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Preface

These are the lecture notes for a year long, PhD level course in Probability Theory
that I taught at Stanford University in 2004, 2006 and 2009. The goal of this
course is to prepare incoming PhD students in Stanford’s mathematics and statistics
departments to do research in probability theory. More broadly, the goal of the text
is to help the reader master the mathematical foundations of probability theory
and the techniques most commonly used in proving theorems in this area. This is
then applied to the rigorous study of the most fundamental classes of stochastic
processes.

Towards this goal, we introduce in Chapter 1 the relevant elements from measure
and integration theory, namely, the probability space and the σ-algebras of events
in it, random variables viewed as measurable functions, their expectation as the
corresponding Lebesgue integral, and the important concept of independence.

Utilizing these elements, we study in Chapter 2 the various notions of convergence
of random variables and derive the weak and strong laws of large numbers.

Chapter 3 is devoted to the theory of weak convergence, the related concepts
of distribution and characteristic functions and two important special cases: the
Central Limit Theorem (in short clt) and the Poisson approximation.

Drawing upon the framework of Chapter 1, we devote Chapter 4 to the definition,
existence and properties of the conditional expectation and the associated regular
conditional probability distribution.

Chapter 5 deals with filtrations, the mathematical notion of information progres-
sion in time, and with the corresponding stopping times. Results about the latter
are obtained as a by product of the study of a collection of stochastic processes
called martingales. Martingale representations are explored, as well as maximal
inequalities, convergence theorems and various applications thereof. Aiming for a
clearer and easier presentation, we focus here on the discrete time settings deferring
the continuous time counterpart to Chapter 8.

Chapter 6 provides a brief introduction to the theory of Markov chains, a vast
subject at the core of probability theory, to which many text books are devoted.
We illustrate some of the interesting mathematical properties of such processes by
examining few special cases of interest.

Chapter 7 sets the framework for studying right-continuous stochastic processes
indexed by a continuous time parameter, introduces the family of Gaussian pro-
cesses and rigorously constructs the Brownian motion as a Gaussian process of
continuous sample path and zero-mean, stationary independent increments.
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Chapter 8 expands our earlier treatment of martingales and strong Markov pro-
cesses to the continuous time setting, emphasizing the role of right-continuous fil-
tration. The mathematical structure of such processes is then illustrated both in
the context of Brownian motion and that of Markov jump processes.

Building on this, in Chapter 9 we re-construct the Brownian motion via the in-
variance principle as the limit of certain rescaled random walks. We further delve
into the rich properties of its sample path and the many applications of Brownian
motion to the clt and the Law of the Iterated Logarithm (in short, lil).

The intended audience for this course should have prior exposure to stochastic
processes, at an informal level. While students are assumed to have taken a real
analysis class dealing with Riemann integration, and mastered well this material,
prior knowledge of measure theory is not assumed.

It is quite clear that these notes are much influenced by the text books [Bil95,
Dur03, Wil91, KaS97] I have been using.

I thank my students out of whose work this text materialized and my teaching as-
sistants Su Chen, Kshitij Khare, Guoqiang Hu, Julia Salzman, Kevin Sun and Hua
Zhou for their help in the assembly of the notes of more than eighty students into
a coherent document. I am also much indebted to Kevin Ross, Andrea Montanari
and Oana Mocioalca for their feedback on earlier drafts of these notes, to Kevin
Ross for providing all the figures in this text, and to Andrea Montanari, David
Siegmund and Tze Lai for contributing some of the exercises in these notes.

Amir Dembo

Stanford, California

April 2010



CHAPTER 1

Probability, measure and integration

This chapter is devoted to the mathematical foundations of probability theory.
Section 1.1 introduces the basic measure theory framework, namely, the probability
space and the σ-algebras of events in it. The next building blocks are random
variables, introduced in Section 1.2 as measurable functions ω 7→ X(ω) and their
distribution.
This allows us to define in Section 1.3 the important concept of expectation as the

corresponding Lebesgue integral, extending the horizon of our discussion beyond
the special functions and variables with density to which elementary probability
theory is limited. Section 1.4 concludes the chapter by considering independence,
the most fundamental aspect that differentiates probability from (general) measure
theory, and the associated product measures.

1.1. Probability spaces, measures and σ-algebras

We shall define here the probability space (Ω,F ,P) using the terminology of mea-
sure theory.
The sample space Ω is a set of all possible outcomes ω ∈ Ω of some random exper-

iment. Probabilities are assigned by A 7→ P(A) to A in a subset F of all possible
sets of outcomes. The event space F represents both the amount of information
available as a result of the experiment conducted and the collection of all events of
possible interest to us. A pleasant mathematical framework results by imposing on
F the structural conditions of a σ-algebra, as done in Subsection 1.1.1. The most
common and useful choices for this σ-algebra are then explored in Subsection 1.1.2.
Subsection 1.1.3 provides fundamental supplements from measure theory, namely
Dynkin’s and Carathéodory’s theorems and their application to the construction of
Lebesgue measure.

1.1.1. The probability space (Ω,F, P). We use 2Ω to denote the set of all
possible subsets of Ω. The event space is thus a subset F of 2Ω, consisting of all
allowed events, that is, those events to which we shall assign probabilities. We next
define the structural conditions imposed on F .

Definition 1.1.1. We say that F ⊆ 2Ω is a σ-algebra (or a σ-field), if
(a) Ω ∈ F ,
(b) If A ∈ F then Ac ∈ F as well (where Ac = Ω \A).
(c) If Ai ∈ F for i = 1, 2, 3, . . . then also

⋃
iAi ∈ F .

Remark. Using DeMorgan’s law, we know that (
⋃

i A
c
i )

c =
⋂

i Ai. Thus the
following is equivalent to property (c) of Definition 1.1.1:
(c’) If Ai ∈ F for i = 1, 2, 3, . . . then also

⋂
i Ai ∈ F .
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8 1. PROBABILITY, MEASURE AND INTEGRATION

Definition 1.1.2. A pair (Ω,F) with F a σ-algebra of subsets of Ω is called a
measurable space. Given a measurable space (Ω,F), a measure µ is any countably
additive non-negative set function on this space. That is, µ : F → [0,∞], having
the properties:
(a) µ(A) ≥ µ(∅) = 0 for all A ∈ F .
(b) µ(

⋃
nAn) =

∑
n µ(An) for any countable collection of disjoint sets An ∈ F .

When in addition µ(Ω) = 1, we call the measure µ a probability measure, and
often label it by P (it is also easy to see that then P(A) ≤ 1 for all A ∈ F).

Remark. When (b) of Definition 1.1.2 is relaxed to involve only finite collections
of disjoint sets An, we say that µ is a finitely additive non-negative set-function.
In measure theory we sometimes consider signed measures, whereby µ is no longer
non-negative, hence its range is [−∞,∞], and say that such measure is finite when
its range is R (i.e. no set in F is assigned an infinite measure).

Definition 1.1.3. A measure space is a triplet (Ω,F , µ), with µ a measure on the
measurable space (Ω,F). A measure space (Ω,F , P) with P a probability measure
is called a probability space.

The next exercise collects some of the fundamental properties shared by all prob-
ability measures.

Exercise 1.1.4. Let (Ω,F ,P) be a probability space and A,B,Ai events in F .
Prove the following properties of every probability measure.

(a) Monotonicity. If A ⊆ B then P(A) ≤ P(B).
(b) Sub-additivity. If A ⊆ ∪iAi then P(A) ≤ ∑

i P(Ai).
(c) Continuity from below: If Ai ↑ A, that is, A1 ⊆ A2 ⊆ . . . and ∪iAi = A,

then P(Ai) ↑ P(A).
(d) Continuity from above: If Ai ↓ A, that is, A1 ⊇ A2 ⊇ . . . and ∩iAi = A,

then P(Ai) ↓ P(A).

Remark. In the more general context of measure theory, note that properties
(a)-(c) of Exercise 1.1.4 hold for any measure µ, whereas the continuity from above
holds whenever µ(Ai) <∞ for all i sufficiently large. Here is more on this:

Exercise 1.1.5. Prove that a finitely additive non-negative set function µ on a
measurable space (Ω,F) with the “continuity” property

Bn ∈ F , Bn ↓ ∅, µ(Bn) <∞ =⇒ µ(Bn) → 0

must be countably additive if µ(Ω) <∞. Give an example that it is not necessarily
so when µ(Ω) = ∞.

The σ-algebra F always contains at least the set Ω and its complement, the empty
set ∅. Necessarily, P(Ω) = 1 and P(∅) = 0. So, if we take F0 = {∅,Ω} as our σ-
algebra, then we are left with no degrees of freedom in choice of P. For this reason
we call F0 the trivial σ-algebra. Fixing Ω, we may expect that the larger the σ-
algebra we consider, the more freedom we have in choosing the probability measure.
This indeed holds to some extent, that is, as long as we have no problem satisfying
the requirements in the definition of a probability measure. A natural question is
when should we expect the maximal possible σ-algebra F = 2Ω to be useful?

Example 1.1.6. When the sample space Ω is countable we can and typically shall
take F = 2Ω. Indeed, in such situations we assign a probability pω > 0 to each ω ∈ Ω
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making sure that
∑

ω∈Ω pω = 1. Then, it is easy to see that taking P(A) =
∑

ω∈A pω

for any A ⊆ Ω results with a probability measure on (Ω, 2Ω). For instance, when
Ω is finite, we can take pω = 1

|Ω| , the uniform measure on Ω, whereby computing

probabilities is the same as counting. Concrete examples are a single coin toss, for
which we have Ω1 = {H,T} (ω = H if the coin lands on its head and ω = T if it
lands on its tail), and F1 = {∅,Ω,H,T}, or when we consider a finite number of
coin tosses, say n, in which case Ωn = {(ω1, . . . , ωn) : ωi ∈ {H,T}, i = 1, . . . , n}
is the set of all possible n-tuples of coin tosses, while Fn = 2Ωn is the collection
of all possible sets of n-tuples of coin tosses. Another example pertains to the
set of all non-negative integers Ω = {0, 1, 2, . . .} and F = 2Ω, where we get the

Poisson probability measure of parameter λ > 0 when starting from pk = λk

k! e
−λ for

k = 0, 1, 2, . . ..

When Ω is uncountable such a strategy as in Example 1.1.6 will no longer work.
The problem is that if we take pω = P({ω}) > 0 for uncountably many values of
ω, we shall end up with P(Ω) = ∞. Of course we may define everything as before

on a countable subset Ω̂ of Ω and demand that P(A) = P(A ∩ Ω̂) for each A ⊆ Ω.
Excluding such trivial cases, to genuinely use an uncountable sample space Ω we
need to restrict our σ-algebra F to a strict subset of 2Ω.

Definition 1.1.7. We say that a probability space (Ω,F ,P) is non-atomic, or
alternatively call P non-atomic if P(A) > 0 implies the existence of B ∈ F , B ⊂ A
with 0 < P(B) < P(A).

