequence
fn such that for every g € mF, we have f,(g) € SF; and f,(g) 1 g. Specifying
g,h € mF, we have that f,(h) + fn(g) € SF4. So, by Lemma [[33

1(fn(M)+fn(9)) = po(fr(h)+fn(9)) = po(fn(h))+10(fn(9)) = w(fn(h)+1(fn(9)) -
Since f,(h) T h and f,(h)+ fn(g) T b+ g, by monotone convergence,

plh+g) = lim p(fa(h) + fu(9)) = lim pu(fu(h)) + lim p(falg)) = u(h) + p(g) -

To extend this result to g,h € mF, UL, note that h_ +g_ = f+(h+g)_ > f for
some f € mF, such that hy+g+ = f+(h+g)+. Since u(h_) < oo and p(g-) < oo,
by linearity and monotonicity of u(-) on mF, necessarily also u(f) < oo and the
linearity of u(h+ g) on mF, UL! follows by elementary algebra. In conclusion, we
have just proved that

PROPOSITION 1.3.5. The integral pu(f) assigns a unique value to each f € mF U
LY(S, F,u). Further,

a). p(f) = pulg) whenever p({s: f(s) # g(s)}) = 0.
b). u is linear, that is for any f,h,g € mFy U L' and ¢ > 0,

plh+g) = p(h) +ulg),  plef) = eul(f).
¢). p is monotone, that is u(f) < u(g) if f(s) < g(s) for all s €.

Our proof of the identity u(h + g) = pu(h) + u(g) is an example of the following
general approach to proving that certain properties hold for all h € L.

DEFINITION 1.3.6 (Standard Machine). To prove the validity of a certain property
for all h € L*(S,F,p), break your proof to four easier steps, following those of
Definition L2
Step 1. Prove the property for h which is an indicator function.

Step 2. Using linearity, extend the property to all SF .

Step 3. Using MON extend the property to all h € mF.

Step 4. Estend the property in question to h € L' by writing h = hy — h_ and
using linearity.

Here is another application of the standard machine.
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EXERCISE 1.3.7. Suppose that a probability measure P on (R,B) is such that
P(B) = M(fIB) for the Lebesque measure X on R, some non-negative Borel function
f() and all B € B. Using the standard machine, prove that then P(h) = A(fh) for
any Borel function h such that either h > 0 or A(f|h]) < cc.

Hint: See the proof of Proposition [LZ5A.

We shall see more applications of the standard machine later (for example, when
proving Proposition and Theorem [[3GTI).

We next strengthen the non-negativity and monotonicity properties of Lebesgue’s
integral u(-) by showing that

LEMMA 1.3.8. If u(h) = 0 for h € mF, then p({s : h(s) > 0}) = 0. Conse-
quently, if for f,g € L'(S,F,p) both u(f) = p(g) and p({s : f(s) > g(s)}) =0,
then u({s : f(s) # g(s)}) = 0.

PROOF. By continuity below of the measure u we have that
p({s:h(s) >0})= lim p({s:h(s) >n""'})
(see Exercise [LTA)). Hence, if u({s: h(s) > 0}) > 0, then for some n < oo,

0 <nu({s:h(s) >n"}) = po(n " T +) < ().
where the right most inequality is a consequence of the definition of u(h) and the
fact that h > n~'I,~,-1 € SF,. Thus, our assumption that u(h) = 0 must imply
that u({s: h(s) > 0}) =0.
To prove the second part of the lemma, consider h= g — f which is non-negative
outside a set N € F such that pu(N) = 0. Hence, h = (¢ — f)Ine € mF; and

0 = u(g) — u(f) = p(h) = p(h) by Proposition [ZH implying that p({s : h(s) >
0}) = 0 by the preceding proof. The same applies for h and the statement of the
lemma follows. O

We conclude this subsection by stating the results of Proposition [C3H and Lemma
in terms of the expectation on a probability space (Q, F, P).

THEOREM 1.3.9. The mathematical expectation E[X] is well defined for every R. V.
X on (Q,F,P) provided either X > 0 almost surely, or X € L*(Q2, F,P). Further,
(a) EX = EY whenever X 2 Y.

(b) The expectation is a linear operation, for if Y and Z are integrable R.V. then
for any constants a, B the R.V. oY + 37 is integrable and E(aY +5Z) = a(EY) +
B(EZ). The same applies when Y, Z > 0 almost surely and «, 3 > 0.

(¢) The expectation is monotone. That is, if Y and Z are either integrable or
non-negative and Y > Z almost surely, then EY > EZ. Further, if Y and Z are
integrable with Y > Z a.s. and EY =EZ, then' Y =7z,

(d) Constants are invariant under the expectation. That is, if X = ¢ for non-
random ¢ € (—oo, 0], then EX = c.

REMARK. Part (d) of the theorem relies on the fact that P is a probability mea-
sure, namely P(Q2) = 1. Indeed, it is obtained by considering the expectation of
the simple function ¢l to which X equals with probability one.

The linearity of the expectation (i.e. part (b) of the preceding theorem), is often
extremely helpful when looking for an explicit formula for it. We next provide a
few examples of this.
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EXERCISE 1.3.10. Write (Q, F,P) for a random experiment whose outcome is a
recording of the results of n independent rolls of a balanced six-sided dice (including
their order). Compute the expectation of the random variable D(w) which counts
the number of different faces of the dice recorded in these n rolls.

EXERCISE 1.3.11 (MATCHING). In a random matching experiment, we apply a
random permutation m to the integers {1,2,...,n}, where each of the possible n!
permutations is equally likely. Let Z; = I ;=) be the random variable indicaling
whether © = 1,2,...,n is a fived point of the random permutation, and X, =
S Z; count the number of fized points of the random permutation (i.e. the
number of self-matchings). Show that E[X, (X, —1)--- (X, —k+1)] = 1 for
k=1,2,...,n.

Similarly, here is an elementary application of the monotonicity of the expectation
(i.e. part (c) of the preceding theorem).

EXERCISE 1.3.12. Suppose an integrable random variable X is such that E(X14) =
0 for each A € o(X). Show that necessarily X = 0 almost surely.

1.3.2. Inequalities. The linearity of the expectation often allows us to com-
pute EX even when we cannot compute the distribution function Fx. In such cases
the expectation can be used to bound tail probabilities, based on the following clas-
sical inequality.

THEOREM 1.3.13 (MARKOV’S INEQUALITY). Suppose 1 : R +— [0,00] is a Borel
function and let . (A) = inf{y(y) : y € A} for any A € B. Then for any R.V. X,

U« (AP(X € A) S E((X)Ixea) < BY(X).
PROOF. By the definition of ¥,(A) and non-negativity of ¢ we have that
"/’*(A)I:EEA < w(x)IwEA < ¢(x) ’
for all z € R. Therefore, V. (A)Ixeca < V(X)Ixea < P(X) for every w € Q.

We deduce the stated inequality by the monotonicity of the expectation and the
identity E(¢«(A)Ixeca) = ¥ (A)P(X € A) (due to Step 2 of Definition [LZT)). O

We next specify three common instances of Markov’s inequality.

EXAMPLE 1.3.14. (a). Taking ¢(z) = x4 and A = [a,00) for some a > 0 we have
that .. (A) = a. Markov’s inequality is then

EX
P(X >a) < —,
a

which is particularly appealing when X >0, so EX; = EX.

(b). Taking ¥(x) = |z]? and A = (—o0, —a] U [a,00) for some a > 0, we get that

Y« (A) = al. Markov’s inequality is then a?P(|X| > a) < E|X|?. Considering ¢ = 2

and X =Y —EY for Y € L?, this amounts to

Var(Y)
a2

which we call Chebyshev’s inequality (c.f. Definition [[.3.67 for the variance and

moments of random variable Y ).

(c). Taking ¥(z) = € for some 6 > 0 and A = [a,00) for some a € R we have

that 1. (A) = €?*. Markov’s inequality is then

P(X >a) < e 9B,

P(Y —EY|>a) <

3
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This bound provides an exponential decay in a, at the cost of requiring X to have
finite exponential moments.

In general, we cannot compute EX explicitly from the Definition [L3l except
for discrete R.V.s and for R.V.s having a probability density function. We thus
appeal to the properties of the expectation listed in Theorem [C3d, or use various
inequalities to bound one expectation by another. To this end, we start with
Jensen’s inequality, dealing with the effect that a convex function makes on the
expectation.

PROPOSITION 1.3.15 (JENSEN’S INEQUALITY). Suppose ¢(-) is a convex function
on an open interval G of R, that is,

Ag(@) + (1 =Ng(y) 2g(Az+(1-Ny) VayelG 0<A<L

If X is an integrable R.V. with P(X € G) = 1 and g(X) is also integrable, then
E(9(X)) = g(EX).

PROOF. The convexity of g(-) on G implies that g(-) is continuous on G (hence
g(X) is a random variable) and the existence for each ¢ € G of b = b(c) € R such
that

(1.3.3) g(x) > glc) + bz — ¢), Vo e G.

Since G is an open interval of R with P(X € G) = 1 and X is integrable, it follows
that EX € G. Assuming (L33) holds for ¢ = EX, that X € G a.s., and that both
X and ¢g(X) are integrable, we have by Theorem that

E(9(X)) = E(9(X)Ixec) = El(g(c) +b(X —¢))Ixec] = g(c) +D(EX —¢) = g(EX),

as stated. To derive ([L33) note that if (¢ — ha,c+ hy) C G for positive hy and ho,
then by convexity of g(+),

ha hy

—hy) >

NN g e ) 2900,

which amounts to [g(c + h1) — g(¢)]/h1 > [g(c) — g(c — ha)]/ha. Considering the

infimum over h; > 0 and the supremum over ho > 0 we deduce that

h>0,c+heG g(c+ hf)L - g(C) . (DJrg)(C) = (Dig)(C) . h>0?cllPhGG g(C) - fL(C - h) '

(c+hy)+

With G an open set, obviously (D_g)(x) > —co0 and (D1g)(z) < oo for any € G
(in particular, g(-) is continuous on G). Now for any b € [(D_g)(c),(D+g)(c)] CR
we get ([C33) out of the definition of D;g and D_g. O

REMARK. Since ¢(-) is convex if and only if —g(+) is concave, we may as well state
Jensen’s inequality for concave functions, just reversing the sign of the inequality in
this case. A trivial instance of Jensen’s inequality happens when X (w) = 214 (w) +
ylge(w) for some z,y € R and A € F such that P(A) = A. Then,

EX =zP(A) + yP(A°) =zA +y(1 = N),
whereas g(X (w)) = g(z)Ia(w) + g(y)Lac(w). So,
Eg(X) =g(@)A +g(y)(1 =) > g(zA +y(1 - ) = g(EX),

as g is convex.
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Applying Jensen’s inequality, we show that the spaces L(Q, F,P) of Definition
are nested in terms of the parameter ¢ > 1.

LEMMA 1.3.16. Fizing Y € mF, the mapping q — ||Y||, = [E[Y]9]"/9 is non-
decreasing for ¢ > 0. Hence, the space L1(Q, F,P) is contained in L"(Q, F,P) for
anyr < q.

PrROOF. Fix ¢ > r > 0 and consider the sequence of bounded R.V. X, (w) =
{min(|Y (w)|,n)}". Obviously, X, and XY™ are both in L!. Apply Jensen’s In-
equality for the convex function g(z) = |z/%/" and the non-negative R.V. X,,, to
get that

(BX,)? <B(X;) = El{min(¥].n)}] < E(Y]").

a
™

For n 1 oo we have that X,, T |Y|", so by monotone convergence E ([Y|")" <
(E|Y'|?). Taking the 1/g-th power yields the stated result ||Y]||, < ||Y||q < o0. O

We next bound the expectation of the product of two R.V. while assuming nothing
about the relation between them.

PROPOSITION 1.3.17 (HOLDER’S INEQUALITY). Let X, Y be two random variables
on the same probability space. If p,q > 1 with % + % =1, then

(1.3.4) E[XY] < ||X|[pl[Y]lq -

REMARK. Recall that if XY is integrable then E| XY is by itself an upper bound
on |[EXY]|. The special case of p = ¢ = 2 in Holder’s inequality

E|XY| < VEX2VEY?,

is called the Cauchy-Schwarz inequality.

PrOOF. Fixingp > 1land ¢ =p/(p—1) let A= ||X]||, and £ = ||Y]]4- fEA=0
then | X|? “2" 0 (see Theorem [[ZM). Likewise, if £ = 0 then |Y|? “2" 0. In either
case, the inequality (L34 trivially holds. As this inequality also trivially holds
when either A = 0o or £ = oo, we may and shall assume hereafter that both A and
¢ are finite and strictly positive. Recall that

Y4

—+——xy>0 Vz,y >0

p q
(c.f. [Dur03l Page 462] where it is proved by considering the first two derivatives
in z). Taking z = |X|/X and y = |Y|/€, we have by linearity and monotonicity of
the expectation that

1 1 EX|P E|Y|? _E|XY]

l=-+-= + >

poq  Ap iq A§
yielding the stated inequality (C34). O

)

A direct consequence of Holder’s inequality is the triangle inequality for the norm
|X ||, in LP(Q, F, P), that is,

PROPOSITION 1.3.18 (MINKOWSKI'S INEQUALITY). If X,Y € LP(Q, F,P),p > 1,
then [|X + Y|, < [[X][p +[[Y]lp-
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Proor. With | X +Y]| < |X|+Y], by monotonicity of the expectation we have
the stated inequality in case p = 1. Considering hereafter p > 1, it follows from
Holder’s inequality (Proposition [L3I) that

EX+Y]P=E(X+Y|X+Y[P)

<E(X[IX + Y[ +E(Y(IX +Y[PT)
< (BIXP)7 (BIX + Y|P 4+ (B[Y )7 (BIX + Y|#~D9)0
= (X[l + [IY]l,) (BIX +Y]7)s
(recall that (p — 1)g = p). Since X,Y € L? and
o +ylP < (2 + ) <2°7 (el +[ylP),  VYayeR, p>1,

if follows that a, = E|X + Y|P < co. There is nothing to prove unless a, > 0, in
which case dividing by (a,)'/? we get that

1-1
(BX +Y[7) e < [IX|lp + Y]]y,

giving the stated inequality (since 1 — % = %) O

REMARK. Jensen’s inequality applies only for probability measures, while both
Holder’s inequality u(|fg]) < u(lf|P)/Pu(|lg|?)'/9 and Minkowski’s inequality ap-
ply for any measure p, with exactly the same proof we provided for probability
measures.

To practice your understanding of Markov’s inequality, solve the following exercise.

EXERCISE 1.3.19. Let X be a non-negative random variable with Var(X) < 1/2.
Show that then P(—1+EX < X <2EX) > 1/2.

To practice your understanding of the proof of Jensen’s inequality, try to prove
its extension to convex functions on R”.

EXERCISE 1.3.20. Suppose g : R™ — R is a convex function and X1, Xo,..., X,
are integrable random variables, defined on the same probability space and such that
9(X1,...,X,,) is integrable. Show that then Eg(Xy,...,X,) > g(EXy,...,EX,).

Hint: Use convex analysis to show that g(-) is continuous and further that for any
¢ € R™ there exists b € R™ such that g(z) > g(c) + (b,x — ¢) for all x € R™ (with
(-,-) denoting the inner product of two vectors in R™).

EXERCISE 1.3.21. Let Y > 0 with v = E(Y?) < co.
(a) Show that for any 0 <a < EY,
(EY —a)?
E(Y?)
Hint: Apply the Cauchy-Schwarz inequality to Y Iy ~,.
(b) Show that (E|Y? —v])? < 4v(v — (EY)?).
(c) Derive the second Bonferroni inequality,

PY >a)>

n n

: 1

i=1 = 1<j<i<n

How does it compare with the bound of part (a) for Y =31 | I, ?
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1.3.3. Convergence, limits and expectation. Asymptotic behavior is a
key issue in probability theory. We thus explore here various notions of convergence
of random variables and the relations among them, focusing on the integrability
conditions needed for exchanging the order of limit and expectation operations.
Unless explicitly stated otherwise, throughout this section we assume that all R.V.
are defined on the same probability space (Q, F,P).

In Definition [[2Z22H we have encountered the convergence almost surely of R.V. A
weaker notion of convergence is convergence in probability as defined next.

DEFINITION 1.3.22. We say that R.V. X,, converge to a given R.V. X in prob-
ability, denoted X, % Xoo, if P({w : [ Xp(w) — Xoo(W)| > €}) — 0 as n — oo, for
any fized € > 0. This is equivalent to | X, — X0l 2.0, and is a special case of the
convergence in p-measure of fn, € mF to foo € mF, that is p({s : | fn(8) — foo(s)] >
€}) — 0 as n — oo, for any fized € > 0.

Our next exercise and example clarify the relationship between convergence almost
surely and convergence in probability.

EXERCISE 1.3.23. Verify that convergence almost surely to a finite limit implies
convergence in probability, that is if X, “3 X, € R then X, 2 X

REMARK 1.3.24. Generalizing Definition [[322 for a separable metric space (S, p)
we say that (S, Bs)-valued random variables X, converge to X in probability if and
only if for every ¢ > 0, P(p(X,, Xoo) > €) — 0 as n — oo (see [Dud89, Section
9.2] for more details). Equipping S = R with a suitable metric (for example,
plx,y) = |e(x) — ¢(y)| with o(x) = z/(1 + |z]) : R — [~1,1]), this definition
removes the restriction to X, finite in Exercise

In general, X, LR X~ does not imply that X, 3 X

EXAMPLE 1.3.25. Consider the probability space ((0,1], B, U) and X,(w) =
1, tptsn) (W) with s, | 0 as n — oo slowly enough and t,, € [0,1 — s,] are such
that any w € (0,1] is in infinitely many intervals [t,,t, + s,]. The latter property
applies if t, = (i —1)/k and s, = 1/k whenn =k(k—1)/2+4,i=1,2,...,k and
k=1,2,... (plot the intervals [t,,t, + sn] to convince yourself). Then, X, 2 0
(since s, = U(X,, # 0) — 0), whereas fizing each w € (0, 1], we have that X, (w) =
1 for infinitely many values of n, hence X,, does not converge a.s. to zero.

Associated with each space L1(Q2, F, P) is the notion of L? convergence which we
now define.

DEFINITION 1.3.26. We say that X,, converges in L9 to X, denoted X, =N Xoo,
if Xn,Xoo € LT and || X, — Xool|lq = 0 as n — o0 (ie., E(|X,, — Xx|?) — 0 as

n — oo.
REMARK. For ¢ = 2 we have the explicit formula
1, — X[ = B(X2) - 2E(X,, X) + E(X?).
Thus, it is often easiest to check convergence in L2.

The following immediate corollary of Lemma [L3T6 provides an ordering of L4
convergence in terms of the parameter q.

COROLLARY 1.3.27. If X, L X and g > r, then X, g Xeo.
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Next note that the L? convergence implies the convergence of the expectation of
RO

EXERCISE 1.3.28. Fizing q > 1, use Minkowski’s inequality (Proposition [LZ18),

to show that if Xy, = Xoo, then E|X,|">E|X|? and for ¢ = 1,2,3,... also
EX! —-EXZ.

Further, it follows from Markov’s inequality that the convergence in L? implies
convergence in probability (for any value of g).

PROPOSITION 1.3.29. If X,, 25 X oo, then X, 2 Xoo.
PRrROOF. Fixing g > 0 recall that Markov’s inequality results with
P(|Y]>¢) <e “E[[Y]],

for any R.V. Y and any ¢ > 0 (c.f part (b) of Example [LZT4). The assumed
convergence in L? means that E[|X,, — X |7 — 0 as n — oo, so taking Y =Y, =
X — Xoo, we necessarily have also P(|X,, — Xoo| > ¢) — 0 asn — oo. Since € > 0
is arbitrary, we see that X, 2 X as claimed. O

The converse of Proposition [[329 does not hold in general. As we next demon-
strate, even the stronger almost surely convergence (see Exercise [3.23), and having
a non-random constant limit are not enough to guarantee the L¢ convergence, for
any g > 0.

EXAMPLE 1.3.30. Fizing ¢ > 0, consider the probability space ((0,1],Bo,1},U)
and the R.V. Y, (w) = nl/qI[O)nq](w). Since Y (w) = 0 for all m > ng and some
finite ng = no(w), it follows that Y, (w) “3 0 as n — oo. However, E[|Y,|] =
nU([0,n7Y]) = 1 for all n, so Y, does not converge to zero in L% (see Ezercise

[228).

Considering Example [[329, where X, L% 0 while X, does not converge a.s. to
zero, and Example which exhibits the converse phenomenon, we conclude
that the convergence in L? and the a.s. convergence are in general non comparable,
and neither one is a consequence of convergence in probability.

Nevertheless, a sequence X,, can have at most one limit, regardless of which con-
vergence mode is considered.

EXERCISE 1.3.31. Check that if X, > X and X, “5 Y then X “= V.

Though we have just seen that in general the order of the limit and expectation
operations is non-interchangeable, we examine for the remainder of this subsection
various conditions which do allow for such an interchange. Note in passing that
upon proving any such result under certain point-wise convergence conditions, we
may with no extra effort relax these to the corresponding almost sure convergence
(and the same applies for integrals with respect to measures, see part (a) of Theorem

[C33 or that of Proposition [CZH).

Turning to do just that, we first outline the results which apply in the more
general measure theory setting, starting with the proof of the monotone convergence
theorem.
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PrRoOOF OF THEOREM [[LZ4l By part (c) of Proposition [CEH, the proof of
which did not use Theorem [ we know that u(h,,) is a non-decreasing sequence
that is bounded above by p(h). It therefore suffices to show that

nh_)Holo p(hn) = sup{po(¥) : ¥ € SF1, ¢ < hn}

(1.3.5) > sup{uo(y) : ¢ € SF4,p < h} = p(h)

(see Step 3 of Definition [C3T)). That is, it suffices to find for each non-negative
simple function ¢ < h a sequence of non-negative simple functions v, < h,, such
that uo(n) — wo(e) as n — oo. To this end, fixing ¢, we may and shall choose
without loss of generality a representation ¢ = > ¢;l4, such that 4; € F are
=1

disjoint and further ¢;u(A4;) > 0 for I =1,...,m (see proof of Lemma [[33). Using
hereafter the notation f.(A) = inf{f(s) : s € A} for f € mF; and A € F, the
condition ¢(s) < h(s) for all s € S is equivalent to ¢; < h.(A4;) for all I, so

po() < D hu(A)p(A) = V.
=1

Suppose first that V' < oo, that is 0 < h.(A;)p(A4;) < oo for all I. In this case, fixing
A < 1, consider for each n the disjoint sets Ay n = {s € A; : hn(s) > M (4))} € F
and the corresponding

"/U\JI(S) = Z Al (Al)IAz,/\,n (S) € SF+ )
1=1
where ¥ n(s) < hyp(s) for all s € S. If s € A; then h(s) > A (4;). Thus, hy, T h
implies that A; xn T A; as n — oo, for each [. Consequently, by definition of p(hy,)
and the continuity from below of p,

lim M(hn) > lim MO(¢k,n) =AV.

Taking A T 1 we deduce that lim,, p(hy) >V > po(p). Next suppose that V' = oo,
so without loss of generality we may and shall assume that h,(A41)u(A;) = oc.
Fixing z € (0,h.(A1)) let Ay 5 = {s € A1 : hy(s) > z} € F noting that Ay 5, T
Ap asn — oo and Yz n(s) = xla,, . (5) < hy(s) for all n and s € S, is a non-
negative simple function. Thus, again by continuity from below of ;1 we have that

Jim pu(hy) > 1 pio(4,n) = wp(Ar).

Taking z T h.(A1) we deduce that lim,, 1(hy) > ha(A1)p(A1) = 0o, completing the
proof of (L33) and that of the theorem. O

Considering probability spaces, Theorem [L34 tells us that we can exchange the
order of the limit and the expectation in case of monotone upward a.s. convergence
of non-negative R.V. (with the limit possibly infinite). That is,

THEOREM 1.3.32 (MONOTONE CONVERGENCE THEOREM). If X,, > 0 and X, (w) 1
Xoo(w) for almost every w, then EX,, 1 EX .

In Example we have a point-wise convergent sequence of R.V. whose ex-
pectations exceed that of their limit. In a sense this is always the case, as stated
next in Fatou’s lemma (which is a direct consequence of the monotone convergence
theorem).
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LEMMA 1.3.33 (FATOU’S LEMMA). For any measure space (S, F,u) and any f, €
mF, if fn(s) > g(s) for some p-integrable function g, all n and p-almost-every
s €S, then

(1.3.6) liminf p(f,) > p(liminf f,).
Alternatively, if fn(s) < g(s) for all n and a.e. s, then
(1.3.7) lim sup pu(fr) < p(limsup fp,) .

PROOF. Assume first that f, € mFy and let h,(s) = infi>, fix(s), noting
that h, € mF, is a non-decreasing sequence, whose point-wise limit is h(s) :=
liminf,, o frn(s). By the monotone convergence theorem, u(h,) 1 p(h). Since
fn(8) > hy(s) for all s € S, the monotonicity of the integral (see Proposition [L3)
implies that u(f,) > p(hy,) for all n. Considering the liminf as n — oo we arrive
at ([C3.6).

Turning to extend this inequality to the more general setting of the lemma, note
that our conditions imply that f, “< g + (f, — g)+ for each n. Considering the
countable union of the p-negligible sets in which one of these identities is violated,
we thus have that

h:=liminf f, < g + liminf(f, — g) .
Further, u(f,) = u(g) + pu((fn — g)+) by the linearity of the integral in mF, U L*.
Taking n — oo and applying (C38) for (f, — g)+ € mF4 we deduce that
liminf p(fn) > p(g) + pliminf (f, = 9)+) = p(g) + p(h — g) = p(h)

(where for the right most identity we used the linearity of the integral, as well as
the fact that —g is p-integrable).

Finally, we get (L37) for f, by considering (L3 for — f,. d

REMARK. In terms of the expectation, Fatou’s lemma is the statement that if
R.V. X,, > X, almost surely, for some X € L' and all n, then

(1.3.8) liminf E(X,,) > E(liminf X,,),
whereas if X,, < X, almost surely, for some X € L' and all n, then
(1.3.9) limsup E(X,,) < E(limsup X,,).

Some text books call ([3M) and (C370) the Reverse Fatou Lemma (e.g. [Wil91l,
Section 5.4]).

Using Fatou’s lemma, we can easily prove Lebesgue’s dominated convergence the-
orem (in short DOM).

THEOREM 1.3.34 (DOMINATED CONVERGENCE THEOREM). For any measure space
(S, F, 1) and any f, € mF, if for some p-integrable function g and p-almost-every
s € S both fn(s) = fools) as n — oo, and |fn(s)| < g(s) for all n, then fo is
w-integrable and further u(|frn — foo|) — 0 as n — oo.

ProoOF. Up to a p-negligible subset of S, our assumption that |f,| < g and
fn — foo, implies that | foo| < g, hence fo is p-integrable. Applying Fatou’s lemma
T3 for |frn — foo| < 2g such that limsup,, | frn — foo| = 0, we conclude that

0 < limsup pi(| fn = fool) < p(limsup | fn — fool) = p(0) =0,

n—oo
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as claimed. O

By Minkowski’s inequality, u(|fr — foo|) — 0 implies that u(|fn]) — p(|f])- The
dominated convergence theorem provides us with a simple sufficient condition for
the converse implication in case also f, — f a.e.

LEMMA 1.3.35 (SCHEFFE’S LEMMA). If f,, € mF converges a.e. to foo € mF and
u(|fnl) = (| fool) < 00 then p([fn = fool) = 0 as n — occ.

REMARK. In terms of expectation, Scheffé’s lemma states that if X,, “> X, and
1
E|X,| — E|Xs| < 00, then X,, & X as well.

PrOOF. As already noted, we may assume without loss of generality that
fu(s) = foo(s) for all s € S, that is gn(s) = fn(s) — foo(s) — 0 as n — oo,
for all s € S. Further, since pu(|fn|) — p(|fool) < 00, we may and shall assume also
that f,, are R-valued and p-integrable for all n < oo, hence g,, € L*(S, F, u) as well.

Suppose first that f,, € mF, for all n < co. In this case, 0 < (g,)— < foo for all
n and s. As (gn)-(s) — 0 for every s € S, applying the dominated convergence
theorem we deduce that u((g,)—-) — 0. From the assumptions of the lemma (and
the linearity of the integral on L'), we get that u(g,) = u(fn) — p(fs) — 0 as
n — oo. Since |x| = x + 2z_ for any & € R, it thus follows by linearity of the
integral on L' that u(|gn|) = p(gn) + 21((gn)—) — 0 for n — oo, as claimed.

In the general case of f,, € mF, we know that both 0 < (f,,)+(s) = (foo)+(s) and
0 < (fn)=(s5) = (foo)—(s) for every s, so by ([L3H) of Fatou’s lemma, we have that

pllfool) = n((Foo) ) + p((foo)-) < liminf pu((fn) ) + Hminf p((fn)+)
< Tminflp((fn)-) + p((fa)+)] = T (| fal) = (| fool) -

Hence, necessarily both pu((fn)+) — p#((foo)+) and u((frn)-) — 1((foo)—). Since
| —y| <|zy —yq|+|z— —y—]| for all z,y € R and we already proved the lemma

for the non-negative (f,)_ and (fy)+, we see that
m pa(lf = Foel) € T p((Fa)s = (Focd i)+ Tim p(((fu)- = (foc) =) = 0.
concluding the proof of the lemma. O

We conclude this sub-section with quite a few exercises, starting with an alterna-
tive characterization of convergence almost surely.

EXERCISE 1.3.36. Show that X,, “3 0 if and only if for each € > 0 there is n
so that for each random integer M with M(w) > n for all w € Q we have that
P({w: | Xaro) (@)] > €}) < <.

EXERCISE 1.3.37. Let Y, be (real-valued) random variables on (0, F,P), and Ny,
positive integer valued random variables on the same probability space.

(a) Show that Yn, (w) = Yy, () (w) are random variables on (Q, F).

(b) Show that if Y;, 3 Yoo and Ny, 3 0o then Yy, “3 Yoo.

(c) Provide an example of Yy, 20 and Ny %3 o such that almost surely
Yn, =1 for all k.

(d) Show that if Yy, “2 Yoo and P(Ny, > 1) — 1 as k — oo, for every fived
r < 00, then Yn, LN Y.
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In the following four exercises you find some of the many applications of the
monotone convergence theorem.

EXERCISE 1.3.38. You are now to relax the non-negativity assumption in the mono-
tone convergence theorem.

(a) Show that if E[(X1)-] < 00 and X, (w) T X(w) for almost every w, then
EX, 1 EX.
(b) Show that if in addition sup,, E[(X,)+] < oo, then X € L*(Q, F,P).

EXERCISE 1.3.39. In this exercise you are to show that for any R.V. X >0,

(1.3.10) EX = ImEs X for EsX = D i6P({w: 0 < X(w) < (j+1)}) .
j=0

First use monotone convergence to show that Es X converges to EX along the

sequence 0, = 27%. Then, check that EsX < E,X +n for any 6,1 > 0 and deduce

from it the identity (LZ10).

Applying [(LII0) verify that if X takes at most countably many values {1, x2,. ..},
then EX = 3" ;P{w : X(w) = x;}) (this applies to every R.V. X > 0 on a
countable ). More generally, verify that such formula applies whenever the series
is absolutely convergent (which amounts to X € L*).

EXERCISE 1.3.40. Use monotone convergence to show that for any sequence of

non-negative R.V. Y,
o0

E(i Y,)=> EY,.

EXERCISE 1.3.41. Suppose X,,, X € L*(Q, F,P) are such that

(a) X, >0 almost surely, E[X,]=1, E[X,logX,] <1, and
(b) E[X,.)Y] — E[XY] as n — oo, for each bounded random variable Y on
(2, F).

Show that then X > 0 almost surely, E[X] =1 and E[X log X] < 1.
Hint: Jensen’s inequality is handy for showing that E[X log X] < 1.

Next come few direct applications of the dominated convergence theorem.

EXERCISE 1.3.42.

(a) Show that for any random variable X, the function t — E[e~1*=X] is con-
tinuous on R (this function is sometimes called the bilateral exponential
transform ).

(b) Suppose X > 0 is such that EX? < oo for some ¢ > 0. Show that then
¢ Y (EX?—1) — Elog X as q | 0 and deduce that also ¢~ logEX? —

Elog X asq | 0.
Hint: Fizing * > 0 deduce from converity of ¢ — 9 that ¢~(z? — 1) | logz as
ql0.
EXERCISE 1.3.43. Suppose X is an integrable random variable.
(a) Show that E(|X|I{x>n}) — 0 as n — oo.
(b) Deduce that for any e > 0 there exists § > 0 such that

sup{E[| X |14] : P(4) <4} <e.
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(c) Provide an example of X > 0 with EX = oo for which the preceding fails,
that is, P(Ax) — 0 as k — oo while E[X14,] is bounded away from zero.

The following generalization of the dominated convergence theorem is also left as
an exercise.

EXERCISE 1.3.44. Suppose gn(-) < fu(:) < hn(:) are p-integrable functions in the
same measure space (S,F,u) such that for p-almost-every s € S both g,(s) —
Goo(8), fn(8) = foo(8) and hy(s) — hoo(8) as n — oo. Show that if further goo and
heo are p-integrable functions such that 1(gn) — p(goo) and p(hy) — p(hoo), then
foo is p-integrable and u(fn) — p(foo)-

Finally, here is a demonstration of one of the many issues that are particularly
easy to resolve with respect to the L?(Q, F, P) norm.

EXERCISE 1.3.45. Let X = (X (t))ier be a mapping from R into L*(Q, F,P).
Show that t — X (t) is a continuous mapping (with respect to the norm || - |2 on
L3(Q, F,P)), if and only if both

p(t) =BX (@) and r(s,t) = E[X(s)X(1)] — p(s)n(t)
are continuous real-valued functions (r(s,t) is continuous as a map from R? to R).

1.3.4. L'-convergence and uniform integrability. For probability theory,
the dominated convergence theorem states that if random variables X, 3 X, are
such that | X, | <Y for all n and some random variable Y such that EY < oo, then

1
Xoo € L' and X,, & X... Since constants have finite expectation (see part (d) of
Theorem [CZ), we have as its corollary the bounded convergence theorem, that is,

COROLLARY 1.3.46 (Bounded Convergence). Suppose that a.s. | X, (w)| < K for
some finite non-random constant K and all n. If X, =g Xoo, then Xoo € L' and

1
X, 5 x...

We next state a uniform integrability condition that together with convergence in
probability implies the convergence in L'.

DEFINITION 1.3.47. A possibly uncountable collection of R.V.-s {Xqa, 0 € I} is
called uniformly integrable (U.IL) if

(1.3.11) Jimsup B[ Xa|Tjx, 5] = 0.

Our next lemma shows that U.L. is a relaxation of the condition of dominated
convergence, and that U.IL still implies the boundedness in L' of {X,,« € Z}.

LEMMA 1.3.48. If | Xo| <Y for all @ and some R.V.Y such that EY < oo, then
the collection { X} is U.I In particular, any finite collection of integrable R.V. is
U.L

Further, if {X} is U.L then sup, E|X,| < co.

PRrROOF. By monotone convergence, E[Y Iy<y] T EY as M 1 oo, for any R.V.
Y > 0. Hence, if in addition EY < oo, then by linearity of the expectation,
E[Yly>M] l 0 as M T Q. NOW, if ‘Xa| < Y then |Xa|I|Xa\>]M < YIy>M,
hence E[|Xo|1 x,|>nm] < E[Y Iy~ ], which does not depend on «, and for Y € L'
converges to zero when M — oco. We thus proved that if |[X,| <Y for all a and
some Y such that EY < oo, then {X,} is a U.L collection of R.V.-s
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For a finite collection of R.V.-s X; € L', i =1,... k, take Y = | Xq| + | Xao|+---+
| X)| € L' such that |X;| <Y for i = 1,...,k, to see that any finite collection of
integrable R.V.-s is U.I.

Finally, since

E|Xo| = B[ Xall x,|<m] + El| Xallx,>m] £ M +supE[| Xo|]|x, > M)

we see that if {X,,a € I} is U.L then sup, E|X,| < cc. O

We next state and prove Vitali’s convergence theorem for probability measures,
deferring the general case to Exercise [[353

THEOREM 1.3.49 (VITALI’S CONVERGENCE THEOREM). Suppose X, L X . Then,

1
the collection {X,,} is U.L if and only if X, L, Xoo which in turn is equivalent to
X, being integrable for all n < oo and E|X,| — E|[X|.

REMARK. In view of Lemma [C3AY Vitali’s theorem relaxes the assumed a.s.
convergence X,, — X of the dominated (or bounded) convergence theorem, and
of Scheffé’s lemma, to that of convergence in probability.

PROOF. Suppose first that | X,,| < M for some non-random finite constant M
and all n. For each e > 0 let B, . = {w : | X, (w) — Xoo(w)| > €}. The assumed
convergence in probability means that P(B,.) — 0 as n — oo (see Definition
[327). Since P(|Xs| > M +¢) < P(B,.), taking n — oo and considering
e = ¢ | 0, we get by continuity from below of P that almost surely |Xo| < M.
So, | X, — Xoo| < 2M and by linearity and monotonicity of the expectation, for any
n and € > 0,

E| X, — X»| = E[| X, — XOO|IB$“E] +E[|X, - X, ]
< EleIp. | +E(2MIp, | <c+2MP(B,.).
Since P(B,,,.) — 0 as n — oo, it follows that limsup,, ., E|X,, — X | < e. Taking
e | 0 we deduce that E|X,, — X| — 0 in this case.

Moving to deal now with the general case of a collection {X,} that is U.L, let
oy (x) = max(min(z, M), —M). As |orp(x)—prm(y)| < |z —y| for any z,y € R, our
assumption X,, 2 X implies that o (Xn) LN onm(Xoo) for any fixed M < oo.
With |pa(-)] < M, we then have by the preceding proof of bounded convergence

1
that @ (X5) 5 oom (Xoo). Further, by Minkowski’s inequality, also E|pa (X,)| —
Elpym(Xs)|- By Lemma [L3A] our assumption that {X,,} are U.I. implies their
L' boundedness, and since |p ()| < |2 for all 2, we deduce that for any M,

(1.3.12) oo > c:=supE|X,| > lim E|lpoy(X,)| = Elom (X))l -

With |om(Xoo)| T | Xso| as M T oo, it follows from monotone convergence that
Elom(Xoo)| T E|Xoo|, hence E|Xo| < ¢ < o0 in view of (L3IA). Fixing ¢ >
0, choose M = M(e) < oo large enough for E[|X|I|x_|>um] < €, and further
increasing M if needed, by the U.L condition also E[|X, |l x,|>m] < € for all n.
Considering the expectation of the inequality |z — @ ()] < |2|I5)> s (Which holds
for all € R), with z = X, and = X, we obtain that

E|X, - Xoo| < EIX, — o(X0)] + Eloar(Xn) — oar(Xoo)| + E|X oo — par(Xoo)|
<2+ Elpm(X,) — pm(Xoo)] -
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1
Recall that ¢ (X,,) L, ©m(Xoo), hence limsup,, E|X,, — Xo| < 2e. Taking e — 0
completes the proof of L! convergence of X, to X.

1
Suppose now that X, L Xoo. Then, by Jensen’s inequality (for the convex
function g(x) = |z|),

[E|Xa| — E[Xoo|| < E[ [Xn| = [Xoo| [] < E[Xp = Xoo| = 0.

That is, E|X,,| — E|X| and X,, n < co are integrable.
It thus remains only to show that if X,, &> X, all of which are integrable and
E|X,| — E|X | then the collection {X,} is U.I. To the end, for any M > 1, let

Y (@) = 2Lz <pr—1 + (M = 1)(M — |z|)I(pr—1,00 (2])
a piecewise-linear, continuous, bounded function, such that ¢y (x) = |z| for |z| <
M —1 and ¢ps(z) = 0 for |z| > M. Fixing € > 0, with X integrable, by dominated
convergence E| X o | —Et),, (X)) < € for some finite m = m(e). Further, as |¢),, (x)—
Ym(y)| < (m —1)|z — y| for any x,y € R, our assumption X,, = X, implies that
Ym(Xn) 2 m(Xs). Hence, by the preceding proof of bounded convergence,
followed by Minkowski’s inequality, we deduce that Ei,,(X,) — E¢,(X) as
n — oo. Since |z|ljzj>m < |2 — ¥ (z) for all © € R, our assumption E|X,, | —
E|X | thus implies that for some ng = ng(e) finite and all n > ng and M > m(e),
<E|Xoo| — BV (Xoo) +€ < 26.
As each X, is integrable, E[|X,|Ix, |>n] < 2¢ for some M > m finite and all n

(including also n < ng(€)). The fact that such finite M = M (¢) exists for any € > 0
amounts to the collection {X,,} being U.I O

The following exercise builds upon the bounded convergence theorem.

EXERCISE 1.3.50. Show that for any X >0 (do not assume E(1/X) < o0), both
(a) lim yE[X 1Ix-,] =0 and
y—oo
(b) limyE[X 'Ix-,] =0.
yl0

Next is an example of the advantage of Vitali’s convergence theorem over the
dominated convergence theorem.

EXERCISE 1.3.51. On ((0,1], B(o,1),U), let Xy (w) = (n/logn)I(gn-1y(w) for n >
2. Show that the collection {X,} is U.L such that X, “3 0 and EX,, — 0, but

there is mo random wvariable Y with finite expectation such that'Y > X, for all
n > 2 and almost all w € (0,1].

By a simple application of Vitali’s convergence theorem you can derive a classical
result of analysis, dealing with the convergence of Cesaro averages.

EXERCISE 1.3.52. Let U, denote a random variable whose law is the uniform
probability measure on (0,n], namely, Lebesgue measure restricted to the interval
(0,n] and normalized by n~" to a probability measure. Show that g(U,) = 0 as
n — oo, for any Borel function g(-) such that |g(y)| — 0 as y — oo. Further,
assuming that also sup, |g(y)| < oo, deduce that Elg(U,)| = n~! Jo lg(y)ldy — 0
as n — 0.
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Here is Vitali’s convergence theorem for a general measure space.

EXERCISE 1.3.53. Given a measure space (S,F, 1), suppose fn, foo € mF with
w(|frl) finite and p(|fr — fool > €) — 0 as n — oo, for each fized € > 0. Show
that pu(|frn — fool) — 0 as n — oo if and only if both sup,, u(|full)f,|>k) — 0 and
sup,, (| fnlla,) — 0 for k — oo and some {Ar} C F such that p(AS) < oo.

We conclude this subsection with a useful sufficient criterion for uniform integra-
bility and few of its consequences.

EXERCISE 1.3.54. Let f > 0 be a Borel function such that f(r)/r — oo asr — 0.
Suppose Ef (| Xo|) < C for some finite non-random constant C and all « € Z. Show
that then { X, : a € T} is a uniformly integrable collection of R.V.

EXERCISE 1.3.55.

(a) Construct random variables X, such that sup, E(|X,|) < oo, but the
collection {X,} is not uniformly integrable.

(b) Show that if {X,} is a U.L collection and {Y,} is a U.L collection, then
{X,+Y,} is also U.L

(¢) Show that if X,, 2 Xo and the collection {X,} is uniformly integrable,
then E(XpIa) = E(Xoola) as n — oo, for any measurable set A.

1.3.5. Expectation, density and Riemann integral. Applying the stan-
dard machine we now show that fixing a measure space (S, F, ), each non-negative
measurable function f induces a measure fu on (S,F), with f being the natural
generalization of the concept of probability density function.

PROPOSITION 1.3.56. Fiz a measure space (S,F,u). FEvery f € mF, induces
a measure fi on (S,F) via (fu)(A) = u(fIla) for all A € F. These measures
satisfy the composition relation h(fu) = (hf)u for all f,h € mF,. Further, h €
LY(S, F, fu) if and only if fh € LY(S,F, ) and then (fu)(h) = u(fh).

PRrooOF. Fixing f € mF,, obviously fu is a non-negative set function on (S, F)
with (fu)(@) = u(fIy) = u(0) = 0. To check that fu is countably additive, hence
a measure, let A = Ui Ay for a countable collection of disjoint sets Ay € F. Since
Sor_y fLla, 1 fla, it follows by monotone convergence and linearity of the integral
that,

p(fLa) = lim p(y - fla) = Tim > u(fIa) =Y u(fla,)
k=1 k=1 k

Thus, (fu)(A) = >, (fu)(Ax) verifying that fpu is a measure.
Fixing f € mFy, we turn to prove that the identity

(1.3.13) (Fu)(h1a) = p(FhLa) vAeF,

holds for any h € mF,. Since the left side of (L3I3)) is the value assigned to A
by the measure h(fu) and the right side of this identity is the value assigned to
the same set by the measure (hf)u, this would verify the stated composition rule
h(fur) = (hf)p. The proof of (L3I proceeds by applying the standard machine:
Step 1. If h = Ip for B € F we have by the definition of the integral of an indicator
function that

(fw)(Ipla) = (fu)(Tang) = (f)(ANB) = u(flanp) = p(fIs14),
which is (C313).
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Step 2. Take h € SF represented as h = >;_, ¢;Ip, with ¢, > 0 and B, € F.
Then, by Step 1 and the linearity of the integrals with respect to fu and with
respect to u, we see that

n

(fu)(hia) = Zcz(fu) I 14) = Zcm fIp1a) = ZClIBLIA w(fhla),

=1

again yielding (C313).

Step 3. For any h € mF, there exist h, € SF; such that h, T h. By Step 2 we
know that (fu)(hnla) = p(fhnla) for any A € F and all n. Further, h,Ia T his
and fhpIa 1 fhIa, so by monotone convergence (for both integrals with respect to

fuand p),
(fp)(hla) = lim (fu)(hnla) = lim p(fhola) = p(fhla),

completing the proof of (C3ZIJ) for all h € mF.
Writing h € mF as h = hy — h_ with hy = max(h,0) € mF; and h_ =
—min(h,0) € mF,, it follows from the composition rule that

/hid(fﬂ) = (fu)(hels) = ha (fp)(S) = ((he f)p)(S) = p(fhils) = /fhidﬂ-

Observing that fhy = (fh)x when f € mF;, we thus deduce that h is fu-
integrable if and only if fh is p-integrable in which case [hd(fu) = [ fhdp, as
stated. (|

Fixing a measure space (S,F,u), every set D € F induces a o-algebra Fp =
{A e F:AC D}. Let up denote the restriction of u to (D, Fp). As a corollary
of Proposition we express the integral with respect to pp in terms of the
original measure p.

COROLLARY 1.3.57. Fizing D € F let hp denote the restriction of h € mF to
(D, Fp). Then, up(hp) = u(hIp) for any h € mF,. Further, hp € L*(D, Fp, up)
if and only if hIp € LY(S,F, pn), in which case also pp(hp) = p(hip).

PrOOF. Note that the measure Ipu of Proposition coincides with pup
on the o-algebra Fp and assigns to any set A € F the same value it assigns to
AND € Fp. By Definition [L3 this implies that (Ipu)(h) = up(hp) for any
h € mF,. The corollary is thus a re-statement of the composition and integrability

relations of Proposition for f = 1Ip. O

REMARK 1.3.58. Corollarym justiﬁes using hereafter the notation [, fdu or
wu(f; A) for pu(fI4), or writing E =[,X ) for E(X14). With this
notation in place, Proposition [[3 states that each Z > 0 such that EZ =1
induces a probablhty measure Q = ZP such that Q(A f 4 ZdP for all A € F,
and then Eq(W) := [ WdQ = E(ZW) whenever W 2 0 or ZW € LY(Q,F,P)

(the assumption EZ =1 translates to Q(2) = 1).

Proposition [C350is closely related to the probability density function of Definition
En-route to showing this, we first define the collection of Lebesgue integrable
functions.
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DEFINITION 1.3.59. Consider Lebesgue’s measure X on (R, B) as in Section [T,

and its completion X\ on (R,B) (see Theorem [LI:33). A set B € B is called
Lebesgue measurable and f : R — R is called Lebesgue integrable function if
f € mB, and X(|f]) < co. As we show in Proposition any non-negative
Riemann integrable function is also Lebesgue integrable, and the integral values
coincide, justifying the notation fB x)dx for X(f; B), where the function f and
the set B are both Lebesgue measurable.

EXAMPLE 1.3.60. Suppose f is a non-negative Lebesgue integrable function such
that [, f(x)dx = 1. Then, P = A of Proposmon is a probability measure
n (R, B) such that 73( ) = A(f; B) = [ f(z)dz for any Lebesque measurable set

B By Theorem [LZ30 it is easy to vemfy that F( ) =P((—o0,al) is a distribution
function, such that F(« f f(z)dx. That is, P is the law of a R.V. X : R —
R whose probability denszty functzon is f (c.f. Definition and Proposition

[L2.44)-

Our next theorem allows us to compute expectations of functions of a R.V. X
in the space (R, B, Px), using the law of X (c.f. Definition [[Z33) and calculus,
instead of working on the original general probability space. One of its immediate

consequences is the “obvious” fact that if X 2 Y then Eh(X) = Eh(Y) for any
non-negative Borel function h.

THEOREM 1.3.61 (CHANGE OF VARIABLES FORMULA). Let X : Q — R be a ran-
dom variable on (0, F,P) and h o Borel measurable function such that Ehy(X) <
o0 or Eh_(X) < co. Then,

(1.3.14) /Qh(X(w))dP(w) :/Rh(:v)dPX(:v).

PROOF. Apply the standard machine with respect to h € mB:
Step 1. Taking h = Ip for B € B, note that by the definition of expectation of
indicators

Eh(X)=E[[p(X(w))] =P({w: X(w) € B}) =Px(B) = /h(z)dPX(:c).

Step 2. Representing h € SFy as h = > ", ¢, for ¢; > 0, the identity (C3I4)
follows from Step 1 by the linearity of the expectation in both spaces.

Step 8. For h € mB,, consider h,, € SF such that h, T h. Since h,(X(w)) T
h(X (w)) for all w, we get by monotone convergence on (Q, F, P), followed by ap-
plying Step 2 for h,, and finally monotone convergence on (R, B, Px), that

/Q WX (@)AP(w) = lim | ho(X(w))dP(w)

n—oo Q

— tim [ B (@)dPx(x) = / h(2)dPx (@),
as claimed.

Step 4. Write a Borel function h(x) as hy(z) — h—(x). Then, by Step 3, ([L314)
applies for both non-negative functions hy and h_. Further, at least one of these
two identities involves finite quantities. So, taking their difference and using the
linearity of the expectation (in both probability spaces), lead to the same result for
h. O
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Combining Theorem [C361 with Example [L360, we show that the expectation of
a Borel function of a R.V. X having a density fx can be computed by performing
calculus type integration on the real line.

COROLLARY 1.3.62. Suppose that the distribution function of a R.V. X 1is of
the form (LZZ) for some Lebesgue integrable function fx(x). Then, for any
Borel measurable function h : R +— R, the R V. h(X ) is integrable if and only if
J|n(2)|fx (z)dz < 0o, in which case Eh(X) = [ h(z)fx(x)dz. The latter formula
applies also for any non-negative Borel functzon h(- )

PROOF. Recall Example that the law Px of X equals to the probability
measure fxA. For h > 0 we thus deduce from Theorem [CZ61 that Eh(X) =
fxM(h ) Which by the composition rule of Proposition 300 is given by A(fxh) =
J h(x x)dz. The decomposition h = hy — h_ then completes the proof of the
general case ]

Our next task is to compare Lebesgue’s integral (of Definition [L3Tl) with Rie-
mann’s integral. To this end recall,

DEFINITION 1.3.63. A function f : (a,b] — [0, 00| is Riemann integrable with inte-
gral R(f) < oo if for any e > 0 there exists 6 = §(¢) > 0 such that | Y=, f(x))A(Ji) —
R(f)| < e, for any x; € J; and {Ji} a finite partition of (a,b] into disjoint subin-
tervals whose length A(J;) < 6.

Lebesgue’s integral of a function f is based on splitting its range to small intervals
and approximating f(s) by a constant on the subset of S for which f(-) falls into
each such interval. As such, it accommodates an arbitrary domain S of the function,
in contrast to Riemann’s integral where the domain of integration is split into small
rectangles — hence limited to R?. As we next show, even for S = (a,b], if f > 0
(or more generally, f bounded), is Riemann integrable, then it is also Lebesgue
integrable, with the integrals coinciding in value.

PROPOSITION 1.3.64. If f(x) is a non-negative Riemann integrable function on
an interval (a,b], then it is also Lebesque integrable on (a,b] and M(f) = R(f).

PRrROOF. Let f.(J) = inf{f(x) : © € J} and f*(J) = sup{f(x) : z € J}.
Varying x; over J; we see that

(1.3.15) R(f)—e< Y fDAT) <D F (AL < R(f) +e,
l l

for any finite partition II of (a, b] into disjoint subintervals J; such that sup; A(J;) <
d. For any such partition, the non-negative simple functions ¢(IT) = ", f.(Ji)1,
and u(II) = =, f*(Ji)I;, are such that ((II) < f < wu(II), whereas R(f) — e <
A)) < Mu(M)) < R(f) + ¢, by (L3TH). Consider the dyadic partitions II,,
of (a,b] to 2™ intervals of length (b — a)2™™ each, such that II,4; is a refinement
of II,, for each n = 1,2,.... Note that u(IL,)(z) > u(ll,41)(z) for all z € (a,b]
and any n, hence u(I,))(z) | uoo(z) a Borel measurable R-valued function (see
Exercise [LZ3T). Similarly, £(I1,,)(x) T leo(z) for all z € (a,b], with £ also Borel
measurable, and by the monotonicity of Lebesgue’s integral,

R(f) < lm M(IL,)) < Alfx) < Aluoe) < lim Mu(IL,)) < R(f).

We deduce that A(us) = A(leo) = R(f) for use > f > loo. The set {z € (a,b] :
f(z) # loo(x)} is a subset of the Borel set {z € (a,b] : uso(x) > loo(z)} whose
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Lebesgue measure is zero (see Lemma [[3H). Consequently, f is Lebesgue measur-
able on (a,b] with A\(f) = M(fso) = R(f) as stated. O

Here is an alternative, direct proof of the fact that Q in Remark is a
probability measure.

EXERCISE 1.3.65. Suppose E|X| < oo and A = J,, An for some disjoint sets
A, e F.

(a) Show that then
> E(X;A,) =E(X;4),
n=0

that is, the sum converges absolutely and has the value on the right.

(b) Deduce from this that for Z > 0 with EZ positive and finite, Q(A) :=
EZIA/EZ is a probability measure.

(c) Suppose that X and Y are non-negative random variables on the same
probability space (Q, F,P) such that EX = EY < oo. Deduce from the
preceding that if EXIy = EY 14 for any A in a w-system A such that
F=0(A), then X 2 Y.

EXERCISE 1.3.66. Suppose P is a probability measure on (R,B) and f > 0 is a
Borel function such that P(B) = [ f(z)dz for B = (—o0,b], b € R. Using the
T — X theorem show that this identity applies for all B € B. Building on this result,
use the standard machine to directly prove Corollary [LI0A (without Proposition
[2z0).

1.3.6. Mean, variance and moments. We start with the definition of mo-
ments of a random variable.

DEFINITION 1.3.67. If k is a positive integer then EX* is called the kth moment
of X. When it is well defined, the first moment mx = EX is called the mean. If
EX? < oo, then the variance of X is defined to be

(1.3.16) Var(X) = E(X —mx)? = EX? —m% <EX?.

Since E(aX 4+ b) = aEX + b (linearity of the expectation), it follows from the
definition that

(1.3.17) Var(aX +b) = E(aX +b— E(aX +1))? = a’E(X — mx)? = a? Var(X)
We turn to some examples, starting with R.V. having a density.

EXAMPLE 1.3.68. If X has the exponential distribution then
EXF = / zFe %de = k!
0

for any k (see Ezxample [[LZZQ for its density). The mean of X is mx = 1 and
its variance is EX? — (EX)? = 1. For any X\ > 0, it is easy to see that T = X/\
has density fr(t) = e 1450, called the exponential density of parameter . By
(I-517) it follows that mr = 1/X and Var(T) = 1/X2.

Similarly, if X has a standard normal distribution, then by symmetry, for k odd,

1 > 2
EXF=— 2Fe 2y =0
\/27T /—oo ’
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whereas by integration by parts, the even moments satisfy the relation

1 e 2
1.3.18 EX?% = —/ 2 pe ™ 2dy = (20 — 1)EX*72,
(1.3.15) =/ (2~ 1)

for£=1,2,.... In particular,
Var(X) =EX?=1.
Consider G = 0 X + p, where o > 0 and p € R, whose density is

1 _w=w?
faly) = o= =

We call the law of G the normal distribution of mean p and variance o2 (as EG = u
and Var(G) = o?).

Next are some examples of R.V. with finite or countable set of possible values.

EXAMPLE 1.3.69. We say that B has a Bernoulli distribution of parameter p €
[0,1] f P(B=1)=1-P(B =0) =p. Clearly,
EB=p-1+(1—-p)-0=0p.
Further, B2 = B so EB> =EB = p and
Var(B) = EB* — (EB)? = p — p* = p(1 - p).

Recall that N has a Poisson distribution with parameter A > 0 if

k

A
P(N:k):Fe*A for k=0,1,2,...

(where in case A =0, P(N =0) =1). Observe that for k=1,2,...,

n

E(N(N—l)-~-(N—k+1))=in(n—l)-~-(n—k+1)%eﬂ

—\k —~ A"k —A K
- Z(n—k)!e -
n==k

Using this formula, it follows that EN = X while
Var(N) = EN? — (EN)? = \.
The random variable Z is said to have a Geometric distribution of success proba-
bility p € (0,1) if
P(Z=k)=pAd—p* 1 for k=12,...
This is the distribution of the number of independent coin tosses needed till the first

appearance of a Head, or more generally, the number of independent trials till the
first occurrence in this sequence of a specific event whose probability is p. Then,

- 1
EZ =) kp(l—p)*'=-
k=1 p

EZ(Z-1)=Y k(k—1)p—p)' = 2(1-p)
k=2

p2

1-p
Var(Z)=EZ(Z —1)+EZ — (EZ)? = e
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EXERCISE 1.3.70. Consider a counting random variable N, = > " | Ia,.
(a) Provide a formula for Var(N,,) in terms of P(A;) and P(A; N A;) for
i
(b) Using your formula, find the variance of the number Ny, of empty bozes
when distributing at random r distinct balls among n distinct boxes, where
each of the possible n” assignments of balls to bozes is equally likely.

1.4. Independence and product measures

In Subsection [LZT we build-up the notion of independence, from events to random
variables via o-algebras, relating it to the structure of the joint distribution func-
tion. Subsection considers finite product measures associated with the joint
law of independent R.V.-s. This is followed by Kolmogorov’s extension theorem
which we use in order to construct infinitely many independent R.V.-s. Subsection
is about Fubini’s theorem and its applications for computing the expectation
of functions of independent R.V.

1.4.1. Definition and conditions for independence. Recall the classical
definition that two events A, B € F are independent if P(AN B) = P(A)P(B).

For example, suppose two fair dice are thrown (i.e. Q = {1,2,3,4,5,6}2 with
F = 2% and the uniform probability measure). Let E; = {Sum of two is 6} and
E5 = {first die is 4} then F; and E» are not independent since

) 1

P(E1) =P({(1,5) (2,4) 3,3) (4,2) (5, 1)}) = 55, P(E2) =P({w:w1 =4}) = ¢

and
1
P(E1NEy) = P({(4,2)}) = 3¢ # P(E1)P(E»)-
However one can check that Eo and F3 = {sum of dice is 7} are independent.

In analogy with the independence of events we define the independence of two
random vectors and more generally, that of two o-algebras.

DEFINITION 1.4.1. Two o-algebras H,G C F are independent (also denoted P-
independent ), if

P(GNH)=P(G)P(H), VGeG VHeM,

that is, two o-algebras are independent if every event in one of them is independent
of every event in the other.

The random vectors X = (X1,...,Xpn) and Y = (Y1,...,Y:,) on the same prob-
ability space are independent if the corresponding o-algebras o(X1,...,X,) and
o(Y1,...,Yy) are independent.

REMARK. Our definition of independence of random variables is consistent with
that of independence of events. For example, if the events A, B € F are indepen-
dent, then so are 4 and Ip. Indeed, we need to show that o(I4) = {0,Q, A, A°}
and o(Ig) = {0,, B, B¢} are independent. Since P(f}) = 0 and @ is invariant under
intersections, whereas P(€2) = 1 and all events are invariant under intersection with
Q, it suffices to consider G € {A, A°} and H € {B, B¢}. We check independence
first for G = A and H = B°. Noting that A is the union of the disjoint events
AN B and AN B¢ we have that

P(ANB°) = P(A) — P(AN B) = P(4)[1 — P(B)] = P(A)P(B°),
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where the middle equality is due to the assumed independence of A and B. The
proof for all other choices of G and H is very similar.

More generally we define the mutual independence of events as follows.

DEFINITION 1.4.2. Events A; € F are P-mutually independent if for any L < oo
and distinct indices i1,19,...,1L,

L
P(Ail ﬂAiQ M- ﬂAiL) = H P(Azk)
k=1

We next generalize the definition of mutual independence to o-algebras, random
variables and beyond. This definition applies to the mutual independence of both
finite and infinite number of such objects.

DEFINITION 1.4.3. We say that the collections of events A, C F with a € T
(possibly an infinite index set) are P-mutually independent if for any L < oo and
distinct oy, 2, ..., € Z,

L
P(A;NAyn---nAL) = [[P(Ar), VAr€Aa,, k=1,...,L.
k=1
We say that random wvariables X, a € T are P-mutually independent if the o-
algebras 0(X,), a € T are P-mutually independent.
When the probability measure P in consideration is clear from the context, we say
that random wvariables, or collections of events, are mutually independent.

Our next theorem gives a sufficient condition for the mutual independence of
a collection of o-algebras which as we later show, greatly simplifies the task of
checking independence.

THEOREM 1.4.4. Suppose G; = o(A;) C F fori =1,2,--- . n where A; are 7-
systems. Then, a sufficient condition for the mutual independence of G; is that A;,
i=1,...,n are mutually independent.

ProOOF. Let H = A;, NA;,N---NA;,, where iy,i9,...,ir are distinct elements
from {1,2,...,n— 1} and A; € A; for i = 1,...,n — 1. Consider the two finite
measures p1(A) = P(AN H) and ps(A4) = P(H)P(A) on the measurable space
(©,G,). Note that

i (©) = P(QN H) = P(H) = P(H)P(Q) = 12(Q)
If A € A,, then by the mutual independence of A;, i = 1,...,n, it follows that

L
pa(A) =P(A;, N A, N A, N--NA;, N A) = ([]P(4:,)P(4)
k=1
= P(A“ N Aig n---N AZL)P(A) = ,LL2(A) .

Since the finite measures p1(-) and ps(-) agree on the m-system A, and on €, it
follows that p1 = p2 on G, = o(A,) (see Proposition [LT39). That is, P(GNH) =
P(G)P(H) for any G € G,,.

Since this applies for arbitrary A; € A;, ¢ = 1,...,n — 1, in view of Definition
we have just proved that if Aj, As,..., A, are mutually independent, then
A1, As, ..., G, are mutually independent.
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Applying the latter relation for G,,, Ay, ..., A,—1 (which are mutually independent
since Definition [[43is invariant to a permutation of the order of the collections) we
get that G,,, A1,..., An_2,G,_1 are mutually independent. After n such iterations
we have the stated result. 0

Because the mutual independence of the collections of events A,, « € T amounts
to the mutual independence of any finite number of these collections, we have the
immediate consequence:

COROLLARY 1.4.5. If w-systems of events Ay, o € T, are mutually independent,
then o(Aq), a € I, are also mutually independent.

Another immediate consequence deals with the closure of mutual independence
under projections.

COROLLARY 1.4.6. If the w-systems of events Ha g, (o,3) € J are mutually
independent, then the o-algebras Go, = 0 (UgHa,g), are also mutually independent.

PRrOOF. Let A, be the collection of sets of the form A = N7, H; where H; €
Ha,p; for some m < co and distinct 31, ..., Bm. Since Hq, g are m-systems, it follows
that so is A, for each a.. Since a finite intersection of sets Ay € Aq,, k=1,...,Lis
merely a finite intersection of sets from distinct collections Ho, g;(x), the assumed
mutual independence of H, g implies the mutual independence of 4,. By Corollary
[CZH this in turn implies the mutual independence of o(A,,). To complete the proof,
simply note that for any 3, each H € H, g is also an element of A,, implying that
Ga Co(Ay). O

Relying on the preceding corollary you can now establish the following character-
ization of independence (which is key to proving Kolmogorov’s 0-1 law).

EXERCISE 1.4.7. Show that if for each n > 1 the o-algebras FX = o(X1,...,X,)
and 0(Xp41) are P-mutually independent then the random variables X1, Xa, X3, . ..
are P-mutually independent. Conversely, show that if X1, X2, X3, ... are indepen-
dent, then for each n > 1 the o-algebras FX and TX = o(X,,r > n) are indepen-
dent.

It is easy to check that a P-trivial o-algebra H is P-independent of any other
o-algebra G C F. Conversely, as we show next, independence is a great tool for
proving that a o-algebra is P-trivial.

LEMMA 1.4.8. If each of the o-algebras G C Gi41 is P-independent of a o-algebra
H C o(Uys1 Gk) then H is P-trivial.

REMARK. In particular, if H is P-independent of itself, then H is P-trivial.

PRrROOF. Since Gy C Gi41 for all k and Gy, are o-algebras, it follows that A =
Uk>1 G is a m-system. The assumed P-independence of H and Gy for each k
yields the P-independence of H and A. Thus, by Theorem [LZ4 we have that
H and o(A) are P-independent. Since H C o(A) it follows that in particular
P(H)=P(HNH)=P(H)P(H) for each H € H. So, necessarily P(H) € {0,1}
for all H € H. That is, H is P-trivial. O

We next define the tail o-algebra of a stochastic process.

DEFINITION 1.4.9. For a stochastic process { X} we set TX = o(X,,7 > n) and
call TX = N, T,X the tail o-algebra of the process {X}}.
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As we next see, the P-triviality of the tail o-algebra of independent random vari-
ables is an immediate consequence of Lemmal[CZ8 This result, due to Kolmogorov,
is just one of the many 0-1 laws that exist in probability theory.

COROLLARY 1.4.10 (KOLMOGOROV’S 0-1 LAW). If { X} are P-mutually indepen-
dent then the corresponding tail o-algebra TX is P-trivial.

PROOF. Note that F* C F, and TX C FX = o(Xp, k > 1) = 0(Up>1 Fid)
(see Exercise [CZI4 for the latter identity). Further, recall Exercise [CZ1 that for
any n > 1, the o-algebras 7,.X and FX are P-mutually independent. Hence, each of
the o-algebras FiX is also P-mutually independent of the tail o-algebra 7, which
by Lemma is thus P-trivial. |

Out of Corollary [LZ6 we deduce that functions of disjoint collections of mutually
independent random variables are mutually independent.

COROLLARY 1.4.11. If R.V. X ;, 1 <k <m, 1 <j <I(k) are mutually indepen-
dent and f : RU®) s R are Borel functions, then Yy, = fu(Xg1,... s Xiyi(ky) are
mutually independent random variables for k=1,...,m.

PRrROOF. We apply Corollary [CZH for the index set J = {(k,j) : 1 < k <
m,1 < j <I(k)}, and mutually independent m-systems Hy, ;j = (X} ;), to deduce
the mutual independence of G, = o(U;Hg, ;). Recall that Gy = o(X 5,1 < j <I(k))
and o(Yy) C Gy (see Definition and Exercise [[Z32). We complete the proof
by noting that Yj are mutually independent if and only if o(Yy) are mutually
independent. (I

Our next result is an application of Theorem [CLZ4] to the independence of random
variables.

COROLLARY 1.4.12. Real-valued random variables X1, Xs,...,X,, on the same
probability space (U, F,P) are mutually independent if and only if

(1.4.1) P(Xy <1, X S am) = [[P(Xs < 23), Vau,...,2m €R.
i=1

PRrROOF. Let A; denote the collection of subsets of Q of the form X, *((—oo0, b])
for b € R. Recall that A; generates o(X;) (see Exercise [LZTl), whereas ()
states that the m-systems A; are mutually independent (by continuity from below
of P, taking x; | oo for i # 1,1 # i2,...,1 # iy, has the same effect as taking a
subset of distinct indices iy, ...,ir from {1,...,m}). So, just apply Theorem [[ZA
to conclude the proof. O

The condition ([CZ]) for mutual independence of R.V .-s is further simplified when
these variables are either discrete valued, or having a density.

EXERCISE 1.4.13. Suppose (X1,...,X,,) are random variables and (S1,...,Sm)
are countable sets such that P(X; € S;) =1 fori=1,...,m. Show that if

P(Xi=x1,..., X =Tp) = HP(Xi = 1;)
=1

whenever x; €S;,i=1,...,m, then Xq,..., X, are mutually independent.
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EXERCISE 1.4.14. Suppose the random vector X = (X1,...,X,,) has a joint prob-
ability density function fx(z) = gi(z1)- - gm(zm). That is,

P((Xy,...,Xn) €A = / g1(z1) +  gm(Tm)dey ... dey, , VA € Bgm ,
A

where g; are non-negative, Lebesque integrable functions. Show that then X1, ..., X,
are mutually independent.

Beware that pairwise independence (of each pair Ay, A; for k # j), does not imply
mutual independence of all the events in question and the same applies to three or
more random variables. Here is an illustrating example.

EXERCISE 1.4.15. Consider the sample space 2 = {0,1,2}2 with probability mea-
sure on (Q,2%) that assigns equal probability (i.e. 1/9) to each possible value of
w = (w,w2) € Q. Then, X(w) = wy and Y(w) = wy are independent R.V.
each taking the values {0,1,2} with equal (i.e. 1/3) probability. Define Zy = X,
Z1 = (X +Y)mod3 and Z3 = (X + 2Y)mod3.

(a) Show that Zy is independent of Z1, Zy is independent of Za, Z1 is inde-
pendent of Za, but if we know the value of Zy and Zy, then we also know
Zs.

(b) Construct four {—1,1}-valued random variables such that any three of
them are independent but all four are not.
Hint: Consider products of independent random variables.

Here is a somewhat counter intuitive example about tail o-algebras, followed by
an elaboration on the theme of Corollary [CZTTl

EXERCISE 1.4.16. Let o(A, A’) denote the smallest o-algebra G such that any
function measurable on A or on A’ is also measurable on G. Let Wy, W1, Wa, ...
be independent random variables with P(W,, = +1) = P(W,, = —1) = 1/2 for all
n. For each n > 1, define X,, := WoWy.. . W,,.

(a) Prove that the variables X1, X, ... are independent.
(b) Show that S = o (T, TX) is a strict subset of the o-algebra F = N,o(TV, T,X).
Hint: Show that Wy € mF is independent of S.

EXERCISE 1.4.17. Consider random variables (X, ;,1 < i,5 < n) on the same
probability space. Suppose that the o-algebras R1,..., Ry, are P-mutually indepen-
dent, where R; = o(X;;,1 < j <mn) fori=1,...,n. Suppose further that the
o-algebras Cy,...,Cp are P-mutually independent, where C; = o(X; ;,1 < i <mn).
Prove that the random variables (X, ;,1 <1i,j <n) must then be P-mutually inde-
pendent.

We conclude this subsection with an application in number theory.

EXERCISE 1.4.18. Recall Euler’s zeta-function which for real s > 1 is given by
C(s) = >opey k™*. Fizing such s, let X and Y be independent random variables
withP(X =k) =P =k)=k"°/((s) for k=1,2,....

(a) Show that the events D, = {X is divisible by p}, with p a prime number,
are P-mutually independent.

(b) By considering the event {X = 1}, provide a probabilistic explanation of
Buler’s formula 1/((s) = [[,(1 —1/p%).

(c) Show that the probability that no perfect square other than 1 divides X is
precisely 1/((2s).
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(d) Show that P(G = k) = k=2/((2s), where G is the greatest common
divisor of X and Y.

1.4.2. Product measures and Kolmogorov’s theorem. Recall Example
that given two measurable spaces (21, F71) and (g2, F2) the product (mea-
surable) space (£2, F) consists of Q = Q1 x Q9 and F = F; x Fa, which is the same
as F = o(A) for

m
A={ Y 45 % B;: 4; € 1, B € Faym < oo},
j=1
where throughout, |4 denotes the union of disjoint subsets of .
We now construct product measures on such product spaces, first for two, then
for finitely many, probability (or even o-finite) measures. As we show thereafter,
these product measures are associated with the joint law of independent R.V .-s.

THEOREM 1.4.19. Given two o-finite measures v; on (2, F;), i = 1,2, there exists
a unique o-finite measure po on the product space (2, F) such that

/,LQ(L‘H Aj XBj)ZZVl(Aj)VQ(Bj), VA]‘ € Fi,B; € Fo,m < o0.

We denote pa = v1 X vo and call it the product of the measures v1 and vs.

PRrOOF. By Carathéodory’s extension theorem, it suffices to show that A is an
algebra on which s is countably additive (see Theorem [[T30 for the case of finite
measures). To this end, note that Q = Q; x Qo € A. Further, A is closed under
intersections, since

(H 45 x B)[\( Uc x D;) = H[(4; x B;) N (Ci x D)
J=1 4,3
=, nCi) x (B;n D).
2%
It is also closed under complementation, for

UA x Bj) ﬂ[(A;xBj)u(AjxB;)u(A;xB;)].
Jj=1
By DeMorgan s law, A is an algebra.
Note that countable unions of disjoint elements of A are also countable unions of
disjoint elements of the collection R = {A x B : A € Fy,B € Fa} of measurable
rectangles. Hence, if we show that

(142) Z I/l(Aj)l/g(Bj) = Z %1 (C Vo D
Jj=1 i

whenever L—ﬂ;nzl A; x Bj = ,(C; x D) for some m < oo, A;,C; € Fy and B;,D; €
F, then we deduce that the value of us(F) is independent of the representation
we choose for E € A in terms of measurable rectangles, and further that pso is
countably additive on A. To this end, note that the preceding set identity amounts
to

> Ia ()1, (y ZIC 2)Ip,(y)  Vre,ye s,
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Hence, fixing 2 € Q1, we have that ¢(y) = >, Ia;(2)Ip; (y) € SFy is the mono-
tone increasing limit of ¢, (y) = Y i, Ic,(2)Ip,(y) € SF4+ as n — oo. Thus, by
linearity of the integral with respect to vo and monotone convergence,

g(z) = ZVQ(Bj)IAj () = va(p) = lim vo(¢h,) = lim

n—oo n—oo

> e (w)ra (D).

j=1

We deduce that the non-negative g(x) € mJF; is the monotone increasing limit of
the non-negative measurable functions h,,(z) = i, va(D;)I¢, (x). Hence, by the
same reasoning,

ZUQ(Bj)Vl (A]) = 1/1(9) = hm %1 (hn) = Z I/g(Di)l/l (Cz) N
j=1

proving (CZZ) and the theorem. O

It follows from Theorem [CZTA by induction on n that given any finite collection
of o-finite measure spaces (£;, Fi,v;), ¢ = 1,...,n, there exists a unique product
measure i, = V1 X -+ X vy, on the product space (2, F) (ie., Q= Q1 x--- x Q,
and F =0(A1 X -+ X Ap; A; € Fiyi=1,...,n)), such that

(143) /J,n(Al X - X An):HVz(Az) VA; eF;, i=1,...,n.

REMARK 1.4.20. A notable special case of this construction is when ; = R with
the Borel o-algebra and Lebesgue measure A of Section The product space
is then R™ with its Borel o-algebra and the product measure is A\, the Lebesgue
measure on R™.

The notion of the law Px of a real-valued random variable X as in Definition
[CZ33 naturally extends to the joint law Px of a random vector X = (Xq,...,X,,)
which is the probability measure Px =P o X ' on (R", Bgn).

We next characterize the joint law of independent random variables Xi,..., X,
as the product of the laws of X; fori =1,... n.

ProprosITION 1.4.21. Random variables X1, ..., X, on the same probability space,
having laws v; = Px,, are mutually independent if and only if their joint law is
Hn = V1 X o X Uy,

PrOOF. By Definition [[Z3 and the identity (CZ3), if X4, ..., X, are mutually
independent then for B; € B,

P&(BlX"'XBn):P(XlGBl,...,XneBn)

n n
:HP(XZ EBl) :HVi(Bi) =V X=X Vn(Bl X o-e XBn)
i=1 i=1

This shows that the law of (X1,...,X,) and the product measure pu,, agree on the
collection of all measurable rectangles By X - - - X B,,, a m-system that generates Bgn
(see Exercise [[T2Tl). Consequently, these two probability measures agree on Bgn

(c.f. Proposition [CT39).
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Conversely, if Px = vy X -+ X vp, then by same reasoning, for Borel sets B;,

P(ﬁ{le(w)eBl}):PK(Bl X '--XBn):Vl X---XVn(Bl Xoee XBn)
i=1

znwwaznpmﬂ&mem,

which amounts to the mutual independence of X1, ..., X,,. O

We wish to extend the construction of product measures to that of an infinite col-
lection of independent random variables. To this end, let N = {1,2,...} denote the
set of natural numbers and RN = {x = (z1,22,...) : 7; € R} denote the collection
of all infinite sequences of real numbers. We equip RN with the product o-algebra
B. = 0(R) generated by the collection R of all finite dimensional measurable rectan-
gles (also called cylinder sets), that is sets of the form {x: 1 € By,...,z, € By},
where B; € B,i=1,...,n € N (e.g. see Example [[TTY).

Kolmogorov’s extension theorem provides the existence of a unique probability
measure P on (RN, B.) whose projections coincide with a given consistent sequence
of probability measures p,, on (R™, Brn).

THEOREM 1.4.22 (KOLMOGOROV’S EXTENSION THEOREM). Suppose we are given
probability measures pi, on (R™, Bgr) that are consistent, that is,

tnt1(B1 X -+« X By X R) = pp(B1 X -+ X By) VB, eB, i=1,...,n< o
Then, there is a unique probability measure P on (RN, B..) such that
(144) PHw:w;€B;,i=1,...,n}) =pup(B1 X - X Bp) VB, € B, i <n < oo

PROOF. (sketch only) We take a similar approach as in the proof of Theorem
[CZTA That is, we use (CZQ) to define the non-negative set function Py on the
collection R of all finite dimensional measurable rectangles, where by the consis-
tency of {p,} the value of Py is independent of the specific representation chosen
for a set in R. Then, we extend Py to a finitely additive set function on the algebra

A:{wEﬂ&EEm<w}
j=1
in the same linear manner we used when proving Theorem [[ZTd Since A generates
B, and Po(RN) = 11,,(R™) = 1, by Carathéodory’s extension theorem it suffices to
check that Py is countably additive on .A. The countable additivity of Py is verified
by the method we already employed when dealing with Lebesgue’s measure. That
is, by the remark after Lemma [LT31] it suffices to prove that Po(H,,) | 0 whenever
H, € Aand H, | 0. The proof by contradiction of the latter, adapting the
argument of Lemma [LT3]] is based on approximating each H € A by a finite
union Ji C H of compact rectangles, such that Po(H \ J;) — 0 as k — oo. This is
done for example in [Dur03, Lemma A.7.2] or [Bil95] Page 490]. O

EXAMPLE 1.4.23. To systematically construct an infinite sequence of independent
random variables {X;} of prescribed laws Px, = v;, we apply Kolmogorov’s exten-
sion theorem for the product measures i, = v1 X --- X v, constructed following
Theorem [I7.19 (where it is by definition that the sequence p., is consistent). Al-
ternatively, for infinite product measures one can take arbitrary probability spaces



62 1. PROBABILITY, MEASURE AND INTEGRATION

(Q, Fi,vi) and directly show by contradiction that Po(H,) | 0 whenever H, € A
and Hy, | O (for more details, see [Str93| Exercise 1.1.14]).