Indeed, in contrast to the case of countable Ω, the generic uncountable sample
space results with a non-atomic probability space (c.f. Exercise 1.1.27). Here is an
interesting property of such spaces (see also [Bil95, Problem 2.19]).

Exercise 1.1.8. Suppose P is non-atomic and A ∈ F with P(A) > 0.

(a) Show that for every ε > 0, we have B ⊆ A such that 0 < P(B) < ε.
(b) Prove that if 0 < a < P(A) then there exists B ⊂ A with P(B) = a.

Hint: Fix εn ↓ 0 and define inductively numbers xn and sets Gn ∈ F with H0 = ∅,
Hn = ∪k<nGk, xn = sup{P(G) : G ⊆ A\Hn, P(Hn ∪ G) ≤ a} and Gn ⊆ A\Hn

such that P(Hn

⋃
Gn) ≤ a and P(Gn) ≥ (1− εn)xn. Consider B = ∪kGk.

As you show next, the collection of all measures on a given space is a convex cone.

Exercise 1.1.9. Given any measures {µn, n ≥ 1} on (Ω,F), verify that µ =∑∞
n=1 cnµn is also a measure on this space, for any finite constants cn ≥ 0.

Here are few properties of probability measures for which the conclusions of Ex-
ercise 1.1.4 are useful.

Exercise 1.1.10. A function d : X × X → [0,∞) is called a semi-metric on
the set X if d(x, x) = 0, d(x, y) = d(y, x) and the triangle inequality d(x, z) ≤
d(x, y) + d(y, z) holds. With A∆B = (A ∩ Bc) ∪ (Ac ∩ B) denoting the symmetric
difference of subsets A and B of Ω, show that for any probability space (Ω,F ,P),
the function d(A,B) = P(A∆B) is a semi-metric on F .

Exercise 1.1.11. Consider events {An} in a probability space (Ω,F ,P) that are
almost disjoint in the sense that P(An ∩ Am) = 0 for all n 6= m. Show that then
P(∪∞n=1An) =

∑∞
n=1 P(An).



10 1. PROBABILITY, MEASURE AND INTEGRATION

Exercise 1.1.12. Suppose a random outcome N follows the Poisson probability
measure of parameter λ > 0. Find a simple expression for the probability that N is
an even integer.

1.1.2. Generated and Borel σ-algebras. Enumerating the sets in the σ-
algebra F is not a realistic option for uncountable Ω. Instead, as we see next, the
most common construction of σ-algebras is then by implicit means. That is, we
demand that certain sets (called the generators) be in our σ-algebra, and take the
smallest possible collection for which this holds.

Exercise 1.1.13.

(a) Check that the intersection of (possibly uncountably many) σ-algebras is
also a σ-algebra.

(b) Verify that for any σ-algebras H ⊆ G and any H ∈ H, the collection
HH = {A ∈ G : A ∩H ∈ H} is a σ-algebra.

(c) Show that H 7→ HH is non-increasing with respect to set inclusions, with

HΩ = H and H∅ = G. Deduce that HH∪H′

= HH ∩ HH′

for any pair
H,H ′ ∈ H.

In view of part (a) of this exercise we have the following definition.

Definition 1.1.14. Given a collection of subsets Aα ⊆ Ω (not necessarily count-
able), we denote the smallest σ-algebra F such that Aα ∈ F for all α ∈ Γ either by
σ({Aα}) or by σ(Aα, α ∈ Γ), and call σ({Aα}) the σ-algebra generated by the sets
Aα. That is,
σ({Aα}) =

⋂{G : G ⊆ 2Ω is a σ − algebra, Aα ∈ G ∀α ∈ Γ}.
Example 1.1.15. Suppose Ω = S is a topological space (that is, S is equipped with

a notion of open subsets, or topology). An example of a generated σ-algebra is the
Borel σ-algebra on S defined as σ({O ⊆ S open }) and denoted by BS. Of special
importance is BR which we also denote by B.

Different sets of generators may result with the same σ-algebra. For example, tak-
ing Ω = {1, 2, 3} it is easy to see that σ({1}) = σ({2, 3}) = {∅, {1}, {2, 3}, {1, 2, 3}}.
A σ-algebra F is countably generated if there exists a countable collection of sets

that generates it. Exercise 1.1.17 shows that BR is countably generated, but as you
show next, there exist non countably generated σ-algebras even on Ω = R.

Exercise 1.1.16. Let F consist of all A ⊆ Ω such that either A is a countable set
or Ac is a countable set.

(a) Verify that F is a σ-algebra.
(b) Show that F is countably generated if and only if Ω is a countable set.

Recall that if a collection of sets A is a subset of a σ-algebra G, then also σ(A) ⊆ G.
Consequently, to show that σ({Aα}) = σ({Bβ}) for two different sets of generators
{Aα} and {Bβ}, we only need to show that Aα ∈ σ({Bβ}) for each α and that
Bβ ∈ σ({Aα}) for each β. For instance, considering BQ = σ({(a, b) : a < b ∈ Q}),
we have by this approach that BQ = σ({(a, b) : a < b ∈ R}), as soon as we
show that any interval (a, b) is in BQ. To see this fact, note that for any real
a < b there are rational numbers qn < rn such that qn ↓ a and rn ↑ b, hence
(a, b) = ∪n(qn, rn) ∈ BQ. Expanding on this, the next exercise provides useful
alternative definitions of B.
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Exercise 1.1.17. Verify the alternative definitions of the Borel σ-algebra B:

σ({(a, b) : a < b ∈ R}) = σ({[a, b] : a < b ∈ R}) = σ({(−∞, b] : b ∈ R})
= σ({(−∞, b] : b ∈ Q}) = σ({O ⊆ R open })

If A ⊆ R is in B of Example 1.1.15, we say that A is a Borel set. In particular, all
open (closed) subsets of R are Borel sets, as are many other sets. However,

Proposition 1.1.18. There exists a subset of R that is not in B. That is, not all
subsets of R are Borel sets.

Proof. See [Bil95, page 45]. �

Example 1.1.19. Another classical example of an uncountable Ω is relevant for
studying the experiment with an infinite number of coin tosses, that is, Ω∞ = ΩN

1

for Ω1 = {H,T} (indeed, setting H = 1 and T = 0, each infinite sequence ω ∈ Ω∞
is in correspondence with a unique real number x ∈ [0, 1] with ω being the binary
expansion of x, see Exercise 1.2.13). The σ-algebra should at least allow us to
consider any possible outcome of a finite number of coin tosses. The natural σ-
algebra in this case is the minimal σ-algebra having this property, or put more
formally Fc = σ({Aθ,k, θ ∈ Ωk

1 , k = 1, 2, . . .}), where Aθ,k = {ω ∈ Ω∞ : ωi = θi, i =
1 . . . , k} for θ = (θ1, . . . , θk).

The preceding example is a special case of the construction of a product of mea-
surable spaces, which we detail now.

Example 1.1.20. The product of the measurable spaces (Ωi,Fi), i = 1, . . . , n is
the set Ω = Ω1×· · ·×Ωn with the σ-algebra generated by {A1×· · ·×An : Ai ∈ Fi},
denoted by F1 × · · ·Fn.

You are now to check that the Borel σ-algebra of Rd is the product of d-copies of
that of R. As we see later, this helps simplifying the study of random vectors.

Exercise 1.1.21. Show that for any d <∞,

BRd = B × · · · × B = σ({(a1, b1)× · · · × (ad, bd) : ai < bi ∈ R, i = 1, . . . , d})
(you need to prove both identities, with the middle term defined as in Example
1.1.20).

Exercise 1.1.22. Let F = σ(Aα, α ∈ Γ) where the collection of sets Aα, α ∈ Γ is
uncountable (i.e., Γ is uncountable). Prove that for each B ∈ F there exists a count-
able sub-collection {Aαj

, j = 1, 2, . . .} ⊂ {Aα, α ∈ Γ}, such that B ∈ σ({Aαj
, j =

1, 2, . . .}).
Often there is no explicit enumerative description of the σ-algebra generated by

an infinite collection of subsets, but a notable exception is

Exercise 1.1.23. Show that the sets in G = σ({[a, b] : a, b ∈ Z}) are all possible
unions of elements from the countable collection {{b}, (b, b+ 1), b ∈ Z}, and deduce
that B 6= G.

Probability measures on the Borel σ-algebra of R are examples of regular measures,
namely:
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Exercise 1.1.24. Show that if P is a probability measure on (R,B) then for any
A ∈ B and ε > 0, there exists an open set G containing A such that P(A) + ε >
P(G).

Here is more information about BRd .

Exercise 1.1.25. Show that if µ is a finitely additive non-negative set function
on (Rd,BRd) such that µ(Rd) = 1 and for any Borel set A,

µ(A) = sup{µ(K) : K ⊆ A, K compact },
then µ must be a probability measure.
Hint: Argue by contradiction using the conclusion of Exercise 1.1.5. To this end,
recall the finite intersection property (if compact Ki ⊂ Rd are such that

⋂n
i=1Ki are

non-empty for finite n, then the countable intersection
⋂∞

i=1Ki is also non-empty).

1.1.3. Lebesgue measure and Carathéodory’s theorem. Perhaps the
most important measure on (R,B) is the Lebesgue measure, λ. It is the unique
measure that satisfies λ(F ) =

∑r
k=1(bk − ak) whenever F =

⋃r
k=1(ak, bk] for some

r < ∞ and a1 < b1 < a2 < b2 · · · < br. Since λ(R) = ∞, this is not a probability
measure. However, when we restrict Ω to be the interval (0, 1] we get

Example 1.1.26. The uniform probability measure on (0, 1], is denoted U and
defined as above, now with added restrictions that 0 ≤ a1 and br ≤ 1. Alternatively,
U is the restriction of the measure λ to the sub-σ-algebra B(0,1] of B.

Exercise 1.1.27. Show that ((0, 1],B(0,1], U) is a non-atomic probability space and
deduce that (R,B, λ) is a non-atomic measure space.

Note that any countable union of sets of probability zero has probability zero, but
this is not the case for an uncountable union. For example, U({x}) = 0 for every
x ∈ R, but U(R) = 1.
As we have seen in Example 1.1.26 it is often impossible to explicitly specify the

value of a measure on all sets of the σ-algebra F . Instead, we wish to specify its
values on a much smaller and better behaved collection of generators A of F and
use Carathéodory’s theorem to guarantee the existence of a unique measure on F
that coincides with our specified values. To this end, we require that A be an
algebra, that is,

Definition 1.1.28. A collection A of subsets of Ω is an algebra (or a field) if

(a) Ω ∈ A,
(b) If A ∈ A then Ac ∈ A as well,
(c) If A,B ∈ A then also A ∪ B ∈ A.