REMARK. As we shall find in Sections Bl and [l Kolmogorov’s extension theo-
rem is the key to the study of stochastic processes, where it relates the law of the
process to its finite dimensional distributions. Certain properties of R are key to the
proof of Kolmogorov’s extension theorem which indeed is false if (R, B) is replaced
with an arbitrary measurable space (S,S) (see the discussions in [Dur03l Section
1.4c] and [Dud89l notes for Section 12.1]). Nevertheless, as you show next, the
conclusion of this theorem applies for any B-isomorphic measurable space (S, S).

DEFINITION 1.4.24. Two measurable spaces (S,S) and (T,T) are isomorphic if
there exists a one to one and onto measurable mapping between them whose inverse
is also a measurable mapping. A measurable space (S,S) is B-isomorphic if it is
isomorphic to a Borel subset T of R equipped with the induced Borel o-algebra
T={BNT:Be B}

Here is our generalized version of Kolmogorov’s extension theorem.

COROLLARY 1.4.25. Given a measurable space (S,S) let SN denote the collection
of all infinite sequences of elements in S equipped the product o-algebra S, generated
by the collection of all cylinder sets of the form {s: s1 € A1,...,s, € A, }, where
A; €8 fori=1,...,n. If (S,8) is B-isomorphic then for any consistent sequence
of probability measures v, on (S™,8") (that is, Vpp1(A1 X -+ X Ap X S) = vy, (A1 X
<o x Ap) for all n and A; € S), there exists a unique probability measure Q on
(SN, S.) such that for all n and A; € S,

(1.4.5) Q({s:s;€As,i=1,...,n}) =vp(41 X --- X A,) .
Next comes a guided proof of Corollary out of Theorem

EXERCISE 1.4.26.
(a) Verify that our proof of Theorem [[-{.29 applies in case (R, B) is replaced
by T € B equipped with the induced Borel o-algebra T (with RN and B.
replaced by TN and 7., respectively).
(b) Fizing such (T, T) and (S,S) isomorphic to it, let g : S — T be one to
one and onto such that both g and g~ are measurable. Check that the

one to one and onto mappings gn(s) = (g(s1),...,9(sn)) are measurable
and deduce that j1,(B) = vn(g, *(B)) are consistent probability measures
on (T™,T™).

(¢) Consider the one to one and onto mapping goo(s) = (g(s1),...,9(sn),-..)
from SN to TN and the unique probability measure P on (TN,7.) for
which [IZ4) holds. Verify that S, is contained in the o-algebra of subsets
A of SN for which goo(A) is in T, and deduce that Q(A) = P(goo(A)) is
a probability measure on (SN, S,).

(d) Conclude your proof of Corollary [[429 by showing that this Q is the
unique probability measure for which ([I-Z.9) holds.

REMARK. Recall that Carathéodory’s extension theorem applies for any o-finite
measure. It follows that, by the same proof as in the preceding exercise, any
consistent sequence of o-finite measures v,, uniquely determines a o-finite measure
Q on (SN, S.) for which (CZH) holds, a fact which we use in later parts of this text
(for example, in the study of Markov chains in Section B1I).
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Our next proposition shows that in most applications one encounters B-isomorphic
measurable spaces (for which Kolmogorov’s theorem applies).

PRrROPOSITION 1.4.27. If S € Bys for a complete separable metric space M and S
is the restriction of By to S then (S,S) is B-isomorphic.

REMARK. While we do not provide the proof of this proposition, we note in passing
that it is an immediate consequence of [Dud89) Theorem 13.1.1].

1.4.3. Fubini’s theorem and its application. Returning to (Q, F, u) which
is the product of two o-finite measure spaces, as in Theorem [CZTY we now prove
that:

THEOREM 1.4.28 (FUBINI’S THEOREM). Suppose j1 = 1 X pgo is the product of
the o-finite measures py on (X, X) and p2 on (Y, ). If h € mF for F=Xx Y is
such that h > 0 or [ |h|du < oo, then,

(1.4.6) =[] [ no) duat) | o)

:/Y [/x h(z,y) dm(:r)] dp2(y)

REMARK. The iterated integrals on the right side of (LZH) are finite and well
defined whenever [ |h|du < co. However, for h ¢ mF, the inner integrals might
be well defined only in the almost everywhere sense.

PRrROOF OF FUBINI'S THEOREM. Clearly, it suffices to prove the first identity
of (CZM), as the second immediately follows by exchanging the roles of the two
measure spaces. We thus prove Fubini’s theorem by showing that

(1.4.7) y— h(z,y) em), VeeX|

(1.4.8) x = fr(x) = /Yh(:zr,y) dus(y) € mX,

so the double integral on the right side of ([CZH) is well defined and

(1.4.9) /Xxyhd,u = /th(ac)d,ul(:v).

We do so in three steps, first proving ([CZ1)- ([CZ3) for finite measures and bounded
h, proceeding to extend these results to non-negative h and o-finite measures, and
then showing that ([CZH) holds whenever h € mF and [ |h|dy is finite.

Step 1. Let H denote the collection of bounded functions on X x Y for which ([CZ7)—
(CZ3) hold. Assuming that both pq(X) and p2(Y) are finite, we deduce that H
contains all bounded h € mF by verifying the assumptions of the monotone class
theorem (i.e. Theorem [LZ7) for H and the m-system R = {AxB: A€ X,Bc Y}
of measurable rectangles (which generates F).

To this end, note that if h = Ir and E = Ax B € R, then either h(x,-) = Iz(-) (in
casex € A), or h(z,-) is identically zero (when x ¢ A). With Ig € m) we thus have
([CZ20) for any such h. Further, in this case the simple function fj,(z) = p2(B)I4(z)
on (X, X) is in mX and

| ddu= i B = pa(B)n(4) = [ Sl o).
XxY X
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Consequently, I'r € H for all E € R; in particular, the constant functions are in H.

Next, with both m) and mX vector spaces over R, by the linearity of h — fj
over the vector space of bounded functions satisfying (LZ) and the linearity of
frn— p1(fr) and h — u(h) over the vector spaces of bounded measurable f}, and
h, respectively, we deduce that H is also a vector space over R.

Finally, if non-negative h,, € H are such that h, T h, then for each x € X the
mapping y +— h(z,y) = sup, hn(z,y) is in mY4 (by Theorem [[2Z27). Further,
fn, € mX, and by monotone convergence fy,, T fn (for all z € X), so by the same
reasoning fr € mX;. Applying monotone convergence twice more, it thus follows
that

p(h) = sup p(hy) = sup pa(fr,) = pa(fn)

so h satisfies (CZD)—([CZY). In particular, if h is bounded then also h € H .

Step 2. Suppose now that h € mF,. If pu; and pe are finite measures, then
we have shown in Step 1 that (CZZ)—(CZ) hold for the bounded non-negative
functions h, = h An. With h,, T h we have further seen that (CZI)-(CZ9) hold
also for the possibly unbounded h. Further, the closure of (LX) and (CZXY) with
respect to monotone increasing limits of non-negative functions has been shown
by monotone convergence, and as such it extends to o-finite measures g1 and po.
Turning now to o-finite py and ue, recall that there exist F, = A, x B, € R
such that A, T X, B, 1Y, u1(4,) < oo and ps(B,) < oo. As h is the monotone
increasing limit of h,, = hlg, € mXF, it thus suffices to verify that for each n
the non-negative f,(x) = [i hn(2,y)dp2(y) is measurable with ju(h,) = p1(fn).
Fixing n and simplifying our notations to £ = F,,, A = A, and B = B, recall
Corollary 3B A that p(hy,) = pg(hg) for the restrictions hg and pg of h and p to
the measurable space (F,Fg). Also, as E = A x B we have that Fgp = ¥4 x Vp
and pg = (p1)a X (p2)p for the finite measures (u1)a and (u2)p. Finally, as
fn(®) = frp (@) = [ he(z,y)d(uz)s(y) when z € A and zero otherwise, it follows
that 1 (frn) = (1) a(fng).- We have thus reduced our problem (for h,,), to the case
of finite measures g = (u1)a X (u2)s which we have already successfully resolved.
Step 3. Write h € mF as h = hy — h_, with ho € mF,. By Step 2 we know that
y — hy(z,y) € mY for each x € X, hence the same applies for y — h(z,y). Let
Xo denote the subset of X for which [ |h(x,y)|du2(y) < co. By linearity of the
integral with respect to e we have that for all z € X

(1.4.10) fu(@) = fny (@) = fr_(2)

is finite. By Step 2 we know that f,, € mX, hence Xo = {z : f, (z) + fu_(x) <
oo} is in X. From Step 2 we further have that pi(fn,) = p(hs) whereby our
assumption that [ |h|dp = pi(fn, + fn) < oo implies that pq(X§) = 0. Let
fn(@) = fu,(x) — fn_(x) on Xo and f,(x) = 0 for all ¢ Xo. Clearly, f, € mX
is pu1-almost-everywhere the same as the inner integral on the right side of (CZH).
Moreover, in view of (CZI) and linearity of the integrals with respect to p1 and
1 we deduce that

plh) = p(hy) = p(h) = i (fny) = m(fn) = m(fa)
which is exactly the identity ([CZH). O

Equipped with Fubini’s theorem, we have the following simpler formula for the
expectation of a Borel function h of two independent R.V.



1.4. INDEPENDENCE AND PRODUCT MEASURES 65

THEOREM 1.4.29. Suppose that X and Y are independent random variables of

laws g1 = Px and pz = Py. If h : R?2 — R is a Borel measurable function such
that h > 0 or E|h(X,Y)| < oo, then,

(1.4.11) EACXY) = [[ [ o) dia(@)] daty)

In particular, for Borel functions f,g: R — R such that f,g >0 or E|f(X)] < o0
and E|g(Y)| < oo,

(1.4.12) E(f(X)g(Y)) = Ef(X) Eg(Y)
PROOF. Subject to minor changes of notations, the proof of Theorem [[Z61]
applies to any (S,S)-valued R.V. Considering this theorem for the random vector

(X,Y) whose joint law is 1 x ps2 (c.f. Proposition [LZ2T]), together with Fubini’s
theorem, we see that

EAXY) = [ heg)din %)) = [[ [ 1 din@)] i)

which is (CZTITl). Take now h(x,y) = f(z)g(y) for non-negative Borel functions
f(z) and g(y). In this case, the iterated integral on the right side of (CZII) can
be further simplified to,

E(F(09) = [ [ [ 1@)9tw) dis @] dnato) = [ 9w [ ) dpa ()] diat)

= [ES(0lg(0) duas) = BICO By(Y)

(with Theorem [[361] applied twice here), which is the stated identity ([CZIZ).
To deal with Borel functions f and g that are not necessarily non-negative, first
apply ([CZTI2) for the non-negative functions | f| and |g| to get that E(| f(X)g(Y)|) =
E|f(X)|E|g(Y)| < co. Thus, the assumed integrability of f(X) and of g(Y) allows
us to apply again (CZTI) for h(z,y) = f(x)g(y). Now repeat the argument we
used for deriving (CZTD) in case of non-negative Borel functions. O

Another consequence of Fubini’s theorem is the following integration by parts for-
mula.

LEMMA 1.4.30 (INTEGRATION BY PARTS). Suppose H(z) = [ h(y)dy for a
non-negative Borel function h and all x € R. Then, for any random variable X,

(1.4.13) EH(X) = /Rh(y)P(X > y)dy.

PROOF. Combining the change of variables formula (Theorem [[361]), with our
assumption about H(-), we have that

/ H(z)dPx (z / [ / h(y) o>y dA(y) |dPx (z)

where A denotes Lebesgue’s measure on (R, B). For each y € R, the expectation of
the simple function = — h(z,y) = h(y)Iy>, with respect to (]R B, Px) is merely
h(y)P(X > y). Thus, applying Fubini’s theorem for the non-negative measurable
function A(z,y) on the product space R x R equipped with its Borel o-algebra Bgz,
and the o-finite measures 3 = Px and pus = A, we have that

BH(X) = [ [ [ b0y dPx@]ar) = [ Mo > )y,

R
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as claimed. O

Indeed, as we see next, by combining the integration by parts formula with Holder’s
inequality we can convert bounds on tail probabilities to bounds on the moments
of the corresponding random variables.

LEMMA 1.4.31.
(a) For any r > p >0 and any random variable Y > 0,

EY? = / py? T P(Y > y)dy = / py* I P(Y > y)dy
0 0

== 2) [y Blmin(v/5.1) .

b) If X,Y > 0 are such that P(Y > y) <y 'E[XIy>,] for all y > 0, then
>y

1Yllp < allX|lp for any p>1 and ¢ =p/(p—1).
(c) Under the same hypothesis also EY <1+ E[X (logY)4].

PROOF. (a) The first identity is merely the integration by parts formula for
hy(y) = pyP~'1,50 and H,(z) = 2P1,>¢ and the second identity follows by the
fact that P(Y = y) = 0 up to a (countable) set of zero Lebesgue measure. Finally,
it is easy to check that Hy(z) = [ hyr(2,y)dy for the non-negative Borel function
hy(z,y) = (1 — p/r)py? ' min(z/y,1)"1,>01,>0 and any r > p > 0. Hence,
replacing h(y)I;>, throughout the proof of Lemma [LZ3M by h,, -(x,y) we find that
E[H,(X)] = [, E[hp,(X,y)]dy, which is exactly our third identity.

(b) In a similar manner it follows from Fubini’s theorem that for p > 1 and any
non-negative random variables X and Y

BLXY?™Y] = BLCH, 1(V)] = Bl [ hya()X Ty, dy] = / hpr (9)ELX Iy >, dy

R
Thus, with y~'h,(y) = gh,—1(y) our hypothesis implies that

BY? = [ 1P 2 )iy < [ ahyer )BTy, Jdy = gBIXY? ).
R R
Applying Holder’s inequality we deduce that
EY? < qE[XY?7'] < q||X|,[[Y? g = gl X|,[EY?]"/

where the right-most equality is due to the fact that (p — 1)¢ = p. In case Y
is bounded, dividing both sides of the preceding bound by [EY?]'/4 implies that
Y], < ql|X|lp- To deal with the general case, let ¥, =Y An, n=1,2,... and
note that either {Y;, > y} is empty (for n < y) or {Y,, > y} = {Y > y}. Thus, our
assumption implies that P(Y,, > y) < y 'E[XIy,>,] for all y > 0 and n > 1. By
the preceding argument ||, ||, < ¢|| X, for any n. Taking n — oo it follows by
monotone convergence that ||Y||, < ¢||X||,.

(¢) Considering part (a) with p = 1, we bound P(Y > y) by one for y € [0, 1] and
by y'E[X Iy>,] for y > 1, to get by Fubini’s theorem that

o0

BY = [P zydy<i+ [y B,y
0 1

—1 +E[X/ yIysydy] = 1+ E[X(log V)]
1
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We further have the following corollary of ([CLZIZ), dealing with the expectation
of a product of mutually independent R.V.

COROLLARY 1.4.32. Suppose that X1, ..., X, are P-mutually independent random
variables such that either X; > 0 for all i, or E|X;| < 0o for all i. Then,

(1.4.14) E(HX) - [[Ex:.
i=1 i=1
that is, the expectation on the left exists and has the value given on the right.

Proor. By Corollary [LZTT we know that X = X3 and Y = X5--- X, are
independent. Taking f(z) = |z| and g(y) = |y| in Theorem [CZ29, we thus have
that E|X;--- X,| = E|X;|E|X2---X,,| for any n > 2. Applying this identity
iteratively for X, ..., X, starting with l = m, then l =m+1,m+2,...,.n—1
leads to

(1.4.15) E[X, - X, = [] EIXxl,

k=m

holding for any 1 < m <n. If X; > 0 for all 4, then | X;| = X; and we have (CZT)
as the special case m = 1.

To deal with the proof in case X; € L' for all i, note that for m = 2 the identity
[CZT3) tells us that E|Y| = E|X2--- X,,| < 00, so using Theorem with
f(z) = z and ¢g(y) = y we have that E(X; --- X,,) = (EX1)E(X2--- X,,). Iterating
this identity for Xj,..., X, starting with [ = 1, then [ = 2,3,...,n — 1 leads to
the desired result (CZT4). O

Another application of Theorem provides us with the familiar formula for
the probability density function of the sum X +Y of independent random variables
X and Y, having densities fx and fy respectively.

COROLLARY 1.4.33. Suppose that R.V. X with a Borel measurable probability
density function fx and R. V.Y with a Borel measurable probability density function
fy are independent. Then, the random wvariable Z = X +Y has the probability
density function

f2(2) = /R fx(z— ) fr )dy.

ProOOF. Fixing z € R, apply Theorem for h(z,y) = L(z4y<z), to get
that

Fz(z) =P(X +Y < 2) = Bh(X,Y) = /R [ /R b, )dPx (2) | dPy (o)

Considering the inner integral for a fixed value of y, we have that

zZ=yY

/Rh(x,y)dPX(x) = /RI(7001Z7y] ()dPx(z) = Px((—00,z —y]) = / Ix(z)dx

—0o0
where the right most equality is by the existence of a density fx(z) for X (c.f.

Definition [CZZM). Clearly, [~ Y fx(z)dz = [°__ fx(z — y)dz. Thus, applying
Fubini’s theorem for the Borel measurable function g(z,y) = fx(z —y) > 0 and
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the product of the o-finite Lebesgue’s measure on (—oo, 2] and the probability
measure Py, we see that

Fz(z Fx(z — y)dz|dPy (y) fx(x —y)dPy (y)| da
AN Jervn=[ [

(in this application of Fubini’s theorem we replace one iterated integral by another,
exchanging the order of integrations). Since this applies for any z € R, it follows
by definition that Z has the probability density

2) = /fo(z —y)dPy (y) = Bfx(z - ).

With Y having density fy, the stated formula for fz is a consequence of Corollary
5.0 O

DEFINITION 1.4.34. The expression [ f(z —y)g(y)dy is called the convolution of
the non-negative Borel functions f and g, denoted by f x g(z). The convolution of
measures {1 and v on (R, B) is the measure u* v on (R,B) such that u* v(B) =
J u(B —z)dv(z) for any B € B (where B—x = {y:x+y € B}).

Corollary [C433 states that if two independent random variables X and Y have
densities, then so does Z = X +Y | whose density is the convolution of the densities
of X and Y. Without assuming the existence of densities, one can show by a similar
argument that the law of X + Y is the convolution of the law of X and the law of
Y (c.f. [Dur03l Theorem 1.4.9] or [Bil95| Page 266]).

Convolution is often used in analysis to provide a more regular approximation to
a given function. Here are few of the reasons for doing so.

EXERCISE 1.4.35. Suppose Borel functions f,g are such that g is a probability
density and [ |f(z)|dz is finite. Consider the scaled densities g, (-) = ng(n-), n > 1.
(a) Show that f = g(y) is a Borel function with [ |f x g(y)|dy < [|f(z)|dz
and if g is uniformly continuous, then so is f * g.
(b) Show that if g(x) = 0 whenever |x| > 1, then f*g,(y) — f(y) asn — oo,
for any continuous f and each y € R.

Next you find two of the many applications of Fubini’s theorem in real analysis.

EXERCISE 1.4.36. Show that the set G¢ = {(z,y) € R? : 0 <y < f(x)} of points
under the graph of a non-negative Borel functz’on f R — [0,00) is in Brz and
deduce the well-known formula A x N(Gy) = [ f(x ), for its area.

EXERCISE 1.4.37. Forn > 2, consider the unit sphere S"‘l ={zeR": |zl =1}
equipped with the topology induced by R™. Let the surface measure of A € Bgn-1 be
v(A) =nA"(Co1(A)), for Cop(A) = {ra :r € (a,b], x € A} and the n-fold product
Lebesgue measure A" (as in Remark [[-4.20).

(a) Check that Cyp(A) € Brn and deduce that v(-) is a finite measure on
S™=Y (which is further invariant under orthogonal transformations).

(b) Verify that \*(Cyp(A)) = =" v(A) and deduce that for any B € Bgn

n

A" ( / / Lgen dv( )} L dA(r) .

Hint: Recall that \*(yB) = 4" A\"(B) for any v > 0 and B € Bgn.
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Combining ([CZT2) with Theorem [CZ2A leads to the following characterization of
the independence between two random vectors (compare with Definition [LZT]).

EXERCISE 1.4.38. Show that the R™-valued random variable (X1,...,X,) and the
R™-valued random variable (Y1,...,Y,,) are independent if and only if

E(h(Xla s 7X7l)g(Y17 . -7Ym)) = E(h(Xla cee 7Xn))E(g(Yla .. '7Ym))7

for all bounded, Borel measurable functions g : R™ — R and h : R® — R.
Then show that the assumption of h(-) and g(-) bounded can be relazed to both
h(X1,...,X,) and g(Yi,...,Yy,) being in L1 (Q, F, P).

Here is another application of ((CZI2):

EXERCISE 1.4.39. Show that E(f(X)g(X)) > (Ef(X))(Eg(X)) for every random
variable X and any bounded non-decreasing functions f,g: R — R.

In the following exercise you bound the exponential moments of certain random
variables.

EXERCISE 1.4.40. Suppose Y is an integrable random variable such that E[eY] is
finite and E[Y] = 0.
(a) Show that if |Y| < K then
logE[eY] < k7 2(e” — k — 1)E[Y?].

Hint: Use the Taylor expansion of e¥ —Y —1.
(b) Show that if E[Y2eY] < k?E[eY] then

log E[e¥] < logcosh(k).

Hint: Note that p(u) = logE[e“Y] is conver, non-negative and finite
on [0,1] with p(0) = 0 and ¢'(0) = 0. Verify that ¢"(u) + ¢’ (u)? =
E[Y2e"Y]/E[e*Y] is non-decreasing on [0,1] and ¢(u) = logcosh(ku)
satisfies the differential equation ¢"(u) + ¢'(u)? = k2.

As demonstrated next, Fubini’s theorem is also handy in proving the impossibility
of certain constructions.

EXERCISE 1.4.41. Ezplain why it is impossible to have P-mutually independent
random variables Uy(w), t € [0,1], on the same probability space (2, F,P), having
each the uniform probability measure on [—1/2,1/2], such that t — Us(w) is a Borel
function for almost every w € Q.

Hint: Show that E[( f; Uy(w)dt)?] =0 for all r € [0,1].

Random variables X and Y such that E(X?) < co and E(Y?) < oo are called
uncorrelated if E(XY) = E(X)E(Y). It follows from (CZTIZ) that independent
random variables X, Y with finite second moment are uncorrelated. While the
converse is not necessarily true, it does apply for pairs of random variables that
take only two different values each.

EXERCISE 1.4.42. Suppose X and Y are uncorrelated random variables.
(a) Show that if X =14 andY = Ip for some A,B € F then X and Y are

also independent.
(b) Using this, show that if {a,b}-valued R.V. X and {c,d}-valued R.V. Y

are uncorrelated, then they are also independent.
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(c) Give an example of a pair of R.V. X andY that are uncorrelated but not
independent.

Next come a pair of exercises utilizing Corollary [CZ32

EXERCISE 1.4.43. Suppose X andY are random variables on the same probability
space, X has a Poisson distribution with parameter X\ > 0, and Y has a Poisson
distribution with parameter > X\ (see Example [[L3.09).

(a) Show that if X and Y are independent then P(X >Y) < exp(—(\/p —
VA)?).

(b) Taking u = Y\ for v > 1, find I(y) > 0 such that P(X > Y) <
2exp(—A (7)) even when X and Y are not independent.

EXERCISE 1.4.44. Suppose X andY are independent random variables of identical
distribution such that X > 0 and E[X] < 0.

(a) Show that E[X Y] > 1 unless X (w) = ¢ for some non-random ¢ and
almost every w € ().

(b) Provide an exzample in which E[X ~1Y] = co.

We conclude this section with a concrete application of Corollary [LZ33 comput-
ing the density of the sum of mutually independent R.V., each having the same
exponential density. To this end, recall

DEFINITION 1.4.45. The gamma density with parameters a > 0 and A > 0 is given
by
fr(s) =T(a) A% Lem*1 o,
where I'(a) = fooo s le~%ds is finite and positive. In particular, & = 1 corresponds
to the exponential density fr of Example [T68.

EXERCISE 1.4.46. Suppose X has a gamma density of parameters ay and A and'Y
has a gamma density of parameters ag and X. Show that if X and Y are indepen-
dent then X +Y has a gamma density of parameters ay + a2 and A. Deduce that
if T1, ..., Ty are mutually independent R.V. each having the exponential density of
parameter \, then W, = >""" | T; has the gamma density of parameters & = n and
A



CHAPTER 2

Asymptotics: the law of large numbers

Building upon the foundations of Chapter [l we turn to deal with asymptotic
theory. To this end, this chapter is devoted to degenerate limit laws, that is,
situations in which a sequence of random variables converges to a non-random
(constant) limit. Though not exclusively dealing with it, our focus here is on the
sequence of empirical averages n™' Y | X; as n — oo.

Section EZT] deals with the weak law of large numbers, where convergence in prob-
ability (or in L? for some ¢ > 1) is considered. This is strengthened in Section
to a strong law of large numbers, namely, to convergence almost surely. The key
tools for this improvement are the Borel-Cantelli lemmas, to which Section is
devoted.

2.1. Weak laws of large numbers

A weak law of large numbers corresponds to the situation where the normalized
sums of large number of random variables converge in probability to a non-random
constant. Usually, the derivation of a weak low involves the computation of vari-
ances, on which we focus in Subsection EELIl However, the L? convergence we
obtain there is of a somewhat limited scope of applicability. To remedy this, we
introduce the method of truncation in Subsection and illustrate its power in
a few representative examples.

2.1.1. L? limits for sums of uncorrelated variables. The key to our
derivation of weak laws of large numbers is the computation of variances. As a
preliminary step we define the covariance of two R.V. and extend the notion of a
pair of uncorrelated random variables, to a (possibly infinite) family of R.V.

DEFINITION 2.1.1. The covariance of two random variables X,Y € L?(Q, F,P) is
Cov(X,Y)=E[(X —EX)(Y —EY)|=EXY —EXEY,

so in particular, Cov(X, X) = Var(X).
We say that random variables X, € L?(Q, F,P) are uncorrelated if

E(XoXp) = E(Xo)E(Xp)  Va#p,

or equivalently, if

Cov(Xa,Xp) =0 Va # 8.

As we next show, the variance of the sum of finitely many uncorrelated random
variables is the sum of the variances of the variables.

LEMMA 2.1.2. Suppose X1, ..., X, are uncorrelated random variables (which nec-
essarily are defined on the same probability space). Then,

(2.1.1) Var(Xy + -+ X,,) = Var(Xy) + - - + Var(X,,) .

71
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PrOOF. Let S, = > X;. By Definition [[361 of the variance and linearity of
i=1
the expectation we have that
Var(S,) = E([S, — ES,|*) =E(D_X; - > EX;]*) =E(D_(X; - EX,)]*).
i=1 i=1 i=1
Writing the square of the sum as the sum of all possible cross-products, we get that

n

Var(S,,) = Z E[(X; - EX;)(X; — EX})]

ij=1
=) Cov(X;, X;) = Cov(X;, X;) = Y _Var(X;),
ij=1 i=1 i=1
where we use the fact that Cov(X;, X;) = 0 for each ¢ # j since X; and X; are
uncorrelated. 0

Equipped with this lemma we have our

n
THEOREM 2.1.3 (L? WEAK LAW OF LARGE NUMBERS). Consider S, = >. X;

=1
for uncorrelated random variables X1, ..., X,,.... Suppose that Var(X;) < C and
2
EX; =T for some finite constants C, T, and all i = 1,2,.... Then, n~19, L% as

— P —
n — oo, and hence also n=1S, = 7.

PROOF. Our assumptions imply that E(n=1S,) = 7, and further by Lemma
T2 we have the bound Var(S,) < nC. Recall the scaling property (C3I1) of the
variance, implying that

—0

E [(nflsn - f)ﬂ = Var (n715,) = % Var(S,) <

31Q

2
as n — oo. Thus, n=1S, Lz (recall Definition [[326]). By Proposition this
implies that also n=1S, 2 7. O

The most important special case of Theorem is,

ExXamMpPLE 2.1.4. Suppose that Xi,...,X, are independent and identically dis-
tributed (or in short, i.i.d.), with EX? < co. Then, EX? = C and EX; = mx are
both finite and independent of i. So, the L? weak law of large numbers tells us that

_ L? _ P
n~1S, = mx, and hence also n™1S, = mx.

REMARK. As we shall see, the weaker condition E|X;| < oo suffices for the conver-
gence in probability of n=1S,, to mx. In Section we show that it even suffices
for the convergence almost surely of n~15,, to mx, a statement called the strong
law of large numbers.

EXERCISE 2.1.5. Show that the conclusion of the L? weak law of large numbers
holds even for correlated X;, provided EX; =T and Cov(X;, X;) < r(|i — j|) for all
1,7, and some bounded sequence r(k) — 0 as k — oo.

With an eye on generalizing the L? weak law of large numbers we observe that
LEMMA 2.1.6. If the random variables Z,, € L*(Q, F,P) and the non-random b,
2
are such that b, >Var(Z,) — 0 as n — oo, then b, (Z, — EZ,) Eo.
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PROOF. We have E[(b,,*(Z, — EZ,))?] = b,,2Var(Z,) — 0. O

EXAMPLE 2.1.7. Let Z,, = Y _, Xi for uncorrelated random variables {X}. If
Var(Xk)/k — 0 as k — oo, then Lemma applies for Z, and b, = n, hence
n~YZ,—EZ,) — 0 in L? (and in probability). Alternatively, if also Var(Xy) — 0,
then Lemma [ZLA applies even for Z, and b, =n~1/2.

Many limit theorems involve random variables of the form .S, Z Xn.k, that is,

the row sums of triangular arrays of random variables {X,,  : k = 1 .,n}. Here
are two such examples, both relying on Lemma EZT6

EXAMPLE 2.1.8 (COUPON COLLECTOR’S PROBLEM). Consider i.i.d. random vari-
ables Uy, Us, . .., each distributed uniformly on {1,2,...,n}. Let |{Uy,...,U}| de-
note the number of distinct elements among the first | variables, and 7]} = inf{l :
H{Ui,...,U}| = k} be the first time one has k distinct values. We are interested
in the asymptotic behavior as n — oo of Ty, = 1)}, the time it takes to have at least
one representative of each of the n possible values.

To motivate the name assigned to this example, think of collecting a set of n
different coupons, where independently of all previous choices, each item is chosen
at random in such a way that each of the possible n outcomes is equally likely.
Then, T, is the number of items one has to collect till having the complete set.

Setting 75 = 0, let X, = 1)) — 7/, denote the additional time it takes to get
an item different from the first k — 1 distinct items collected Note that X, 1 has
a geometric distribution of success pmbabzlzty gnk =1— =, hence EX,, ) = q;}c

and Var(X,, ;) < qn’,C (see Example [LZ0D). Since

n

Tn:Tg—Tg:Z( _Tkl ZXnka

k=1

we have by linearity of the expectation that
. k
ETn:Z(l——) —nZ€ L= n(logn + ),
k=1
n
where v, = Y 071 — fln x~Ldx is between zero and one (by monotonicity of x

x1). Further, X, 1 is independent of each earlier waiting time X,, j, j =1,...,k—
1, hence we have by Lemma 212 that

Var(T, ZVar nkgz_:(l—k;) QZE‘

for some C' < 0. Applymg Lemma 2@ with b, = nlogn, we deduce that

T, — n(logn + v,) L

nlogn
Since v/ logn — 0, it follows that
Tn L?
L

nlogn

and Ty, /(nlogn) — 1 in probability as well.
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One possible extension of Example ZZT.§ concerns infinitely many possible coupons.
That is,

EXERCISE 2.1.9. Suppose {&} are i.i.d. positive integer valued random variables,
with P(& =14) =p; >0 fori=1,2,.... Let D; = |{&1,...,&}| denote the number
of distinct elements among the first | variables.

(a) Show that D, “3 oo asn — co.
(b) Show that n~'ED,, — 0 as n — oo and deduce that n='D,, 2 0.
Hint: Recall that (1 —p)™ > 1 —np for any p € [0,1] and n > 0.

EXAMPLE 2.1.10 (AN OCCUPANCY PROBLEM). Suppose we distribute at random
r distinct balls among n distinct boxes, where each of the possible n” assignments
of balls to boxes is equally likely. We are interested in the asymptotic behavior of
the number N, of empty boxes when r/n — « € [0,00], while n — oco. To this

end, let A; denote the event that the i-th box is empty, so N, = Zn: Ia,. Since
P(A4;) = (1 —1/n)" for each i, it follows that E(n"'N,) = (1 — Z17;1)T — e ™
Further, EN? = i P(A;NAj) and P(A; N A;) = (1 —2/n)" for each i # j.
Hence, splitting thlg;lwn according to i = j or i # j, we see that

1 1 1 1 1 2 1
V IN)==EN’ - (1-)=-(1-)+1-)1=->)—-(1-=)>.
ar(n ™ N,) = ENZ — (1= ) = T(1 = 2y (1= )(1- 27— (1= )
As n — oo, the first term on the right side goes to zero, and with r/n — «a, each of
the other two terms converges to e 2. Consequently, Var(n=tN,,) — 0, so applying

Lemma[ZTA for b, = n we deduce that
Ny,

— = e
n

[e3%

in L? and in probability.

2.1.2. Weak laws and truncation. Our next order of business is to extend
the weak law of large numbers for row sums S,, in triangular arrays of independent
X, which lack a finite second moment. Of course, with .S), no longer in L2, there
is no way to establish convergence in L2. So, we aim to retain only the convergence
in probability, using truncation. That is, we consider the row sums S, for the
truncated array Yn,k = XnykIIXn,k\Sbna with b, — oo slowly enough to control the
variance of S,, and fast enough for P(S,, # S,) — 0. As we next show, this gives

the convergence in probability for S,, which translates to same convergence result
for S,,.

THEOREM 2.1.11 (WEAK LAW FOR TRIANGULAR ARRAYS). Suppose that for each
n, the random variables X, i, k = 1,...,n are pairwise independent. Let X, 1 =
XnkaIXn,k‘Sbn for non-random b,, > 0 such that as n — oo both

(¢) 32 P(IXn k| >bn) =0,
k=1

and

(b) b2 32 Var(X o) — 0.
k=1

Then, b1 (S, — a,) 2.0 as n — oo, where S,, = o Xnk and ay, = Y. EX, .
k=1 k=1
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PROOF. Let S, = >"}_; X, k. Clearly, for any £ > 0,

{|S"T;“n| >s}g{Sn;£§n}U{|§"T;a"\ >5} .

Consequently,

7S"b;an| > 5).

To bound the first term, note that our condition (a) implies that as n — oo,

(2.1.2) P(\S"T;‘W >5) gP(sn;A?nHP(\

n

P(S, # 50) < P(|J Xk £ Xu))

k=1

NE

<Y P(Xpn # Xng) =Y P(IXnk| > by) = 0.

1 k=1

n

>
Il

Turning to bound the second term in (ZIZ), recall that pairwise independence
is preserved under truncation, hence Ymk, k =1,...,n are uncorrelated random
variables (to convince yourself, apply ([CZIZ) for the appropriate functions). Thus,
an application of Lemma yields that as n — oo,

Var(b,'S,,) =b,% > Var(X,x) — 0,
k=1
by our condition (b). Since a,, = ES,,, from Chebyshev’s inequality we deduce that
for any fixed € > 0,

P(‘Snbi;an’ >e) < e 2Var(b,'Sa) = 0,

as n — oo. In view of (.2, this completes the proof of the theorem. O

Specializing the weak law of Theorem EZTTTl to a single sequence yields the fol-
lowing.

PROPOSITION 2.1.12 (WEAK LAW OF LARGE NUMBERS). Consider i.i.d. random
variables {X;}, such that P (|X1| > z) — 0 as x — co. Then, n='S, — un > 0,
where Sp = Y Xy and pn, = BIX11{x,|<n}]-

i=1
PrROOF. We get the result as an application of Theorem EZTTT for X, , = Xy,

and b, = n, in which case a,, = nu,. Turning to verify condition (a) of this
theorem, note that

> P( Xkl >n)=nP(X1|>n) =0

k=1
as m — o0, by our assumption. Thus, all that remains to do is to verify that
condition (b) of Theorem EZITT holds here. This amounts to showing that as
n — oo,

A, = n"? ZVar(Ymk) =n! Var(yn,l) —0.
k=1
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Recall that for any R.V. Z,

Var(Z) = EZ* - (EZ)? < E|Z|? = / 2yP(|Z| > y)dy
0
(see part (a) of Lemma [[ZZ] for the right identity). Considering Z = X,,; =
X1I{x,|<ny for which P(|Z] > y) = P(|X1] > y) — P(|X1| > n) < P(|X1] > y)
when 0 < y < n and P(|Z| > y) = 0 when y > n, we deduce that

A, =n"'Var(Z) < n”/ 9(y)dy ,
0

where by our assumption, g(y) = 2yP(|X1] > y) — 0 for y — oco. Further, the
non-negative Borel function g(y) < 2y is then uniformly bounded on [0, c0), hence
n=t [ g(y)dy — 0 as n — oo (c.f. Exercise [CZ5A). Verifying that A, — 0, we
established condition (b) of Theorem EZT.Tl and thus completed the proof of the
proposition. ([l

REMARK. The condition 2P (|X1| > x) — 0 for z — oo is indeed necessary for the

existence of non-random s, such that n=1S,, — u, 2 0 (c.f. [Fel71l Page 234-236]
for a proof).

EXERCISE 2.1.13. Let {X;} be i.i.d. with P(X; = (=1)kk) = 1/(ck®logk) for
integers k > 2 and a normalization constant ¢ = >, 1/(k*logk). Show that
E|X1| = oo, but there is a non-random pu < oo such that n='S, % p.

As a corollary to Proposition ZT.T2 we next show that n=LS, LN mx as soon as
the i.i.d. random variables X; are in L!.

COROLLARY 2.1.14. Consider S,, = Y X, for i.i.d. random variables {X;} such
k=1

that E|X1| < co. Then, n~ 1S, L2 EX, as n — oo.

PRrOOF. In view of Proposition BZI.T2 it suffices to show that if E|X;| < oo,
then both nP(|X1[ > n) — 0 and EX; — pn, = E[X11{x,|5n}] — 0 as n — oo.
To this end, recall that E|X;| < oo implies that P(]X1| < oo) = 1 and hence
the sequence X1y x,|>n) converges to zero a.s. and is bounded by the integrable
|X1|. Thus, by dominated convergence E[X I x,|>n}] — 0 as n — oco. Applying
dominated convergence for the sequence nly x,|>n} (Which also converges a.s. to
zero and is bounded by the integrable |X1|), we deduce that nP(|X1| > n) =
E[nl{ x,|>n}] — 0 when n — oo, thus completing the proof of the corollary. O

We conclude this section by considering an example for which E|X;| = oo and
Proposition does not apply, but nevertheless, Theorem EZT.TT] allows us to
deduce that ¢; 'S, % 1 for some ¢, such that ¢, /n — occ.

EXAMPLE 2.1.15. Let {X;} be i.i.d. random variables such that P(X; = 27) =
277 for j = 1,2,.... This has the interpretation of a game, where in each of its
independent rounds you win 27 dollars if it takes exactly j tosses of a fair coin
to get the first Head. This example is called the St. Petersburg paradox, since
though EX, = oo, you clearly would not pay an infinite amount just in order to
play this game. Applying Theorem LTI we find that one should be willing to pay
roughly nlog, n dollars for playing n rounds of this game, since Sy /(nlogyn) 2 1
as n — oo. Indeed, the conditions of Theorem [ZL11 apply for b, = 2™ provided
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the integers my,, are such that m, —logyn — oo. Taking my < log, n + log,(log,n)
implies that b, < nlogyn and a,/(nlogyn) = my,/logon — 1 as n — oo, with the

consequence of S, /(nlogyn) 2 1 (for details see [Dur03, Example 1.5.7]).