Remark. In view of the closure of algebra with respect to complements, we could
have replaced the requirement that Ω ∈ A with the (more standard) requirement
that ∅ ∈ A. As part (c) of Definition 1.1.28 amounts to closure of an algebra
under finite unions (and by DeMorgan’s law also finite intersections), the difference
between an algebra and a σ-algebra is that a σ-algebra is also closed under countable
unions.

We sometimes make use of the fact that unlike generated σ-algebras, the algebra
generated by a collection of sets A can be explicitly presented.

Exercise 1.1.29. The algebra generated by a given collection of subsets A, denoted
f(A), is the intersection of all algebras of subsets of Ω containing A.
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(a) Verify that f(A) is indeed an algebra and that f(A) is minimal in the
sense that if G is an algebra and A ⊆ G, then f(A) ⊆ G.

(b) Show that f(A) is the collection of all finite disjoint unions of sets of the
form

⋂ni

j=1 Aij , where for each i and j either Aij or Ac
ij are in A.

We next state Carathéodory’s extension theorem, a key result from measure the-
ory, and demonstrate how it applies in the context of Example 1.1.26.

Theorem 1.1.30 (Carathéodory’s extension theorem). If µ0 : A 7→ [0,∞]
is a countably additive set function on an algebra A then there exists a measure
µ on (Ω, σ(A)) such that µ = µ0 on A. Furthermore, if µ0(Ω) < ∞ then such a
measure µ is unique.

To construct the measure U on B(0,1] let Ω = (0, 1] and

A = {(a1, b1] ∪ · · · ∪ (ar, br] : 0 ≤ a1 < b1 < · · · < ar < br ≤ 1 , r <∞}
be a collection of subsets of (0, 1]. It is not hard to verify that A is an algebra, and
further that σ(A) = B(0,1] (c.f. Exercise 1.1.17, for a similar issue, just with (0, 1]
replaced by R). With U0 denoting the non-negative set function on A such that

(1.1.1) U0

( r⋃

k=1

(ak, bk]
)

=

r∑

k=1

(bk − ak) ,

note that U0((0, 1]) = 1, hence the existence of a unique probability measure U on
((0, 1],B(0,1]) such that U(A) = U0(A) for sets A ∈ A follows by Carathéodory’s
extension theorem, as soon as we verify that

Lemma 1.1.31. The set function U0 is countably additive on A. That is, if Ak is a
sequence of disjoint sets in A such that ∪kAk = A ∈ A, then U0(A) =

∑
k U0(Ak).

The proof of Lemma 1.1.31 is based on

Exercise 1.1.32. Show that U0 is finitely additive on A. That is, U0(
⋃n

k=1Ak) =∑n
k=1 U0(Ak) for any finite collection of disjoint sets A1, . . . , An ∈ A.

Proof. Let Gn =
⋃n

k=1 Ak and Hn = A \ Gn. Then, Hn ↓ ∅ and since
Ak, A ∈ A which is an algebra it follows that Gn and hence Hn are also in A. By
definition, U0 is finitely additive on A, so

U0(A) = U0(Hn) + U0(Gn) = U0(Hn) +

n∑

k=1

U0(Ak) .

To prove that U0 is countably additive, it suffices to show that U0(Hn) ↓ 0, for then

U0(A) = lim
n→∞

U0(Gn) = lim
n→∞

n∑

k=1

U0(Ak) =
∞∑

k=1

U0(Ak) .

To complete the proof, we argue by contradiction, assuming that U0(Hn) ≥ 2ε for
some ε > 0 and all n, where Hn ↓ ∅ are elements of A. By the definition of A
and U0, we can find for each ` a set J` ∈ A whose closure J ` is a subset of H` and
U0(H` \ J`) ≤ ε2−` (for example, add to each ak in the representation of H` the
minimum of ε2−`/r and (bk − ak)/2). With U0 finitely additive on the algebra A
this implies that for each n,

U0

( n⋃

`=1

(H` \ J`)
)
≤

n∑

`=1

U0(H` \ J`) ≤ ε .
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As Hn ⊆ H` for all ` ≤ n, we have that

Hn \
⋂

`≤n

J` =
⋃

`≤n

(Hn \ J`) ⊆
⋃

`≤n

(H` \ J`) .

Hence, by finite additivity of U0 and our assumption that U0(Hn) ≥ 2ε, also

U0(
⋂

`≤n

J`) = U0(Hn)− U0(Hn \
⋂

`≤n

J`) ≥ U0(Hn)− U0(
⋃

`≤n

(H` \ J`)) ≥ ε .

In particular, for every n, the set
⋂

`≤n J` is non-empty and therefore so are the

decreasing sets Kn =
⋂

`≤n J`. Since Kn are compact sets (by Heine-Borel theo-

rem), the set ∩`J` is then non-empty as well, and since J ` is a subset of H` for all
` we arrive at ∩`H` non-empty, contradicting our assumption that Hn ↓ ∅. �

Remark. The proof of Lemma 1.1.31 is generic (for finite measures). Namely,
any non-negative finitely additive set function µ0 on an algebra A is countably
additive if µ0(Hn) ↓ 0 whenever Hn ∈ A and Hn ↓ ∅. Further, as this proof shows,
when Ω is a topological space it suffices for countable additivity of µ0 to have for
any H ∈ A a sequence Jk ∈ A such that Jk ⊆ H are compact and µ0(H \ Jk) → 0
as k →∞.

Exercise 1.1.33. Show the necessity of the assumption that A be an algebra in
Carathéodory’s extension theorem, by giving an example of two probability measures
µ 6= ν on a measurable space (Ω,F) such that µ(A) = ν(A) for all A ∈ A and
F = σ(A).
Hint: This can be done with Ω = {1, 2, 3, 4} and F = 2Ω.

It is often useful to assume that the probability space we have is complete, in the
sense we make precise now.

Definition 1.1.34. We say that a measure space (Ω,F , µ) is complete if any
subset N of any B ∈ F with µ(B) = 0 is also in F . If further µ = P is a probability
measure, we say that the probability space (Ω,F ,P) is a complete probability space.

Our next theorem states that any measure space can be completed by adding to
its σ-algebra all subsets of sets of zero measure (a procedure that depends on the
measure in use).

Theorem 1.1.35. Given a measure space (Ω,F , µ), let N = {N : N ⊆ A for
some A ∈ F with µ(A) = 0} denote the collection of µ-null sets. Then, there
exists a complete measure space (Ω,F , µ), called the completion of the measure
space (Ω,F , µ), such that F = {F ∪N : F ∈ F , N ∈ N} and µ = µ on F .

Proof. This is beyond our scope, but see a detailed proof in [Dur03, page
450]. In particular, F = σ(F ,N ) and µ(A∪N) = µ(A) for any N ∈ N and A ∈ F
(c.f. [Bil95, Problems 3.10 and 10.5]). �

The following collections of sets play an important role in proving the easy part
of Carathéodory’s theorem, the uniqueness of the extension µ.

Definition 1.1.36. A π-system is a collection P of sets closed under finite inter-
sections (i.e. if I ∈ P and J ∈ P then I ∩ J ∈ P).
A λ-system is a collection L of sets containing Ω and B\A for any A ⊆ B A,B ∈ L,
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which is also closed under monotone increasing limits (i.e. if Ai ∈ L and Ai ↑ A,
then A ∈ L as well).

Obviously, an algebra is a π-system. Though an algebra may not be a λ-system,

Proposition 1.1.37. A collection F of sets is a σ-algebra if and only if it is both
a π-system and a λ-system.

Proof. The fact that a σ-algebra is a λ-system is a trivial consequence of
Definition 1.1.1. To prove the converse direction, suppose that F is both a π-
system and a λ-system. Then Ω is in the λ-system F and so is Ac = Ω \A for any
A ∈ F . Further, with F also a π-system we have that

A ∪B = Ω \ (Ac ∩ Bc) ∈ F ,

for any A,B ∈ F . Consequently, if Ai ∈ F then so are also Gn = A1∪· · ·∪An ∈ F .
Since F is a λ-system and Gn ↑

⋃
i Ai, it follows that

⋃
iAi ∈ F as well, completing

the verification that F is a σ-algebra. �

The main tool in proving the uniqueness of the extension is Dynkin’s π−λ theorem,
stated next.

Theorem 1.1.38 (Dynkin’s π − λ theorem). If P ⊆ L with P a π-system and
L a λ-system then σ(P) ⊆ L.

Proof. A short though dense exercise in set manipulations shows that the
smallest λ-system containing P is a π-system (for details see [Wil91, Section A.1.3],
or either the proof of [Dur03, Theorem A.2.1], or that of [Bil95, Theorem 3.2]). By
Proposition 1.1.37 it is a σ-algebra, hence contains σ(P). Further, it is contained
in the λ-system L, as L also contains P . �

Remark. Proposition 1.1.37 remains valid even if in the definition of λ-system
we relax the condition that B \ A ∈ L for any A ⊆ B A,B ∈ L, to the condition
Ac ∈ L whenever A ∈ L. However, Dynkin’s theorem does not hold under the
latter definition.

As we show next, the uniqueness part of Carathéodory’s theorem, is an immediate
consequence of the π − λ theorem.

Proposition 1.1.39. If two measures µ1 and µ2 on (Ω, σ(P)) agree on the π-
system P and are such that µ1(Ω) = µ2(Ω) <∞, then µ1 = µ2.

Proof. Let L = {A ∈ σ(P) : µ1(A) = µ2(A)}. Our assumptions imply that
P ⊆ L and that Ω ∈ L. Further, σ(P) is a λ-system (by Proposition 1.1.37), and
if A ⊆ B, A,B ∈ L, then by additivity of the finite measures µ1 and µ2,

µ1(B \A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B \A),

that is, B \ A ∈ L. Similarly, if Ai ↑ A and Ai ∈ L, then by the continuity from
below of µ1 and µ2 (see remark following Exercise 1.1.4),

µ1(A) = lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2(A) ,

so that A ∈ L. We conclude that L is a λ-system, hence by Dynkin’s π−λ theorem,
σ(P) ⊆ L, that is, µ1 = µ2. �
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Remark. With a somewhat more involved proof one can relax the condition
µ1(Ω) = µ2(Ω) <∞ to the existence of An ∈ P such that An ↑ Ω and µ1(An) <∞
(c.f. [Dur03, Theorem A.2.2] or [Bil95, Theorem 10.3] for details). Accordingly,
in Carathéodory’s extension theorem we can relax µ0(Ω) < ∞ to the assumption
that µ0 is a σ-finite measure, that is µ0(An) < ∞ for some An ∈ A such that
An ↑ Ω, as is the case with Lebesgue’s measure λ on R.

We conclude this subsection with an outline the proof of Carathéodory’s extension
theorem, noting that since an algebra A is a π-system and Ω ∈ A, the uniqueness of
the extension to σ(A) follows from Proposition 1.1.39. Our outline of the existence
of an extension follows [Wil91, Section A.1.8] (for a similar treatment see [Dur03,
Pages 446-448], or see [Bil95, Theorem 11.3] for the proof of a somewhat stronger
result). This outline centers on the construction of the appropriate outer measure,
a relaxation of the concept of measure, which we now define.

Definition 1.1.40. An increasing, countably sub-additive, non-negative set func-
tion µ∗ on a measurable space (Ω,F) is called an outer measure. That is, µ∗ : F 7→
[0,∞], having the properties:
(a) µ∗(∅) = 0 and µ∗(A1) ≤ µ∗(A2) for any A1, A2 ∈ F with A1 ⊆ A2.
(b) µ∗(

⋃
nAn) ≤ ∑

n µ
∗(An) for any countable collection of sets An ∈ F .

In the first step of the proof we define the increasing, non-negative set function

µ∗(E) = inf{
∞∑

n=1

µ0(An) : E ⊆
⋃

n

An, An ∈ A},

forE ∈ F = 2Ω, and prove that it is countably sub-additive, hence an outer measure
on F .
By definition, µ∗(A) ≤ µ0(A) for any A ∈ A. In the second step we prove that

if in addition A ⊆ ⋃
nAn for An ∈ A, then the countable additivity of µ0 on A

results with µ0(A) ≤ ∑
n µ0(An). Consequently, µ∗ = µ0 on the algebra A.

The third step uses the countable additivity of µ0 on A to show that for any A ∈ A
the outer measure µ∗ is additive when splitting subsets of Ω by intersections with A
and Ac. That is, we show that any element of A is a µ∗-measurable set, as defined
next.

Definition 1.1.41. Let λ be a non-negative set function on a measurable space
(Ω,F), with λ(∅) = 0. We say that A ∈ F is a λ-measurable set if λ(F ) =
λ(F ∩A) + λ(F ∩Ac) for all F ∈ F .

The fourth step consists of proving the following general lemma.

Lemma 1.1.42 (Carathéodory’s lemma). Let µ∗ be an outer measure on a
measurable space (Ω,F). Then the µ∗-measurable sets in F form a σ-algebra G on
which µ∗ is countably additive, so that (Ω,G, µ∗) is a measure space.

In the current setting, with A contained in the σ-algebra G, it follows that σ(A) ⊆
G on which µ∗ is a measure. Thus, the restriction µ of µ∗ to σ(A) is the stated
measure that coincides with µ0 on A.

Remark. In the setting of Carathéodory’s extension theorem for finite measures,
we have that the σ-algebra G of all µ∗-measurable sets is the completion of σ(A)
with respect to µ (c.f. [Bil95, Page 45] or [Dur03, Theorem A.3.2]). In the context
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of Lebesgue’s measure U on B(0,1], this is the σ-algebra B(0,1] of all Lebesgue mea-
surable subsets of (0, 1]. Associated with it are the Lebesgue measurable functions
f : (0, 1] 7→ R for which f−1(B) ∈ B(0,1] for all B ∈ B. However, as noted for
example in [Dur03, Theorem A.3.4], the non Borel set constructed in the proof of
Proposition 1.1.18 is also non Lebesgue measurable.

The following concept of a monotone class of sets is a considerable relaxation of
that of a λ-system (hence also of a σ-algebra, see Proposition 1.1.37).

Definition 1.1.43. A monotone class is a collection M of sets closed under both
monotone increasing and monotone decreasing limits (i.e. if Ai ∈ M and either
Ai ↑ A or Ai ↓ A, then A ∈ M).

When starting from an algebra instead of a π-system, one may save effort by
applying Halmos’s monotone class theorem instead of Dynkin’s π − λ theorem.

Theorem 1.1.44 (Halmos’s monotone class theorem). If A ⊆ M with A
an algebra and M a monotone class then σ(A) ⊆M.

Proof. Clearly, any algebra which is a monotone class must be a σ-algebra.
Another short though dense exercise in set manipulations shows that the intersec-
tion m(A) of all monotone classes containing an algebra A is both an algebra and
a monotone class (see the proof of [Bil95, Theorem 3.4]). Consequently, m(A) is
a σ-algebra. Since A ⊆ m(A) this implies that σ(A) ⊆ m(A) and we complete the
proof upon noting that m(A) ⊆M. �

Exercise 1.1.45. We say that a subset V of {1, 2, 3, · · · } has Cesáro density γ(V )
and write V ∈ CES if the limit

γ(V ) = lim
n→∞

n−1|V ∩ {1, 2, 3, · · · , n}| ,

exists. Give an example of sets V1 ∈ CES and V2 ∈ CES for which V1 ∩ V2 /∈ CES.
Thus, CES is not an algebra.

Here is an alternative specification of the concept of algebra.

Exercise 1.1.46.

(a) Suppose that Ω ∈ A and that A∩Bc ∈ A whenever A,B ∈ A. Show that
A is an algebra.

(b) Give an example of a collection C of subsets of Ω such that Ω ∈ C, if
A ∈ C then Ac ∈ C and if A,B ∈ C are disjoint then also A ∪ B ∈ C,
while C is not an algebra.

As we already saw, the σ-algebra structure is preserved under intersections. How-
ever, whereas the increasing union of algebras is an algebra, it is not necessarily
the case for σ-algebras.

Exercise 1.1.47. Suppose that An are classes of sets such that An ⊆ An+1.

(a) Show that if An are algebras then so is
⋃∞

n=1An.
(b) Provide an example of σ-algebras An for which

⋃∞
n=1An is not a σ-

algebra.
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1.2. Random variables and their distribution

Random variables are numerical functions ω 7→ X(ω) of the outcome of our ran-
dom experiment. However, in order to have a successful mathematical theory, we
limit our interest to the subset of measurable functions (or more generally, measur-
able mappings), as defined in Subsection 1.2.1 and study the closure properties of
this collection in Subsection 1.2.2. Subsection 1.2.3 is devoted to the characteriza-
tion of the collection of distribution functions induced by random variables.

1.2.1. Indicators, simple functions and random variables. We start
with the definition of random variables, first in the general case, and then restricted
to R-valued variables.

Definition 1.2.1. A mapping X : Ω 7→ S between two measurable spaces (Ω,F)
and (S,S) is called an (S,S)-valued Random Variable (R.V.) if

X−1(B) := {ω : X(ω) ∈ B} ∈ F ∀B ∈ S.
Such a mapping is also called a measurable mapping.

Definition 1.2.2. When we say that X is a random variable, or a measurable
function, we mean an (R,B)-valued random variable which is the most common type
of R.V. we shall encounter. We let mF denote the collection of all (R,B)-valued
measurable mappings, so X is a R.V. if and only if X ∈ mF . If in addition Ω is a
topological space and F = σ({O ⊆ Ω open }) is the corresponding Borel σ-algebra,
we say that X : Ω 7→ R is a Borel (measurable) function. More generally, a random
vector is an (Rd,BRd)-valued R.V. for some d <∞.

The next exercise shows that a random vector is merely a finite collection of R.V.
on the same probability space.

Exercise 1.2.3. Relying on Exercise 1.1.21 and Theorem 1.2.9, show that X :
Ω 7→ Rd is a random vector if and only if X(ω) = (X1(ω), . . . , Xd(ω)) with each
Xi : Ω 7→ R a R.V.

Hint: Note that X−1(B1 × . . .×Bd) =
d⋂

i=1

X−1
i (Bi).

We now provide two important generic examples of random variables.

Example 1.2.4. For any A ∈ F the function IA(ω) =

{
1, ω ∈ A
0, ω /∈ A is a R.V.

Indeed, {ω : IA(ω) ∈ B} is for any B ⊆ R one of the four sets ∅, A, Ac or Ω
(depending on whether 0 ∈ B or not and whether 1 ∈ B or not), all of whom are
in F . We call such R.V. also an indicator function.

Exercise 1.2.5. By the same reasoning check that X(ω) =
∑N

n=1 cnIAn
(ω) is a

R.V. for any finite N , non-random cn ∈ R and sets An ∈ F . We call any such X
a simple function, denoted by X ∈ SF.

Our next proposition explains why simple functions are quite useful in probability
theory.

Proposition 1.2.6. For every R.V. X(ω) there exists a sequence of simple func-
tions Xn(ω) such that Xn(ω) → X(ω) as n→∞, for each fixed ω ∈ Ω.
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Proof. Let

fn(x) = n1x>n +

n2n−1∑

k=0

k2−n1(k2−n,(k+1)2−n](x) ,

noting that for R.V. X ≥ 0, we have that Xn = fn(X) are simple functions. Since
X ≥ Xn+1 ≥ Xn and X(ω) − Xn(ω) ≤ 2−n whenever X(ω) ≤ n, it follows that
Xn(ω) → X(ω) as n→∞, for each ω.
We write a general R.V. as X(ω) = X+(ω)−X−(ω) where X+(ω) = max(X(ω), 0)

and X−(ω) = −min(X(ω), 0) are non-negative R.V.-s. By the above argument
the simple functions Xn = fn(X+) − fn(X−) have the convergence property we
claimed. �

Note that in case F = 2Ω, every mapping X : Ω 7→ S is measurable (and therefore
is an (S,S)-valued R.V.). The choice of the σ-algebra F is very important in
determining the class of all (S,S)-valued R.V. For example, there are non-trivial
σ-algebras G and F on Ω = R such that X(ω) = ω is a measurable function for
(Ω,F), but is non-measurable for (Ω,G). Indeed, one such example is when F is the
Borel σ-algebra B and G = σ({[a, b] : a, b ∈ Z}) (for example, the set {ω : ω ≤ α}
is not in G whenever α /∈ Z).

Building on Proposition 1.2.6 we have the following analog of Halmos’s monotone
class theorem. It allows us to deduce in the sequel general properties of (bounded)
measurable functions upon verifying them only for indicators of elements of π-
systems.

Theorem 1.2.7 (Monotone class theorem). Suppose H is a collection of
R-valued functions on Ω such that:

(a) The constant function 1 is an element of H.
(b) H is a vector space over R. That is, if h1, h2 ∈ H and c1, c2 ∈ R then

c1h1 + c2h2 is in H.
(c) If hn ∈ H are non-negative and hn ↑ h where h is a (bounded) real-valued

function on Ω, then h ∈ H.

If P is a π-system and IA ∈ H for all A ∈ P, then H contains all (bounded)
functions on Ω that are measurable with respect to σ(P).

Remark. We stated here two versions of the monotone class theorem, with the
less restrictive assumption that (c) holds only for bounded h yielding the weaker
conclusion about bounded elements of mσ(P). In the sequel we use both versions,
which as we see next, are derived by essentially the same proof. Adapting this
proof you can also show that any collection H of non-negative functions on Ω
satisfying the conditions of Theorem 1.2.7 apart from requiring (b) to hold only
when c1h1 + c2h2 ≥ 0, must contain all non-negative elements of mσ(P).