2.2. The Borel-Cantelli lemmas

When dealing with asymptotic theory, we often wish to understand the relation
between countably many events A,, in the same probability space. The two Borel-
Cantelli lemmas of Subsection ZZ Tl provide information on the probability of the set
of outcomes that are in infinitely many of these events, based only on P(A4,,). There
are numerous applications to these lemmas, few of which are given in Subsection
while many more appear in later sections of these notes.

2.2.1. Limit superior and the Borel-Cantelli lemmas. We are often in-
terested in the [limits superior and limits inferior of a sequence of events A,, on
the same measurable space (2, F).

DEFINITION 2.2.1. For a sequence of subsets A, C €, define
A :=limsup A, = ﬂ U Ay

m=14=m

{w:w € A, for infinitely many n’s }
= {w:w € A, infinitely often } = {4, i.0. }

Similarly,

liminf A,, = [j ﬁ Ay
m=14=m

= {w:w € A, for all but finitely many n’s }
={w:w € A, eventually } = {A, ev. }

REMARK. Note that if A,, € F are measurable, then so are limsup A, and
liminf A,,. By DeMorgan’s law, we have that {A, ev. } = {AS i.0. }¢, that is,
w € A, for all n large enough if and only if w € A¢ for finitely many n’s.

Also, if w € A,, eventually, then certainly w € A,, infinitely often, that is

liminf A,, C limsup 4, .

The notations limsup 4,, and liminf A,, are due to the intimate connection of
these sets to the limsup and liminf of the indicator functions on the sets A,,. For
example,

limsup I4, (w) = Dlim sup 4, (w),

n—oo
since for a given w € (), the limsup on the left side equals 1 if and only if the
sequence n — 4 (w) contains an infinite subsequence of ones. In other words, if
and only if the given w is in infinitely many of the sets A,,. Similarly,

liminf I, (w) = Diminf 4, (W),

since for a given w € 2, the liminf on the left side equals 1 if and only if there
are only finitely many zeros in the sequence n — I4, (w) (for otherwise, their limit
inferior is zero). In other words, if and only if the given w is in A,, for all n large
enough.
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In view of the preceding remark, Fatou’s lemma yields the following relations.

EXERCISE 2.2.2. Prove that for any sequence A,, € F,
P(limsup 4,,) > limsupP(A,) > liminf P(4,,) > P(liminf A4,,).
Show that the right most inequality holds even when the probability measure is re-
placed by an arbitrary measure p(-), but the left most inequality may then fail unless
MUgsn Ar) < 00 for some n.

Practice your understanding of the concepts of lim sup and lim inf of sets by solving
the following exercise.

EXERCISE 2.2.3. Assume that P(limsup 4,,) = 1 and P(liminf B,)) = 1. Prove
that P(limsup(A, N B,)) = 1. What happens if the condition on {By} is weakened
to P(limsup B,,) =17

Our next result, called the first Borel-Cantelli lemma, states that if the probabil-
ities P(A,,) of the individual events A,, converge to zero fast enough, then almost
surely, A,, occurs for only finitely many values of n, that is, P(A, i.0.) = 0. This
lemma is extremely useful, as the possibly complex relation between the different
events A,, is irrelevant for its conclusion.

LEMMA 2.2.4 (BOREL-CANTELLI I). Suppose A,, € F and Y P(A,) < co. Then,
n=1
P(A, io0.)=0.

PROOF. Define N(w) =Y 7., I4, (w). By the monotone convergence theorem
and our assumption,

E[N(w)] = E{ZIAk(w)} =3 P(4y) < .

Since the expectation of N is finite, certainly P({w : N(w) = co}) = 0. Noting
that the set {w : N(w) = oo} is merely {w : A, i.0.}, the conclusion P(A,, i.0.) =0
of the lemma follows. O

Our next result, left for the reader to prove, relaxes somewhat the conditions of

Lemma 224

EXERCISE 2.2.5. Suppose A, € F are such that > P(A, N AS ;) < oo and
n=1
P(A,) — 0. Show that then P(A, i.0.) =0.

The first Borel-Cantelli lemma states that if the series >, P(A,) converges then
almost every w is in finitely many sets A,. If P(A,,) — 0, but the series >, P(A,)
diverges, then the event {A,, i.0.} might or might not have positive probability. In
this sense, the Borel-Cantelli I is not tight, as the following example demonstrates.

EXAMPLE 2.2.6. Consider the uniform probability measure U on ((0,1], B,1)),
and the events A, = (0,1/n]. Then A, | 0, so {A,, i.0.} =0, but U(4,) = 1/n,
so Y, U(Ay) = oo and the Borel-Cantelli I does not apply.

Recall also Example showing the existence of Ay = (tn,tn + 1/n] such that
U(A,) = 1/n while {A,, i.0.} = (0,1]. Thus, in general the probability of {A, i.0.}

depends on the relation between the different events A,,.
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As seen in the preceding example, the divergence of the series > P(A,) is not
sufficient for the occurrence of a set of positive probability of w values, each of
which is in infinitely many events A,,. However, upon adding the assumption that
the events A,, are mutually independent (flagrantly not the case in Example ZZ20)),
we conclude that almost all w must be in infinitely many of the events A,,:

LEMMA 2.2.7 (BOREL-CANTELLI II). Suppose A,, € F are mutually independent
and Y P(Ay) = co. Then, necessarily P(A,, i.0.) =1.

n=1

PrOOF. Fix 0 < m < n < co. Use the mutual independence of the events Ay
and the inequality 1 — z < e™* for z > 0, to deduce that

P(eﬂ Ag) - e]j P(A)) = e]j (1 - P(Ay))

< [ e P4 = exp(— 3" P(A).
l=m

{=m

n
As n — oo, the set () A§ shrinks. With the series in the exponent diverging, by
l=m
continuity from above of the probability measure P(-) we see that for any m,

p( N 45) < exp(- S P(A)) = 0.
{=m

{=m

Take the complement to see that P(B,,) =1 for By, = J,=,, A¢ and all m. Since
By, | {4, i.0. } when m 1 oo, it follows by continuity from above of P(-) that

P(A, i0.) = lim P(B,)=1,
as stated. O

As an immediate corollary of the two Borel-Cantelli lemmas, we observe yet an-
other 0-1 law.

COROLLARY 2.2.8. If A,, € F are P-mutually independent then P(A,, i.0.) is
either 0 or 1. In other words, for any given sequence of mutually independent
events, either almost all outcomes are in infinitely many of these events, or almost
all outcomes are in finitely many of them.

The Kochen-Stone lemma, left as an exercise, generalizes Borel-Cantelli II to sit-
uations lacking independence.

EXERCISE 2.2.9. Suppose Ay are events on the same probability space such that
> P(Ar) = 00 and
n 2
lim sup (ZP(Ak)) /( S PA;n Ak)) —a>0.
oo M= 1<j,k<n
Prove that then P(A,, i.0. ) > .

Hint: Consider part (a) of Exercise [LIZI for Y, =, -, 1a, and a, = AEY,.

k
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2.2.2. Applications. In the sequel we explore various applications of the two
Borel-Cantelli lemmas. In doing so, unless explicitly stated otherwise, all events
and random variables are defined on the same probability space.

We know that the convergence a.s. of X,, to X, implies the convergence in prob-
ability of X,, to X, but not vice versa (see Exercise and Example [C32H]).
As our first application of Borel-Cantelli I, we refine the relation between these
two modes of convergence, showing that convergence in probability is equivalent to
convergence almost surely along sub-sequences.

THEOREM 2.2.10. X,, 2 X if and only if for every subsequence m +— Xon(m)
there exists a further sub-subsequence Xy (n,, ) such that X (m,) 2 X as k — oc.

We start the proof of this theorem with a simple analysis lemma.

LEMMA 2.2.11. Let y, be a sequence in a topological space. If every subsequence
Yn(m) has a further sub-subsequence Yy (m,) that converges to y, then y, — y.

PROOF. If y,, does not converge to y, then there exists an open set GG containing
y and a subsequence ¥, () such that y,(,) ¢ G for all m. But clearly, then we
cannot find a further subsequence of y,,(,) that converges to y. |

1
REMARK. Applying LemmaZZTto y,, = E|X,, — X | we deduce that X, 5 X
if and only if any subsequence n(m) has a further sub-subsequence n(my) such that

Ll
Xon(my) — Xoo as k — 00.

PROOF OF THEOREM [ZZIT First, we show sufficiency, assuming X,, = Xoo.
Fix a subsequence n(m) and € | 0. By the definition of convergence in probability,
there exists a sub-subsequence n(my) T oo such that P (|Xn(mk) — Xoo| > sk) <
277 Call this sequence of events Ay = {w : [X,,(m,) (W) — Xoo(w)| > €1 }. Then
the series ), P(Ay) converges. Therefore, by Borel-Cantelli I, P(limsup A,) =
0. For any w ¢ limsup Ay there are only finitely many values of k such that
| X (i) — Xool > €, or alternatively, | Xy, (m,) — Xoo| < € for all k large enough.
Since e | 0, it follows that X, (m,)(w) — Xoo(w) when w ¢ limsup Ay, that is,
with probability one.

Conversely, fix § > 0. Let y, = P(|X,, — Xoo| > ¢). By assumption, for every sub-
sequence n(m) there exists a further subsequence n(my) so that X,,,,,) converges
to Xoo almost surely, hence in probability, and in particular, y,,(m,,) — 0. Applying
Lemma EZZTT we deduce that y, — 0, and since § > 0 is arbitrary it follows that
Xn 2 Xoo. O

It is not hard to check that convergence almost surely is invariant under application
of an a.s. continuous mapping.

EXERCISE 2.2.12. Let g : R — R be a Borel function and denote by D its set of
discontinuities. Show that if X,, “3 X finite valued, and P(X o € D,) =0, then

9(Xn) “2 g(Xoo) as well (recall Evercise [LZZ8 that D, € B). This applies for a
continuous function g in which case Dy = (.

A direct consequence of Theorem EZZT0 is that convergence in probability is also
preserved under an a.s. continuous mapping (and if the mapping is also bounded,
we even get L' convergence).
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COROLLARY 2.2.13. Suppose X,, 2 X oo, g is a Borel function and P(Xe €Dy) =

0. Then, g(X,) 2 g(Xs). If in addition g is bounded, then g(X,,) L 9(Xs) (and
Eg(X») — Eg(Xx)).

PROOF. Fix a subsequence X, (). By Theorem EZZTQ there exists a subse-
quence X, () such that P(A) =1 for A = {w: X, (w) = Xoo(w) as k — oo},
Let B = {w : Xoo(w) ¢ Dg}, noting that by assumption P(B) = 1. For any
w € AN B we have g(Xp(m,)(w)) = 9(Xoo(w)) by the continuity of g outside D.
Therefore, g(Xy(m,)) %% g(Xo). Now apply Theorem EZZI0 in the reverse direc-
tion: For any subsequence, we have just constructed a further subsequence with
convergence a.s., hence g(X,,) 2 ¢(Xo0)-

Finally, if ¢ is bounded, then the collection {g(X,)} is U.L yielding, by Vitali’s
convergence theorem, its convergence in L (and hence that Eg(X,,) — Eg(X)).
O

You are next to extend the scope of Theorem EZZT and the continuous mapping
of Corollary EZ2ZT3 to random variables taking values in a separable metric space.

EXERCISE 2.2.14. Recall the definition of convergence in probability in a separable
metric space (S, p) as in Remark [I.3-24)
(a) Extend the proof of Theorem [ZZ1I1 to apply for any (S, Bs)-valued ran-
dom wvariables {X,,n < oo} (and in particular for R-valued variables).
(b) Denote by Dy the set of discontinuities of a Borel measurable g : S +—
R (defined similarly to Evercise [LZ2Z8, where real-valued functions are
considered). Suppose X,, 2> Xoo and P(Xo € D,) = 0. Show that then
9(X,) 2 g(Xso) and if in addition g is bounded, then also g(X,) L
9(Xso)

The following result in analysis is obtained by combining the continuous mapping
of Corollary with the weak law of large numbers.

EXERCISE 2.2.15 (INVERTING LAPLACE TRANSFORMS). The Laplace transform of

a bounded, continuous function h(z) on [0,00) is the function Ly(s) = [~ e *"h(x
n (0, 00).
(a) Show that for any s > 0 and positive integer k,

P (g oo sk k=1

(S [T e B e~ B,
where L;kal)(-) denotes the (k—1)-th derivative of the function Lp(-) and
Wi has the gamma density with parameters k and s.

(b) Recall Ezercise that for s =n/y the law of W,, coincides with the
law of n=1 >°1" | T; where T; > 0 are i.i.d. random variables, each having
the exponential distribution of parameter 1/y (with ETy, = y and finite
moments of all order, c.f. Ezample [LZ03). Deduce that the inversion
formula

hy) = lim (1t O poen

e (n— 1]

holds for any y > 0.
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The next application of Borel-Cantelli I provides our first strong law of large
numbers.

PROPOSITION 2.2.16. Suppose E[Z2] < C for some C < oo and all n. Then,
n1Z, %0 as n — .

PrOOF. Fixing 6 > 0 let Ay = {w: |k~ Zx(w)| > &} for k = 1,2,.... Then, by
Chebyshev’s inequality and our assumption,

P(Ay) = P({w: [Zk(w)| = kd}) <

Since Y, k™2 < oo, it follows by Borel Cantelli I that P(A>) = 0, where A® =
{w : [k~ Zk(w)] > ¢ for infinitely many values of k}. Hence, for any fixed
§ > 0, with probability one k~!|Z;(w)| < 4 for all large enough k, that is,
limsup,, ., n " |Zy(w)| < 6 a.s. Considering a sequence §,,, | 0 we conclude that
n~'Z, — 0 for n — oo and a.e. w. O

EXERCISE 2.2.17. Let S, = Y X, where {X;} are i.i.d. random variables with
=1

EX; =0 and EX{ < o0.
(a) Show that n='S,, “3 0.
Hint: Verify that Proposition [ZZZI0 applies for Z, = n~1S2.
(b) Show that n='D,, “3 0 where D,, denotes the number of distinct integers

among {&, k < n} and {&} are i.i.d. integer valued random variables.
Hint: Dn S 2M + ZZ:I I|§k‘ZM

In contrast, here is an example where the empirical averages of integrable, zero
mean independent variables do not converge to zero. Of course, the trick is to have
non-identical distributions, with the bulk of the probability drifting to negative one.

EXERCISE 2.2.18. Suppose X; are mutually independent random variables such
that P(X, = n?—-1) =1-P(X, = =1) = n2 forn = 1,2,.... Show that
EX, =0, for all n, while n=1 Y7 | X; “3 —1 for n — o0.

Next we have few other applications of Borel-Cantelli I, starting with some addi-
tional properties of convergence a.s.

EXERCISE 2.2.19. Show that for any R.V. X,

(a) X, “2 0 if and only if P(|X,| > € i.0. ) =0 for each e > 0.
(b) There exist non-random constants b, T 0o such that X, /b, “3 0.

EXERCISE 2.2.20. Show that if W,, > 0 and EW,, < 1 for every n, then almost
surely,

limsupn~tlogW, <0.
n—oo
Our next example demonstrates how Borel-Cantelli I is typically applied in the
study of the asymptotic growth of running maxima of random variables.

EXAMPLE 2.2.21 (HEAD RUNS). Let { Xy, k € Z} be a two-sided sequence of i.i.d.
{0, 1}-valued random variables, with P(X; = 1) = P(X; = 0) = 1/2. With ¢, =
max{i : Xyp—iy1 = -+ = X, = 1} denoting the length of the run of 1’s going
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backwards from time m, we are interested in the asymptotics of the longest such
run during 1,2, ...,n, that is,
L, =max{{, :m=1,...,n}
=max{m —k: Xy1 ==X =1 for somem=1,...,n}.
Noting that £, + 1 has a geometric distribution of success probability p = 1/2, we
deduce by an application of Borel-Cantelli I that for each € > 0, with probability
one, by, < (14¢)logyn for all n large enough. Hence, on the same set of probability

one, we have N = N(w) finite such that L, < max(Ly, (1+¢)logy,n) for alln > N.
Dividing by logy n and considering n — oo followed by €y, | 0, this implies that

a.s.
< 1.

lim sup
n—oo l0gyn

For each fized € > 0 let A, = {L,, <k} for k, = [(1 —€)logy n]. Noting that
A, <) B,
i=1
for mp, = [n/ky] and the independent events B; = {X(i_1)p,+1 = - = Xix, = 1},
yields a bound of the form P(Ay) < exp(—n®/(2logyn)) for all n large enough (c.f.

[Dur03, Example 1.6.3] for details). Since ), P(A,) < oo, we have that

L, as.
lim inf > 1
n—oo logyn

by yet another application of Borel-Cantelli I, followed by e | 0. We thus conclude
that
Ly,

31
logy '

The next exercise combines both Borel-Cantelli lemmas to provide the 0-1 law for
another problem about head runs.

EXERCISE 2.2.22. Let { X} be a sequence of i.i.d. {0, 1}-valued random variables,
with P(X1 =1)=p and P(X; =0) =1 —p. Let Ay, be the event that X, = --- =
Xonak_1 = 1 for some 2F < m < 281 — k. Show that P(Ay i.0. ) =1 ifp > 1/2
and P(Ay i.0. ) =0 if p<1/2.

Hint: When p > 1/2 consider only m = 28 + (i — 1)k for i =0,...,[2F/k].

Here are a few direct applications of the second Borel-Cantelli lemma.

EXERCISE 2.2.23. Suppose that {Z1} are i.i.d. random variables such that P(Z, =
z) <1 for any z € R.
(a) Show that P(Z) converges for k — oo) = 0.
(b) Determine the values of limsup,,_, . (Z,/logn) andliminf, . (Z,/logn)
in case Zy, has the exponential distribution (of parameter A =1).

After deriving the classical bounds on the tail of the normal distribution, you
use both Borel-Cantelli lemmas in bounding the fluctuations of the sums of i.i.d.
standard normal variables.

EXERCISE 2.2.24. Let {G;} be i.i.d. standard normal random variables.
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(a) Show that for any x > 0,

o0
(x—l . m—3)e—w2/2 < / e—y2/2dy < x_le_””2/2.

x

Many texts prove these estimates, for example see [Dur03, Theorem
1.1.4].
(b) Show that, with probability one,

li —r =1
lin_ilip v2logn
(c) Let S, = G1+ -+ + Gy. Recall that n=Y28, has the standard normal
distribution. Show that

P(|Sn| < 24/nlogn, ev. ) =1.

REMARK. Ignoring the dependence between the elements of the sequence Sy, the
bound in part (c) of the preceding exercise is not tight. The definite result here is
the law of the iterated logarithm (in short LIL), which states that when the i.i.d.
summands are of zero mean and variance one,

Sn
2.2.1 Pl —_— =
( ) ( lﬁo%p v2nloglogn
We defer the derivation of (ZZ1I) to Theorem [LZ28 building on a similar LIL for
the Brownian motion (but, see [Bil95, Theorem 9.5] for a direct proof of [ZZTI),
using both Borel-Cantelli lemmas).

1)=1.

The next exercise relates explicit integrability conditions for i.i.d. random vari-
ables to the asymptotics of their running maxima.

EXERCISE 2.2.25. Consider possibly R-valued, i.i.d. random variables {Y;} and
their running mazima M,, = maxy<y Y.

(a) Using ([2-34) if needed, show that P(|Y,| > n id.0. ) =0 if and only if

(b) Show that n='Y;, “2 0 if and only if E[|Y1]] < oco.

(c) Show that n=*M, “3 0 if and only if E[(Y1)1] < 0o and P(Y; > —o0) >
0.

(d) Show that n=*M, 2 0 if and only if nP(Yy > n) — 0 and P(Y; >
—o0) > 0.

(e) Show that n='Y, 2 0 if and only if P(|Y1] < 00) = 1.

In the following exercise, you combine Borel Cantelli I and the variance computa-
tion of Lemma to improve upon Borel Cantelli II.

EXERCISE 2.2.26. Suppose y - P(A,) = oo for pairwise independent events
{A;}. Let S, =Y | I, be the number of events occurring among the first n.

(a) Prove that Var(S,) < E(Sy) and deduce from it that S, /E(S,) 2 1.

(b) Applying Borel-Cantelli I show that Sp, /E(S,,) “3 1 as k — oo, where
ni = inf{n : B(S,) > k?}.

(c) Show that E(Sy, ,)/E(Sn,) — 1 and since n — S, is non-decreasing,
deduce that S, JE(S,) “3 1.
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REMARK. Borel-Cantelli IT is the a.s. convergence S;,, — oo for n — oo, which is
a consequence of part (c) of the preceding exercise (since ES,, — 00).

We conclude this section with an example in which the asymptotic rate of growth
of random variables of interest is obtained by an application of Exercise

EXAMPLE 2.2.27 (RECORD VALUES). Let {X;} be a sequence of i.i.d. random
variables with a continuous distribution function Fx(z). The event Ay = {Xj >
X;,j =1,...,k — 1} represents the occurrence of a record at the k instance (for
example, think of X as an athlete’s kth distance jump). We are interested in the

n
asymptotics of the count R, = > Ia, of record events during the first n instances.

Because of the continuity of FXl 156 know that a.s. the values of X;,1=1,2,... are
distinct. Further, rearranging the random variables X1, Xo, ..., X, in a decreasing
order induces a random permutation m, on {1,2,...,n}, where all n! possible per-
mutations are equally likely. From this it follows that P(Ay) = P(my(k) = 1) = 1/k,
and though definitely not obvious at first sight, the events Ay, are mutually indepen-
dent (see [Dur03l, Example 1.6.2] for details). So, ER,, = logn + v, where v, is
between zero and one, and from Exercise we deduce that (logn) 'R, 3 1
as n — o0o. Note that this result is independent of the law of X, as long as the
distribution function Fx is continuous.

2.3. Strong law of large numbers

In Corollary EET.T4 we got the classical weak law of large numbers, namely, the
convergence in probability of the empirical averagesn™ 7" | X; of i.i.d. integrable
random variables X; to the mean EX;. Assuming in addition that EX{ < oo, you
used Borel-Cantelli I in Exercise ZZT7 en-route to the corresponding strong law of
large numbers, that is, replacing the convergence in probability with the stronger
notion of convergence almost surely.

We provide here two approaches to the strong law of large numbers, both of which
get rid of the unnecessary finite moment assumptions. Subsection EZ3] follows
Etemadi’s (1981) direct proof of this result via the subsequence method. Subsection
deals in a more systematic way with the convergence of random series, yielding
the strong law of large numbers as one of its consequences.

2.3.1. The subsequence method. Etemadi’s key observation is that it es-
sentially suffices to consider non-negative X;, for which upon proving the a.s. con-
vergence along a not too sparse subsequence n;, the interpolation to the whole
sequence can be done by the monotonicity of n — >." X;. This is an example of
a general approach to a.s. convergence, called the subsequence method, which you
have already encountered in Exercise

We thus start with the strong law for integrable, non-negative variables.

PROPOSITION 2.3.1. Let S, = Y. | X; for non-negative, pairwise independent

and identically distributed, integrable random variables {X;}. Then, n~'S, ¥
EX; asn — oo.

PROOF. The proof progresses along the themes of Section ] starting with
the truncation X = Xel\x, 1<k and its corresponding sums S, = Z?:l X;.
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Since {X;} are identically distributed and z — P(|X1| > z) is non-increasing, we
have that

Y P(Xp £ X)) =Y P(X1| > k) < / P(|X1| > z)dz = E|X;| < 00
k=1 k=1 0

(see part (a) of Lemma [CA3 for the rightmost identity and recall our assumption
that X; is integrable). Thus, by Borel-Cantelli I, with probability one, X(w) =
X1 (w) for all but finitely many ks, in which case necessarily sup,, |Sp,(w) — Sy (w)|
is finite. This shows that n=1(S, — S,) 3 0, whereby it suffices to prove that
n~1S, ¥ EX;.

To this end, we next show that it suffices to prove the following lemma about
almost sure convergence of S,, along suitably chosen subsequences.

LEMMA 2.3.2. Fizing a > 1 let n; = [o!]. Under the conditions of the proposition,
n; ' (Sp, —ES,,) 30 as 1 — .

By dominated convergence, E[X1/|x,|<;] — EX; as k — oo, and consequently, as
n — oo,

R R T IR

~ES, =~ ;Exk =- ;E[le‘xﬂgk] —EX;
(we have used here the consistency of Cesdro averages, c.f. Exercise for an
integral version). Thus, assuming that Lemma 2232 holds, we have that n; 'S, “%
EX; when [ — oo, for each @ > 1.

We complete the proof of the proposition by interpolating from the subsequences

n; = [a!] to the whole sequence. To this end, fix @ > 1. Since n ~— S, is non-
decreasing, we have for all w € Q and any n € [n;, ni41],

n §nz (W) < gn(w) < ni+1 §m+1 (w)

N1 Ny Tooon Ty ni+1

With n;/ni41 — 1/a for I — oo, the a.s. convergence of m=1S,, along the subse-
quence m = n; implies that the event
1 Sn Sn
Ay i={w: —EX; <liminf () < limsup ﬂ <aEX;},
«@ n

n—00 n n—oo

has probability one. Consequently, taking a,, | 1, we deduce that the event B :=
N, Aa,, also has probability one, and further, n=1S, (w) — EX; for each w € B.
We thus deduce that n=S,, “3 EX;, as needed to complete the proof of the
proposition. ([l

REMARK. The monotonicity of certain random variables (here n +— S,,), is crucial
to the successful application of the subsequence method. The subsequence n; for
which we need a direct proof of convergence is completely determined by the scaling
function b, ! applied to this monotone sequence (here b, = n); we need by, /bn, —
«, which should be arbitrarily close to 1. For example, same subsequences n; = [o]
are to be used whenever b,, is roughly of a polynomial growth in n, while even
n; = (1!1)¢ would work in case b, = logn.

Likewise, the truncation level is determined by the highest moment of the basic
variables which is assumed to be finite. For example, we can take X = X1 | X5 | <kP

for any p > 0 such that E|X;|'/? < co.
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Proor oF LEMMA 2372 Note that E[Yi] is non-decreasing in k. Further,
X are pairwise independent, hence uncorrelated, so by Lemma T2

Var(S ZVar (X1 <ZE | < nE[X.] = nB[X2 x,|<n] -

Combining this Wlth Chebychev S 1nequa11ty yield the bound
P(|S,, —ES,| >e¢en) < (6n)_2 Var(S,) < 5_2n_1E[X12[‘X1|§n] ,

for any € > 0. Applying Borel-Cantelli I for the events A; = {|S,, — ES,,,| > en;},
followed by &, | 0, we get the a.s. convergence to zero of n=!|S,, — ES,,| along any
subsequence n; for which

an X1[|X1\<nl]ZE[Xonl_lﬂxﬂgm] < 00
=1

(the latter identlty is a special case of Exercise [[3AM). Since E|X1| < oo, it thus
suffices to show that for n; = [o!] and any = > 0,

(2.3.1) u(z) = an_llmgm <cxr !,

where ¢ = 2a/(a — 1) < co. To establish Z3) fix & > 1 and = > 0, setting
L =min{l > 1:n; > x}. Then, a” > z, and since [y] > y/2 for all y > 1,

- anl < 2204‘1 =ca t<ext.
I=L I=L
So, we have established ([Z3l) and hence completed the proof of the lemma. O

As already promised, it is not hard to extend the scope of the strong law of large
numbers beyond integrable and non-negative random variables.

THEOREM 2.3.3 (STRONG LAW OF LARGE NUMBERS). Let S, = Y., X; for
pairwise independent and identically distributed random variables {X;}, such that

either B[(X1) 4] is finite or B[(X1)_] is finite. Then, n~1S,, “> EX; asn — oco.

PROOF. First consider non-negative X;. The case of EX; < oo has already
been dealt with in Proposition 231 In case EX; = oo, consider S = S Xi(m)
for the bounded, non-negative, pairwise 1ndependent and identically distributed
random variables Xi(m) = min(X;,m) < X;. Since Proposition 23] applies for
{XZ-(m)}7 it follows that a.s. for any fixed m < oo,

(2.3.2) liminfn 'S, > liminfn 1S = EX( ™ = = Emin(Xy,m).
Taking m | oo, by monotone convergence Emin(X;,m) T EX; = oo, so (Z32)
results with n=15,, — oo a.s.

Turning to the general case, we have the decomposition X; = (X;)+ — (X;)— of
each random variable to its positive and negative parts, with

(2.3.3) nls, fnflz Dy —n 12

Since (X;)+ are non-negative, pairwise mdependent and identically distributed,
it follows that =137 (X;)+ “5 E[(X1)4] as n — oo. For the same reason,



88 2. ASYMPTOTICS: THE LAW OF LARGE NUMBERS

also n™ 13" (X;)— “3 E[(X1)-]. Our assumption that either E[(X1)4] < oo or
E[(X1)-] < oo implies that EX; = E[(X1)4+] — E[(X1)—-] is well defined, and in
view of ([Z33) we have the stated a.s. convergence of n=15,, to EX;. O

EXERCISE 2.3.4. You are to prove now a converse to the strong law of large num-
bers (for a more general result, due to Feller (1946), see [Dur03, Theorem 1.8.9]).

(a) Let' Y denote the integer part of a random variable Z > 0. Show that
Y =37 I{z>n}, and deduce that

(2.3.4) > P(Zzn)<BEZ<1+)» P(Z>n).
n=1 n=1
(b) Suppose {X;} are i.i.d R.V.s with E[|X1]|*] = oo for some o« > 0. Show
that for any k > 0,

Z P(|X,| > knl/a) =0,
n=1

and deduce that a.s. limsup, ,__n~"/*|X,| = cc.
(c) Conclude that if Sy, = X1 + Xo+ -+ X,,, then

limsupn~/%|S,| = oo, a.s.
n—oo
We provide next two classical applications of the strong law of large numbers, the
first of which deals with the large sample asymptotics of the empirical distribution
function.

EXAMPLE 2.3.5 (EMPIRICAL DISTRIBUTION FUNCTION). Let
Fn(I) = n—l ZI(_OO’I] (Xl) ,
i=1

denote the observed fraction of values among the first n variables of the sequence
{X;} which do not exceed x. The functions F,(-) are thus called the empirical
distribution functions of this sequence.

For i.i.d. {X;} with distribution function Fx our next result improves the strong
law of large numbers by showing that F,, converges uniformly to Fx as n — oo.

THEOREM 2.3.6 (GLIVENKO-CANTELLI). For i.i.d. {X;} with arbitrary distribu-

tion function Fx, as n — oo,
D,, = sup |F,(2) — Fx(z)] “3 0.
zcR

REMARK. While outside our scope, we note in passing the Dvoretzky-Kiefer-
Wolfowitz inequality that P(D, > &) < 2exp(—2ne?) for any n and all £ > 0,
quantifying the rate of convergence of D,, to zero (see [DKWH56], or [Mas90| for
the optimal pre-exponential constant).

PROOF. By the right continuity of both z — F,(z) and z — Fx(x) (c.f.
Theorem [CZ3H), the value of D,, is unchanged when the supremum over z € R is
replaced by the one over € Q (the rational numbers). In particular, this shows
that each D, is a random variable (c.f. Theorem [[2Z22).
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Applying the strong law of large numbers for the i.i.d. non-negative I(_ »(X;)

whose expectation is Fx (), we deduce that F,(z) “3 Fx(z) for each fixed non-
random « € R. Similarly, considering the strong law of large numbers for the i.i.d.
non-negative I(_, . (X;) whose expectation is Fix(z~), we have that F,(z~) “3
Fx(x™) for each fixed non-random x € R. Consequently, for any fixed [ < oo and

Z1,,- .., we have that

a.s.
Py 07

l l _ _
Dny = max(max | Fn (zr,) — Fx (2r0)], max [Fa(zy,) — Fx (z),)])

as n — oo. Choosing zp; = inf{z : Fx(z) > k/(l + 1)}, we get out of the
monotonicity of x — F,(z) and z — Fx(z) that D, < D,,; + 17! (c.f. [Bil95,
Proof of Theorem 20.6] or [Dur03l Proof of Theorem 1.7.4]). Therefore, taking
n — oo followed by I — oo completes the proof of the theorem. O

We turn to our second example, which is about counting processes.

EXAMPLE 2.3.7 (RENEWAL THEORY). Let {7;} be i.i.d. positive, finite random
variables and T,, = EZ:I Tx. Here T}, is interpreted as the time of the n-th occur-
rence of a given event, with T, representing the length of the time interval between
the (k — 1) occurrence and that of the k-th such occurrence. Associated with T, is
the dual process Ny = sup{n : T, < t} counting the number of occurrences during
the time interval [0,t]. In the next exercise you are to derive the strong law for the
large t asymptotics of t 1 Nj.

EXERCISE 2.3.8. Consider the setting of Fxample .34

(a) By the strong law of large numbers argue that n= T, “3 Ery. Then,
adopting the convention % =0, deduce that t—'N; “5 1/Er fort — oo.
Hint: From the definition of Ny it follows that Tn, < t < Tn,41 for all
t>0.

(b) Show that t~'N; “3 1/Ery as t — oo, even if the law of 11 is different
from that of the i.i.d. {m;, i > 2}.

Here is a strengthening of the preceding result to convergence in L'.

EXERCISE 2.3.9. In the context of Example [Z2537] fix 6 > 0 such that P(m1 > §) > 0
and let fn = 22:1 Tk for the i.i.d. random variables T, = 0l;;,~s). Note that
Tn < T, and consequently Ny < Nt =sup{n : Tn <t}.

(a) Show that limsup, .t 2EN? < co.
(b) Deduce that {t ' Ny : t > 1} is uniformly integrable (see Ezercise [[.3-54)),
and conclude that t 'EN, — 1/E7; when t — oo.

The next exercise deals with an elaboration over Example 2231

EXERCISE 2.3.10. Fori=1,2,... the ith light bulb burns for an amount of time T;
and then remains burned out for time s; before being replaced by the (i + 1)th bulb.
Let Ry denote the fraction of time during [0,t] in which we have a working light.
Assuming that the two sequences {1;} and {s;} are independent, each consisting of
i.1.d. positive and integrable random variables, show that Ry 3 E7r /(Em + Esq).

Here is another exercise, dealing with sampling “at times of heads” in independent
fair coin tosses, from a non-random bounded sequence of weights v(1), the averages
of which converge.
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EXERCISE 2.3.11. For a sequence {B;} of i.i.d. Bernoulli random wvariables of
parameter p = 1/2, let T, be the time that the corresponding partial sums reach

level n. That is, T,, = inf{k : Zle B; >n}, forn=1,2,....
(a) Show that n™'T, “3 2 as n — oc.
(b) Given non-negative, non-random {v(k)} show that k=1 Zle o(T;) “5 s
as k — oo, for some non-random s, if and only ifn=1 3" v(1)B; “3 s/2
as n — oo.
(¢c) Deduce that if n=* Y, v(1)? is bounded and n=' ;" v(l) — s asn —
oo, then k=1 Zle v(T;) “3 s as k — oo.
Hint: For part (c) consider first the limit of n=' > v(1)(B; — 0.5) as n — oo.

We conclude this subsection with few additional applications of the strong law of
large numbers, first to a problem of universal hypothesis testing, then an application
involving stochastic geometry, and finally one motivated by investment science.

EXERCISE 2.3.12. Consider i.i.d. [0, 1]-valued random variables {X}}.

(a) Find Borel measurable functions f, : [0,1]™ — {0,1}, which are inde-
pendent of the law of Xy, such that f,(X1,Xo2,...,X,) “3 0 whenever
EX; < 1/2 and fn(X1, Xo,..., X)) “3 1 whenever EX; > 1/2.

(b) Modify your answer to assure that fn(X1, Xa,...,X,) %3 1 also in case
EX; =1/2.

EXERCISE 2.3.13. Let {U,} be i.i.d. random vectors, each uniformly distributed
on the unit ball {u € R? : |u] < 1}. Consider the R*-valued random vectors
X, = X0n-1|Un, n =1,2,... starting at a non-random, non-zero vector Xo (that is,
each point is uniformly chosen in a ball centered at the origin and whose radius is the
distance from the origin to the previously chosen point). Show that n='log |X,| ©%
—1/2 as n — oo.

EXERCISE 2.3.14. Let {V,,} be i.i.d. non-negative random variables. Fizing r >0
and g € (0,1], consider the sequence Wy = 1 and W,, = (qr + (1 — q)Vy,)Wp—1,
n = 1,2,.... A motivating example is of W, recording the relative growth of a
portfolio where a constant fraction q of one’s wealth is re-invested each year in a
risk-less asset that grows by r per year, with the remainder re-invested in a risky
asset whose annual growth factors are the random V,.

(a) Show that n='log W, “3 w(q), for w(q) = Elog(qr + (1 — q)V1).

(b) Show that q — w(q) is concave on (0,1].

(¢) Using Jensen’s inequality show that w(q) < w(l) in case EVy < r. Fur-
ther, show that if EVf1 <171, then the almost sure convergence applies
also for ¢ =0 and that w(q) < w(0).

(d) Assuming that EVZ < oo and BV, ? < oo show that sup{w(q) : ¢ € [0,1]}
is finite, and further that the mazimum of w(q) is obtained at some q* €
(0,1) when EVy > r > 1/EV;"'. Interpret your results in terms of the
preceding investment example.

Hint: Consider small ¢ > 0 and small 1—q > 0 and recall that log(1+z) > z—x2/2
for any x > 0.

2.3.2. Convergence of random series. A second approach to the strong
law of large numbers is based on studying the convergence of random series. The
key tool in this approach is Kolmogorov’s maximal inequality, which we prove next.
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PROPOSITION 2.3.15 (KOLMOGOROV’S MAXIMAL INEQUALITY). The random vari-
ables Yi,...,Y, are mutually independent, with EY? < oo and EY; = 0 for | =
1,....,n. Then, for Zxy =Y1+ -+ Y, and any z > 0,

3. 2 >2) < :
(2.3.5) z P(lrgn%xn |Zk| > z) < Var(Z,)

REMARK. Chebyshev’s inequality gives only 2?P(|Z,| > z) < Var(Z,) which is
significantly weaker and insufficient for our current goals.

PrOOF. Fixing z > 0 we decompose the event A = {maxi<p<n |Zx| > z}
according to the minimal index k for which |Zx| > z. That is, A is the union of the
disjoint events Ay = {|Zx| > 2z > |Z;|, j=1,...,k—1} over 1 <k < n. Obviously,

(2.3.6) PP(A) =D 2P(A) <) E[Z} A,
k=1 k=1
since ZZ > 2% on Ay. Further, EZ,, = 0 and Ay, are disjoint, so
(2.3.7) Var(Z,) =EZ. > Y E[Z2; A].
k=1

It suffices to show that E[(Z,, — Z;)Z; Ax] = 0 for any 1 < k < n, since then
E[Z%; Ay — E[Z}; Ay) = B[(Z, — Zk)%; Ar) + 2E[(Z,, — Z1) Zk; A
=E[(Z, — Z1)% Ak > 0,

and ([Z33) follows by comparing (30) and Z31). Since ZjI4, can be represented
as a non-random Borel function of (Y7,...,Y:), it follows that Z; 14, is measurable

on o(Y1,...,Y). Consequently, for fixed k and [ > k the variables Y; and Z;I4,
are independent, hence uncorrelated. Further EY; = 0, so

n n

E((Zn — Zk)Zk; Akl = Y E[YiZida) = Y EM)E(Zila,) =0,
I=k+1 I=k+1
completing the proof of Kolmogorov’s inequality. O

Equipped with Kolmogorov’s inequality, we provide an easy to check sufficient
condition for the convergence of random series of independent R.V.