Proof. Let L = {A ⊆ Ω : IA ∈ H}. From (a) we have that Ω ∈ L, while (b)
implies that B \ A is in L whenever A ⊆ B are both in L. Further, in view of (c)
the collection L is closed under monotone increasing limits. Consequently, L is a
λ-system, so by Dynkin’s π-λ theorem, our assumption that L contains P results
with σ(P) ⊆ L. With H a vector space over R, this in turn implies that H contains
all simple functions with respect to the measurable space (Ω, σ(P)). In the proof of
Proposition 1.2.6 we saw that any (bounded) measurable function is a difference of
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two (bounded) non-negative functions each of which is a monotone increasing limit
of certain non-negative simple functions. Thus, from (b) and (c) we conclude that
H contains all (bounded) measurable functions with respect to (Ω, σ(P)). �

The concept of almost sure prevails throughout probability theory.

Definition 1.2.8. We say that two (S,S)-valued R.V. X and Y defined on the
same probability space (Ω,F ,P) are almost surely the same if P({ω : X(ω) 6=
Y (ω)}) = 0. This shall be denoted by X

a.s.
= Y . More generally, same notation

applies to any property of R.V. For example, X(ω) ≥ 0 a.s. means that P({ω :

X(ω) < 0}) = 0. Hereafter, we shall consider X and Y such that X
a.s.
= Y to be the

same S-valued R.V. hence often omit the qualifier “a.s.” when stating properties
of R.V. We also use the terms almost surely (a.s.), almost everywhere (a.e.), and
with probability 1 (w.p.1) interchangeably.

Since the σ-algebra S might be huge, it is very important to note that we may
verify that a given mapping is measurable without the need to check that the pre-
image X−1(B) is in F for every B ∈ S. Indeed, as shown next, it suffices to do
this only for a collection (of our choice) of generators of S.

Theorem 1.2.9. If S = σ(A) and X : Ω 7→ S is such that X−1(A) ∈ F for all
A ∈ A, then X is an (S,S)-valued R.V.

Proof. We first check that Ŝ = {B ∈ S : X−1(B) ∈ F} is a σ-algebra.
Indeed,

a). ∅ ∈ Ŝ since X−1(∅) = ∅.
b). If A ∈ Ŝ then X−1(A) ∈ F . With F a σ-algebra, X−1(Ac) =

(
X−1(A)

)c ∈ F .

Consequently, Ac ∈ Ŝ .

c). If An ∈ Ŝ for all n then X−1(An) ∈ F for all n. With F a σ-algebra, then also

X−1(
⋃

nAn) =
⋃

nX
−1(An) ∈ F . Consequently,

⋃
nAn ∈ Ŝ .

Our assumption that A ⊆ Ŝ, then translates to S = σ(A) ⊆ Ŝ , as claimed. �

The most important σ-algebras are those generated by ((S,S)-valued) random
variables, as defined next.

Exercise 1.2.10. Adapting the proof of Theorem 1.2.9, show that for any mapping
X : Ω 7→ S and any σ-algebra S of subsets of S, the collection {X−1(B) : B ∈ S} is
a σ-algebra. Verify that X is an (S,S)-valued R.V. if and only if {X−1(B) : B ∈
S} ⊆ F , in which case we denote {X−1(B) : B ∈ S} either by σ(X) or by FX and
call it the σ-algebra generated by X.

To practice your understanding of generated σ-algebras, solve the next exercise,
providing a convenient collection of generators for σ(X).

Exercise 1.2.11. If X is an (S,S)-valued R.V. and S = σ(A) then σ(X) is
generated by the collection of sets X−1(A) := {X−1(A) : A ∈ A}.
An important example of use of Exercise 1.2.11 corresponds to (R,B)-valued ran-

dom variables and A = {(−∞, x] : x ∈ R} (or even A = {(−∞, x] : x ∈ Q}) which
generates B (see Exercise 1.1.17), leading to the following alternative definition of
the σ-algebra generated by such R.V. X .
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Definition 1.2.12. Given a function X : Ω 7→ R we denote by σ(X) or by FX

the smallest σ-algebra F such that X(ω) is a measurable mapping from (Ω,F) to
(R,B). Alternatively,

σ(X) = σ({ω : X(ω) ≤ α}, α ∈ R) = σ({ω : X(ω) ≤ q}, q ∈ Q) .

More generally, given a random vector X = (X1, . . . , Xn), that is, random variables
X1, . . . , Xn on the same probability space, let σ(Xk, k ≤ n) (or FX

n ), denote the
smallest σ-algebra F such that Xk(ω), k = 1, . . . , n are measurable on (Ω,F).
Alternatively,

σ(Xk , k ≤ n) = σ({ω : Xk(ω) ≤ α}, α ∈ R, k ≤ n) .

Finally, given a possibly uncountable collection of functions Xγ : Ω 7→ R, indexed
by γ ∈ Γ, we denote by σ(Xγ , γ ∈ Γ) (or simply by FX), the smallest σ-algebra F
such that Xγ(ω), γ ∈ Γ are measurable on (Ω,F).

The concept of σ-algebra is needed in order to produce a rigorous mathematical
theory. It further has the crucial role of quantifying the amount of information
we have. For example, σ(X) contains exactly those events A for which we can say
whether ω ∈ A or not, based on the value of X(ω). Interpreting Example 1.1.19 as
corresponding to sequentially tossing coins, the R.V. Xn(ω) = ωn gives the result
of the n-th coin toss in our experiment Ω∞ of infinitely many such tosses. The σ-
algebra Fn = 2Ωn of Example 1.1.6 then contains exactly the information we have
upon observing the outcome of the first n coin tosses, whereas the larger σ-algebra
Fc allows us to also study the limiting properties of this sequence (and as you show
next, Fc is isomorphic, in the sense of Definition 1.4.24, to B[0,1]).

Exercise 1.2.13. Let Fc denote the cylindrical σ-algebra for the set Ω∞ = {0, 1}N

of infinite binary sequences, as in Example 1.1.19.

(a) Show that X(ω) =
∑∞

n=1 ωn2−n is a measurable map from (Ω∞,Fc) to
([0, 1],B[0,1]).

(b) Conversely, let Y (x) = (ω1, . . . , ωn, . . .) where for each n ≥ 1, ωn(1) = 1
while ωn(x) = I(b2nxc is an odd number) when x ∈ [0, 1). Show that
Y = X−1 is a measurable map from ([0, 1],B[0,1]) to (Ω∞,Fc).

Here are some alternatives for Definition 1.2.12.

Exercise 1.2.14. Verify the following relations and show that each generating
collection of sets on the right hand side is a π-system.

(a) σ(X) = σ({ω : X(ω) ≤ α}, α ∈ R)
(b) σ(Xk, k ≤ n) = σ({ω : Xk(ω) ≤ αk, 1 ≤ k ≤ n}, α1, . . . , αn ∈ R)
(c) σ(X1, X2, . . .) = σ({ω : Xk(ω) ≤ αk, 1 ≤ k ≤ m}, α1, . . . , αm ∈ R,m ∈

N)
(d) σ(X1, X2, . . .) = σ(

⋃
n σ(Xk , k ≤ n))

As you next show, when approximating a random variable by a simple function,
one may also specify the latter to be based on sets in any generating algebra.

Exercise 1.2.15. Suppose (Ω,F ,P) is a probability space, with F = σ(A) for an
algebra A.

(a) Show that inf{P(A∆B) : A ∈ A} = 0 for any B ∈ F (recall that A∆B =
(A ∩ Bc) ∪ (Ac ∩ B)).
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(b) Show that for any bounded random variable X and ε > 0 there exists a

simple function Y =
∑N

n=1 cnIAn
with An ∈ A such that P(|X − Y | >

ε) < ε.

Exercise 1.2.16. Let F = σ(Aα, α ∈ Γ) and suppose there exist ω1 6= ω2 ∈ Ω
such that for any α ∈ Γ, either {ω1, ω2} ⊆ Aα or {ω1, ω2} ⊆ Ac

α.

(a) Show that if mapping X is measurable on (Ω,F) then X(ω1) = X(ω2).
(b) Provide an explicit σ-algebra F of subsets of Ω = {1, 2, 3} and a mapping

X : Ω 7→ R which is not a random variable on (Ω,F).

We conclude with a glimpse of the canonical measurable space associated with a
stochastic process (Xt, t ∈ T) (for more on this, see Lemma 7.1.7).

Exercise 1.2.17. Fixing a possibly uncountable collection of random variables Xt,
indexed by t ∈ T, let FX

C = σ(Xt, t ∈ C) for each C ⊆ T. Show that

FX
T =

⋃

C countable

FX
C

and that any R.V. Z on (Ω,FX
T ) is measurable on FX

C for some countable C ⊆ T.

1.2.2. Closure properties of random variables. For the typical measur-
able space with uncountable Ω it is impractical to list all possible R.V. Instead,
we state a few useful closure properties that often help us in showing that a given
mapping X(ω) is indeed a R.V.
We start with closure with respect to the composition of a R.V. and a measurable

mapping.

Proposition 1.2.18. If X : Ω 7→ S is an (S,S)-valued R.V. and f is a measurable
mapping from (S,S) to (T, T ), then the composition f(X) : Ω 7→ T is a (T, T )-
valued R.V.

Proof. Considering an arbitrary B ∈ T , we know that f−1(B) ∈ S since f is
a measurable mapping. Thus, as X is an (S,S)-valued R.V. it follows that

[f(X)]−1(B) = X−1(f−1(B)) ∈ F .

This holds for any B ∈ T , thus concluding the proof. �

In view of Exercise 1.2.3 we have the following special case of Proposition 1.2.18,
corresponding to S = Rn and T = R equipped with the respective Borel σ-algebras.

Corollary 1.2.19. Let Xi, i = 1, . . . , n be R.V. on the same measurable space
(Ω,F) and f : Rn 7→ R a Borel function. Then, f(X1, . . . , Xn) is also a R.V. on
the same space.

To appreciate the power of Corollary 1.2.19, consider the following exercise, in
which you show that every continuous function is also a Borel function.

Exercise 1.2.20. Suppose (S, ρ) is a metric space (for example, S = Rn). A func-
tion g : S 7→ [−∞,∞] is called lower semi-continuous (l.s.c.) if lim infρ(y,x)↓0 g(y) ≥
g(x), for all x ∈ S. A function g is said to be upper semi-continuous(u.s.c.) if −g
is l.s.c.

(a) Show that if g is l.s.c. then {x : g(x) ≤ b} is closed for each b ∈ R.
(b) Conclude that semi-continuous functions are Borel measurable.
(c) Conclude that continuous functions are Borel measurable.
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A concrete application of Corollary 1.2.19 shows that any linear combination of
finitely many R.V.-s is a R.V.

Example 1.2.21. Suppose Xi are R.V.-s on the same measurable space and ci ∈ R.
Then, Wn(ω) =

∑n
i=1 ciXi(ω) are also R.V.-s. To see this, apply Corollary 1.2.19

for f(x1, . . . , xn) =
∑n

i=1 cixi a continuous, hence Borel (measurable) function (by
Exercise 1.2.20).

We turn to explore the closure properties of mF with respect to operations of a
limiting nature, starting with the following key theorem.

Theorem 1.2.22. Let R = [−∞,∞] equipped with its Borel σ-algebra

BR = σ ([−∞, b) : b ∈ R) .

If Xi are R-valued R.V.-s on the same measurable space, then

inf
n
Xn, sup

n
Xn, lim inf

n→∞
Xn, lim sup

n→∞
Xn ,

are also R-valued random variables.

Proof. Pick an arbitrary b ∈ R. Then,

{ω : inf
n
Xn(ω) < b} =

∞⋃

n=1

{ω : Xn(ω) < b} =
∞⋃

n=1

X−1
n ([−∞, b)) ∈ F .

Since BR is generated by {[−∞, b) : b ∈ R}, it follows by Theorem 1.2.9 that infnXn

is an R-valued R.V.
Observing that supnXn = − infn(−Xn), we deduce from the above and Corollary

1.2.19 (for f(x) = −x), that supnXn is also an R-valued R.V.
Next, recall that

W = lim inf
n→∞

Xn = sup
n

[
inf
l≥n

Xl

]
.

By the preceding proof we have that Yn = inf l≥nXl are R-valued R.V.-s and hence
so is W = supn Yn.
Similarly to the arguments already used, we conclude the proof either by observing

that

Z = lim sup
n→∞

Xn = inf
n

[
sup
l≥n

Xl

]
,

or by observing that lim supnXn = − lim infn(−Xn). �

Remark. Since infnXn, supnXn, lim supnXn and lim infnXn may result in val-
ues ±∞ even when every Xn is R-valued, hereafter we let mF also denote the
collection of R-valued R.V.

An important corollary of this theorem deals with the existence of limits of se-
quences of R.V.

Corollary 1.2.23. For any sequence Xn ∈ mF , both

Ω0 = {ω ∈ Ω : lim inf
n→∞

Xn(ω) = lim sup
n→∞

Xn(ω)}

and
Ω1 = {ω ∈ Ω : lim inf

n→∞
Xn(ω) = lim sup

n→∞
Xn(ω) ∈ R}

are measurable sets, that is, Ω0 ∈ F and Ω1 ∈ F .
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Proof. By Theorem 1.2.22 we have that Z = lim supnXn andW = lim infnXn

are two R-valued variables on the same space, with Z(ω) ≥W (ω) for all ω. Hence,
Ω1 = {ω : Z(ω)−W (ω) = 0, Z(ω) ∈ R,W (ω) ∈ R} is measurable (apply Corollary
1.2.19 for f(z, w) = z − w), as is Ω0 = W−1({∞}) ∪ Z−1({−∞}) ∪ Ω1. �

The following structural result is yet another consequence of Theorem 1.2.22.

Corollary 1.2.24. For any d <∞ and R.V.-s Y1, . . . , Yd on the same measurable
space (Ω,F) the collection H = {h(Y1, . . . , Yd);h : Rd 7→ R Borel function} is a
vector space over R containing the constant functions, such that if Xn ∈ H are
non-negative and Xn ↑ X, an R-valued function on Ω, then X ∈ H.

Proof. By Example 1.2.21 the collection of all Borel functions is a vector
space over R which evidently contains the constant functions. Consequently, the
same applies for H. Next, suppose Xn = hn(Y1, . . . , Yd) for Borel functions hn such
that 0 ≤ Xn(ω) ↑ X(ω) for all ω ∈ Ω. Then, h(y) = supn hn(y) is by Theorem
1.2.22 an R-valued Borel function on Rd, such that X = h(Y1, . . . , Yd). Setting

h(y) = h(y) when h(y) ∈ R and h(y) = 0 otherwise, it is easy to check that h is a
real-valued Borel function. Moreover, with X : Ω 7→ R (finite valued), necessarily
X = h(Y1, . . . , Yd) as well, so X ∈ H. �

The point-wise convergence of R.V., that is Xn(ω) → X(ω), for every ω ∈ Ω is
often too strong of a requirement, as it may fail to hold as a result of the R.V. being
ill-defined for a negligible set of values of ω (that is, a set of zero measure). We
thus define the more useful, weaker notion of almost sure convergence of random
variables.

Definition 1.2.25. We say that a sequence of random variables Xn on the same
probability space (Ω,F ,P) converges almost surely if P(Ω0) = 1. We then set
X∞ = lim supn→∞Xn, and say that Xn converges almost surely to X∞, or use the

notation Xn
a.s.→ X∞.

Remark. Note that in Definition 1.2.25 we allow the limit X∞(ω) to take the
values ±∞ with positive probability. So, we say that Xn converges almost surely
to a finite limit if P(Ω1) = 1, or alternatively, if X∞ ∈ R with probability one.

We proceed with an explicit characterization of the functions measurable with
respect to a σ-algebra of the form σ(Yk , k ≤ n).

Theorem 1.2.26. Let G = σ(Yk, k ≤ n) for some n < ∞ and R.V.-s Y1, . . . , Yn

on the same measurable space (Ω,F). Then, mG = {g(Y1, . . . , Yn) : g : Rn 7→
R is a Borel function}.

Proof. From Corollary 1.2.19 we know that Z = g(Y1, . . . , Yn) is in mG for
each Borel function g : Rn 7→ R. Turning to prove the converse result, recall
part (b) of Exercise 1.2.14 that the σ-algebra G is generated by the π-system P =
{Aα : α = (α1, . . . , αn) ∈ Rn} where IAα

= hα(Y1, . . . , Yn) for the Borel function

hα(y1, . . . , yn) =
∏n

k=1 1yk≤αk
. Thus, in view of Corollary 1.2.24, we have by the

monotone class theorem that H = {g(Y1, . . . , Yn) : g : Rn 7→ R is a Borel function}
contains all elements of mG. �

We conclude this sub-section with a few exercises, starting with Borel measura-
bility of monotone functions (regardless of their continuity properties).
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Exercise 1.2.27. Show that any monotone function g : R 7→ R is Borel measur-
able.

Next, Exercise 1.2.20 implies that the set of points at which a given function g is
discontinuous, is a Borel set.

Exercise 1.2.28. Fix an arbitrary function g : S 7→ R.

(a) Show that for any δ > 0 the function g∗(x, δ) = inf{g(y) : ρ(x, y) < δ} is
u.s.c. and the function g∗(x, δ) = sup{g(y) : ρ(x, y) < δ} is l.s.c.

(b) Show that Dg = {x : supk g∗(x, k
−1) < infk g

∗(x, k−1)} is exactly the set
of points at which g is discontinuous.

(c) Deduce that the set Dg of points of discontinuity of g is a Borel set.

Here is an alternative characterization of B that complements Exercise 1.2.20.

Exercise 1.2.29. Show that if F is a σ-algebra of subsets of R then B ⊆ F if
and only if every continuous function f : R 7→ R is in mF (i.e. B is the smallest
σ-algebra on R with respect to which all continuous functions are measurable).

Exercise 1.2.30. Suppose Xn and X∞ are real-valued random variables and

P({ω : lim sup
n→∞

Xn(ω) ≤ X∞(ω)}) = 1 .

Show that for any ε > 0, there exists an event A with P(A) < ε and a non-random
N = N(ε), sufficiently large such that Xn(ω) < X∞(ω)+ε for all n ≥ N and every
ω ∈ Ac.

Equipped with Theorem 1.2.22 you can also strengthen Proposition 1.2.6.

Exercise 1.2.31. Show that the class mF of R-valued measurable functions, is
the smallest class containing SF and closed under point-wise limits.

Finally, relying on Theorem 1.2.26 it is easy to show that a Borel function can
only reduce the amount of information quantified by the corresponding generated
σ-algebras, whereas such information content is invariant under invertible Borel
transformations, that is

Exercise 1.2.32. Show that σ(g(Y1, . . . , Yn)) ⊆ σ(Yk , k ≤ n) for any Borel func-
tion g : Rn 7→ R. Further, if Y1, . . . , Yn and Z1, . . . , Zm defined on the same proba-
bility space are such that Zk = gk(Y1, . . . , Yn), k = 1, . . . ,m and Yi = hi(Z1, . . . , Zm),
i = 1, . . . , n for some Borel functions gk : Rn 7→ R and hi : Rm 7→ R, then
σ(Y1, . . . , Yn) = σ(Z1, . . . , Zm).

1.2.3. Distribution, density and law. As defined next, every random vari-
able X induces a probability measure on its range which is called the law of X .

Definition 1.2.33. The law of a real-valued R.V. X, denoted PX , is the proba-
bility measure on (R,B) such that PX(B) = P({ω : X(ω) ∈ B}) for any Borel set
B.

Remark. Since X is a R.V., it follows that PX(B) is well defined for all B ∈ B.
Further, the non-negativity of P implies that PX is a non-negative set function on
(R,B), and since X−1(R) = Ω, also PX(R) = 1. Consider next disjoint Borel sets
Bi, observing that X−1(Bi) ∈ F are disjoint subsets of Ω such that

X−1(
⋃

i

Bi) =
⋃

i

X−1(Bi) .
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Thus, by the countable additivity of P we have that

PX(
⋃

i

Bi) = P(
⋃

i

X−1(Bi)) =
∑

i

P(X−1(Bi)) =
∑

i

PX(Bi) .

This shows that PX is also countably additive, hence a probability measure, as
claimed in Definition 1.2.33.

Note that the law PX of a R.V. X : Ω −→ R, determines the values of the
probability measure P on σ(X).

Definition 1.2.34. We write X
D
= Y and say that X equals Y in law (or in

distribution), if and only if PX = PY .

A good way to practice your understanding of the Definitions 1.2.33 and 1.2.34 is

by verifying that if X
a.s.
= Y , then also X

D
= Y (that is, any two random variables

we consider to be the same would indeed have the same law).
The next concept we define, the distribution function, is closely associated with

the law PX of the R.V.

Definition 1.2.35. The distribution function FX of a real-valued R.V. X is

FX(α) = P({ω : X(ω) ≤ α}) = PX((−∞, α]) ∀α ∈ R

Our next result characterizes the set of all functions F : R 7→ [0, 1] that are
distribution functions of some R.V.