THEOREM 2.3.16. Suppose {X;} are independent random variables with Var(X;) <
oo and EX; = 0. If Y, Var(X,) < oo then w.p.1. the random series ), X, (w)
converges (that is, the sequence Sy, (w) = 1_; Xi(w) has a finite limit S (w)).

PrOOF. Applying Kolmogorov’s maximal inequality for the independent vari-
ables Y; = Xj4,, we have that for any € > 0 and positive integers r and n,

r4+n
_ > _ — 2
P(TSII?Saii»n ISk — S| > ) < e ?Var(Spyn —S,) =¢ l_2+1 Var(X;).

Taking n — oo, we get by continuity from below of P that

(sup|Sk—S|>5 2ZVaer
l=r+1
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By our assumption that ) Var(X,) is finite, it follows that ), Var(X;) — 0 as
r — oo. Hence, if we let T, = sup,, ,,>,. |Sn — Sm|, then for any ¢ > 0,

P(T, > 2¢) <P(sup|Sk — Sy| >¢)—0
k>r

as r — oo. Further, r — T, (w) is non-increasing, hence,

P(limsup Ty > 2¢) = P(i}\l/[fTM >2)<P(T, >2)—0.

M—oo

That is, Ths(w) “3 0 for M — oco. By definition, the convergence to zero of T (w)
is the statement that S, (w) is a Cauchy sequence. Since every Cauchy sequence in
R converges to a finite limit, we have the stated a.s. convergence of Sy, (w). g

We next provide some applications of Theorem 2316

EXAMPLE 2.3.17. Considering non-random a, such that . a? < oo and inde-
pendent Bernoulli variables By, of parameter p = 1/2, Theorem [ZZZ1A tells us that
>, (=1)Bra,, converges with probability one. That is, when the signs in Y., +ay,
are chosen on the toss of a fair coin, the series almost always converges (though
quite possibly > |an| = 00).

EXERCISE 2.3.18. Consider the record events Ay of Example [Z.2.27

(a) Verify that the events Ay are mutually independent with P(Ay) = 1/k.
(b) Show that the random series ), 5(Ia, —1/n)/logn converges almost

surely and deduce that (logn) 'R, “3 1 as n — oco.
(c) Provide a counterexample to the preceding in case the distribution func-
tion Fx(x) is not continuous.

The link between convergence of random series and the strong law of large numbers
is the following classical analysis lemma.

LEMMA 2.3.19 (KRONECKER'S LEMMA). Consider two sequences of real numbers
{zn} and {b,} where b, >0 and b, T oo. If 3 x, /by converges, then sy /by, — 0
forsp=z14+ -+ zy.

PROOF. Let u, = Y ,_;(xx/by) which by assumption converges to a finite
limit denoted uso. Setting ug = bg = 0, “summation by parts” yields the identity,
n n
Sp = Z b (ur — Up—1) = bpuyn — Z(bk —bp—1)ug—1.
k=1 k=1
Since u, — us and b, 1 oo, the Cesdro averages b, ' > p_, (b — bp—1)uk—1 also
converge to uq. Consequently, s, /b, — Uoo — Uso = 0. O

Theorem 23T provides an alternative proof for the strong law of large numbers
of Theorem in case {X;} are i.i.d. (that is, replacing pairwise independence
by mutual independence). Indeed, applying the same truncation scheme as in the
proof of Proposition EE311 it suffices to prove the following alternative to Lemma

LEMMA 2.3.20. For integrable i.i.d. random variables {X4}, let S,, = ZZ;I X5
and X, = Xil|x,|<k- Then, n~ (S, —ES,) “3 0 as n — .
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Lemma EEX20 in contrast to Lemma 23 does not require the restriction to a
subsequence n;. Consequently, in this proof of the strong law there is no need for
an interpolation argument so it is carried directly for X}, with no need to split each
variable to its positive and negative parts.

Proor oF LEmMA 23201 We will shortly show that

(2.3.8) > k7 Var(Xy) < 2E|X].
k=1

With X, integrable, applying Theorem 23Tl for the independent variables Yy =
k=1 (X} — EX}) this implies that for some A with P(A) = 1, the random series
>, Yn(w) converges for all w € A. Using Kronecker’s lemma for b, = n and
T, = Xp(w) — EX,, we get that n=' > " (X} — EX}) — 0 as n — oo, for every
w € A, as stated.

The proof of [(ZZF) is similar to the computation employed in the proof of Lemma
That is, Var(Xy) < EXy = EX2Ix, < and k=2 < 2/(k(k + 1)), yielding
that

0o B . s 2
Zk 2Var(X}) < Z ———EX{x,<x = EX{o(|X1]) ,
k=1

= k(k+1)
where for any x > 0,
— 1 — 1 1 2
=2 — =9 ] = <ot
v@) =2 ) k(k+1) 2 [ ] =<
k=[z] k=[z]
Consequently, EX?v(|X1]) < 2E|X;|, and [Z33) follows. O

Many of the ingredients of this proof of the strong law of large numbers are also
relevant for solving the following exercise.

EXERCISE 2.3.21. Let ¢, be a bounded sequence of mon-random constants, and
{X;} i.i.d. integrable R.V.-s of zero mean. Show that n='3"}_, cx Xy “3 0 for
n — oo.

Next you find few exercises that illustrate how useful Kronecker’s lemma is when
proving the strong law of large numbers in case of independent but not identically
distributed summands.

EXERCISE 2.3.22. Let S, = > p_, Yy for independent random variables {Y;} such
that Var(Yy) < B < oo and EYy, = 0 for all k. Show that [n(logn)'*T<]~1/25, “% 0
asn — oo and € > 0 is fized (this falls short of the law of the iterated logarithm of
EZZ1), but each Yy, is allowed here to have a different distribution).

EXERCISE 2.3.23. Suppose the independent random variables {X;} are such that
Var(Xi) <pr < o0 and EXy, =0 for k=1,2,....

(a) Show that if 3, px < o0 then n=1 > 1 kXy “3 0.

(b) Conwversely, assuming >, pr = 0o, give an example of independent ran-
dom variables {X;}, such that Var(Xy) < pi, EXy = 0, for which almost
surely limsup,, X, (w) = 1.

(c) Show that the example you just gave is such that with probability one, the
sequence n~ ' ) kX (w) does not converge to a finite limit.

EXERCISE 2.3.24. Consider independent, non-negative random variables X,,.
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(a) Show that if
(2.3.9) > P(Xn > 1)+ E(XnIx,<1)] < 00
n=1
then the random series Y, Xy(w) converges w.p.1.

(b) Prove the converse, namely, that if Y Xnp(w) converges w.p.1. then
(Z33) holds.

(c) Suppose G, are mutually independent random variables, with G,, having
the normal distribution N (pn,vy). Show that w.p.1. the random series
>, G2 (w) converges if and only if e =, (u2 + vy) is finite.

(d) Suppose T, are mutually independent random variables, with T, having
the exponential distribution of parameter A, > 0. Show that w.p.1. the
random series Y Tn(w) converges if and only if Y 1/, is finite.

Hint: For part (b) recall that for any a, € [0,1), the series Y, ay is finite if and
only if 1,,(1 —an) > 0. For part (¢) let f(y) = >, min((tn, + /0ny)?, 1) and
observe that if e = oo then f(y) + f(—y) = oo for all y # 0.

You can now also show that for such strong law of large numbers (that is, with
independent but not identically distributed summands), it suffices to strengthen
the corresponding weak law (only) along the subsequence n, = 2.

EXERCISE 2.3.25. Let Z) = Z?:l Y; where Y; are mutually independent R.V.-s.
(a) Fizing e > 0 show that if 27" Zor “5 0 then Y., P(|Zyrs1 — Zor| > 27¢)
is finite and if m™'Z,, 2,0 then maX,<k<om P(|Z2m — Zi| > em) — 0.
(b) Adapting the proof of Kolmogorov’s mazimal inequality show that for any
n and z > 0,

P( max |Zg| > 2z) min P(|Z, — Zx| < 2) < P(|Z,]| > 2).
1<k<n 1<k<n

(¢) Deduce that if both m=*Z,, L0 and 277 Zyr “30 then also n=1Z,, “5 0.
Hint: For part (c) combine parts (a) and (b) with z = ne, n = 2" and the mutually
independent Y1, 1 < j < n, to show that Y P(27"D, > 2¢) is finite for D, =
maXor cp<or+1 | Zx — Zor| and any fized € > 0.



CHAPTER 3

Weak convergence, CLT and Poisson approximation

After dealing in Chapter Bl with examples in which random variables converge
to non-random constants, we focus here on the more general theory of weak con-
vergence, that is situations in which the laws of random variables converge to a
limiting law, typically of a non-constant random variable. To motivate this theory,
we start with Section Bl where we derive the celebrated Central Limit Theorem (in
short CLT), the most widely used example of weak convergence. This is followed by
the exposition of the theory, to which Section is devoted. Section is about
the key tool of characteristic functions and their role in establishing convergence
results such as the cLT. This tool is used in Section B4l to derive the Poisson ap-
proximation and provide an introduction to the Poisson process. In Section BH we
generalize the characteristic function to the setting of random vectors and study
their properties while deriving the multivariate CLT.

3.1. The Central Limit Theorem

We start this section with the property of the normal distribution that makes it
the likely limit for properly scaled sums of independent random variables. This is
followed by a bare-hands proof of the CLT for triangular arrays in Subsection BTl
We then present in Subsection some of the many examples and applications
of the cLT.

Recall the normal distribution of mean p € R and variance v > 0, denoted here-
after N'(u,v), the density of which is

(3.1.1) F) = A exp(- W

2mv 2v

As we show next, the normal distribution is preserved when the sum of independent
variables is considered (which is the main reason for its role as the limiting law for
the cLT).

LEMMA 3.1.1. Let Y, be mutually independent random variables, each having
the normal distribution N (fin i, vnk). Then, G, = > p_, Yo i has the normal
distribution N (fun, vy), With pn, =Y p_q nge and Un = > p_ Un k-

PROOF. Recall that Y has a N(u,v) distribution if and only if Y — u has the
N(0,v) distribution. Therefore, we may and shall assume without loss of generality
that pn 5 = 0 for all £ and n. Further, it suffices to prove the lemma for n = 2, as
the general case immediately follows by an induction argument. With n = 2 fixed,
we simplify our notations by omitting it everywhere. Next recall the formula of
Corollary for the probability density function of G = Y7 + Y3, which for Y;

95



96 3. WEAK CONVERGENCE, cur AND POISSON APPROXIMATION
of N(0,v;) distribution, i = 1,2, is

~ (c-y?. 1 y?
_ i A S —Z V\dy.
Jo(2) / =l ey

Comparing this with the formula of (B for v = vy + va, it just remains to show
that for any z € R,

oo 1 22 (Z _y)2 y2
3.1.2 1= — — - — 2
( ) /700 V2Tu exp(2’u 2v1 2’1}2) Y

where u = vivy/(v1 + v2). It is not hard to check that the argument of the expo-
nential function in @I2) is —(y — ¢2)?/(2u) for ¢ = va/(v1 + v2). Consequently,
BT2) is merely the obvious fact that the M (cz,u) density function integrates to
one (as any density function should), no matter what the value of z is. O

Considering Lemma BTl for Yy, x = (nv)~Y/?(Y}, — i) and i.i.d. random variables
Y}, each having a normal distribution of mean p and variance v, we see that i, 1 =
0 and vy, = 1/n, so G, = (nv)"Y2(3}_, Vi — nu) has the standard N(0, 1)
distribution, regardless of n.

3.1.1. Lindeberg’s cLT for triangular arrays. Our next proposition, the
celebrated CLT, states that the distribution of S, = (nv)~2/2(31_, Xi — nu) ap-
proaches the standard normal distribution in the limit n — oo, even though Xk
may well be non-normal random variables.

PROPOSITION 3.1.2 (CENTRAL LIMIT THEOREM). Let

~ 1 "
Sn = Xi — ,
where { Xy} are i.i.d with v = Var(X1) € (0,00) and u = E(X1). Then,
~ 1 b o2
3.1.3 lim P(S, <b) = — —=)d f beR.
313 Jm PG <h)= o= [ en-dy  forevery be

As we have seen in the context of the weak law of large numbers, it pays to extend
the scope of consideration to triangular arrays in which the random variables X, j
are independent within each row, but not necessarily of identical distribution. This
is the context of Lindeberg’s CLT, which we state next.

THEOREM 3.1.3 (LINDEBERG’S CLT). Let S, = Sorei Xng for P-mutually in-
dependent random variables X, 5, k = 1,...,n, such that EX, ; = 0 for all k
and

vn:ZEXfl’kﬂl asn — o00.
k=1
Then, the conclusion (ZI3) applies if for each € > 0,

(3.1.4) gn(e) =D E[X7 ;[ Xnk|>c] >0 asn—oo.
k=1

Note that the variables in different rows need not be independent of each other
and could even be defined on different probability spaces.
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REMARK 3.1.4. Under the assumptions of Proposition B-TZ the variables X, =
(nv)~Y2(X}, — p) are mutually independent and such that

n 1 n
EX, =) ?(BXy—p) =0, v,=)» BEX}, = — > Var(Xy) =1.
k=1 k=1

Further, per fixed n these X, ; are identically distributed, so
gn(e) = nE[X7 11 [ Xna| 2 €] = v B[(X1 — 0)*]1x, > mve) -

For each ¢ > 0 the sequence (X7 — M)21|X17M2 wue converges a.s. to zero for
n — oo and is dominated by the integrable random variable (X; — p)2. Thus, by
dominated convergence, g,(¢) — 0 as n — oo. We conclude that all assumptions
of Theorem are satisfied for this choice of X, 1, hence Proposition is a
special instance of Lindeberg’s CLT, to which we turn our attention next.

Let r,, = max{,/Upr : k=1,...,n} for v, = EXfl’k. Since for every n, k and
e >0,

vnk = BX] ) = E[X] 53| Xkl < el +BIX] s [ Xng| > €] <& +gnle),

it follows that
r2 <e?+gule)  Vn,e>0,
hence Lindeberg’s condition BI4) implies that r, — 0 as n — co.

REMARK. Lindeberg proved Theorem B3 introducing the condition BIF).
Later, Feller proved that (BZI3) plus r, — 0 implies that Lindeberg’s condition
holds. Together, these two results are known as the Feller-Lindeberg Theorem.

We see that the variables X, ; are of uniformly small variance for large n. So,
considering independent random variables Y;, j, that are also independent of the
Xpn k and such that each Y, , has a N(0, v, ;) distribution, for a smooth function

h(-) one may control [Eh(S,) — Eh(G,)| by a Taylor expansion upon successively
replacing the X, , by Y, r. This indeed is the outline of Lindeberg’s proof, whose

core is the following lemma.
LEMMA 3.1.5. For h : R — R of continuous and uniformly bounded second and
third derivatives, G, having the N'(0,vy,) law, every n and € > 0, we have that

T'n

2 vl oo + gn (I oo

with || floc = sup,er |f(2)| denoting the supremum norm.

IEA(S,) — ER(Gy)| < (% n

REMARK. Recall that G, 2 onG for o, = /v,. So, assuming v, — 1 and
Lindeberg’s condition which implies that r, — 0 for n — oo, it follows from the
lemma that [Eh(S,) — Eh(c,G)| — 0 as n — oo. Further, |h(onz) — h(z)| <
lon, — 1]|z]||h ||, so taking the expectation with respect to the standard normal
law we see that |Eh(0,G) — ER(G)| — 0 if the first derivative of h is also uniformly
bounded. Hence,

(3.1.5) lim Eh(S,) = Eh(G),

n—oo
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for any continuous function h(:) of continuous and uniformly bounded first three
derivatives. This is actually all we need from Lemma BIH in order to prove Lin-
deberg’s cLT. Further, as we show in Section B2 convergence in distribution as in
BI3) is equivalent to BIH) holding for all continuous, bounded functions A(-).

PrROOF OF LEMMA BTHl Let G, = Y_;_; Y, for mutually independent Y, .,
distributed according to N (0, v, k), that are independent of {X,, x}. Fixing n and
h, we simplify the notations by eliminating n, that is, we write Y}, for Y}, 1, and X},
for X, ;. To facilitate the proof define the mixed sums

ZXk+ ZY]“ l=1,...,n

k=I+1

Note the following identities
Gu=Ur+Y1, U+Xi=Us1+Y, l=1,....n—1, Up+X,=5,,

which imply that,
(3.1.6) IER(Gy) — Eh(S,)| = [ER(U1 + Y1) — ER(Up + Xn) Z

where A; = |E[h(U; +Y)) — h(U; + X))]|, for Il = 1,...,n. For any [ and ¢ € R,
consider the remainder term

Ri(€) = h(Us+€)  h(U:) — €8'(U) — S h(U)

in second order Taylor’s expansion of h(-) at U;. By Taylor’s theorem, we have that

3
[Ri(O)] < W) oo |§| : (from third order expansion)
|Ri(&)] < ||h”|\oo|§|2, (from second order expansion)
whence,
: " |§|3 " 2
(3.17) RO < min {1 EL e}

Considering the expectation of the difference between the two identities,
X2
h(U + X;) = h(U)) + X0 (U)) + TZh”(Ul) + Ri(X)),

Y2
hU +Y)) = h(U) + VIR (Up) + éh//(Uz) + Ri(Y7),

we get that

X Y2

A< B[ - YO @] + [B[(GE - =0 @)]| + [EIR(X) - R3]

Recall that X; and Y; are independent of Ul and chosen such that EX; = EY; and
EX l2 = EYl2. As the first two terms in the bound on A; vanish we have that

(3.1.8) A < E[R(X0)| + E|R(Y1)] -
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Further, utilizing B17),

X
IR (0] < 0B X0 < €] o B ] >
€
< gllh”’llooE[leIQ] + [ BT X > €]
Summing these bounds over I = 1,...,n, by our assumption that ) ;" EXl2 = Uy

and the definition of g,(e), we get that

(3.1.9) ;E|R1(Xl)| < %vthN'Hoo + gn(@)IA" oo -

Recall that Y}/, /v, is a standard normal random variable, whose fourth moment
is 3 (see (3IX)). By monotonicity in g of the L%-norms (c.f. Lemma [[3ZTH), it
follows that E[|Y;//tn.]?] < 3, hence E|Y;]? < 30731{[2 < 3rpun,. Utilizing once
more [BI7) and the fact that v, = 27—1 Un,1, We arrive at

B

Plugging (B:E&%(B:l:m) into (B0 completes the proof of the lemma. O

In view of (BIH), Lindeberg’s cLT builds on the following elementary lemma,
whereby we approximate the indicator function on (—oo, b] by continuous, bounded
functions hj : R — R for each of which Lemma BTH applies.

LEMMA 3.1.6. There exist h%(:z:) of continuous and uniformly bounded first three
derivatives, such that 0 < hy (z) 1 I—oop)(®) and 1 > ki (z) | I_oop () as
k — oo.

PRrROOF. There are many ways to prove this. Here is one which is from first prin-
ciples, hence requires no analysis knowledge. The function % : [0, 1] — [0, 1] given
by (x) = 140 f 3(1 — u)3du is monotone decreasing, with continuous derivatives
of all order, such that ¥(0) =1, ¥(1) = 0 and whose first three derivatives at 0 and
at 1 are all zero. Its extension ¢(z) = ¢(min(z,1)1) to a function on R that is one
for x < 0 and zero for x > 1 is thus non-increasing, with continuous and uniformly
bounded first three derivatives. It is easy to check that the translated and scaled
functions h (z) = ¢(k(xz — b)) and hy (x) = ¢(k(x — b) + 1) have all the claimed
properties. 0

PROOF OF THEOREM Applying BILH) for h, (-), then taking k& — oo
we have by monotone convergence that
liminf P(S, < b) > lim E[h hi (5n)] = E[hi (G)] T Fa(b™).

Similarly, considering A (+), then taking k — oo we have by bounded convergence
that

~

limsup P(S,, < b) < lim E[h}(S,)] = E[hf(Q)] | Fa(b).

n—00 n—oo

Since Fg(-) is a continuous function we conclude that P(§n < b) converges to
Fg(b) = Fg(b™), as n — oo. This holds for every b € R as claimed. O
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3.1.2. Applications of the crT. We start with the simpler, i.i.d. case. In

doing so, we use the notation Z, L, G when the analog of BI3)) holds for the
sequence {Z,}, that is P(Z,, <b) — P(G <b) asn — oo for all b € R (where G is
a standard normal variable).

EXAMPLE 3.1.7 (NORMAL APPROXIMATION OF THE BINOMIAL). Consider i.i.d.
random variables {B;}, each of whom is Bernoulli of parameter 0 < p < 1 (i.e.
P(By=1)=1-P(B; =0)=p). The sum S, = B1 + -+ + B, has the Binomial
distribution of parameters (n,p), that is,

P(Snzk):@p’“(l—p)”’“, k=0,....n.

For example, if B; indicates that the ith independent toss of the same coin lands on
a Head then S, counts the total numbers of Heads in the first n tosses of the coin.
Recall that EB = p and Var(B) = p(1 —p) (see Example [LT09), so the CLT states

that (S, —np)/+/np(l —p) L. G. It allows us to approximate, for all large enough

n, the typically non-computable weighted sums of binomial terms by integrals with
respect to the standard normal density.

Here is another example that is similar and almost as widely used.

EXAMPLE 3.1.8 (NORMAL APPROXIMATION OF THE POISSON DISTRIBUTION). [t
is not hard to verify that the sum of two independent Poisson random variables has
the Poisson distribution, with a parameter which is the sum of the parameters of
the summands. Thus, by induction, if {X;} are i.i.d. each of Poisson distribution
of parameter 1, then N, = X1 + ...+ X,, has a Poisson distribution of param-
eter n. Since E(N1) = Var(Ny) = 1 (see Example [[Z63), the CLT applies for
(N, —n)/n'/2. This provides an approzimation for the distribution function of the
Poisson variable Ny of parameter A that is a large integer. To deal with non-integer
values X = n +n for some n € (0,1), consider the mutually independent Poisson
variables Ny, N,y and Ni_,. Since Ny s Np+N, and Ny 2 Np+Ny+Ni_yy, this
provides a monotone coupling , that is, a construction of the random variables N,,,
Ny and Nyy1 on the same probability space, such that N, < Ny < Nyp41. Because
of this monotonicity, for any e > 0 and alln > ng(b,€) the event {(Nx—\)/vVA < b}
is between {(Np41 — (n+1))/vVn+1<b—¢} and {(N, —n)/v/n <b+e}. Con-
sidering the limit as n — oo followed by € — 0, it thus follows that the convergence
(N,, —n)/nt/? L, G implies also that (Ny — \)/A1/? 2, G as A\ — o0o. In words,
the normal distribution is a good approzimation of a Poisson with large parameter.

In Theorem we established the strong law of large numbers when the sum-
mands X; are only pairwise independent. Unfortunately, as the next example shows,
pairwise independence is not good enough for the CLT.

EXAMPLE 3.1.9. Consider i.i.d. {&} such that P(§; = 1) = P(§ = —1) = 1/2
for all i. Set X1 = & and successively let Xory; = X;€kq2 for j =1,.. 2% and
k=0,1,.... Note that each X, is a {—1,1}-valued variable, specifically, a product
of a different finite subset of &;-s that corresponds to the positions of ones in the
binary representation of 21 — 1 (with & for its least significant digit, &2 for the next
digit, etc.). Consequently, each X; is of zero mean and if | # r then in EX; X,
at least one of the &-s will appear exactly once, resulting with EX; X, = 0, hence
with {X;} being uncorrelated variables. Recall part (b) of Exercise[I.7.13 that such
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variables are pairwise independent. Further, EX; =0 and X; € {—1,1} mean that
P(X; = -1) =P(X; = 1) = 1/2 are identically distributed. As for the zero mean
variables S, = Z?:l X;, we have arranged things such that S1 = & and for any
k>0

2" 2k

Sokt1 = Z(XJ + X2k+j) = ZXj(l + &rt2) = Sor (1 + &kt2),
j=1

j=1

hence Sor = &1 Hf:;(l + &) for all k > 1. In particular, Sor = 0 unless & = &3 =
. =&1 =1, an event of probability 27%. Thus, P(Sqx # 0) = 27 and certainly
the cLT result (Z123) does not hold along the subsequence n = 2.

We turn next to applications of Lindeberg’s triangular array CLT, starting with
the asymptotic of the count of record events till time n > 1.

EXERCISE 3.1.10. Consider the count R, of record events during the first n in-
stances of i.i.d. R.V. with a continuous distribution function, as in Evample [2.2.Z7
Recall that R, = B1+- - -+ B,, for mutually independent Bernoulli random variables
{By} such that P(By =1)=1-P(By=0) = kL.

(a) Check that by,/logn — 1 where b, = Var(Ry,).

(b) Show that Lindeberg’s cLT applies for X, x = (logn)~/2(By, — k™).

(¢) Recall that |ER,, —logn| < 1, and conclude that (R, —logn)//logn 2,
G.

REMARK. Let S, denote the symmetric group of permutations on {1,...,n}. For
s €S, andi € {1,...,n}, denoting by L;(s) the smallest j < n such that s’(i) = i,
we call {s7(i) : 1 < j < L;(s)} the cycle of s containing 4. If each s € S, is equally
likely, then the law of the number T),(s) of different cycles in s is the same as that
of R, of Example (for a proof see [Dur03, Example 1.5.4]). Consequently,

Exercise BILT0 also shows that in this setting (T,, — logn)/v/logn LG

Part (a) of the following exercise is a special case of Lindeberg’s CLT, known also
as Lyapunov’s theorem.

EXERCISE 3.1.11 (LYAPUNOV’S THEOREM). Let S, = Y ,_; X}, for {X}} mutually
independent such that v, = Var(S,) < co.
(a) Show that if there exists ¢ > 2 such that

lim v,%?Y " E(|X) — EXg[?) =0,
then vy /*(S, — ES,) = G.
(b) Use the preceding result to show that n='/28,, L, G when also EX, =0,
EX? =1 and E|Xy|? < C for some ¢ >2, C < oo and k =1,2,....
(c) Show that (logn)~'/28, L, G when the mutually independent Xy, are
such that P(Xp =0) =1—-k~ ! and P(X}, = —1) = P(X} = 1) = 1/(2k).

The next application of Lindeberg’s CLT involves the use of truncation (which we
have already introduced in the context of the weak law of large numbers), to derive
the cLT for normalized sums of certain i.i.d. random variables of infinite variance.
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PROPOSITION 3.1.12. Suppose {Xi} are i.i.d of symmetric distribution, that is
X, 2-x, (or P(X1 > ) = P(X1 < —x) for all x) such that P(|X1| > x) = 272

for x > 1. Then, k£>GaSﬂ—>OO.

1 n
Vnlogn Dk X

REMARK 3.1.13. Note that Var(X;) = EX{ = [°22P(|X1| > z)dz = oo (c.f.
part (a) of Lemmal[ZZ3TI), so the usual CLT of Proposition B2 does not apply here.
Indeed, the infinite variance of the summands results in a different normalization
of the sums S,, = Zzzl X that is tailored to the specific tail behavior of z +—
P(|X;] > ).

Caution should be exercised here, since when P(|X;| > z) = 7% for z > 1 and
some 0 < a < 2, there is no way to approximate the distribution of (S, — a,)/b,
by the standard normal distribution. Indeed, in this case b, = n'/® and the
approximation is by an a-stable law (c.f. Definition B331 and Exercise B333).

PROOF. We plan to apply Lindeberg’s CLT for the truncated random variables
Xng = bﬁleI\Xklécn where b, = v/nlogn and ¢,, > 1 are such that both ¢, /b, —
0 and ¢, /v/n — oo. Indeed, for each n the variables X,, , k = 1,...,n, are i.i.d.
of bounded and symmetric distribution (since both the distribution of X} and the
truncation function are symmetric). Consequently, EX,, ; = 0 for all n and k.
Further, we have chosen b,, such that
n
b

1 c c
n "2 " 2x 2nlogcy,

as n — oo. Finally, note that | X, x| < ¢,/b, — 0 as n — oo, implying that
gn(e) = 0 for any € > 0 and all n large enough, hence Lindeberg’s condition

trivially holds. We thus deduce from Lindeberg’s CLT that \/nllowén P, G as

n — oo, where S, = Y oreq Xkl x,|<c, s the sum of the truncated variables. We
have chosen the truncation level ¢, large enough to assure that

n [
vn =nEX? | = =EX{Ix,|<c, = b_2/ 22[P(|X1] > 2) — P(|X1] > ¢n))dz
n J0

P(S, #5,) < 3 P(IXi| > e0) = nP(Xi] > e) = ey — 0
k=1

for n — o0, hence we may now conclude that 1 gnS" L, G as claimed. ]

vnlo
We conclude this section with Kolmogorov’s three series theorem, the most defin-

itive result on the convergence of random series.

THEOREM 3.1.14 (KOLMOGOROV’S THREE SERIES THEOREM). Suppose {X} are

independent random variables. For non-random ¢ > 0 let Xr(f) = Xul|x,|<c be the
corresponding truncated variables and consider the three series

(3.1.11) Y P(Xn[>c), D EX, D var(x\).

Then, the random series Y X, converges a.s. if and only if for some ¢ > 0 all

three series of (1) converge.

REMARK. By convergence of a series we mean the existence of a finite limit to the
sum of its first m entries when m — oo. Note that the theorem implies that if all
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three series of (BZLTI]) converge for some ¢ > 0, then they necessarily converge for
every ¢ > 0.

PROOF. We prove the sufficiency first, that is, assume that for some ¢ > 0
all three series of (BT converge. By Theorem E3TH and the finiteness of
Yo Var(X.?) it follows that the random series Zn(X,(f) — EX{Y) converges a.s.
Then, by our assumption that > EX\” converges, also >on X9 converges a.s.
Further, by assumption the sequence of probabilities P(X,, # X,(f)) =P(|X,| >0
is summable, hence by Borel-Cantelli I, we have that a.s. X,, # X,” for at most
finitely many n’s. The convergence a.s. of > X,(lc) thus results with the conver-
gence a.s. of > X, as claimed.

We turn to prove the necessity of convergence of the three series in (BTl to the
convergence of > X,, which is where we use the cLT. To this end, assume the
random series ) X, converges a.s. (to a finite limit) and fix an arbitrary constant
¢ > 0. The convergence of > X, implies that |X,| — 0, hence a.s. |X,| > ¢
for only finitely many n’s. In view of the independence of these events and Borel-
Cantelli II, necessarily the sequence P(|X,,| > ¢) is summable, that is, the series
>, P(|Xy| > ¢) converges. Further, the convergence a.s. of > X, then results
with the a.s. convergence of Zn X,(lc).

Suppose now that the non-decreasing sequence v,, = y ,._, Var(X ,Ec)) is unbounded,
in which case the latter convergence implies that a.s. T,, = v, 1/2 S X ]gc) — 0

when n — oco. We further claim that in this case Lindeberg’s CLT applies for
Sn =Y p_1 Xnk, where

Xng = v;1/2(X,§C) - m,(f)), and m,(:) = EX,&C).

Indeed, per fixed n the variables X, ; are mutually independent of zero mean

and such that Y 7, EX?, = 1. Further, since |X,gc)| < ¢ and we assumed that
vp, T oo it follows that | X, x| < 2¢/\/v, — 0 as n — oo, resulting with Lindeberg’s
condition holding (as g,(¢) = 0 when € > 2¢/,/vy,, i.e. for all n large enough).

Combining Lindeberg’s CLT conclusion that §n L. G and T, “3 0, we deduce that
(Sn—T,) 2.a (c.f. Exercise BZZR). However, since S, — T, = —op 2 >ory m,(:)

are non-random, the sequence P(§n — T, < 0) is composed of zeros and ones,
hence cannot converge to P(G < 0) = 1/2. We arrive at a contradiction to our

assumption that v, T oo, and so conclude that the sequence Var( 7(10)) is summable,

that is, the series ) Var(X,(f)) converges.
By Theorem 2318, the summability of Var(X,\”)) implies that the series Yo (X o
mgf)) converges a.s. We have already seen that ) X,(f) converges a.s. so it follows

that their difference )" ml, which is the middle term of BI1I), converges as
well. O

3.2. Weak convergence

Focusing here on the theory of weak convergence, we first consider in Subsection
BZthe convergence in distribution in a more general setting than that of the cLT.
This is followed by the study in Subsection of weak convergence of probability
measures and the theory associated with it. Most notably its relation to other modes
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of convergence, such as convergence in total variation or point-wise convergence of
probability density functions. We conclude by introducing in Subsection the
key concept of uniform tightness which is instrumental to the derivation of weak
convergence statements, as demonstrated in later sections of this chapter.

3.2.1. Convergence in distribution. Motivated by the CLT, we explore here
the convergence in distribution, its relation to convergence in probability, some
additional properties and examples in which the limiting law is not the normal law.

To start off, here is the definition of convergence in distribution.

DEFINITION 3.2.1. We say that R.V.-s X,, converge in distribution to a R. V. X,
denoted by Xn - Xoo, if Fx, (o) — Fx_(«) as n — oo for each fized o which is
a continuity point of Fx_, .

Similarly, we say that distribution functions F,, converge weakly to Fu, denoted
by F,, % Fo, if Fy(a) — Fxo(a) as n — oo for each fized a which is a continuity
point of Fu.

REMARK. If the limit R.V. X, has a probability density function, or more gener-
ally whenever Fx_ is a continuous function, the convergence in distribution of X,
to Xoo is equivalent to the point-wise convergence of the corresponding distribu-
tion functions. Such is the case of the CLT, since the normal R.V. G has a density.
Further,

EXERCISE 3.2.2. Show that if F,, — Fs and Fo(+) is a continuous function then
also sup,, |Fy(z) — Foo(x)] — 0.

The CLT is not the only example of convergence in distribution we have already
met. Recall the Glivenko-Cantelli theorem (see Theorem ), whereby a.s. the
empirical distribution functions F,, of an i.i.d. sequence of variables {X;} converge
uniformly, hence point-wise to the true distribution function Fx.

Here is an explicit necessary and sufficient condition for the convergence in distri-
bution of integer valued random variables

EXERCISE 3.2.3. Let X,,,1 < n < oo be integer valued R.V.-s. Show that X, 2,
Xoo if and only if P(X,, = k) —pn—oo P(Xoo = k) for each k € Z.

In contrast with all of the preceding examples, we demonstrate next why the

convergence X, 2, X has been chosen to be strictly weaker than the point-
wise convergence of the corresponding distribution functions. We also see that
Eh(X,) — Eh(X) or not, depending upon the choice of h(-), and even within the
collection of continuous functions with image in [—1, 1], the rate of this convergence
is not uniform in h.

EXAMPLE 3.2.4. The random variables X, = 1/n converge in distribution to
Xoo = 0. Indeed, it is easy to check that Fx, (o) = Ipn,ec)(@) converge to
Fx, (o) = Ijpoo)() at each a # 0. However, there is no convergence at the

discontinuity point « = 0 of Fx_ as Fx__ (0) =1 while Fx, (0) =0 for all n.
Further, Eh(X,) = k(1) — h(0) = Eh(X) if and only if h(z) is continuous at
x =0, and the rate of convergence varies with the modulus of continuity of h(x) at
z=0.
More generally, if X,, = X + 1/n then Fx, (a) = Fx(a —1/n) — Fx(a™) as
n — o0o. So, in order for X + 1/n to converge in distribution to X as n — oo, we
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have to restrict such convergence to the continuity points of the limiting distribution
function Fx, as done in Definition [Z2Z1].

We have seen in Examples B0 and that the normal distribution is a good
approximation for the Binomial and the Poisson distributions (when the corre-
sponding parameter is large). Our next example is of the same type, now with the
approximation of the Geometric distribution by the Exponential one.

EXAMPLE 3.2.5 (EXPONENTIAL APPROXIMATION OF THE GEOMETRIC). Let Z,
be a random variable with a Geometric distribution of parameter p € (0,1), that is,

P(Z,>k)=(1- p)k*1 for any positive integer k. As p — 0, we see that
P(pZ, >t) = (1 —p)l/Pl et forall t>0

That 1is, pZy L, T, with T having a standard exponential distribution. As Z,
corresponds to the number of independent trials till the first occurrence of a spe-
cific event whose probability is p, this approximation corresponds to waiting for the
occurrence of rare events.

At this point, you are to check that convergence in probability implies the con-
vergence in distribution, which is hence weaker than all notions of convergence
explored in Section [[33 (and is perhaps a reason for naming it weak convergence).
The converse cannot hold, for example because convergence in distribution does not
require X, and X, to be even defined on the same probability space. However,
convergence in distribution is equivalent to convergence in probability when the
limiting random variable is a non-random constant.

EXERCISE 3.2.6. Show that if X, LR X, then X, 2, Xo. Conversely, if

Xn 2, X and X is almost surely a non-random constant, then X, LN Xeo-

Further, as the next theorem shows, given F}, = F., it is possible to construct
random variables Y,,, n < oo such that Fy, = F, and Y, % Y.. The catch
of course is to construct the appropriate coupling, that is, to specify the relation
between the different Y,,’s.

THEOREM 3.2.7. Let F,, be a sequence of distribution functions that converges
weakly to Foo. Then there exist random variables Y,,, 1 <n < 0o on the probability
space ((0,1], B(o,1),U) such that Fy, = F, for 1 <n < oo and Y, 2% Y.

ProOOF. We use Skorokhod’s representation as in the proof of Theorem [L23A
That is, for w € (0,1] and 1 <n < oo let Y, (w) > Y, (w) be

Vi w) =suply: Fuly) Sw}, Y, (w) =sup{y: Fuly) <w}.
While proving Theorem we saw that Fy,— = F, for any n < oo, and as

remarked there Y, (w) = Y, (w) for all but at most countably many values of w,
hence P(Y,, =Y,) = 1. It thus suffices to show that for all w € (0,1),

Y (w) > limsup Y, (w) > limsup Y, (w)

(3.2.1) > liminf Y, (w) > Y (w).

Indeed, then Y, (w) — Y (w) for any w € A = {w : Y (w) = Y (w)} where
P(A) = 1. Hence, setting V,, =Y, for 1 < n < oo would complete the proof of the
theorem.
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Turning to prove (BZZ1]) note that the two middle inequalities are trivial. Fixing
w € (0,1) we proceed to show that
(3.2.2) Vi (w) > limsup Y, (w) .
Since the continuity points of F, form a dense subset of R (see Exercise [[Z3]),
it suffices for (BZZZ) to show that if z > Y} (w) is a continuity point of F,, then
necessarily z > Y, 7 (w) for all n large enough. To this end, note that z > Y (w)
implies by definition that F(z) > w. Since z is a continuity point of Fu, and
F, % Fy, we know that F},(2) — Fu(2). Hence, F,,(z) > w for all sufficiently large
n. By definition of ¥, and monotonicity of F,,, this implies that z > Y, (w), as
needed. The proof of
(3.2.3) liminf Y, (w) > Y (w),

n—oo

is analogous. For y < Y (w) we know by monotonicity of F, that Fo(y) < w.
Assuming further that y is a continuity point of F, this implies that F,(y) < w
for all sufficiently large n, which in turn results with y <Y, (w). Taking continuity
points yy, of Fs such that y, T Y (w) will yield BZ3) and complete the proof. O

The next exercise provides useful ways to get convergence in distribution for one
sequence out of that of another sequence. Its result is also called the converging
together lemma or Slutsky’s lemma.

EXERCISE 3.2.8. Suppose that X, 2, X and Y, 2, Yoo, where Yoo is non-
random and for each n the variables X, and Y, are defined on the same probability
space.

(a) Show that then X, +Y, 2, Xoo + Y.
Hint: Recall that the collection of continuity points of Fx__ is dense.
(b) Deduce that if Z,, — X, 2,0 then X,, 25 X if and only if Z, 2. x.
(¢) Show that Y, X, -2 Ve X oo
For example, here is an application of Exercise B2 en-route to a CLT connected
to renewal theory.
EXERCISE 3.2.9.