Theorem 1.2.36. A function F : R 7→ [0, 1] is a distribution function of some
R.V. if and only if

(a) F is non-decreasing
(b) limx→∞ F (x) = 1 and limx→−∞ F (x) = 0
(c) F is right-continuous, i.e. limy↓x F (y) = F (x)

Proof. First, assuming that F = FX is a distribution function, we show that
it must have the stated properties (a)-(c). Indeed, if x ≤ y then (−∞, x] ⊆ (−∞, y],
and by the monotonicity of the probability measure PX (see part (a) of Exercise
1.1.4), we have that FX (x) ≤ FX(y), proving that FX is non-decreasing. Further,
(−∞, x] ↑ R as x ↑ ∞, while (−∞, x] ↓ ∅ as x ↓ −∞, resulting with property (b)
of the theorem by the continuity from below and the continuity from above of the
probability measure PX on R. Similarly, since (−∞, y] ↓ (−∞, x] as y ↓ x we get
the right continuity of FX by yet another application of continuity from above of
PX .
We proceed to prove the converse result, that is, assuming F has the stated prop-

erties (a)-(c), we consider the random variable X−(ω) = sup{y : F (y) < ω} on
the probability space ((0, 1],B(0,1], U) and show that FX− = F . With F having
property (b), we see that for any ω > 0 the set {y : F (y) < ω} is non-empty and
further if ω < 1 then X−(ω) <∞, so X− : (0, 1) 7→ R is well defined. The identity

(1.2.1) {ω : X−(ω) ≤ x} = {ω : ω ≤ F (x)} ,
implies that FX−(x) = U((0, F (x)]) = F (x) for all x ∈ R, and further, the sets
(0, F (x)] are all in B(0,1], implying that X− is a measurable function (i.e. a R.V.).
Turning to prove (1.2.1) note that if ω ≤ F (x) then x 6∈ {y : F (y) < ω} and so by

definition (and the monotonicity of F ), X−(ω) ≤ x. Now suppose that ω > F (x).
Since F is right continuous, this implies that F (x + ε) < ω for some ε > 0, hence
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by definition of X− also X−(ω) ≥ x + ε > x, completing the proof of (1.2.1) and
with it the proof of the theorem. �

Check your understanding of the preceding proof by showing that the collection
of distribution functions for R-valued random variables consist of all F : R 7→ [0, 1]
that are non-decreasing and right-continuous.

Remark. The construction of the random variable X−(ω) in Theorem 1.2.36 is
called Skorokhod’s representation. You can, and should, verify that the random
variable X+(ω) = sup{y : F (y) ≤ ω} would have worked equally well for that
purpose, since X+(ω) 6= X−(ω) only if X+(ω) > q ≥ X−(ω) for some rational q,
in which case by definition ω ≥ F (q) ≥ ω, so there are most countably many such
values of ω (hence P(X+ 6= X−) = 0). We shall return to this construction when
dealing with convergence in distribution in Section 3.2. An alternative approach to
Theorem 1.2.36 is to adapt the construction of the probability measure of Example
1.1.26, taking here Ω = R with the corresponding change to A and replacing the
right side of (1.1.1) with

∑r
k=1(F (bk) − F (ak)), yielding a probability measure P

on (R,B) such that P((−∞, α]) = F (α) for all α ∈ R (c.f. [Bil95, Theorem 12.4]).

Our next example highlights the possible shape of the distribution function.

Example 1.2.37. Consider Example 1.1.6 of n coin tosses, with σ-algebra Fn =
2Ωn, sample space Ωn = {H,T}n, and the probability measure Pn(A) =

∑
ω∈A pω,

where pω = 2−n for each ω ∈ Ωn (that is, ω = {ω1, ω2, · · · , ωn} for ωi ∈ {H,T}),
corresponding to independent, fair, coin tosses. Let Y (ω) = I{ω1=H} measure the
outcome of the first toss. The law of this random variable is,

PY (B) =
1

2
1{0∈B} +

1

2
1{1∈B}

and its distribution function is

FY (α) = PY ((−∞, α]) = Pn(Y (ω) ≤ α) =





1, α ≥ 1
1
2 , 0 ≤ α < 1

0, α < 0

.(1.2.2)

Note that in general σ(X) is a strict subset of the σ-algebra F (in Example 1.2.37
we have that σ(Y ) determines the probability measure for the first coin toss, but
tells us nothing about the probability measure assigned to the remaining n − 1
tosses). Consequently, though the law PX determines the probability measure P
on σ(X) it usually does not completely determine P.

Example 1.2.37 is somewhat generic. That is, if the R.V. X is a simple function (or
more generally, when the set {X(ω) : ω ∈ Ω} is countable and has no accumulation
points), then its distribution function FX is piecewise constant with jumps at the
possible values thatX takes and jump sizes that are the corresponding probabilities.
Indeed, note that (−∞, y] ↑ (−∞, x) as y ↑ x, so by the continuity from below of
PX it follows that

FX (x−) := lim
y↑x

FX(y) = P({ω : X(ω) < x}) = FX (x)−P({ω : X(ω) = x}) ,

for any R.V. X .
A direct corollary of Theorem 1.2.36 shows that any distribution function has a

collection of continuity points that is dense in R.
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Exercise 1.2.38. Show that a distribution function F has at most countably many
points of discontinuity and consequently, that for any x ∈ R there exist yk and zk

at which F is continuous such that zk ↓ x and yk ↑ x.
In contrast with Example 1.2.37 the distribution function of a R.V. with a density

is continuous and almost everywhere differentiable, that is,

Definition 1.2.39. We say that a R.V. X(ω) has a probability density function
fX if and only if its distribution function FX can be expressed as

(1.2.3) FX(α) =

∫ α

−∞
fX(x)dx , ∀α ∈ R .

By Theorem 1.2.36 a probability density function fX must be an integrable, Lebesgue
almost everywhere non-negative function, with

∫
R
fX(x)dx = 1. Such FX is contin-

uous with dFX

dx (x) = fX(x) except possibly on a set of values of x of zero Lebesgue
measure.

Remark. To make Definition 1.2.39 precise we temporarily assume that probabil-
ity density functions fX are Riemann integrable and interpret the integral in (1.2.3)
in this sense. In Section 1.3 we construct Lebesgue’s integral and extend the scope
of Definition 1.2.39 to Lebesgue integrable density functions fX ≥ 0 (in particular,
accommodating Borel functions fX). This is the setting we assume thereafter, with
the right-hand-side of (1.2.3) interpreted as the integral λ(fX ; (−∞, α]) of fX with
respect to the restriction on (−∞, α] of the completion λ of the Lebesgue measure on
R (c.f. Definition 1.3.59 and Example 1.3.60). Further, the function fX is uniquely
defined only as a representative of an equivalence class. That is, in this context we
consider f and g to be the same function when λ({x : f(x) 6= g(x)}) = 0.

Building on Example 1.1.26 we next detail a few classical examples of R.V. that
have densities.

Example 1.2.40. The distribution function FU of the R.V. of Example 1.1.26 is

FU (α) = P(U ≤ α) = P(U ∈ [0, α]) =





1, α > 1

α, 0 ≤ α ≤ 1

0, α < 0

(1.2.4)

and its density is fU (u) =

{
1, 0 ≤ u ≤ 1

0, otherwise
.

The exponential distribution function is

F (x) =

{
0, x ≤ 0

1− e−x, x ≥ 0
,

corresponding to the density f(x) =

{
0, x ≤ 0

e−x, x > 0
, whereas the standard normal

distribution has the density

φ(x) = (2π)−1/2e−
x2

2 ,

with no closed form expression for the corresponding distribution function Φ(x) =∫ x
φ(u)du in terms of elementary functions.
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Every real-valued R.V. X has a distribution function but not necessarily a density.
For example X = 0 w.p.1 has distribution function FX (α) = 1α≥0. Since FX is
discontinuous at 0, the R.V. X does not have a density.

Definition 1.2.41. We say that a function F is a Lebesgue singular function if
it has a zero derivative except on a set of zero Lebesgue measure.

Since the distribution function of any R.V. is non-decreasing, from real analysis
we know that it is almost everywhere differentiable. However, perhaps somewhat
surprisingly, there are continuous distribution functions that are Lebesgue singular
functions. Consequently, there are non-discrete random variables that do not have
a density. We next provide one such example.

Example 1.2.42. The Cantor set C is defined by removing (1/3, 2/3) from [0, 1]
and then iteratively removing the middle third of each interval that remains. The
uniform distribution on the (closed) set C corresponds to the distribution function
obtained by setting F (x) = 0 for x ≤ 0, F (x) = 1 for x ≥ 1, F (x) = 1/2 for
x ∈ [1/3, 2/3], then F (x) = 1/4 for x ∈ [1/9, 2/9], F (x) = 3/4 for x ∈ [7/9, 8/9],
and so on (which as you should check, satisfies the properties (a)-(c) of Theorem
1.2.36). From the definition, we see that dF/dx = 0 for almost every x /∈ C and
that the corresponding probability measure has P(Cc) = 0. As the Lebesgue measure
of C is zero, we see that the derivative of F is zero except on a set of zero Lebesgue
measure, and consequently, there is no function f for which F (x) =

∫ x

−∞ f(y)dy
holds. Though it is somewhat more involved, you may want to check that F is
everywhere continuous (c.f. [Bil95, Problem 31.2]).

Even discrete distribution functions can be quite complex. As the next example
shows, the points of discontinuity of such a function might form a (countable) dense
subset of R (which in a sense is extreme, per Exercise 1.2.38).

Example 1.2.43. Let q1, q2, . . . be an enumeration of the rational numbers and set

F (x) =

∞∑

i=1

2−i1[qi,∞)(x)

(where 1[qi,∞)(x) = 1 if x ≥ qi and zero otherwise). Clearly, such F is non-
decreasing, with limits 0 and 1 as x→ −∞ and x→∞, respectively. It is not hard
to check that F is also right continuous, hence a distribution function, whereas by
construction F is discontinuous at each rational number.

As we have that P({ω : X(ω) ≤ α}) = FX(α) for the generators {ω : X(ω) ≤ α}
of σ(X), we are not at all surprised by the following proposition.

Proposition 1.2.44. The distribution function FX uniquely determines the law
PX of X.

Proof. Consider the collection π(R) = {(−∞, b] : b ∈ R} of subsets of R. It
is easy to see that π(R) is a π-system, which generates B (see Exercise 1.1.17).
Hence, by Proposition 1.1.39, any two probability measures on (R,B) that coincide
on π(R) are the same. Since the distribution function FX specifies the restriction
of such a probability measure PX on π(R) it thus uniquely determines the values
of PX(B) for all B ∈ B. �

Different probability measures P on the measurable space (Ω,F) may “trivialize”
different σ-algebras. That is,
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Definition 1.2.45. If a σ-algebra H ⊆ F and a probability measure P on (Ω,F)
are such that P(H) ∈ {0, 1} for all H ∈ H, we call H a P-trivial σ-algebra.
Similarly, a random variable X is called P-trivial or P-degenerate, if there exists
a non-random constant c such that P(X 6= c) = 0.

Using distribution functions we show next that all random variables on a P-trivial
σ-algebra are P-trivial.

Proposition 1.2.46. If a random variable X ∈ mH for a P-trivial σ-algebra H,
then X is P-trivial.

Proof. By definition, the sets {ω : X(ω) ≤ α} are in H for all α ∈ R. Since H
is P-trivial this implies that FX (α) ∈ {0, 1} for all α ∈ R. In view of Theorem 1.2.36
this is possible only if FX (α) = 1α≥c for some non-random c ∈ R (for example, set
c = inf{α : FX (α) = 1}). That is, P(X 6= c) = 0, as claimed. �

We conclude with few exercises about the support of measures on (R,B).