(a) Suppose {N,,} are non-negative integer-valued random variables and by, —

oo are non-random integers such that Ny, /bn, 2. 1. Show that if S, =
> or_y Xy for i.i.d. random variables {X} with v = Var(X7) € (0, 00)
and E(X1) =0, then Sn,,/v/vbm, L.G asm — oo,
Hint: Use Kolmogorov’s inequality to show that Sx,, //Ubm—Sh,, //0bm >
0.

(b) Let Ny =sup{n: S, <t} for S, =>}_, Y and i.i.d. random variables
Y > 0 such that v = Var(Y1) € (0,00) and E(Y1) = 1. Show that

(Nt—t)/\/ELG as t — oo.

Theorem B2 is key to solving the following:

EXERCISE 3.2.10. Suppose that Z, 2, Zoo- Show that then b, (f(c+ Z,,/bn) —

fe)/f (e L2 7 for every positive constants b, — oo and every Borel function



3.2. WEAK CONVERGENCE 107

f R — R (not necessarily continuous) that is differentiable at ¢ € R, with a
derivative f'(c) # 0.

Consider the following exercise as a cautionary note about your interpretation of

Theorem B2
EXERCISE 3.2.11. Let M, = Y7, [15_, Ui and W, = Sr_, [T, U, where {U;}
are i.5.d. uniformly on [0,¢] and ¢ > 0.
(a) Show that M, %% M., as n — oo, with My taking values in [0, cc].
(b) Prove that M is a.s. finite if and only if ¢ < e (but EMy is finite only
fore<2).
(c) In case ¢ < e prove that W, 2, Mo as n — oo while W,, can not have
an almost sure limit. Explain why this does not contradict Theorem [3-2_7

The next exercise relates the decay (in n) of sup, |Fx_ (s) — Fx, (s)| to that of
sup |Eh(X,,) — Eh(Xs)| over all functions h : R — [—M, M] with sup,, |#/(z)| < L.

EXERCISE 3.2.12. Let A, =sup, |Fx_(s) — Fx, (s)].

(a) Show that if sup, |h(z)| < M and sup, |h'(z)| < L, then for any b > a,
C=4M + L(b—a) and alln

IEA(X,) — Bh(Xs)| < CA, + AMP(X o ¢ [a,b]) .

(b) Show that if Xoo € [a,b] and fx_(x) > n > 0 for all x € [a,b], then
|Qn(a) - QOO(OZ)| < nilAn fOT any o € (Anvl - An); where Qn(a) =
sup{z : Fx, () < a} denotes a-quantile for the law of X,,. Using this,
construct Yy, s X, such that P(|Y,, — Yoo| > n71A,) < 2A,, and deduce
the bound of part (a), albeit the larger value 4M + L/n of C.

Here is another example of convergence in distribution, this time in the context
of extreme value theory.

EXERCISE 3.2.13. Let M,, = maxi<;<n {3}, where T;, i = 1,2,... are i.i.d. ran-
dom wvariables of distribution function Fr(t). Noting that Fyr, (z) = Fr(x)™, show
that b, Y (M, — ay) 2, Moo when:

(a) Pr(t) =1—e¢e"t fort > 0 (i.e. T; are Ezponential of parameter one).
Here, a, =logn, b, =1 and Far (y) = exp(—e™Y) fory € R.

(b) Fr(t) =1t fort > 1 and a > 0. Here, a, = 0, b, = n'/* and
P, (y) = exp(=y~®) for y > 0.

(c) Fr(t) =1—t|* for =1 <t <0 and o > 0. Here, a,, = 0, b, = n~/®
and Fur (y) = exp(=|y|*) for y < 0.

REMARK. Up to the linear transformation y +— (y — u)/o, the three distributions
of M, provided in Exercise are the only possible limits of maxima of i.i.d.
random variables. They are thus called the extreme value distributions of Type 1
(or Gumbel-type), in case (a), Type 2 (or Fréchet-type), in case (b), and Type 3
(or Weibull-type), in case (c). Indeed,

EXERCISE 3.2.14.
(a) Building upon part (a) of Exercise[Z.2.24), show that if G has the standard
normal distribution, then for any y € R

1— Fg(t t
i cl( +y/):efy.

o0 1— Fg(t)
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(b) Let M,, = maxi<i<n {Gi} for i.i.d. standard normal random variables
G;. Show that b, (M, —b,) L, M. where Fur, (y) = exp(—e™Y) and by,
is such that 1 — Fg(b,) = n~1.

(¢) Show that b, /\/2logn — 1 asn — oo and deduce that M, //2Togn 2 1.

(d) More generally, suppose Ty = inf{x > 0 : M, > t}, where x — M,
is some monotone non-decreasing family of random variables such that
My = 0. Show that if e tT; 2, % as t — 0o with Toe having the
standard exponential distribution then (M, —logx) L My as x — oo,
where Far_(y) = exp(—eY).

Our next example is of a more combinatorial flavor.

EXERCISE 3.2.15 (THE BIRTHDAY PROBLEM). Suppose {X;} are i.i.d. with each
X, uniformly distributed on {1,...,n}. Let T), = min{k : Xy = X, for somel < k}

mark the first coincidence among the entries of the sequence X1, Xo,..., so
- k-1
P(T, >r) = [0~ )

n
k=2

is the probability that among r items chosen uniformly and independently from
a set of n different objects, mo two are the same (the name “birthday problem”
corresponds to n = 365 with the items interpreted as the birthdays for a group of
size ). Show that P(n=/2T,, > s) — exp(—s%/2) as n — oo, for any fived s > 0.

Hint: Recall that —x — 2* <log(l — z) < —z for x € [0,1/2].

The symmetric, simple random walk on the integers is the sequence of random
variables S, = Y_p_; & where &, are i.i.d. such that P(& = 1) = P(§, = —1) = 3.

From the CLT we already know that n~'/28, P, G. The next exercise provides
the asymptotics of the first and last visits to zero by this random sequence, namely
R=inf{{ >1:5,=0}and L, =sup{¢ <n:S;,=0}. Much more is known about
this random sequence (c.f. [Dur03l Section 3.3] or [Fel68, Chapter 3]).

EXERCISE 3.2.16. Let gnr = P(S1 >0,...,8,-1 > 0,5, =7r) and

n

pn,r—P(Sn—T)—2n<k> k=(n+r)/2.

(a) Counting paths of the walk, prove the discrete reflection principle that
P,(R <n,Sy =9y) = P_,(Sn = Y) = Dnaty for any positive integers
x,y, where P, (-) denote probabilities for the walk starting at So = x.

(b) Verify that qnr = 2 (Pn—1,r—1 — Pn—1,041) for any n,r > 1.

Hint: Paths of the walk contributing to qn,, must have S1 = 1. Hence,
use part (a) withx =1 and y =r.

(¢) Deduce that P(R > n) = pp—1,0 + Pn-1,1 and that P(Ly, = 2k) =
P2k,0P2n—2k,0 fOT k= Ov 17 ceey N

(d) Using Stirling’s formula (that v2mn(n/e)”/n! — 1 as n — o), show
that /TnP(R > 2n) — 1 and that (2n)~'La, L, X, where X has the

arc-sine probability density function fx(x) = ﬁ on [0,1].
(e) Let Ha, count the number of 1 < k < 2n such that Sk, > 0 and Sp_1 > 0.

Show that Ho,, s Loy, hence (2n)~'Ha, 2. x.
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3.2.2. Weak convergence of probability measures. We first extend the
definition of weak convergence from distribution functions to measures on Borel
o-algebras.

DEFINITION 3.2.17. For a topological space S, let Cy,(S) denote the collection of all
continuous bounded functions on S. We say that a sequence of probability measures
vy, on a topological space S equipped with its Borel o-algebra (see Example [L114),

converges weakly to a probability measure Vs, denoted v, = Voo, if Un(h) — Voo (h)
for each h € Cy(S).

As we show next, Definition BEZZT7 is an alternative definition of convergence in
distribution, which, in contrast to Definition BZZTl applies to more general R.V.
(for example to the R?-valued random variables we consider in Section 5.

PROPOSITION 3.2.18. The weak convergence of distribution functions is equivalent
to the weak convergence of the corresponding laws as probability measures on (R, B).

Consequently, X, N Xoo if and only if for each h € Cy(R), we have Eh(X,,) —
Eh(Xs) as n — oo.

PROOF. Suppose first that F,, = Fs, and let Y,,, 1 < n < oo be the random
variables given by Theorem B2 such that Y;, “3' Y,.. For h € C,(R) we have by

continuity of h that h(Y;) “3 h(Ys), and by bounded convergence also

Pn(h) = E(h(Yn)) = E(h(Ys)) = Poo(h) -
Conversely, suppose that P, = P, per Definition EEZTA Fixing o € R, let the
non-negative hi € Cy(R) be such that h, (z) 1 I(—oo,e)(@) and hf (z) | I(—o0,0)(2)
as k — oo (c.f. Lemma B0 for a construction of such functions). We have by the

weak convergence of the laws when n — oo, followed by monotone convergence as
k — oo, that

liminf P, ((—o0,@)) > lim Pp(h;) = Poc(hy) T Poo((—00, ) = Foo(a™).

n—oo n—oo

Similarly, considering h; (-) and then k — oo, we have by bounded convergence
that

limsup Py, ((—00,a]) < lim P, (hf) = Peo(hf) | Poo((—00,a]) = Fus(a) .

n— oo n—00
For any continuity point a of F,, we conclude that F,(a) = P, ((—00, a]) converges
as n — 00 to Fyo(a) = Foo (™), thus completing the proof. O

By yet another application of Theorem BZZ1 we find that convergence in distri-
bution is preserved under a.s. continuous mappings (see Corollary for the
analogous statement for convergence in probability).

PROPOSITION 3.2.19 (CONTINUOUS MAPPING). For a Borel function g let Dy
denote its set of points of discontinuity. If X, 2, Xoo and P(Xo € Dy) = 0,
then g(X,,) 2, 9(Xoo). If in addition g is bounded then Eg(X,) — Eg(X).

Proor. Given X, 2, X oo, by Theorem B2 there exists Y, 2 X, such that
Y, ¥% Y. Fixing h € Cy(R), clearly Djog € Dy, so

P(Y € Dpoy) <P(Yoo € Dy) = 0.
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Therefore, by Exercise ZZT3 it follows that h(g(Yy)) <2 h(g(Ya)). Since ho g is
bounded and Y, E4 X, for all n, it follows by bounded convergence that

Eh(9(Xn)) = Eh(g(Yn)) — E(h(9(Yoo)) = Eh(9(X o)) -

This holds for any h € Cy(R), so by Proposition BZZT8 we conclude that g(X,,) 2,
9(Xoo)- O

Our next theorem collects several equivalent characterizations of weak convergence
of probability measures on (R, B). To this end we need the following definition.

DEFINITION 3.2.20. For a subset A of a topological space S, we denote by OA the
boundary of A, that is 0A = A\ A° is the closed set of points in the closure of A
but not in the interior of A. For a measure y on (S, Bs) we say that A € Bs is a
p-continuity set if u(0A) = 0.

THEOREM 3.2.21 (PORTMANTEAU THEOREM). The following four statements are
equivalent for any probability measures v, 1 <n < oo on (R, B).
(a) vp = Voo
For every closed set F', one has limsup v, (F) < voo(F)

n—oo

(b)
(c) For every open set G, one has liminf v,(G) > v (G)
(d)

d) For every v -continuity set A, one has lim v,(A) = vso(A)
n—oo

REMARK. As shown in Subsection BXA] this theorem holds with (R, B) replaced
by any metric space S and its Borel o-algebra Bs.

For v, = Px, we get the formulation of the Portmanteau theorem for random
variables X,,, 1 < n < oo, where the following four statements are then equivalent

t0 X 5 Xog

) Eh( n) — Eh(X ) for each bounded continuous h

) For every closed set F' one has hm sup P(X,eF)<PX,€F)
¢) For every open set G one has lim 1an(X €G)>P(Xw €G)
)

n—oo

d) For every Borel set A such that P(X, € 9A) = 0, one has
lim P(X,, € A) =P(X € A)

n—oo

PRrROOF. It suffices to show that (a) = (b) = (¢) = (d) = (a), which we
shall establish in that order. To this end, with F,(x) = v, ((—0c0,z]) denoting the
corresponding distribution functions, we replace v,, = v of (a) by the equivalent
condition F,, = F., (see Proposition BZIR).

(a) = (b). Assuming F,, = F,, we have the random variables Y,,, 1 < n < oo of
Theorem BZZ7 such that Py, = v, and Y, 3 Y. Since F is closed, the function
Ip is upper semi-continuous bounded by one, so it follows that a.s.

limsup Ir(Yy) < Ir(Yao),

n—oo

(a
(b
(
(

and by Fatou’s lemma,

limsup v, (F) = limsup EIp(Y,) < Elimsup Ir(Y,) < Elr (V) = Voo (F),

n—oo n—oo n—oo

as stated in (b).
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(b) = (¢). The complement F' = G° of an open set G is a closed set, so by (b) we
have that

1 —liminf v, (G) = limsup v, (G) < Vo (G°) =1 — v (G)
implying that (c¢) holds. In an analogous manner we can show that (¢) = (b), so
(b) and (c) are equivalent.
(¢) = (d). Since (b) and (c) are equivalent, we assume now that both (b) and (c)
hold. Then, applying (c) for the open set G = A° and (b) for the closed set F = A
we have that

Voo (A) > limsup v, (A) > limsup v, (A)

(3.2.4) > liminf v, (A) > liminf v, (4A°) > v (A°).

Further, A = A° U 0A 80 vo(0A) = 0 implies that veo(A) = Voo (A4°) = v (A)
(with the last equality due to the fact that A° C A C A). Consequently, for such a
set A all the inequalities in (BZZ4) are equalities, yielding (d).
(d) = (a). Consider the set A = (—o00,a] where « is a continuity point of Fi.
Then, 0A = {a} and vo({a}) = Fx(a) — Foo(a™) = 0. Applying (d) for this
choice of A, we have that

nlgr;o Fo(a) = nlLH;O n((=00,0]) = v ((—00,0]) = Fis (a)

which is our version of (a). O

We turn to relate the weak convergence to the convergence point-wise of proba-
bility density functions. To this end, we first define a new concept of convergence
of measures, the convergence in total-variation.

DEFINITION 3.2.22. The total variation norm of a finite signed measure v on the
measurable space (S, F) is
l¥]|t0 = sup{v(h) : h € mF, sug |h(s)| < 1}.
sE
We say that a sequence of probability measures v, converges in total variation to a

.- t.v. .
probability measure v, denoted vy, = Voo, if ||Vn — Vool|tw — 0.

REMARK. Note that ||v|+ = 1 for any probability measure v (since v(h) <
v(|h]) < ||h]leor(1) < 1 for the functions h considered, with equality for h = 1). By
a similar reasoning, ||v —v'||¢, < 2 for any two probability measures v, v’ on (S, F).

Convergence in total-variation obviously implies weak convergence of the same
probability measures, but the converse fails, as demonstrated for example by v,, =
01 /n, the probability measure on (R, B) assigning probability one to the point 1/n,
which converge weakly to oo = ¢ (see Example B2ZA), whereas ||v, — voo|| = 2
for all n. The difference of course has to do with the non-uniformity of the weak
convergence with respect to the continuous function h.

To gain a better understanding of the convergence in total-variation, we consider
an important special case.

PROPOSITION 3.2.23. Suppose P = fu and Q = gu for some measure p on (S, F)
and f,g € mF4 such that u(f) = u(g) = 1. Then,

(3.2.5) IP—Qllu = /S 1£(5) — g(s)ldu(s) .
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Further, suppose vy, = fop with fr, € mF4 such that u(f,) = 1 for all n < co.
Then, vy % ve if fn(8) = foo(s) for p-almost-every s € S.

PRrROOF. For any measurable function b : S — [—1, 1] we have that

(f)(h) = (gu)(h) = u(fh) = p(gh) = u((f = 9)h) < ullf = gl),
with equality when h(s) = sgn((f(s)—g(s)) (see Proposition [[35d for the left-most
identity and note that fh and gh are in L'(S,F,n)). Consequently, |P — Q|+ =
sup{(fu)(h) — (gu)(h) : h as above } = u(|f — g|), as claimed.

For vy, = fnu, we thus have that ||y, — Voo ||tw = p(| fr. — fool), SO the convergence in
total-variation is equivalent to f, — foo in L1(S,F, u). Since f, > 0 and u(f,) =1
for any n < oo, it follows from Scheffé’s lemma (see Lemma [[33H) that the latter
convergence is a consequence of f,(s) — foo(s) for p a.e. s €S. ]

Two specific instances of Proposition BZZ3 are of particular value in applications.

EXAMPLE 3.2.24. Let v, = Px, denote the laws of random wvariables X, that
have probability density functions fn, n =1,2,... 00. Recall Exercise that
then vy, = fo)\ for Lebesgue’s measure A on (R,B). Hence, by the preceding propo-
sition, the convergence point-wise of fn(x) to foo(x) implies the convergence in

total-variation of Px, to Px. , and in particular implies that X, 2, Xeo-

EXAMPLE 3.2.25. Similarly, if X,, are integer valued for n = 1,2..., then v, =
faX for fo(k) = P(X, = k) and the counting measure X on (Z,2%) such that
X({k}) =1 for each k € Z. So, by the preceding proposition, the point-wise con-
vergence of Exercise 223 is not only necessary and sufficient for weak convergence
but also for convergence in total-variation of the laws of X, to that of X.

In the next exercise, you are to rephrase Example B2Z2Hin terms of the topological
space of all probability measures on Z.

EXERCISE 3.2.26. Show that d(p,v) = ||u— V||t is a metric on the collection of all
probability measures on Z, and that in this space the convergence in total variation
is equivalent to the weak convergence which in turn is equivalent to the point-wise
convergence at each x € Z.

Hence, under the framework of Example B2ZZ25 the Glivenko-Cantelli theorem
tells us that the empirical measures of integer valued i.i.d. R.V.-s {X;} converge in
total-variation to the true law of Xj.

Here is an example from statistics that corresponds to the framework of Example
0. 2. 24

EXERCISE 3.2.27. Let V,,+1 denote the central value on a list of 2n+1 values (that
is, the (n + 1)th largest value on the list). Suppose the list consists of mutually
independent R.V., each chosen uniformly in [0,1).

(a) Show that Vi1 has probability density function (2n + 1)(27:1)1)”(1 —v)"
at each v € [0,1).

(b) Verify that the density fn.(v) of V, = V212Vt — 1) is of the form
fa(v) = cu(1 —v2/(2n))™ for some normalization constant c, that is
independent of |v] < v/2n.

(¢) Deduce that for n — oo the densities fn(v) converge point-wise to the

standard normal density, and conclude that Vi L2 a.
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Here is an interesting interpretation of the CLT in terms of weak convergence of
probability measures.

EXERCISE 3.2.28. Let M denote the set of probability measures v on (R,B) for
which [x?dv(z) =1 and [xdv(z) = 0, and v € M denote the standard normal
distribution. Consider the mapping T : M — M where Tv is the law of (X7 +
X5)/V/2 for X1 and Xo ii.d. of law v each. Explain why the CLT implies that
Ty 2 ~ as m — oo, for any v € M. Show that Ty =« (see Lemma BI1), and
explain why 7 is the unique, globally attracting fized point of T in M.

Your next exercise is the basis behind the celebrated method of moments for weak
convergence.

EXERCISE 3.2.29. Suppose that X and Y are [0, 1]-valued random variables such
that E(X™) = E(Y™) forn=0,1,2,....
(a) Show that Ep(X) = Ep(Y) for any polynomial p(-).
(b) Show that ER(X) = Eh(Y) for any continuous function h : [0,1] — R
and deduce that X 2V .

Hint: Recall Weierstrass approzimation theorem, that if h is continuous on [0, 1]
then there exist polynomials py, such that sup,cp 1) |h(x) — pn(z)| — 0 as n — oco.

We conclude with the following example about weak convergence of measures in
the space of infinite binary sequences.

EXERCISE 3.2.30. Consider the topology of coordinate wise convergence on S =
{0,1} and the Borel probability measures {v,} on S, where v, is the uniform
measure over the (27’;) binary sequences of precisely n ones among the first 2n

coordinates, followed by zeros from position 2n + 1 onwards. Show that v, = Vs
where Voo denotes the law of i.i.d. Bernoulli random variables of parameter p = 1/2.
Hint: Any open subset of S is a countable union of disjoint sets of the form Ag ) =
{weS:wi=0;i=1,...,k} for some 0 = (61,...,0;) € {0,1}* and k € N.

3.2.3. Uniform tightness and vague convergence. So far we have studied
the properties of weak convergence. We turn to deal with general ways to establish
such convergence, a subject to which we return in Subsection To this end,
the most important concept is that of uniform tightness, which we now define.

DEFINITION 3.2.31. We say that a probability measure pn on (S, Bg) is tight if for
each € > 0 there exists a compact set K. C S such that u(K¢S) < e. A collection
{pa} of probability measures on (S, Bs) is called uniformly tight if for each e > 0
there exists one compact set K. such that ug(KS) < e for all 3.

Since bounded closed intervals are compact and [—M,M]¢ | 0 as M 1 oo, by
continuity from above we deduce that each probability measure p on (R,B) is
tight. The same argument applies for a finite collection of probability measures on
(R, B) (just choose the maximal value among the finitely many values of M = M,
that are needed for the different measures). Further, in the case of S = R which we
study here one can take without loss of generality the compact K. as a symmetric
bounded interval [—M., M.], or even consider instead (—M,, M.] (whose closure
is compact) in order to simplify notations. Thus, expressing uniform tightness
in terms of the corresponding distribution functions leads in this setting to the
following alternative definition.
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DEFINITION 3.2.32. A sequence of distribution functions F,, is called uniformly
tight, if for every e > 0 there exists M = M, such that
limsup[l — F,,(M) + F,(—M)] <e.
n—oo
REMARK. As most texts use in the context of Definition “tight” (or “tight
sequence”) instead of uniformly tight, we shall adopt the same convention here.

Uniform tightness of distribution functions has some structural resemblance to the
U.I. condition (L3II). As such we have the following simple sufficient condition
for uniform tightness (which is the analog of Exercise [[354).

EXERCISE 3.2.33. A sequence of probability measures v, on (R,B) is uniformly
tight if sup,, vn(f(|z])) is finite for some non-negative Borel function such that
f(r) — oo as r — oo. Alternatively, if sup,, Ef(|X,|) < oo then the distribution
functions Fx, form a tight sequence.

The importance of uniform tightness is that it guarantees the existence of limit
points for weak convergence.

THEOREM 3.2.34 (PROHOROV THEOREM). A collection T' of probability measures
on a complete, separable metric space S equipped with its Borel o-algebra Bs, is
uniformly tight if and only if for any sequence v, € T there exists a subsequence
Vm, that converges weakly to some probability measure vy, on (S, Bs) (where vy is
not necessarily in T' and may depend on the subsequence my).

REMARK. For a proof of Prohorov’s theorem, which is beyond the scope of these
notes, see [Dud89l Theorem 11.5.4].

Instead of Prohorov’s theorem, we prove here a bare-hands substitute for the
special case S = R. When doing so, it is convenient to have the following notion of
convergence of distribution functions.

DEFINITION 3.2.35. When a sequence F,, of distribution functions converges to a
right continuous, non-decreasing function Fuoy at all continuous points of F, we
say that F, converges vaguely to F.., denoted F,, = Fo.

In contrast with weak convergence, the vague convergence allows for the limit
Foo(x) = Voo ((—00, z]) to correspond to a measure vo, such that v (R) < 1.

EXAMPLE 3.2.36. Suppose Fy, = pljy, o) +ql|—n o00) + (1 —=p—q)F for somep,q >0
such that p+q < 1 and a distribution function F' that is independent of n. It is easy
to check that F, = Fu asn — oo, where Foo = q+ (1 —p—q)F is the distribution
function of an R-valued random variable, with probability mass p at +00 and mass
q at —oco. If p+q > 0 then F is not a distribution function of any measure on R
and F,, does not converge weakly.

The preceding example is generic, that is, the space R is compact, so the only loss
of mass when dealing with weak convergence on R has to do with its escape to £oo.
It is thus not surprising that every sequence of distribution functions have vague
limit points, as stated by the following theorem.

THEOREM 3.2.37 (HELLY’S SELECTION THEOREM). For every sequence F,, of dis-
tribution functions, there is a subsequence F,,, and a non-decreasing right contin-
wous function Foo such that Fy, (y) — Foo(y) as k — oo at all continuity points y
of Fso, that is F,, N
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Deferring the proof of Helly’s theorem to the end of this section, uniform tightness
is exactly what prevents probability mass from escaping to £oo, thus assuring the
existence of limit points for weak convergence.

LEMMA 3.2.38. The sequence of distribution functions {F,} is uniformly tight if
and only if each vague limit point of this sequence is a distribution function. That
is, if and only if when Fy,, > F, necessarily 1 — F(x) + F(—z) — 0 as x — oo.

PROOF. Suppose first that {F,} is uniformly tight and F,, - F. Fixing ¢ > 0,
there exist 1y < —M,. and 2 > M, that are both continuity points of F'. Then, by
the definition of vague convergence and the monotonicity of F,,

1-— F(T’Q) + F(T’l) = leIIolo(l — Fnk (TQ) + Fnk (Tl))
<limsup(l — F,,(M:) + F(—M,)) < e.

It follows that limsup,_, (1 — F(z) + F(—z)) < € and since ¢ > 0 is arbitrarily
small, F' must be a distribution function of some probability measure on (R, B).

Conversely, suppose { F}, } is not uniformly tight, in which case by Definition B.2Z32,
for some € > 0 and ng T oo

(3.2.6) 1—F,, (k) + F,, (k) >¢ for all k.

By Helly’s theorem, there exists a vague limit point F' to F},, as k — oco. That
is, for some k; T oo as [ — oo we have that Fr,, % F. For any two continuity

points r1 < 0 < rg of F, we thus have by the definition of vague convergence, the
monotonicity of £, , and ([BZH), that

L= F(rz) + F(r1) = lim (1= Fy, (r2) + Fy,, (1))
> lillfil)(i)lélf(l — Fnkl (ki) + Fnkl (—ky)) > e.

Considering now r = min(—ry,re) — 00, this shows that inf, (1—-F(r)+ F(-r)) > ¢,
hence the vague limit point F' cannot be a distribution function of a probability
measure on (R, B). O

REMARK. Comparing Definitions B2ZZ3T and we see that if a collection T’
of probability measures on (R, B) is uniformly tight, then for any sequence v,, € I’
the corresponding sequence F),, of distribution functions is uniformly tight. In view
of Lemma and Helly’s theorem, this implies the existence of a subsequence
my, and a distribution function Fo, such that F,, 2 F.. By Proposition
we deduce that v, =2 Vs, a probability measure on (R, B), thus proving the only
direction of Prohorov’s theorem that we ever use.

ProoF oF THEOREM BZ37 Fix a sequence of distribution function F;,. The
key to the proof is to observe that there exists a sub-sequence njy and a non-
decreasing function H : Q — [0, 1] such that F),, (¢) — H(q) for any ¢ € Q.

This is done by a standard analysis argument called the principle of ‘diagonal
selection’. That is, let ¢1,¢2,..., be an enumeration of the set Q of all rational
numbers. There exists then a limit point H(g1) to the sequence F,(q1) € [0,1],

that is a sub-sequence n,(cl) such that F o) (q1) — H(q1). Since F ) (g2) € [0,1],
k k

there exists a further sub-sequences n,(f) of n,(cl) such that
F & (q)— H(g;) fori=1,2.
M
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In the same manner we get a collection of nested sub-sequences n,(j) C n,(j_l) such
that

F o (q;) — H(g;), forallj<i.
k

,(Ck) then has the property that

Fn)ik)(Qj) — H(q;), for all j,

The diagonal n

k) . . . . .
SO ng = n,(C ) is our desired sub-sequence, and since each Fj, is non-decreasing, the

limit function H must also be non-decreasing on Q.
Let Foo(z) := inf{H(q) : ¢ € Q,q > z}, noting that F € [0, 1] is non-decreasing.
Further, Fi is right continuous, since

lim Foo(z,) = inf{H(q) : ¢ € Q,q > x, for some n}

Tplx
=inf{H(¢) : ¢ € Q,q >z} = Fx(z).

Suppose that z is a continuity point of the non-decreasing function Fi,. Then, for
any € > 0 there exists y < x such that F(z) — e < Fx(y) and rational numbers
y <11 <x <7 such that H(rg) < Foo(x) + €. It follows that

(3.2.7) Foo(z) — & < Foo(y) < H(r) < H(rs) < Foo() + &

Recall that F,,, (x) € [Fy, (r1), Fn, (r2)] and Fy,, (r;) — H(r;) as k — oo, fori = 1, 2.
Thus, by B27) for all k£ large enough

Foo(#) — & < Fry (1) < F (2) < Fry (r2) < Foo(2) 6,

which since € > 0 is arbitrary implies F,, () — Foo(x) as k — oo. O

EXERCISE 3.2.39. Suppose that the sequence of distribution functions {Fx,} is
uniformly tight and EX? < oo are such that EX? — oo as n — co. Show that then
also Var(X,,) — oo as n — oo.

2
Hint: If |EX,,|? — oo then sup, Var(X,,) < oo yields X,,, /JEX,, L1, whereas the
uniform tightness of {Fx, } implies that Xn, /EX,, 0.

Using LemmaB.2.38 and Helly’s theorem, you next explore the possibility of estab-
lishing weak convergence for non-negative random variables out of the convergence
of the corresponding Laplace transforms.

EXERCISE 3.2.40.
(a) Based on Ezercise show that if Z > 0 and W > 0 are such that
E(e %) = E(e W) for each s > 0, then Z Zw.
(b) Further, show that for any Z > 0, the function Lz(s) = E(e %) is
infinitely differentiable at all s > 0 and for any positive integer k,
dk

k ks
E[Z"] = (-1) 151?8 d_skLZ(S)’

even when (both sides are) infinite.

(c) Suppose that X,, > 0 are such that L(s) = lim, E(e=*%") exists for all
s> 0 and L(s) — 1 for s | 0. Show that then the sequence of distribution
functions {Fx, } is uniformly tight and that there exists a random variable

Xoo > 0 such that X,, = Xso and L(s) = E(e=*%X=) for all s > 0.
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Hint: To show that X, N X try reading and adapting the proof of

Theorem [3-3.17

(d) Let X, = n= 'Y }_, ki for I, € {0,1} independent random variables,
with P(I, = 1) = k~1. Show that there exists Xoo > 0 such that X, 2,
Xo and E(e™3%=) = exp(fo1 t=t(e™st —1)dt) for all s > 0.

REMARK. The idea of using transforms to establish weak convergence shall be
further developed in Section B3, with the Fourier transform instead of the Laplace
transform.

3.3. Characteristic functions

This section is about the fundamental concept of characteristic function, its rele-
vance for the theory of weak convergence, and in particular for the cLT.

In Subsection B3I we define the characteristic function, providing illustrating ex-
amples and certain general properties such as the relation between finite moments
of a random variable and the degree of smoothness of its characteristic function. In
Subsection we recover the distribution of a random variable from its charac-
teristic function, and building upon it, relate tightness and weak convergence with
the point-wise convergence of the associated characteristic functions. We conclude
with Subsection in which we re-prove the CLT of Section Bl as an applica-
tion of the theory of characteristic functions we have thus developed. The same
approach will serve us well in other settings which we consider in the sequel (c.f.

Sections B and BH).

3.3.1. Definition, examples, moments and derivatives. We start off
with the definition of the characteristic function of a random variable. To this
end, recall that a C-valued random variable is a function Z : 2 — C such that the
real and imaginary parts of Z are measurable, and for Z = X + Y with X, Y € R
integrable random variables (and i = /1), let E(Z) = E(X) +iE(Y) € C.

DEFINITION 3.3.1. The characteristic function ® x of a random variable X is the
map R — C given by
dx(0) = E[e"X] = E[cos(X)] + iE[sin(6X)]
where @ € R and obviously both cos(0X) and sin(0X) are integrable R.V.-s.
We also denote by ®,(0) the characteristic function associated with a probability

measure p on (R, B). That is, ®,(0) = p(e) is the characteristic function of a
R.V. X whose law Px is .

Here are some of the properties of characteristic functions, where the complex
conjugate x — iy of z = x + iy € C is denoted throughout by z and the modulus of

z=x+iyis |z| = Va2 + y2.
PROPOSITION 3.3.2. Let X be a R.V. and ®x its characteristic function, then
(a) ®x(0) =1
b) @x(—0) = Dx(0)
c) |[2x(0)| <1

(b) @
(c)
(d) 0 @x(0) is a uniformly continuous function on R
(e) ®ux+p(0) =™ Px(ab)
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PrOOF. For (a), ?x(0) = E[¢?*X] = E[1] = 1. For (b), note that
O x(—0) = Ecos(—0X) +iEsin(—0X)
= Ecos(6X) — iEsin(0X) = x(6).
For (c), note that the function |2| = /22 +y2 : R? — R is convex, hence by
Jensen’s inequality (c.f. Exercise [[320),
[2x(0)] = [Ee| < E[e”¥| =1
(since the modulus [e?*| = 1 for any real z and 6).

For (d), since ® x (0+h)—®x (0) = Ee'?X ("X 1), it follows by Jensen’s inequality
for the modulus function that

|Bx (0 +h) — Dx(0)| < E[[e?X]|eh¥ —1|] = E|e"X — 1] = §(h)

(using the fact that |zv| = |z||v]). Since 2 > [e*"* — 1| — 0 as h — 0, by bounded
convergence 6(h) — 0. As the bound §(h) on the modulus of continuity of ®x(6)
is independent of 6, we have uniform continuity of ®x(-) on R.

For () simply note that ®,x,(0) = Ee?(@X+t) = 0 E(a0)X — ¢i00g  (4h). O

We also have the following relation between finite moments of the random variable
and the derivatives of its characteristic function.

LEMMA 3.3.3. If E|X|" < oo, then the characteristic function ®x(0) of X has
continuous derivatives up to the n-th order, given by

d* .
(3.3.1) chx(e) =E[( X)), for k=1,...,n

PROOF. Note that for any x,h € R
h
ethr — 1 = m:/ ey .
0

Consequently, for any h # 0, 8 € R and positive integer k& we have the identity
(332) Ak,h(x) _ hfl((iz)kflei(GJrh):c _ (Z-x)kfleiem) _ (ix)keiem

h
= (ix)kewzhfl/ (™ —1)du,
0

from which we deduce that |Ay p,(z)| < 2|x|* for all  and h # 0, and further that
|Ak.n(x)] — 0 as h — 0. Thus, for k =1,...,n we have by dominated convergence
(and Jensen’s inequality for the modulus function) that

[EAL L (X)| < E|Agp(X)] —0 for h—0.
Taking k = 1, we have from [B32) that
EAl,h(X) = h*l((I)X(e “+ h) — (I)X(Q)) _ E[ZXEZHX] ,

so its convergence to zero as h — 0 amounts to the identity (B3 holding for
k = 1. In view of this, considering now [B32) for k = 2, we have that

EAg (X) = h™ Y (@ (0 + h) — & (0)) — E[(1X)%eX],

and its convergence to zero as h — 0 amounts to (B3] holding for k = 2. We
continue in this manner for k = 3,...,n to complete the proof of [B3I). The
continuity of the derivatives follows by dominated convergence from the convergence
to zero of |(iz)Fe@TM® _ (jz)kei¥?| < 2lz|* as h — 0 (with k=1,...,n). O
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The converse of Lemma B33 does not hold. That is, there exist random variables
with E|X| = oo for which ®x(0) is differentiable at § = 0 (c.f. Exercise B3.23)).

However, as we see next, the existence of a finite second derivative of ®x(6) at
6 = 0 implies that EX? < cc.

LEMMA 3.3.4. Ifliminfe_o 0 2(2@x (0)—®x (0)—Px(—0)) < o0, then EX? < o00.
PROOF. Note that §72(2®x(0) — ®x () — ®x(—0)) = Egg(X), where
go(x) = 072(2 — %% — e79%) = 2072[1 — cos(fz)] — x> for § —0.
Since gg(x) > 0 for all § and =z, it follows by Fatou’s lemma that
lim inf Ego(X) > Elim inf go(X)] = EX?,
thus completing the proof of the lemma. O
We continue with a few explicit computations of the characteristic function.

EXAMPLE 3.3.5. Consider a Bernoulli random variable B of parameter p, that is,
P(B=1)=p and P(B =0) =1 — p. Its characteristic function is by definition

p(0) = E[e"P] = pe’ + (1 — p)e™® =pe” +1-p.

The same type of explicit formula applies to any discrete valued R.V. For example,
if N has the Poisson distribution of parameter X then

iON = (Ae)* Y i0
(3.3.3) On(0) =B[N = et =exp(Me’? —1).
k=0 ’

The characteristic function has an explicit form also when the R.V. X has a
probability density function fx as in Definition Indeed, then by Corollary
362 we have that

(3.3.4) Dy (6) :/Rei‘%”%)“x(gc)dgc7

which is merely the Fourier transform of the density fx (and is well defined since
cos(0x) fx (x) and sin(6z) fx (x) are both integrable with respect to Lebesgue’s mea-
sure).

EXAMPLE 3.3.6. If G has the N'(u,v) distribution, namely, the probability density
function fa(y) is gwen by (1), then its characteristic function is

@0(9) _ eiu@—v92/2 i
Indeed, recall Example that G = 0 X + p for o0 = /v and X of a standard
normal distribution N(0,1). Hence, considering part (e) of Proposition X2 for
a = /v and b = p, it suffices to show that ®x(0) = e=?"/2. To this end, as X is
integrable, we have from Lemma 2233 that
P (0) = E(iXeX) = / —zsin(bz) fx (z)dx
R
(since xcos(0x)fx (x) is an integrable odd function, whose integral is thus zero).

The standard normal density is such that f%(x) = —xfx (), hence integrating by
parts we find that

'y (0) = /Rsin(Gx)fg( (x)dx = — /]R 0 cos(0z) fx (z)dz = —0P x (0)
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(since sin(0x) fx (x) is an integrable odd function). We know that ®x(0) =1 and
since p(0) = e=9°/2 s the unique solution of the ordinary differential equation
@' (0) = —0p(0) with p(0) = 1, it follows that ®x(0) = ¢(6).

EXAMPLE 3.3.7. In another example, applying the formula ([3-374) we see that
the random wvariable U = U(a,b) whose probability density function is fy(x) =
(b—a) 1 1la<u<p, has the characteristic function

eifb _ gifa

Dy (0) = h—a)

(recall that f: e**dxr = (e*® — e*%)/z for any z € C). For a = —b the characteristic
function simplifies to sin(bd)/(bf). Or, in case b =1 and a = 0 we have Py (0) =
(€ —1)/(i0) for the random variable U of Example [LT.Z0.

Fora =0 and z = =X +16, A > 0, the same integration identity applies also
when b — oo (since the real part of z is negative). Consequently, by ([3:34), the
exponential distribution of parameter A > 0 whose density is fr(t) = Ae 150
(see Example [LI08), has the characteristic function ®7(0) = \/(X — i6).

Finally, for the density fs(s) = 0.5e~ 15l it is not hard to check that ®5(0) =
0.5/(1 —i0) +0.5/(1 + i) = 1/(1 + 62) (just break the integration over s € R in

F-54) according to the sign of s).

We next express the characteristic function of the sum of independent random
variables in terms of the characteristic functions of the summands. This relation
makes the characteristic function a useful tool for proving weak convergence state-
ments involving sums of independent variables.

LEMMA 3.3.8. If X and Y are two independent random variables, then
Px4y(0) = Px(0)Py(0)
PROOF. By the definition of the characteristic function
By y(0) = Eei0(X+Y) _ E[¢"X ] = E[e®X|E[?Y],

where the right-most equality is obtained by the independence of X and Y (i.e.
applying (CZIY) for the integrable f(z) = g(x) = €**). Observing that the right-
most expression is @ x (0)Py (6) completes the proof. O

Here are three simple applications of this lemma.

EXAMPLE 3.3.9. If X and Y are independent and uniform on (—1/2,1/2) then
by Corollary [[Z.39 the random variable A = X +Y has the triangular density,
fa(x) = (1 —|z[)1jz<1. Thus, by Example B34, Lemma[ZZ8, and the trigono-
metric identity cos = 1 — 2sin®(0/2) we have that its characteristic function is

2sin(0/2)\2  2(1 — cos¥d
DA(0) = [Bx(0)]? = (ﬁ) _ %
0 0
EXERCISE 3.3.10. Let X, X be i.i.d. random variables.
(a) Show that the characteristic function of Z = X — X isa non-negative,
real-valued function. N
(b) Prove that there do not exist a < b and i.i.d. random variables X, X
such that X — X is the uniform random variable on (a,b).
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In the next exercise you construct a random variable X whose law has no atoms
while its characteristic function does not converge to zero for  — oo.

EXERCISE 3.3.11. Let X =23 72 37%By, for {By} i.i.d. Bernoulli random vari-
ables such that P(Br, =1) = P(B =0) =1/2.
(a) Show that ®x (3k7) = ®x(7) #0 for k=1,2,....
(b) Recall that X has the uniform distribution on the Cantor set C, as speci-
fied in Example[I.Z43 Verify that x — Fx (z) is everywhere continuous,
hence the law Px has no atoms (i.e. points of positive probability).

3.3.2. Inversion, continuity and convergence. Is it possible to recover the
distribution function from the characteristic function? Then answer is essentially
yes.

THEOREM 3.3.12 (LEVY’S INVERSION THEOREM). Suppose ®x is the characteris-
tic function of random variable X whose distribution function is Fx. For any real
numbers a < b and 6, let

1 b itu e—i0a _ ,—ibb
(3.3.5) Vas(8) = %/ emitugy = ¢

Then,

T
. 1 _ 1 _
(3:36) Jim [ 6us(0)Bx(6)d0 = 5[Fx(b) + Fx(b)] - 5[Fx(@) + Fx(a ).
1
Furthermore, if [, |®x(0)|df < co, then X has the bounded continuous probability
density function
1

T o

(3.3.7) fx(x) /R e 0D« (0)dh .

REMARK. The identity B31) is a special case of the Fourier transform inversion
formula, and as such is in ‘duality’ with ®x(0) = [; €® fx(z)dz of BZD). The
formula ([B30) should be considered its integrated version, which thereby holds
even in the absence of a density for X.

Here is a simple application of the ‘duality’ between (B3 and B3J).

EXAMPLE 3.3.13. The Cauchy density is fx(x) = 1/[x(1 + 2?)]. Recall Example
[B-377 that the density fs(s) = 0.5¢1%| has the positive, integrable characteristic

function 1/(1 + 6%). Thus, by (B34,

1 1
0.5e 15 = —
¢ o Jo 1+ 12

Multiplying both sides by two, then changing t to x and s to —0, we get ([3-34) for
the Cauchy density, resulting with its characteristic function ® x(0) = e~ 1.

—its

When using characteristic functions for proving limit theorems we do not need
the explicit formulas of Lévy’s inversion theorem, but rather only the fact that the
characteristic function determines the law, that is:

COROLLARY 3.3.14. If the characteristic functions of two random variables X and
Y are the same, that is ®x(0) = Oy (0) for all §, then X Dy.
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REMARK. While the real-valued moment generating function Mx (s) = E[e*¥] is
perhaps a simpler object than the characteristic function, it has a somewhat limited
scope of applicability. For example, the law of a random variable X is uniquely
determined by Mx () provided Mx (s) is finite for all s € [—d,d], some ¢ > 0 (c.f.
[Bil95, Theorem 30.1]). More generally, assuming all moments of X are finite, the
Hamburger moment problem is about uniquely determining the law of X from a
given sequence of moments EX*. You saw in Exercise that this is always
possible when X has bounded support, but unfortunately, this is not always the
case when X has unbounded support. For more on this issue, see [Dur03l Section
2.3€].

PrOOF OF COROLLARY BZ3T4l Since ®x = Py, comparing the right side of
B34) for X and Y shows that

[Fx (b) + Fx (b7)] = [Fx(a) + Fx(a7)] = [Fy (b) + Fy (b7)] = [Fy (a) + Fy (a7)] .

As Fx is a distribution function, both Fx(a) — 0 and Fx(a~) — 0 when a | —oc.
For this reason also Fy (a) — 0 and Fy (a~) — 0. Consequently,

Fx(b)+ Fx(b™) = Fy(b)+ Fy(b™) forall beR.

In particular, this implies that Fx = Fy on the collection C of continuity points
of both Fx and Fy. Recall that Fx and Fy have each at most a countable set of
points of discontinuity (see Exercise [[2Z38), so the complement of C is countable,
and consequently C is a dense subset of R. Thus, as distribution functions are non-
decreasing and right-continuous we know that Fy (b) = inf{Fx(z) : x > b,z € C}
and Fy (b) = inf{Fy(x) : ¢ > b,z € C}. Since Fx(z) = Fy(x) for all z € C, this

identity extends to all b € R, resulting with X 2y. (]

REMARK. In Lemma BTl it was shown directly that the sum of independent
random variables of normal distributions N (ug,vx) has the normal distribution
N(p,v) where p = >>, pup and v = >, vg. The proof easily reduces to dealing
with two independent random variables, X of distribution N(u1,v1) and Y of
distribution N (p2, v2) and showing that X +Y has the normal distribution N (u1 +
2, v1+v2). Here is an easy proof of this result via characteristic functions. First by
the independence of X and Y (see Lemma B3], and their normality (see Example

B3.4),
<I>X+y(6‘) = (I)X (6‘)@3/ (9) = exp(i,ule — U192/2) exp(im@ — 1)26‘2/2)

. 1
= exp(i(p + p2)0 — 5(”1 +v2)60?)

We recognize this expression as the characteristic function corresponding to the
N(u1 + po,v1 + vo) distribution, which by Corollary B3 T4 must indeed be the
distribution of X + Y.

PROOF OF LEVY’S INVERSION THEOREM. Consider the product p of the law
Px of X which is a probability measure on R and Lebesgue’s measure of § € [T, T,
noting that p is a finite measure on R x [—T, T of total mass 2T
Fixing a < b € R let hop(z,0) = 145(0)e®", where by ([3H) and Jensen’s
inequality for the modulus function (and the uniform measure on [a, b]),

b—a
2r

1 ’ —i0u
a2, 0)] = [0,(6)] < o / 9| gy =
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Consequently, [ |hqp|dp < 0o, and applying Fubini’s theorem, we conclude that

Jr(a,b) == /7 iwavb(e)qb((o)de_ /7 i wavb(e)[ /R ei(’“dPX(a:)]dG

= /_:; [/Rha,b(:zr,H)dPX(:z:)]dﬁz /]R [/_:; ha,b(xvo)de} dPx(x) .

Since hqp(z,0) is the difference between the function e?*/(i270) at u =  — a and
the same function at u = x — b, it follows that

T
/ hap(z,0)d0 = R(x —a,T) — R(z —b,T).
-T

Further, as the cosine function is even and the sine function is odd,

T _ifu T _:
R(u,T) = / ;- / sinOu) 4o 588 gy
T 1270 0 0 0

with S(r) = [y ' sinz dx for r > 0.

Even though the Lebesgue integral fooo -1 sinx dr does not exist, because both
the integral of the positive part and the integral of the negative part are infinite,
we still have that S(r) is uniformly bounded on (0, c0) and

T
lim S(r) = =
Hes =3
(c.f. Exercise B3TH). Consequently,
0 if x<a or x>0
%iTm[R(w —a,T) = R(x—b,T)] = gap(z) =3 if 2=a or z=0b
1 if a<z<d

Since S(-) is uniformly bounded, so is |R(z — a,T) — R(x — b,T)| and by bounded
convergence,

%irrgo Jr(a,b) = F}lTr(I)lo R[R(w —a,T)— R(z —b,T)]dPx (z) = /Rga,b(x)d’PX (x)

= SPx({a}) + Px((a b)) + 5Px(()).

With Px({a}) = Fx(a) — Fx(a_), Px((a, b)) = Fx(b_) - Fx(a) and Px({b}) =
Fx(b) — Fx(b™), we arrive at the assertion (B30).

Suppose now that [, |®x(0)|dd = C' < oo. This implies that both the real and the

imaginary parts of e?’*®x () are integrable with respect to Lebesgue’s measure on
R, hence fx(z) of B3) is well defined. Further, |fx(x)| < C is uniformly bounded
and by dominated convergence with respect to Lebesgue’s measure on R,

. . 1 —ifx —i6h
< i =
}llln%|fx(:v+h) Ifx(x)] %11%2 /R|e [|Px(0)|le 11d6 = 0,

implying that fx(-) is also continuous. Turning to prove that fx(-) is the density
of X, note that
b—a

2

[Ya,6(0)Px (0)] < |Px(0)],



124 3. WEAK CONVERGENCE, cur AND POISSON APPROXIMATION

so by dominated convergence we have that
(3.3.8) lim Jr(a0) = o) = / W (0)Dx (6)d0
o0 R

Further, in view of (B33), upon applying Fubini’s theorem for the integrable func-
tion e}, ;(u)®x () with respect to Lebesgue’s measure on R?, we see that

Joc(a,b) = ;ﬁ / { /a be—”uclu}@x(o)dé): /a ’ Fx (w)du

for the bounded continuous function fx(-) of B31). In particular, J(a,b) must
be continuous in both a and b. Comparing (B3) with [B30) we see that

Too(a,) = 5[Fx (6) + Fx (67)] — 5[Fx (@) + Fx(a")],

so the continuity of J (-, -) implies that Fx (-) must also be continuous everywhere,
with

Fx(b) — Fx(a) = Joo(a, ) /fx

for all @ < b. This shows that necessarily fx(x) is a non-negative real-valued
function, which is the density of X. ]

EXERCISE 3.3.15. Integrating fz_leizdz around the contour formed by the “up-
per 7 semi- circles of radii ¢ and r and the intervals [—r, —e] and [r,e], deduce that
= [, @~ sinzdx is uniformly bounded on (0,00) with S(r) — m/2 as r — oo.

Our strategy for handling the CLT and similar limit results is to establish the
convergence of characteristic functions and deduce from it the corresponding con-
vergence in distribution. One ingredient for this is of course the fact that the
characteristic function uniquely determines the corresponding law. Our next result
provides an important second ingredient, that is, an explicit sufficient condition for
uniform tightness in terms of the limit of the characteristic functions.

LEMMA 3.3.16. Suppose {v,,} are probability measures on (R,B) and ®,, (0) =
vn (€% the corresponding characteristic functions. If ®,, (0) — ®(0) as n — oo,
for each 0 € R and further ®(0) is continuous at = 0, then the sequence {v,} is
uniformly tight.

REMARK. To see why continuity of the limit ®(-) at 0 is required, consider the
sequence v, of normal distributions N'(0,n?). From Example B30 we see that
the point-wise limit ®(0) = Iy—o of ®,, (0) = exp(—n?6?/2) exists but is dis-
continuous at # = 0. However, for any M < oo we know that v,([-M, M]) =
vi([-M/n,M/n]) — 0 as n — oo, so clearly the sequence {v,} is not uniformly
tight. Indeed, the corresponding distribution functions F,(x) = Fy(z/n) converge
vaguely to F(z) = F1(0) = 1/2 which is not a distribution function (reflecting
escape of all the probability mass to +00).

PrOOF. We start the proof by deriving the key inequality
1 (" .
(339) > [ =i = (22,

TJ—r
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which holds for every probability measure p on (R, B) and any r > 0, relating the
smoothness of the characteristic function at 0 with the tail decay of the correspond-
ing probability measure at +oo. To this end, fixing r > 0, note that

J(x) = / (1—e9%)df = 2r — / (cosOx + isinfx)dl = 2r — 2sinrz '
x

So J(x) is non-negative (since |sinu| < |u| for all u), and bounded below by 2r —
2/|z| (since |sinwu| < 1). Consequently,

2
(3.3.10) J(z) > max(2r — Tl 0) = rl{je|>2/r} -

Now, applying Fubini’s theorem for the function 1 —e** whose modulus is bounded
by 2 and the product of the probability measure p and Lebesgue’s measure on
[—7, 7], which is a finite measure of total mass 2r, we get the identity

[ a-woan= [ [ [0~ [ rwae.

Thus, the lower bound ([B3I0) and monotonicity of the integral imply that
1 /(" 1 .
L[ a=wuonar = 1 [ I@in@) > [ Lpandute) = w(=2/r2/).

hence establishing [B33)).

We turn to the application of this inequality for proving the uniform tightness.
Since ®,, (0) = 1 for all n and ®,_(0) — ®(0), it follows that ®(0) = 1. Further,
®(0) is continuous at § = 0, so for any € > 0, there exists r = r(g) > 0 such that

Zzu—®WM for all 6 € [—r,7],

and hence also

e 1 (7

- > - 1—®(0)|d6 .

s21 [ n-e)

The point-wise convergence of @, to ® implies that |1 — ®,, (0)| — |1 — ®(0)|. By
bounded convergence with respect to Uniform measure of 6 on [—r, 7], it follows
that for some finite ng = np(e) and all n > ny,

1 T
€2 —/ 1=, (0)|do,
r

—-r

-

which in view of (B3 results with

gzl/wu—¢wwmw2mﬂ—ynyﬂﬂ.

rJ_r

Since € > 0 is arbitrary and M = 2/r is independent of n, by Definition this
amounts to the uniform tightness of the sequence {v,}. O

Building upon Corollary B-3 T4 and Lemma BZ3TH we can finally relate the point-
wise convergence of characteristic functions to the weak convergence of the corre-
sponding measures.

THEOREM 3.3.17 (LEVY’S CONTINUITY THEOREM). Let v, 1 <n < co be proba-
bility measures on (R, B).

(a) If vy = Voo, then @, (0) — ®,_(0) for each 6 € R.
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(b) Conversely, if @, (0) converges point-wise to a limit ®(0) that is contin-
wous at @ = 0, then {v,} is a uniformly tight sequence and v, = v such

that ®, = P.

PRrROOF. For part (a), since both z +— cos(fz) and x +— sin(fz) are bounded
continuous functions, the assumed weak convergence of v, to v, implies that
®,, (0) = v, (%) — voo (e9%) = @, (0) (c.f. Definition B2ZI7).

Turning to deal with part (b), recall that by Lemma B3T6 we know that the
collection I' = {v,} is uniformly tight. Hence, by Prohorov’s theorem (see the
remark preceding the proof of Lemma BZ3R), for every subsequence v/, there is a
further sub-subsequence v, (,,, ) that converges weakly to some probability measure
Voo. Though in general v, might depend on the specific choice of n(m), we deduce
from part (a) of the theorem that necessarily ®,_ = ®. Since the characteristic
function uniquely determines the law (see Corollary B3 Ta), here the same limit
V = Vs, applies for all choices of n(m). In particular, fixing h € Cp(R), the sequence
Yn = Vn(h) is such that every subsequence y,(,) has a further sub-subsequence
Yn(m,) that converges to y = v(h). Consequently, y, = vn(h) — y = v(h) (see
Lemma EZZTTI), and since this applies for all h € Cy(R), we conclude that v,, = v
such that &, = P. O

Here is a direct consequence of Lévy’s continuity theorem.

EXERCISE 3.3.18. Show that if X, 2, Xoo, Yo 2, Yoo and Y, is independent of
X, for1<n < oo, then X, +Y, i>Xoo—i—YOO.
Combining Exercise B3] with the Portmanteau theorem and the CLT, you can

now show that a finite second moment is necessary for the convergence in distribu-
tion of n=Y/23°7 | Xy for i.i.d. {X}.

EXERCISE 3.3.19. Suppose {Xy, Xz} are ii.d. and n=/2 Sorei Xk 2.z (with
the limit Z € R).
(a) Set Yy = Xy — X, and show that n=/2 Sy Y Loz Z, with Z and
Z i.i.d.
(b) Let Uy = Yiljy,|<p and Vi, = Yi Iy, |>p. Show that for any u < oo and
all n,

PO Yi>uyn) 2P Uk >uyn, » Vi >0)>
k=1 k=1 k=1

n

1
5P(Z Uy > uy/n).
k=1
(c) Apply the Portmanteau theorem and the CLT for the bounded i.i.d. {Uy}
to get that for any u,b < oo,
= 1
P(Z—-Z>u)> 5P(G >u/\/EUZ).

Considering the limit b — oo followed by u — oo deduce that EY? < co.
(d) Conclude that if n=/2 37 | Xy N Z, then necessarily EX? < oo.

REMARK. The trick of replacing X, by the variables Y, = X — X 1 whose law is

symmetric (i.e. Yy E24 —Y%), is very useful in many problems. It is often called the
symmetrization trick.
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EXERCISE 3.3.20. Provide an example of a random wariable X with a bounded
probability density function but for which [ |®x(0)|d0 = oo, and another example
of a random variable X whose characteristic function ®x () is not differentiable at

0 =0.
As you find out next, Lévy’s inversion theorem can help when computing densities.

EXERCISE 3.3.21. Suppose the random variables Uy, are i.i.d. where the law of each
Uy, is the uniform probability measure on (—1,1). Considering Example [F-5.3, show
that for each n > 2, the probability density function of Sp =Y p_; Uy is

fs.(s) = 1 /OOO cos(0s)(sin6/0)"do ,

™

and deduce that [;° cos(fs)(sin6/6)"df = 0 for all s >n > 2.

EXERCISE 3.3.22. Deduce from Example BZ T3 that if { Xk} are i.i.d. each having
the Cauchy density, then n=! > or_y Xk has the same distribution as X1, for any
value of n.

We next relate differentiability of ®x(-) with the weak law of large numbers and
show that it does not imply that E|X]| is finite.

EXERCISE 3.3.23. Let S,, = 22:1 Xy, where the i.i.d. random variables { Xy} have
each the characteristic function ®x(-).

(a) Show that ifd;l}%(()) =2 €C, then z = ia for somea € R andn™'S,, & a
asn — oo.

(b) Show that if n='S,, & a, then ®x(£hy)™ — e for any hy, | 0 and
ny = [1/hy], and deduce that “2X(0) = ia.

(¢) Conclude that the weak law of large numbers holds (i.e. n='S, % a for
some non-random a), if and only if ®x(-) is differentiable at @ =0 (this
result is due to E.J.G. Pitman, see [Pit56)]).

(d) Use Ezercise 213 to provide a random variable X for which ®x(-) is
differentiable at 0 = 0 but E|X| = co.

As you show next, X, L2 Xo yields convergence of ®x, (-) to ®x__(+), uniformly
over compact subsets of R.

EXERCISE 3.3.24. Show that if X, N Xoo then for any r finite,
lim sup [®x, (0) — Px_ (0) =0.

n—o0 g|<r

Hint: By Theorem [ you may further assume that X, “% Xo.

Characteristic functions of modulus one correspond to lattice or degenerate laws,
as you show in the following refinement of part (c) of Proposition

EXERCISE 3.3.25. Suppose |®y (60)] =1 for some 0 # 0.
(a) Show thatY is a (27 /6)-lattice random variable, namely, that Y mod (27/6)
is P-degenerate.
Hint: Check conditions for equality when applying Jensen’s inequality for

(cos8Y,sin0Y") and the convex function g(x,y) = \/x2 + y2.
(b) Deduce that if in addition | Dy (N0)| =1 for some A ¢ Q then Y must be
P-degenerate, in which case ®y (0) = exp(ifc) for some c € R.



128 3. WEAK CONVERGENCE, cur AND POISSON APPROXIMATION

Building on the preceding two exercises, you are to prove next the following con-
vergence of types result.

EXERCISE 3.3.26. Suppose Z, LY and BnZn + Vn 2y for some 37, non-P-
degenerate Y, and non-random (B, > 0, vy,.
(a) Show that B, — >0 finite.
Hint: Start with the finiteness of limit points of {6}
(b) Deduce that ~, — = finite.
(c) Conclude that y2 BY + .
Hint: Recall Slutsky’s lemma.

REMARK. This convergence of types fails for P-degenerate Y. For example, if
Z, 2 N(0,n7?), then both Z, - 0 and nZ, —= 0. Similarly, if Z, 2 N(0,1)

then 8,7, 2 N (0,1) for the non-converging sequence (3, = (—1)" (of alternating
signs).

Mimicking the proof of Lévy’s inversion theorem, for random variables of bounded
support you get the following alternative inversion formula, based on the theory of
Fourier series.

EXERCISE 3.3.27. Suppose R.V. X supported on (0,t) has the characteristic func-
tion ®x and the distribution function Fx. Let 6y = 2w/t and q () be as in

3 __ b—a
(m), 'LU’Lth '(/Ja)b(o) = 55 -
(a) Show that for any 0 < a <b<t

T

. k|
1 Go(1——=
Am o=

o (h00)x (k) = 2 [Fx(b) +Fx ()] — 2 [Fx (a) + Fx(a”)].
k=-T

Hint: Recall that Sp(r) = Zle(l - k/T)% is uniformly bounded for
r € (0,2m) and integer T > 1, and Sp(r) — 5+ as T — oo.
(b) Show that if >, |®x(kby)| < oo then X has the bounded continuous
probability density function, given for x € (0,t) by
0 —ikfox
fx(@) =32 > e M (kho).

kEZ

(¢) Deduce thatif R.V.s X andY supported on (0,t) are such that ®x (kby) =
Dy (kbo) for all k € Z, then X 2 Y.

Here is an application of the preceding exercise for the random walk on the circle
S1 of radius one (c.f. Definition E-TH for the random walk on R).

EXERCISE 3.3.28. Let t = 27 and Q denote the unit circle S* parametrized by
the angular coordinate to yield the identification Q = [0,t] where both end-points
are considered the same point. We equip Q0 with the topology induced by [0,t] and
the surface measure Aq similarly induced by Lebesgue’s measure (as in Erxercise
[Z37). In particular, R.V.-s on (Q, Bq) correspond to Borel periodic functions on
R, of period t. In this context we call U of law t~\q a uniform R.V. and call
Sn = (Y-, &)mod t, with i.i.d &,&, € Q, a random walk.

(a) Verify that Exercise [3.3.27 applies for 8o =1 and R.V.-s on Q.
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(b) Show that if probability measures vy, on (Q, Bq) are such that @, (k) —
@(k) for n — oo and fized k € Z, then v, = ve and (k) = ®,__ (k) for
all k € Z.

Hint: Since Q is compact the sequence {v,} is uniformly tight.
(c) Show that ®y (k) = 1x=o and ®g, (k) = P¢(k)". Deduce from these facts

that if £ has a density with respect to A\q then S, LU asn — .
Hint: Recall part (a) of Exercise 320
(d) Check that if & = « is non-random for some «/t ¢ Q, then S, does

not converge in distribution, but Sk, .U for K,, which are uniformly
chosen in {1,2,...,n}, independently of the sequence {&}.

3.3.3. Revisiting the crT. Applying the theory of Subsection we pro-
vide an alternative proof of the CLT, based on characteristic functions. One can
prove many other weak convergence results for sums of random variables by prop-
erly adapting this approach, which is exactly what we will do when demonstrating
the convergence to stable laws (see Exercise B333)), and in proving the Poisson
approximation theorem (in Subsection BZTl), and the multivariate CLT (in Section

B3)

To this end, we start by deriving the analog of the bound (BI) for the charac-
teristic function.

LEMMA 3.3.29. If a random variable X has E(X) =0 and E(X?) =v < oo, then
for all 0 € R,

‘@X(e) — (- %1)92)’ < ¢°Emin(|X |2 0] X 2/6).

PROOF. Let Ry(z) = €®® —1—iz — (ix)?/2. Then, rearranging terms, recalling
E(X) = 0 and using Jensen’s inequality for the modulus function, we see that

1 ‘ 2
’@X(o)— (1— 51;92)‘ - ‘E[elex 10X — %92)(2]’ - ‘ERQ(GX)‘ < E|R:(6X)).

Since |Ra(z)| < min(|z|?, |z|2/6) for any = € R (see also Exercise B33, by mono-
tonicity of the expectation we get that E|R2(6X)| < Emin(|0X|?,[0X|3/6), com-
pleting the proof of the lemma. O

The following simple complex analysis estimate is needed for relating the approx-
imation of the characteristic function of summands to that of their sum.

LEMMA 3.3.30. Suppose zp, € C are such that z, = 22:1 Znk — Zoo and m, =
Sorei |znkl* = 0 when n — oo. Then,

n

©On = H(l + zn k) — exp(zee)  for n— oo.
k=1

PROOF. Recall that the power series expansion

% (_\k—1k
log(l—&-z)zz%

k=1
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converges for |z| < 1. In particular, for |z| <1/2 it follows that

o Jz[* o 272 e —(k=1) _ |12
og(1 +2) 2/ < SO EE < op S 2o ey a0 <
k=2 k=2 k=2
Let 6, = max{|z, k| : k = 1,...,n}. Note that 62 < n,, so our assumption that

7n, — 0 implies that §,, < 1/2 for all n sufficiently large, in which case
|log pn — zn| = |log H(l + Znk) — Zznk| < Z [1og(1 + znk) = 2n,k| < 1 -
k=1 k=1 k=1
With z, — 2. and 1, — 0, it follows that log ¢, — 2. Consequently, ¢, —
exp(zo0) as claimed. O

We will give now an alternative proof of the CLT of Theorem

PROOF OF THEOREM From Example B30 we know that & () = e %
is the characteristic function of the standard normal distribution. So, by Lévy’s
continuity theorem it suffices to show that @3 () — exp(—0%/2) as n — oo, for
each € R. Recall that S, = Y7, X, x, with X, = (X — p)/von iid.
random variables, so by independence (see Lemma B3R and scaling (see part (e)
of Proposition B:32), we have that

on =g (0) = [] ®x,,.(0) = By (n"1/20)" = (14 2/n)",
k=1

where Y = (X1 — p)/v/v and z, = 2,(0) := n[®y (n~1/26) — 1]. Applying Lemma
for 2z, x = z,/n it remains only to show that z, — —62/2 (for then 7, =
|2n|?/n — 0). Indeed, since E(Y) = 0 and E(Y?) = 1, we have from Lemma B3.29
that

|2n + 0%/2] = [n[®y (n™1/20) — 1] + 6%/2| < EV,,

for V,, = min(|0Y']2,n='/2|0Y|3/6). With V,, “2 0 as n — oo and V,, < |0?|Y|?
which is integrable, it follows by dominated convergence that EV,, — 0 as n — oo,
hence 2, — —02/2 completing the proof of Theorem B2 O

We proceed with a brief introduction of stable laws, their domain of attraction
and the corresponding limit theorems (which are a natural generalization of the
CLT).

DEFINITION 3.3.31. Random variable Y has a stable law if it is non-degenerate

and for any m > 1 there exist constants d,,, > 0 and c,,, such that Y1 +...4Y, e
dnY + ¢, where {Y;} are i.i.d. copies of Y. Such variable has a symmetric stable

law if in addition Y 2y, we further say that random wvariable X is in the
domain of attraction of non-degenerate Y if there exist constants b, > 0 and a,
such that Z,(X) = (Sp — an)/bn Dy for S, =>"7_, Xk and i.i.d. copies Xy of
X.

By definition, the collection of stable laws is closed under the affine map Y +—
+/0Y + p for p € R and v > 0 (which correspond to the centering and scale of the
law, but not necessarily its mean and variance). Clearly, each stable law is in its
own domain of attraction and as we see next, only stable laws have a non-empty
domain of attraction.
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PROPOSITION 3.3.32. If X is in the domain of attraction of some non-degenerate
variable Y, then Y must have a stable law.

ProoOF. Fix m > 1, and setting n = km let 3, = b,/by > 0 and ~, =
(an — mag)/bx. We then have the representation

BnZn(X) +m =2,
=1

where Z,(Ci) = (X(i—1)kt1 + -+ + Xix — ax) /by, are i.i.d. copies of Z;(X). From our
assumption that Zj(X) L.V we thus deduce (by at most m — 1 applications of
Exercise B3R, that 3, Z,(X)+7x 2, }7, where Y = Y1+...4Y,, foriid. copies
{Yi} of Y. Moreover, by assumption Z,(X) 2, ¥, hence by the convergence of

types y2 dnY + ¢, for some finite non-random d,, > 0 and ¢, (c.f. Exercise
B3Zd). Recall Lemma that ®5(0) = [®y(0)]™. So, with ¥ assumed non-

degenerate the same applies to Y (see Exercise B32H), and in particular d,, > 0.
Since this holds for any m > 1, by definition Y has a stable law. O

We have already seen two examples of symmetric stable laws, namely those asso-
ciated with the zero-mean normal density and with the Cauchy density of Example
B3T3 Indeed, as you show next, for each o € (0,2) there corresponds the sym-
metric a-stable variable Y, whose characteristic function is ®y, (6) = exp(—|6]%)
(so the Cauchy distribution corresponds to the symmetric stable of inder a = 1
and the normal distribution corresponds to index a = 2).

EXERCISE 3.3.33. Fizing o € (0,2), suppose X 2 _X and P(X|>z)=a"“ for
all x > 1.

(a) Check that ®x(0) = 1—~(]6])|0|* where v(r) = afroo(l—cosu)u’(o‘J“l)du
converges as r | 0 to v(0) finite and positive.

(b) Setting pa,o(0) = exp(—|0]*), b, = (y(0)n)"/* and S, = bt S Xk
for i.i.d. copies Xy of X, deduce that ®g (0) — ¢a,0(0) as n — oo, for
any fized 0 € R.

(c) Conclude that X is in the domain of attraction of a symmetric stable
variable Yo, whose characteristic function is ©a,0(:).

~

(d) Fiz oo = 1 and show that with probability one limsup,,_,. S, = co and
liminf,, . §n = —00.
Hint: Recall Kolmogorov’s 0-1 law. The same proof applies for any o > 0
once we verify that Yo, has unbounded support.

(e) Show that if « = 1 then ngnz;cld |Xk| — 1 in probability but not
almost surely (in contrast, X is integrable when o > 1, in which case the
strong law of large numbers applies).

REMARK. While outside the scope of these notes, one can show that (up to scaling)
any symmetric stable variable must be of the form Y, for some a € (0, 2]. Further,

for any « € (0,2) the necessary and sufficient condition for X 2 _X to be in the
domain of attraction of Y, is that the function L(z) = z*P(|X| > z) is slowly
varying at oo (that is, L(ux)/L(x) — 1 for x — oo and fixed u > 0). Indeed, as
shown for example in [Bre92, Theorem 9.32], up to the mapping Y — /vY + p,
the collection of all stable laws forms a two parameter family Y, ., parametrized
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by the index a € (0,2] and skewness k € [—1,1]. The corresponding characteristic
functions are

(3.3.11) o (0) = exp(—10]°(1 + irsgn(6)ga(6)))

where ¢1(r) = (2/7)log|r| and g, = tan(ra/2) is constant for all @ # 1 (in
particular, go = 0 so the parameter x is irrelevant when o = 2). Further, in case
a < 2 the domain of attraction of Y, ,, consists precisely of the random variables
X for which L(z) = z*P(]X| > z) is slowly varying at oo and (P(X > z) - P(X <
—2))/P(|X| > z) — k as & — oo (for example, see [Bre92, Theorem 9.34]). To
complete this picture, we recall [Fel71), Theorem XVIL.5.1], that X is in the domain
of attraction of the normal variable Y5 if and only if L(z) = E[X?] x|<,] is slowly
varying (as is of course the case whenever EX? is finite).

As shown in the following exercise, controlling the modulus of the remainder term
for the n-th order Taylor approximation of e® one can generalize the bound on
®x(0) beyond the case n = 2 of Lemma

EXERCISE 3.3.34. For any x € R and non-negative integer n, let
v N (0"
ma = - 30 G
k=0

(a) Show that Ry (x) = [, iRn—1(y)dy for all n > 1 and deduce by induction
on n that

20z* o™+
n! 7 (n+1)!
(b) Conclude that if E|X|™" < oo then

S O)FEXE o 21X |e[X
}®X(9)—§T|SW| B min (<7 (n+1)! )]

|Rn(:c)|§min( ) forall xeRn=0,1,2,....

By solving the next exercise you generalize the proof of Theorem via char-
acteristic functions to the setting of Lindeberg’s CLT.

EXERCISE 3.3.35. Consider §n = > p_y Xnk for mutually independent random
variables X, 1, k = 1,...,n, of zero mean and variance vy, such that v, =
Y heq Unk — 1 asn — oco.

(a) Fizing 6 € R show that

on =25, (0) = [T (1 +200),
k=1

where zn 1 = Px, , (0) — 1.
(b) With 20 = —62/2, use Lemma[ZZZA to verify that |z, k| < 26%v,, ;. and
further, for any e > 0,
- 160°
|2n — Un2zoo| < Z |20k — Un,kZoo| < 0%gn(€) + 5 EUn
k=1
where zn, = Y p_q 2nk and gn(€) is given by (FLG).
(¢) Recall that Lindeberg’s condition gn(¢) — 0 implies that r2 = maxy vy —
0 as n — oo. Deduce that then z, — 2o and n, = ZZ:l |zZnkl> — 0
when n — oo.



3.4. POISSON APPROXIMATION AND THE POISSON PROCESS 133

(d) Applying Lemma [ZZT0, conclude that S, 2.a.

We conclude this section with an exercise that reviews various techniques one may
use for establishing convergence in distribution for sums of independent random
variables.

EXERCISE 3.3.36. Throughout this problem S, =Y ._, X, for mutually indepen-
dent random variables { Xy }.

(a) Suppose that P(Xy = k%) = P(X} = —k®) = 1/(2k”) and P(X} = 0) =
1 — k=8, Show that for any fized o € R and B > 1, the series Sy (w)
converges almost surely as n — 00.

(b) Consider the setting of part (a) when 0 < <1 andy=2a—08+1 is

positive. Find non-random by, such that b;;1S, L. Zand0 < Fz(z) <1
for some z € R. Provide also the characteristic function ®z(0) of Z.
(¢) Repeat part (b) in case 3 =1 and o > 0 (see Ezercise Bl for « =0).
(d) Suppose now that P(Xy = 2k) = P(X), = —2k) = 1/(2k?) and P(X}, =
1) = P(X; = —1) = 0.5(1 — k~2). Show that S, //n — G.

3.4. Poisson approximation and the Poisson process

Subsection BZT] deals with the Poisson approximation theorem and few of its ap-
plications. It leads naturally to the introduction of the Poisson process in Subsection
BZ3A where we also explore its relation to sums of i.i.d. Exponential variables and
to order statistics of i.i.d. uniform random variables.

3.4.1. Poisson approximation. The Poisson approximation theorem is about
the law of the sum S, of a large number (= n) of independent random variables.
In contrast to the CLT that also deals with such objects, here all variables are non-
negative integer valued and the variance of S,, remains bounded, allowing for the
approximation in law of S,, by an integer valued variable. The Poisson distribution
results when the number of terms in the sum grows while the probability that each
of them is non-zero decays. As such, the Poisson approximation is about counting
the number of occurrences among many independent rare events.

n

THEOREM 3.4.1 (POISSON APPROXIMATION). Let S, = ZZ”J“’ where for each

k=1
n the random variables Z,, 1 for 1 <k <n, are mutually independent, each taking
value in the set of nonnegative integers. Suppose that ppx = P(Z,, = 1) and
enk = P(Zy 1 > 2) are such that as n — oo,

(a) mek — A < 00,
k=1
(b) kfIllaX {pn,k} - 07

(c) an,k — 0.
k=1

Then, Sy, EN Ny of a Poisson distribution with parameter \, as n — oo.
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PRrROOF. The first step of the proof is to apply truncation by comparing S,

with
= Zns
k=1
where 7,1,;@ = Znklz, <1 for k =1,...,n. Indeed, observe that,
P(gn # Sn) < ZP(Zn,k # Zn,k) = ZP(Zn,k > 2)
k=1 k=1

I
M=

enk — 0 forn — oo, by assumption (c).

E
Il
—

Hence, (?n —Sn) 2. Consequently, the convergence S, 2. N \ of the sums of

truncated variables imply that also S, L. Ny (c.f. Exercise B2ZF).

As seen in the context of the CLT, characteristic functions are a powerful tool
for the convergence in distribution of sums of independent random variables (see
Subsection B33). This is also evident in our proof of the Poisson approximation

theorem. That is, to prove that S, LN A, if suffices by Levy’s continuity theorem
to show the convergence of the characteristic functions &z (¢) — @y, (0) for each
6 eR.

To this end, recall that 771 L are independent Bernoulli Variables of parameters
Dk, K = 1,...,n. Hence, by Lemma [ ] and Example B30 we have that for

Zn,k = Pn, k(ele - 1)

n

H(I) nk H(l_pn,k +Pn,k€ H +an
k=1 b1

k=1

Our assumption (a) implies that for n — oo

Zn:zzznk: ank - _>A( ):Zoo

k=1

S

Further, since |2y, k| < 2pn k, our assumptions (a) and (b) imply that for n — oo,

Z|Z k| <4ank<4 max {pnk} ank

k=1 k=1
Applying Lemma B330 we conclude that when n — oo,
23, (9) — exp(200) = exp(A(e” — 1)) = @, (6)
(see B33 for the last identity), thus completing the proof. O
REMARK. Recall Example BZZZ0 that the weak convergence of the laws of the
integer valued S,, to that of Ny also implies their convergence in total variation.

In the setting of the Poisson approximation theorem, taking A, = >"}_, pn.k, the
more quantitative result

IPs, = Prs, Ml = Y [P(Sn = k) = P(Na, = k)| < 2min(\; ", 1) ank

due to Stein (1987) also holds (see also [Dur03l (2.6.5)] for a s1mpler argument,
due to Hodges and Le Cam (1960), which is just missing the factor min(\,; !, 1)).
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For the remainder of this subsection we list applications of the Poisson approxi-
mation theorem, starting with

EXAMPLE 3.4.2 (POISSON APPROXIMATION FOR THE BINOMIAL). Take indepen-
dent variables Z, 1, € {0,1}, so enr = 0, with pn = pn that does not depend on
k. Then, the variable S, = S, has the Binomial distribution of parameters (n,py,).
By Stein’s result, the Binomial distribution of parameters (n,py,) is approzimated
well by the Poisson distribution of parameter A, = np,,, provided p, — 0. In case
An = npp, — A < 00, Theorem [F71] yields that the Binomial (n,py) laws converge
weakly as n — oo to the Poisson distribution of parameter X. This is in agreement
with Example [3-1.7 where we approzimate the Binomial distribution of parameters
(n,p) by the normal distribution, for in Example [T18 we saw that, upon the same
scaling, Ny, s also approximated well by the normal distribution when X\, — oo.

Recall the occupancy problem where we distribute at random r distinct balls
among n distinct boxes and each of the possible n” assignments of balls to boxes is
equally likely. In Example EZT.T0 we considered the asymptotic fraction of empty
boxes when r/n — a and n — oo. Noting that the number of balls M, ;; in the
k-th box follows the Binomial distribution of parameters (r,n"1), we deduce from
Example B2 that M, — N,. Thus, P(M,; = 0) — P(N, = 0) = e~
That is, for large n each box is empty with probability about e~®, which may
explain (though not prove) the result of Example EZT.T0l Here we use the Poisson
approximation theorem to tackle a different regime, in which » = r, is of order
nlogn, and consequently, there are fewer empty boxes.

PROPOSITION 3.4.3. Let S,, denote the number of empty boxes. Assuming r = ry

is such that ne~"/™ — X € [0, 00), we have that S,, L, Ny asn — oo.

PrROOF. Let Z,, = In, =0 for kK =1,...,n, that is Z,, , = 1 if the k-th box
is empty and Z, = 0 otherwise. Note that S, = 22:1 Zn,k, With each Z,, i
having the Bernoulli distribution of parameter p, = (1 —n~=1)". Our assumption
about r,, guarantees that np,, — A. If the occupancy Z, j of the various boxes were
mutually independent, then the stated convergence of S,, to N would have followed
from Theorem BZTl Unfortunately, this is not the case, so we present a bare-
hands approach showing that the dependence is weak enough to retain the same
conclusion. To this end, first observe that for any | = 1,2,...,n, the probability
that given boxes k1 < ko < ... < k; are all empty is,

l
P(Zn,kl = Zn,kz =T Lngkg < 1) = (1 - E)T
Let p; = pi(r,n) = P(S,, = 1) denote the probability that exactly [ boxes are empty
out of the n boxes into which the r balls are placed at random. Then, considering
all possible choices of the locations of these [ > 1 empty boxes we get the identities
pi(r,n) = by(r,n)po(r,n —1) for

(3.4.1) bi(r,n) = <7Z> -1y

n

Further, po(r,n) = 1—P( at least one empty box), so that by the inclusion-exclusion
formula,

n

(3.4.2) po(r,n) = (=1)'by(r,n) .

=0
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According to part (b) of Exercise BZA po(r,n) — e~*. Further, for fixed | we
have that (n —1)e="/(»=1) — X, so as before we conclude that po(r,n —1) — e~
By part (a) of Exercise 44 we know that b;(r,n) — /! for fixed I, hence
pi(r,n) — e *MN/Il. As p; = P(S, = 1), the proof of the proposition is thus
complete. O

The following exercise provides the estimates one needs during the proof of Propo-
sition B3 (for more details, see [Dur03] Theorem 2.6.6]).

EXERCISE 3.4.4. Assuming ne~"/™ — X, show that

(a) bi(r,n) of (1) converges to \/1! for each fived I.
(b) po(r,n) of (ZQ) converges to e™*.

Finally, here is an application of Proposition to the coupon collector’s prob-
lem of Example EET8 where T,, denotes the number of independent trials, it takes
to have at least one representative of each of the n possible values (and each trial
produces a value U; that is distributed uniformly on the set of n possible values).

EXAMPLE 3.4.5 (REVISITING THE COUPON COLLECTOR’S PROBLEM). For any
z € R, we have that
(3.4.3) lim P(T,, — nlogn < nzx) =exp(—e ),

n—oo

which is an improvement over our weak law result that Ty, /nlogn — 1. Indeed, to
derive (54.3) view the first r trials of the coupon collector as the random placement
of r balls into n distinct bozes that correspond to the n possible values. From this
point of view, the event {T,, < r} corresponds to filling all n boxes with the r
balls, that is, having none empty. Taking r = r, = [nlogn + nxz| we have that
ne~"/" — X = e, and so it follows from Proposition BZ3 that P(T,, < 1p,) —
P(Ny =0) =e"?, as stated in [34.9)-

Note that though T, = Zzzl Xk with X, independent, the convergence in dis-
tribution of T,,, given by (34-3), is to a non-normal limit. This should not surprise
you, for the terms X, with k near n are large and do not satisfy Lindeberg’s
condition.

EXERCISE 3.4.6. Recall that 7;' denotes the first time one has { distinct values
when collecting coupons that are uniformly distributed on {1,2,...,n}. Using the
Poisson approzimation theorem show that if n — oo and £ = €(n) is such that

n~Y20 — X € [0,00), then T — 2, N with N a Poisson random variable of
parameter \?/2.

3.4.2. Poisson Process. The Poisson process is a continuous time stochastic
process w — N¢(w), t > 0 which belongs to the following class of counting processes.

DEFINITION 3.4.7. A counting process s a mapping w —— N¢(w), where Ni(w)
is a piecewise constant, nondecreasing, right continuous function of t > 0, with
No(w) = 0 and (countably) infinitely many jump discontinuities, each of whom is
of size one.

Associated with each sample path N¢(w) of such a process are the jump times
0=To<Th <---<T, <- such that Ty, = inf{t > 0: Ny > k} for each k, or
equivalently

Ny =sup{k >0: T} <t}
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In applications we find such Ny as counting the number of discrete events occurring
in the interval [0,t] for each t > 0, with Ty, denoting the arrival or occurrence time
of the k-th such event.

REMARK. It is possible to extend the notion of counting processes to discrete
events indexed on R?, d > 2. This is done by assigning random integer counts
N4 to Borel subsets A of R in an additive manner, that is, Naug = Na + Np
whenever A and B are disjoint. Such processes are called point processes. See also
Exercise for more about Poisson point process and inhomogeneous Poisson
processes of non-constant rate.

Among all counting processes we characterize the Poisson process by the joint
distribution of its jump (arrival) times {T%}.

DEFINITION 3.4.8. The Poisson process of rate A > 0 is the unique counting
process with the gaps between jump times 7, = Ty, — Tp—1, k = 1,2,... being i.i.d.
random variables, each having the exponential distribution of parameter .

Thus, from Exercise [[ZZ46 we deduce that the k-th arrival time T} of the Poisson
process of rate A has the gamma density of parameters o = k and A,
/\kukfl \u
u) = ————e "1 .
ka( ) (k—l)‘ u>0
As we have seen in Example EZ37 counting processes appear in the context of
renewal theory. In particular, as shown in Exercise EZ38 the Poisson process of
rate \ satisfies the strong law of large numbers ¢~ N; 537\
Recall that a random variable N has the Poisson(u) law if
Mn
P(N=n)= —'e_“, n=0,1,2,....
n!
Our next proposition, which is often used as an alternative definition of the Poisson
process, also explains its name.

PROPOSITION 3.4.9. For any ¢ and any 0 =ty < t1 < --- < tg, the increments
Nty Nty — Ny, ooy Ny — Ny, , are independent random variables and for some
A >0 and all t > s > 0, the increment Ny — N has the Poisson(A(t — s)) law.

Thus, the Poisson process has independent increments, each having a Poisson law,
where the parameter of the count N; — N, is proportional to the length of the
corresponding interval [s, t].

The proof of Proposition BT relies on the lack of memory of the exponential
distribution. That is, if the law of a random variable T is exponential (of some
parameter A > 0), then for all ¢,s > 0,

P(T>t+s) e MNi+s)

44) P(T>t+s|T>t)= = =e M =P(T )
(3.4.4) (T>t+s|T>t) P> 1) Py e (T > s)

Indeed, the key to the proof of Proposition BZ9 is the following lemma.

LEMMA 3.4.10. Fizing t > 0, the variables {7]} with 7 = Tn,41 —t, and 7] =
TNet+j — TNy+j—1, ] = 2 are i.i.d. each having the exponential distribution of pa-
rameter \. Further, the collection {7}} is independent of Ny which has the Poisson
distribution of parameter At.
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REMARK. Note that in particular, Ey = Tn,11 — ¢ which counts the time till
next arrival occurs, hence called the excess life time at t, follows the exponential
distribution of parameter .

PrOOF. Fixing ¢ > 0 and n > 1 let H,(z) = P(t > T,, > t — z). With
x) = fow fr, (t —y)dy and T,, independent of 7,11, we get by Fubini’s theorem
(for Iy>7, >¢—7,,,), and the integration by parts of Lemma [CZ30 that

P(N, =n) =P(t > T, >t — 7ui1) = E[Hy(rs1)]
/ fr, (t = y)P(Tni1 > y)dy
nis _ n—1 n
(3.4.5) :/ Mefk(t*y)ef&ydy _n)
0

(n—1)! n!

As this applies for any n > 1, it follows that N; has the Poisson distribution of
parameter A¢t. Similarly, observe that for any s; > 0 and n > 1,

P(Ny=n,m >s1) =Pt >T, >t —Tos1 +51)

/ Fro(t = )P (uss > 51+ y)dy
= e MP(N, =n)=P(ry > 5)P(N; =n).

Since Ty = 0, P(N; = 0) = e * and T} = 7y, in view of ([£Z4) this conclusion
extends to n = 0, proving that 77 is independent of N; and has the same exponential
law as 7.

Next, fix arbitrary integer £ > 2 and non-negative s; > 0 for j = 1,...,k. Then,
for any n > 0, since {7n4;,j > 2} are i.i.d. and independent of (T, T 41),

P(Nt:n,TJ'->sj,j:1,...,k)

=Pt >T,>t—Tos1+51,Tnyj — Tntj—1> 55,5 =2,..., k)
A k
=P(t>Ty>t— 701 +51) [[Plrars > 55) =P(N; =n) H (75 > 55).
j=2 i=1

Since s; > 0 and n > 0 are arbitrary, this shows that the random variables N; and
7i, j =1,..., k are mutually independent (c.f. Corollary [LZTZ), with each 7} hav-
ing an exponential distribution of parameter A. As k is arbitrary, the independence

of Ny and the countable collection {77} follows by Definition O
Proor or ProrosiTION BEZ0 Fix t,s; > 0, j = 1,...,k, and non-negative

integers n and m;, 1 < j < k. The event {N,, = m;,1 < j < k} is of the form
{(r1,...,7) € H} for r =my, + 1 and

H = ﬂ{ze [0,00)" i1+ + &, <85 <T1+ -+ Tyq1)-
j=1
Since the event {(7y,...,7)) € H} is merely {Nyys, — Ny = my,1 < j < k}, it

T

follows form Lemma BZZT{ that
P(Nt:n,Nt+Sj—Nt:mj,lSjgk):P(Nt:n,(T{,..., T)EH)
= P(Nt = n)P((Tla' . 57-7“) € H) = P(Nt = n)P(NS] = mjal S.] < k) .
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By induction on ¢ this identity implies that if 0 =ty < t; <ty < --- < ty, then
¢
(3.4.6) P(N, — Ny, =ni 1 <i <) = [[P(Noiv,, = i)
i=1

(the case ¢ = 1 is trivial, and to advance the induction to £ + 1 set k = ¢, t = 1,
n=n and S5 = thrl — tl, mj; = 25221 nl)

Considering (BZ0) for £ =2, to =t > s = t1, and summing over the values of 1y
we see that P(N; — Ny = n2) = P(N;—s = na), hence by [BZH) we conclude that

N; — N; has the Poisson distribution of parameter (¢t — s), as claimed. O

The Poisson process is also related to the order statistics {V, } for the uniform
measure, as stated in the next two exercises.

EXERCISE 3.4.11. Let Uy,Us, ..., U, be i.i.d. with each U; having the uniform
measure on (0,1]. Denote by Vi, i the k-th smallest number in {Uy,...,Uy}.
(a) Show that (Vi1,...,Van) has the same law as (T1/Tps1,- -y Tn/Tnt1),
where {T}} are the jump (arrival) times for a Poisson process of rate A
(see Subsection[[.Z4 for the definition of the law Px of a random vector
X)
(b) Taking A =1, deduce that nV,, i 2, Ty asn — oo while k is fized, where
Ty has the gamma density of parameters a =k and s = 1.

EXERCISE 3.4.12. Fizing any positive integer n and 0 < t1 <ty < ... < t, <,
show that

| t1 to tn
P(Tkgtk,k:l,...,n|Nt:n):%/ / (/ dxy)dx,—1 - dxy .
0 T Tn—1
That is, conditional on the event Ny = n, the first n jump times {T}, : k=1,...,n}
have the same law as the order statistics {V,, x : k= 1,...,n} of a sample of n i.i.d
random variables Uy, ..., Uy, each of which is uniformly distributed in [0,t].

Here is an application of Exercise BATA

EXERCISE 3.4.13. Consider a Poisson process Ny of rate X and jump times {T}}.

(a) Compute the values of g(n) = E(In,=n Z Tk).
k=1

N
(b) Compute the value of v = E(Z(L‘ —T)).
k=1
(c) Suppose that Ty is the arrival time to the train station of the k-th pas-
senger on a train that departs the station at time t. What is the meaning
of Nt and of v in this case?

The representation of the order statistics {V,x} in terms of the jump times of
a Poisson process is very useful when studying the large n asymptotics of their
spacings { R, }. For example,

EXERCISE 3.4.14. Let Ry = Voo — Vak—1, K = 1,...,n, denote the spacings
between V,, . of Ezercise [34.11] (with V;, 0 =0). Show that as n — oo,

(3.4.7) max Rnp 21,

logn k=1,...,n
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and further for each fixed x > 0,

(3.4.8) Gn(ﬁt) =n ! ZI{Rn,k>f€/n} 2 e *,
k=1
(3.4.9) B, (z) := P(k_ in Rn,x>wx/n?) —e ",

As we show next, the Poisson approximation theorem provides a characterization
of the Poisson process that is very attractive for modeling real-world phenomena.

COROLLARY 3.4.15. If N; is a Poisson process of rate X\ > 0, then for any fized
k, 0 <t] <ty <---<tr and nonnegative integers ni,ng, -+ , N,
P(Ny+n — Ny, = 1Ny, = ny, j < k)= Ah+o(h),
P(N¢,+n — N, > 2Ny, = nj, j < k) =o(h),
where o(h) denotes a function f(h) such that h='f(h) — 0 as h | 0.

PRrOOF. Fixing k, the ¢; and the nj, denote by A the event {Ny, = nj, j < k}.
For a Poisson process of rate A the random variable Ny, 4, — Ny, is independent of
A with P(Ny, 4n— Ny, = 1) = e MAh and P(Ny, 15, — Ny, > 2) = 1—e (14 \h).
Since e = 1—\h+o(h) we see that the Poisson process satisfies this corollary. [

Our next exercise explores the phenomenon of thinning, that is, the partitioning
of Poisson variables as sums of mutually independent Poisson variables of smaller
parameter.

EXERCISE 3.4.16. Suppose {X;} are i.i.d. with P(X; = j)=p; for j=0,1,...,k
and N a Poisson random variable of parameter X that is independent of {X}. Let
N
N, :ZIXFJ» ji=0,....k.
i=1
(a) Show that the variables Nj, j = 0,1,...,k are mutually independent with
N; having a Poisson distribution of parameter Ap;.
(b) Show that the sub-sequence of jump times {Tk} obtained by independently
keeping with probability p each of the jump times {T} of a Poisson pro-
cess Ny of rate A, yields in turn a Poisson process N, of rate Ap.

We conclude this section noting the superposition property, namely that the sum
of two independent Poisson processes is yet another Poisson process.

EXERCISE 3.4.17. Suppose Ny = Nt(l) + Nt(2) where Nt(l) and Nt(z) are two inde-
pendent Poisson processes of rates A1 > 0 and Ao > 0, respectively. Show that Ny
is a Poisson process of rate A1 + Ao.

3.5. Random vectors and the multivariate CLT

The goal of this section is to extend the CLT to random vectors, that is, R%valued
random variables. Towards this end, we revisit in Subsection B2l the theory
of weak convergence, this time in the more general setting of R%valued random
variables. Subsection is devoted to the extension of characteristic functions
and Lévy’s theorems to the multivariate setting, culminating with the Cramér-
wold reduction of convergence in distribution of random vectors to that of their
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one dimensional linear projections. Finally, in Subsection we introduce the
important concept of Gaussian random vectors and prove the multivariate CLT.

3.5.1. Weak convergence revisited. Recall Definition B2ZT1 of weak con-
vergence for a sequence of probability measures on a topological space S, which
suggests the following definition for convergence in distribution of S-valued random
variables.

DEFINITION 3.5.1. We say that (S, Bs)-valued random variables X,, converge in
distribution to a (S, Bs)-valued random variable X, denoted by X, 2, Xoo, if
Px, = Px..-

As already remarked, the Portmanteau theorem about equivalent characterizations
of the weak convergence holds also when the probability measures v,, are on a Borel
measurable space (S, Bs) with (S, p) any metric space (and in particular for S = R9).

THEOREM 3.5.2 (PORTMANTEAU THEOREM). The following five statements are
equivalent for any probability measures v,, 1 < n < oo on (S, Bs), with (S, p) any
metric space.

n—oo

For every open set G, one has liminf v,(G) > v (G)

For every veo-continuity set A, one has lim v, (A) = Voo (A)
n—oo

(
(
(c
(
(

1

Voo © g~ 1 and if in addition g is bounded then v,(g) — Voo (g).

REMARK. For S =R, the equivalence of (a)—(d) is the content of Theorem BZ2T]
while Proposition B2ZTd derives (e) out of (a) (in the context of convergence in
distribution, that is, X,, — Xo and P(X. € Dy) = 0 implying that g(X,,) 2,
9(X)). In addition to proving the converse of the continuous mapping property,
we extend the validity of this equivalence to any metric space (S, p), for we shall
apply it again in Subsection 2 considering there S = C([0, 00)), the metric space
of all continuous functions on [0, co).

PRrROOF. The derivation of (b) = (¢) = (d) in Theorem B2Z2T] applies for any
topological space. The direction (e) = (a) is also obvious since h € Cp(S) has
D;, = () and Ci(S) is a subset of the bounded Borel functions on the same space
(c.f. Exercise [[Z20). So taking g € Cy(S) in (e) results with (a). It thus remains
only to show that (a) = (b) and that (d) = (e), which we proceed to show next.
(a) = (b). Fixing A € Bs let pa(x) = infyca p(z,y) : S — [0,00). Since |[pa(z) —
pa(z")| < p(z,2') for any x,2’, it follows that x +— p4(x) is a continuous function
on (S,p). Consequently, h.(z) = (1 — rpa(z))+ € Cy(S) for all » > 0. Further,
pa(z) =0 for all z € A, implying that h, > I4 for all r. Thus, applying part (a)
of the Portmanteau theorem for h, we have that

limsup v, (4) < nlglg@ Vn(hy) = Voo (hyr) .

n—oo

As pa(z) = 0 if and only if z € A it follows that h, | Ig as r — oo, resulting with
limsup v, (A4) < voo(A).

n—oo
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Taking A = A = F a closed set, we arrive at part (b) of the theorem.

(d) = (e). Fix a Borel function g : S — R with K = sup,, |g(z)| < oo such that
Voo(Dy) = 0. Clearly, {o € R : v 0 g1 ({}) > 0} is a countable set. Thus, fixing
e > 0 we can pick £ < co and ag < a3 < -+ < ay such that vo 0 g7 ({a;}) = 0
for0 <i</l o< K< K<apand o —aj_1 < ecforl <i </ Let
A ={z:a;-1 < g(x) < o;} fori=1,... ¢ noting that 04; C {z : g(x) = a;_1,
or g(z) = a;} UDy,. Consequently, by our assumptions about g(-) and {a;} we
have that v (0A4;) = 0 for each ¢ = 1,...,£. It thus follows from part (d) of the
Portmanteau theorem that

‘ ‘
Z a;vn(4;) — Z Voo (Aj)
i=1 i=1

as n — oo. Our choice of a; and A; is such that g < Zle a;la, < g+ ¢, resulting
with

£
vn(g) < Zaiyn(Ai) <vn(g) +¢
=1

forn =1,2,...,00. Considering first n — oo followed by ¢ | 0, we establish that
Un(g) — Voo(g). More generally, recall that Dyoy C Dy for any g : S +— R and h €
Cy(R). Thus, by the preceding proof v, (ho g) — voo(ho g) as soon as ve(Dgy) = 0.
This applies for every h € C,(R), so in this case v, 0 g~ = vy, 0 gL O

We next show that the relation of Exercise B2ZH between convergences in proba-
bility and in distribution also extends to any metric space (S, p), a fact we will later

use in Subsection [ when considering the metric space of all continuous functions
on [0, c0).

COROLLARY 3.5.3. If random variables X,,, 1 < n < oo on the same probability

space and taking value in a metric space (S, p) are such that p(X,, Xoo) = 0, then
Xy 2 Xoo.

ProOF. Fixing h € Cy(S) and £ > 0, we have by continuity of h(-) that G, TS,

where
G, ={y €S :|h(z) — h(y)| < e whenever p(z,y) <r '}.
By definition, if X, € G, and p(X,,, Xoo) < 771 then |h(X,,)—h(Xs)| < e. Hence,
for any n,r > 1,
E[[n(Xn) = h(Xoo)|] < €+ 2/[h]loo(P(Xoo & Gr) + P(p(Xny Xoo) >171)),
where ||h|loo = sup,cg |h(x)| is finite (by the boundedness of h). Considering n — oo

followed by r — oo we deduce from the convergence in probability of p(X,,, X)
to zero, that

limsup E[|h(X,,) — h(Xx)|] <€ +2||h|o lim P(Xo ¢ Gy) =¢.

Since this applies for any € > 0, it follows by the triangle inequality that EA(X,,) —
Eh(X ) for all h € Cy(S), ie. Xp — Xoo. O

REMARK. The notion of distribution function for an R%valued random vector
X =(X1,...,Xq) is

Fx(z)=P(X1 <z,...,Xqg < zq).
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Inducing a partial order on RY by z < y if and only if 2 — y has only non-negative
coordinates, each distribution function F 'x (z) has the three properties listed in
Theorem [CZ3A Unfortunately, these three properties are not sufficient for a given
function F : R? + [0, 1] to be a distribution function. For example, since the mea-
sure of each rectangle A = H?:l (ai, b;] should be positive, the additional constraint

of the form A F = Zjil +F(z;) > 0 should hold if F(-) is to be a distribution
function. Here z; enumerates the 24 corners of the rectangle A and each corner is
taken with a positive sign if and only if it has an even number of coordinates from
the collection {ai,...,aq}. Adding the fourth property that AqF > 0 for each
rectangle A C R, we get the necessary and sufficient conditions for F(-) to be a

distribution function of some R?valued random variable (c.f. [Dur03, Theorem
A.1.6] or [Bil95, Theorem 12.5] for a detailed proof).

Recall Definition B2 of uniform tightness, where for S = R? we can take K, =
[~ M., M.]% with no loss of generality. Though Prohorov’s theorem about uniform
tightness (i.e. Theorem BZZ3) is beyond the scope of these notes, we shall only
need in the sequel the fact that a uniformly tight sequence of probability measures
has at least one limit point. This can be proved for S = R? in a manner similar
to what we have done in Theorem B2337 and Lemma for S = R!, using the
corresponding concept of distribution function Fx(-) (see [Dur03, Theorem 2.9.2]
for more details).

3.5.2. Characteristic function. We start by extending the useful notion of
characteristic function to the context of R?-valued random variables (which we also
call hereafter random vectors).

DEFINITION 3.5.4. Adopting the notation (z,y) = Z?:l zy; for z,y € R, a ran-
dom vector X = (X1, Xo,---, Xq) with values in RY has the characteristic function

D () = B[],
where § = (01,02, ,04) € R and i = /—1.
REMARK. The characteristic function ®y : R% — C exists for any X since
(3.5.1) e'@X) — cos(0, X) + isin(9, X),

with both real and imaginary parts being bounded (hence integrable) random vari-
ables. Actually, it is easy to check that all five properties of Proposition hold,
where part (e) is modified to ® a+x+4(8) = exp(i(b, §)) P x (AB), for any non-random
d x d-dimensional matrix A and b € R? (with A? denoting the transpose of the
matrix A).

Here is the extension of the notion of probability density function (as in Definition
[CZ39) to a random vector.

DEFINITION 3.5.5. Suppose fx is a non-negative Borel measurable function with
fRd fx(z)dx = 1. We say that a random vector X = (X1,...,Xq) has a probability
density function fx(-) if for every b = (b1,...,baq),

b1 by
F&(b):/ oo f&(x17"'7xd)dzd"'dzl

— 00
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(such fx is sometimes called the joint density of X1,...,Xq). This is the same as
saying that the law of X is of the form fx A with A\* the d-fold product Lebesque
measure on R? (i.e. the d > 1 extension of Example [CI00).

EXAMPLE 3.5.6. We have the following extension of the Fourier transform formula
F-54) to random vectors X with density,

ORI NETE

(this is merely a special case of the extension of Corollary [LIBA to h: R? — R).
We next state and prove the corresponding extension of Lévy’s inversion theorem.

THEOREM 3.5.7 (LEVY’S INVERSION THEOREM). Suppose ®x (0) is the character-
istic function of random vector X = (X1,...,Xq) whose law is Px, a probability
measure on (RY, Bga). If A = [a1,b1] x -+ X [ag, ba] with Px(0A) =0, then

(3.5.2) = T@OO/ . H Ya, , (0;)Px (0)d0
for Yo u() of (ZZA). Further, the chamcterzstzc function determines the law of a
random vector. That is, if ®x () = @y (8) for all § then X has the same law as Y.

PrOOF. We derive (BR2) by adapting the proof of Theorem B3T2 First apply
Fubini’s theorem with respect to the product of Lebesgue’s measure on [T, 7%
and the law of X (both of which are finite measures on RY) to get the identity

r(a,b) /TT]d.H%“ )P x( )da_/Rd H/ a; 0, (25,05)d0; | dPx (z)

(where hgp(z,0) = 14.5(0)e®®). In the course of proving Theorem BZIIA we have
seen that for j = 1,...,d the integral over §; is uniformly bounded in 7" and that
it converges to gq; b, (x;) as T' T oo. Thus, by bounded convergence it follows that

lim Jr(a,b) = /R ) Jab(2)dPx (z)

TToo

where

EQ HgaJ b;

is zero on A° and one on A° (see the exphclt formula for g, p(x) provided there).
So, our assumption that Px(0A) = 0 implies that the limit of Jr(a,b) as T T oo is
merely Px (A), thus establishing B=3).

Suppose now that ®x (8) = @y () for all §. Adapting the proof of Corollary B3 T
to the current setting, let 7 = {a € R: P(X,; = «) > 0 or P(Y; = «) > 0 for some
j =1,...,d} noting that if all the coordinates {a;,b;,j7 = 1,...,d} of a rectangle
A are frorn the complement of 7 then both Px(JA) =0 and ’Py(aA) = 0. Thus,
by B2) we have that Px(A4) = Py (A) for any A in the collection C of rectangles
with coordinates in the complement of 7. Recall that J is countable, so for any
rectangle A there exists A, € C such that A,, | A, and by continuity from above of
both Px and Py it follows that Px(A) = Py (A) for every rectangle A. In view of
Proposition and Exercise [LT.21] this implies that the probability measures
Px and Py agree on all Borel subsets of R O
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We next provide the ingredients needed when using characteristic functions en-
route to the derivation of a convergence in distribution result for random vectors.
To this end, we start with the following analog of Lemma B3 TA

LEMMA 3.5.8. Suppose the random vectors X,,, 1 <n < oo on R? are such that
Px (0) - ®x_(8) as n — oo for each § € R, Then, the corresponding sequence
of laws {Px } is uniformly tight.

ProOOF. Fixing § € R consider the sequence of random variables V;, = (6, X,,).
Since @y, () = ®x (af) for 1 < n < oo, we have that @y, (a) — Py, (a) for all
a € R. The uniform tightness of the laws of Y;, then follows by Lemma B3T0
Considering 6, ...,8,; which are the unit vectors in the d different coordinates,
we have the uniform tightness of the laws of X, ; for the sequence of random
vectors X, = (Xpn1, Xn,2,.--,Xnd) and each fixed coordinate j = 1,...,d. For
the compact sets K. = [~M_, M.]¢ and all n,

d
P(X, ¢ K.) <Y P(Xn;| > M).
j=1
As d is finite, this leads from the uniform tightness of the laws of X, ; for each
j=1,...,d to the uniform tightness of the laws of X,. O

Equipped with Lemma BXA8 we are ready to state and prove Lévy’s continuity
theorem.

THEOREM 3.5.9 (LEVY’S CONTINUITY THEOREM). Let X, 1 < n < oo be random

vectors with characteristic functions ®x (0). Then, X, 2, X if and only if
x (0) = @x_(0) as n — oo for each fived § € R

PRrROOF. This is a re-run of the proof of Theorem B304 adapted to R?-valued
random variables. First, both z — cos((#,z)) and z — sin((#,z)) are bounded

continuous functions, so if X, 2, X, then clearly as n — oo,
ox () = B[¢'@X0| — B[e@Xx)] oy (0).

For the converse direction, assuming that ®x — ®x _ point-wise, we know from
Lemma [E5. that the collection {Px } is uniformly tight. Hence, by Prohorov’s
theorem, for every subsequence n(m) there is a further sub-subsequence n(my) such

that Px () COTVETZES weakly to some probability measure Py, possibly dependent

upon the choice of n(m). As X
proof that Qin(mk

n(me) 2, Y, we have by the preceding part of the

, — Py, and necessarily @y = ®x . The characteristic function

determines the law (see Theorem BET), so Y Z2x « 18 independent of the choice
of n(m). Thus, fixing h € Cy(R?), the sequence y, = Eh(X,,) is such that every
subsequence y,(,,) has a further sub-subsequence y,(n,,) that converges to yoo.
Consequently, 1, — Yoo (see Lemma EZZTT). This applies for all h € C(R?), so we

conclude that X, 2, X ., as stated. (]

REMARK. As in the case of Theorem E:3TT it is not hard to show that if ®x (0) —
®(0) as n — oo and P(f) is continuous at § = 0 then & is necessarily the charac-

teristic function of some random vector X  and consequently X , 2, X
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The proof of the multivariate CLT is just one of the results that rely on the following
immediate corollary of Lévy’s continuity theorem.

COROLLARY 3.5.10 (CRAMER-WOLD DEVICE). A sufficient condition for X, 2,
X is that (0, X)) 2, (0, X)) for each § € RY,

o0

PRrROOF. Since (8, X)) 2, (0, X ) it follows by Lévy’s continuity theorem (for
d = 1, that is, Theorem BZT1), that

lim E[e@X)] = B[eiC£0].

n—oo

As this applies for any 0 € R? we get that X, N X by applying Lévy’s
continuity theorem in R? (i.e., Theorem BZ5), now in the converse direction. [

REMARK. Beware that it is not enough to consider only finitely many values of
0 in the Cramér-Wold device. For example, consider the random vectors X, =
(X, Y,) with {X,,,Ys,} i.id. and Ya,4+1 = Xo,4+1. Convince yourself that in this

case X, 2, Xy and Y, 2, Y7 but the random vectors X, do not converge in
distribution (to any limit).

The computation of the characteristic function is much simplified in the presence
of independence.

EXERCISE 3.5.11. Show that if Y = (Y1,...,Yy) with Y mutually independent
R.V., then for all @ = (01,...,04) € R?,

d
(3.5.3) oy () = [ ®v. (6x)
k=1

Conversely, show that if [323) holds for all @ € R?, the random variables Yy,

k=1,...,d are mutually independent of each other.

3.5.3. Gaussian random vectors and the multivariate cLT. Recall the
following linear algebra concept.

DEFINITION 3.5.12. An d x d matrizx A with entries Aj is called nonnegative
definite (or positive semidefinite) if Ajx = Ay; for all j,k, and for any § € R?

d
(0, A0) = > 0;A;.0, > 0.

j=1k=1

We are ready to define the class of multivariate normal distributions via the cor-
responding characteristic functions.

DEFINITION 3.5.13. We say that a random vector X = (X1, Xa, -+, X4) is Gauss-
ian, or alternatively that it has a multivariate normal distribution if

(3.5.4) Dx(f) = e 3 EVD @R,

for some nonnegative definite d x d matriz V, some p = (p1, ..., fta) € R? and all
0= (01,...,04) € R?. We denote such a law by N(u, V).

REMARK. For d =1 this definition coincides with Example B30



3.5. RANDOM VECTORS AND THE MULTIVARIATE cLr 147

Our next proposition proves that the multivariate N (u, V) distribution is well
defined and further links the vector I and the matrix V to the first two moments
of this distribution.

PROPOSITION 3.5.14. The formula ([3-5.4) corresponds to the characteristic func-
tion of a probability measure on R, Further, the parameters w and 'V of the Gauss-
ian random vector X are merely u; = EX; and Vi, = Cov(X;, Xi), j,k=1,...,d.

PROOF. Any nonnegative definite matrix V can be written as V = U'D?U for
some orthogonal matrix U (i.e., such that U'U = I, the d x d-dimensional identity
matrix), and some diagonal matrix D. Consequently,

(8, V8) = (A6, AD)

for A = DU and all § € R We claim that (54 is the characteristic function
of the random vector X = A'Y + p, where Y = (Y1,...,Yy) has i.i.d. coordinates
Y%, each of which has the standard normal distribution. Indeed, by Exercise B5.11
Py (0) = exp(—21(8,0)) is the product of the characteristic functions exp(—63/2) of
the standard normal distribution (see Example B3, and by part (e) of Proposition
B33 ©x(0) = exp(i(8, p)) Py (AB), yielding the formula (B5I).

We have just shown that X has the N'(u, V) distribution if X = A'Y + p for a
Caussian random vector Y (whose distribution is A'(0, I)), such that EY; = 0 and
Cov(Y;,Ys) = 1= for j,k = 1,...,d. It thus follows by linearity of the expec-
tation and the bi-linearity of the covariance that EX; = p; and Cov(X;, Xy) =
[EA'Y (A'Y)!];1x = (A'TA)x = Vi, as claimed. O

Definition allows for V that is non-invertible, so for example the constant
random vector X = p is considered a Gaussian random vector though it obviously
does not have a density. The reason we make this choice is to have the collection
of multivariate normal distributions closed with respect to L2-convergence, as we
prove below to be the case.

PROPOSITION 3.5.15. Suppose Gaussian random vectors X,, converge in L? to
a random vector X, that is, B[|X,, — X _|[?] — 0 as n — oco. Then, X is

a Gaussian random vector, whose parameters are the limits of the corresponding
parameters of X,,.

PROOF. Recall that the convergence in L2 of X, to X . implies that p, =EX,
convergeto p_ = EX and the element-wise convergence of the covariance matri-
ces V,, to the corresponding covariance matrix V... Further, the L?-convergence
implies the corresponding convergence in probability and hence, by bounded con-
vergence ®x (f) — ®x_(6) for each § € R%. Since Ox (0) = e 2@ Vaf)ilns,)
for any n < oo, it follows that the same applies for n = co. It is a well known fact
of linear algebra that the element-wise limit V., of nonnegative definite matrices
V,, is necessarily also nonnegative definite. In view of Definition B5T3 we see that
the limit X is a Gaussian random vector, whose parameters are the limits of the
corresponding parameters of X, . ([

One of the main reasons for the importance of the multivariate normal distribution
is the following cLT (which is the multivariate extension of Proposition BXIL2).
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THEOREM 3.5.16 (MULTIVARIATE CLT). Let S, = n™2 Z(Kk — ), where { X }
k=1

are i.i.d. random vectors with finite second moments and such that p = EX,.

Then, Sn 2, G, with G having the N'(0, V) distribution and where V is the d X d-

dimensional covariance matriz of X .

PROOF. Consider the i.i.d. random vectors Y, = X — p each having also the
covariance matrix V. Fixing an arbitrary vector # € R? we proceed to show that
(@, Sn) 2, (8, G), which in view of the Cramér-Wold device completes the proof
of the theorem. Indeed, note that (6,5,) =n"% > or_y Zk, where Zj, = (6,Y,) are
ii.d. R-valued random variables, having zero mean and variance

vp = Var(Z1) = E[(6,Y,)*] = (¢, B[Y, Y1]0) = (¢, V0).

Observing that the CLT of Proposition B-T.2 thus applies to (6, S ), 1t remains only
to verify that the resulting limit distribution N'(0,vp) is indeed the law of (6, G).
To this end note that by Definitions BZil and BRI for any s € R,

Bg.(5) = Da(s) = e 2 @V — ous?/2

which is the characteristic function of the A/(0, vg) distribution (see Example B230).
Since the characteristic function uniquely determines the law (see Corollary B2314),
we are done. O

Here is an explicit example for which the multivariate CLT applies.

EXAMPLE 3.5.17. The simple random walk on Z? is S, = >°}_, X, where X,
X, are i.i.d. random vectors such that

1
2d
and e; is the unit vector in the i-th direction, i = 1,...,d. In this case EX =0
and if i # j then EX,X; = 0, resulting with the covariance matrizc V. = (1/d)I for
the multivariate normal limit in distribution of n='/2S,, .

gy ooy

Building on Lindeberg’s CLT for weighted sums of i.i.d. random variables, the
following multivariate normal limit is the basis for the convergence of random walks
to Brownian motion, to which Section is devoted.

EXERCISE 3.5.18. Suppose {£x} are i.i.d. with E&, = 0 and EE? = 1. Consider
the random functions S, (t) = n=1/28(nt) where S(t) = Zg]zl &k + (t = D&+
and [t] denotes the integer part of t.

(a) Verify that Lindeberg’s CLT applies for §n = > h_1 an ik whenever the
non-random {an } are such that r, = max{|an x| : k =1,...,n} — 0
and vy, = Y )y az, — 1.

(b) Let c(s,t) = min(s,t) and fizing 0 =tg < t1 < --- < tq, denote by C the
d x d matriz of entries Cji = c(t;,t). Show that for any § € RY,

d r
Z(tr - trfl)(z 9]’)2 = (Q7 CQ) 5
r=1 j=1

~

(c) Using the Cramér-Wold device deduce that (§n(t1), ooy Sp(ta)) Nyl
with G having the N (0, C) distribution.
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As we see in the next exercise, there is more to a Gaussian random vector than
each coordinate having a normal distribution.

EXERCISE 3.5.19. Suppose X1 has a standard normal distribution and S is inde-
pendent of X1 and such that P(S =1)=P(S =-1)=1/2.
(a) Check that Xo = SX1 also has a standard normal distribution.
(b) Check that X1 and Xo are uncorrelated random variables, each having
the standard normal distribution, while X = (X1, X2) is not a Gaussian
random vector and where X1 and Xo are not independent variables.

Motivated by the proof of Proposition BXAT4 here is an important property of
Gaussian random vectors which may also be considered to be an alternative to
Definition

EXERCISE 3.5.20. A random vector X has the multivariate normal distribution
if and only if (Zle a; Xi,5 = 1,...,m) is a Gaussian random vector for any
non-random coefficients ai1, a2, ..., amq € R.

The classical definition of the multivariate normal density applies for a strict subset
of the distributions we consider in Definition

DEeFINITION 3.5.21. We say that X has a non-degenerate multivariate normal
distribution if the matrix 'V is invertible, or alternatively, when V is (strictly)
positive definite matriz, that is (6, VE) > 0 whenever § # 0.

We next relate the density of a random vector with its characteristic function, and
provide the density for the non-degenerate multivariate normal distribution.

EXERCISE 3.5.22.

(a) Show that if [p.|®Px(0)|d8 < oo, then X has the bounded continuous
probability density function

(3.5.5) Fx(z) = @ /R D ()b,

(b) Show that a random vector X with a non-degenerate multivariate normal
distribution N'(p, V) has the probability density function

1
Fx(e) = (2m) (et V) exp (— e~ V- ).
Here is an application to the uniform distribution over the sphere in R”, as n — oo.

EXERCISE 3.5.23. Suppose {Yi} are i.i.d. random wvariables with EY? = 1 and
EY; =0. Let W, =n~ >0 Y2 and X, = Vi /W, fork=1,...,n.

(a) Noting that W,, “3 1 deduce that Xna 2, Yi.

(b) Show that n=Y23"0_ | X, 1 L2, G whose distribution is N(0,1).

(¢) Show that if {Yy} are standard normal random variables, then the ran-
dom vector X,, = (Xn1,...,Xnn) has the uniform distribution over the
surface of the sphere of radius /n in R™ (i.e., the unique measure sup-
ported on this sphere and invariant under orthogonal transformations),
and interpret the preceding results for this special case.
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We conclude the section with the following exercise, which is a multivariate, Lin-
deberg’s type CLT.

EXERCISE 3.5.24. Let y* denotes the transpose of the vector y € RY and ||y
its Buclidean norm. The independent random vectors {Y .} on R? are such that

Xk 2 _in
lim » P([Y,] > V) =0,
k=1

and for some symmetric, (strictly) positive definite matrix V. and any fized ¢ €
(O’ 1]7

n—oo

lim n~! Z E(sz};[”xkngs\/ﬁ) =V.
k=1

(a) Let T,y = Y5 Xy for X = n~2Yy Iy < m- Show that T, —
G, with G having the N (0, V) multivariate normal distribution.

(b) Let Sn =n"123°0 Y, and show that Sn L.

(¢) Show that (S,)'V~LS, L. 7 and identify the law of Z.
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