Exercise 1.2.47. Let µ be a measure on (R,B). A point x is said to be in the
support of µ if µ(O) > 0 for every open neighborhood O of x. Prove that the support
is a closed set whose complement is the maximal open set on which µ vanishes.

Exercise 1.2.48. Given an arbitrary closed set C ⊆ R, construct a probability
measure on (R,B) whose support is C.
Hint: Try a measure consisting of a countable collection of atoms (i.e. points of

positive probability).

As you are to check next, the discontinuity points of a distribution function are
closely related to the support of the corresponding law.

Exercise 1.2.49. The support of a distribution function F is the set SF = {x ∈ R

such that F (x+ ε)− F (x− ε) > 0 for all ε > 0}.
(a) Show that all points of discontinuity of F (·) belong to SF , and that any

isolated point of SF (that is, x ∈ SF such that (x − δ, x+ δ) ∩ SF = {x}
for some δ > 0) must be a point of discontinuity of F (·).

(b) Show that the support of the law PX of a random variable X, as defined
in Exercise 1.2.47, is the same as the support of its distribution function
FX .

1.3. Integration and the (mathematical) expectation

A key concept in probability theory is the mathematical expectation of ran-
dom variables. In Subsection 1.3.1 we provide its definition via the framework
of Lebesgue integration with respect to a measure and study properties such as
monotonicity and linearity. In Subsection 1.3.2 we consider fundamental inequal-
ities associated with the expectation. Subsection 1.3.3 is about the exchange of
integration and limit operations, complemented by uniform integrability and its
consequences in Subsection 1.3.4. Subsection 1.3.5 considers densities relative to
arbitrary measures and relates our treatment of integration and expectation to
Riemann’s integral and the classical definition of the expectation for a R.V. with
probability density. We conclude with Subsection 1.3.6 about moments of random
variables, including their values for a few well known distributions.
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1.3.1. Lebesgue integral, linearity and monotonicity. Let SF+ denote
the collection of non-negative simple functions with respect to the given measurable
space (S,F) and mF+ denote the collection of [0,∞]-valued measurable functions
on this space. We next define Lebesgue’s integral with respect to any measure µ
on (S,F), first for ϕ ∈ SF+, then extending it to all f ∈ mF+. With the notation
µ(f) :=

∫
S
f(s)dµ(s) for this integral, we also denote by µ0(·) the more restrictive

integral, defined only on SF+, so as to clarify the role each of these plays in some of
our proofs. We call an R-valued measurable function f ∈ mF for which µ(|f |) <∞,
a µ-integrable function, and denote the collection of all µ-integrable functions by
L1(S,F , µ), extending the definition of the integral µ(f) to all f ∈ L1(S,F , µ).

Definition 1.3.1. Fix a measure space (S,F , µ) and define µ(f) by the following
four step procedure:

Step 1. Define µ0(IA) := µ(A) for each A ∈ F .

Step 2. Any ϕ ∈ SF+ has a representation ϕ =
n∑

l=1

clIAl
for some finite n < ∞,

non-random cl ∈ [0,∞] and sets Al ∈ F , yielding the definition of the integral via

µ0(ϕ) :=
n∑

l=1

clµ(Al) ,

where we adopt hereafter the convention that ∞× 0 = 0×∞ = 0.

Step 3. For f ∈ mF+ we define

µ(f) := sup{µ0(ϕ) : ϕ ∈ SF+, ϕ ≤ f}.
Step 4. For f ∈ mF let f+ = max(f, 0) ∈ mF+ and f− = −min(f, 0) ∈ mF+.
We then set µ(f) = µ(f+) − µ(f−) provided either µ(f+) < ∞ or µ(f−) < ∞. In
particular, this applies whenever f ∈ L1(S,F , µ), for then µ(f+) + µ(f−) = µ(|f |)
is finite, hence µ(f) is well defined and finite valued.
We use the notation

∫
S
f(s)dµ(s) for µ(f) which we call Lebesgue integral of f

with respect to the measure µ.

The expectation E[X ] of a random variable X on a probability space (Ω,F ,P) is
merely Lebesgue’s integral

∫
X(ω)dP(ω) of X with respect to P. That is,

Step 1. E [IA] = P(A) for any A ∈ F .

Step 2. Any ϕ ∈ SF+ has a representation ϕ =
n∑

l=1

clIAl
for some non-random

n <∞, cl ≥ 0 and sets Al ∈ F , to which corresponds

E[ϕ] =

n∑

l=1

clE[IAl
] =

n∑

l=1

clP(Al) .

Step 3. For X ∈ mF+ define

EX = sup{EY : Y ∈ SF+, Y ≤ X}.
Step 4. Represent X ∈ mF as X = X+ −X−, where X+ = max(X, 0) ∈ mF+ and
X− = −min(X, 0) ∈ mF+, with the corresponding definition

EX = EX+ −EX− ,

provided either EX+ <∞ or EX− <∞.
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Remark. Note that we may have EX = ∞ while X(ω) < ∞ for all ω. For
instance, take the random variable X(ω) = ω for Ω = {1, 2, . . .} and F = 2Ω. If
P(ω = k) = ck−2 with c = [

∑∞
k=1 k

−2]−1 a positive, finite normalization constant,
then EX = c

∑∞
k=1 k

−1 = ∞.

Similar to the notation of µ-integrable functions introduced in the last step of
the definition of Lebesgue’s integral, we have the following definition for random
variables.

Definition 1.3.2. We say that a random variable X is (absolutely) integrable,
or X has finite expectation, if E|X | <∞, that is, both EX+ <∞ and EX− <∞.
Fixing 1 ≤ q < ∞ we denote by Lq(Ω,F ,P) the collection of random variables X
on (Ω,F) for which ||X ||q = [E|X |q]1/q < ∞. For example, L1(Ω,F ,P) denotes
the space of all (absolutely) integrable random-variables. We use the short notation
Lq when the probability space (Ω,F ,P) is clear from the context.

We next verify that Lebesgue’s integral of each function f is assigned a unique
value in Definition 1.3.1. To this end, we focus on µ0 : SF+ 7→ [0,∞] of Step 2 of
our definition and derive its structural properties, such as monotonicity, linearity
and invariance to a change of argument on a µ-negligible set.

Lemma 1.3.3. µ0(ϕ) assigns a unique value to each ϕ ∈ SF+. Further,
a). µ0(ϕ) = µ0(ψ) if ϕ, ψ ∈ SF+ are such that µ({s : ϕ(s) 6= ψ(s)}) = 0.
b). µ0 is linear, that is

µ0(ϕ+ ψ) = µ0(ϕ) + µ0(ψ) , µ0(cϕ) = cµ0(ϕ) ,

for any ϕ, ψ ∈ SF+ and c ≥ 0.
c). µ0 is monotone, that is µ0(ϕ) ≤ µ0(ψ) if ϕ(s) ≤ ψ(s) for all s ∈ S.

Proof. Note that a non-negative simple function ϕ ∈ SF+ has many different
representations as weighted sums of indicator functions. Suppose for example that

(1.3.1)
n∑

l=1

clIAl
(s) =

m∑

k=1

dkIBk
(s) ,

for some cl ≥ 0, dk ≥ 0, Al ∈ F , Bk ∈ F and all s ∈ S. There exists a finite
partition of S to at most 2n+m disjoint sets Ci such that each of the sets Al and
Bk is a union of some Ci, i = 1, . . . , 2n+m. Expressing both sides of (1.3.1) as finite
weighted sums of ICi

, we necessarily have for each i the same weight on both sides.
Due to the (finite) additivity of µ over unions of disjoint sets Ci, we thus get after
some algebra that

(1.3.2)

n∑

l=1

clµ(Al) =

m∑

k=1

dkµ(Bk) .

Consequently, µ0(ϕ) is well-defined and independent of the chosen representation
for ϕ. Further, the conclusion (1.3.2) applies also when the two sides of (1.3.1)
differ for s ∈ C as long as µ(C) = 0, hence proving the first stated property of the
lemma.
Choosing the representation of ϕ + ψ based on the representations of ϕ and ψ

immediately results with the stated linearity of µ0. Given this, if ϕ(s) ≤ ψ(s) for all
s, then ψ = ϕ+ ξ for some ξ ∈ SF+, implying that µ0(ψ) = µ0(ϕ)+µ0(ξ) ≥ µ0(ϕ),
as claimed. �
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Remark. The stated monotonicity of µ0 implies that µ(·) coincides with µ0(·) on
SF+. As µ0 is uniquely defined for each f ∈ SF+ and f = f+ when f ∈ mF+, it
follows that µ(f) is uniquely defined for each f ∈ mF+ ∪ L1(S,F , µ).

All three properties of µ0 (hence µ) stated in Lemma 1.3.3 for functions in SF+

extend to all of mF+ ∪L1. Indeed, the facts that µ(cf) = cµ(f), that µ(f) ≤ µ(g)
whenever 0 ≤ f ≤ g, and that µ(f) = µ(g) whenever µ({s : f(s) 6= g(s)}) = 0 are
immediate consequences of our definition (once we have these for f, g ∈ SF+). Since
f ≤ g implies f+ ≤ g+ and f− ≥ g−, the monotonicity of µ(·) extends to functions
in L1 (by Step 4 of our definition). To prove that µ(h + g) = µ(h) + µ(g) for all
h, g ∈ mF+ ∪ L1 requires an application of the monotone convergence theorem (in
short MON), which we now state, while deferring its proof to Subsection 1.3.3.

Theorem 1.3.4 (Monotone convergence theorem). If 0 ≤ hn(s) ↑ h(s) for
all s ∈ S and hn ∈ mF+, then µ(hn) ↑ µ(h) ≤∞.

Indeed, recall that while proving Proposition 1.2.6 we constructed the sequence
fn such that for every g ∈ mF+ we have fn(g) ∈ SF+ and fn(g) ↑ g. Specifying
g, h ∈ mF+ we have that fn(h) + fn(g) ∈ SF+. So, by Lemma 1.3.3,

µ(fn(h)+fn(g)) = µ0(fn(h)+fn(g)) = µ0(fn(h))+µ0(fn(g)) = µ(fn(h))+µ(fn(g)) .

Since fn(h) ↑ h and fn(h) + fn(g) ↑ h+ g, by monotone convergence,

µ(h+ g) = lim
n→∞

µ(fn(h) + fn(g)) = lim
n→∞

µ(fn(h)) + lim
n→∞

µ(fn(g)) = µ(h) + µ(g) .

To extend this result to g, h ∈ mF+∪L1, note that h−+ g− = f +(h+ g)− ≥ f for
some f ∈ mF+ such that h++g+ = f+(h+g)+. Since µ(h−) <∞ and µ(g−) <∞,
by linearity and monotonicity of µ(·) on mF+ necessarily also µ(f) < ∞ and the
linearity of µ(h+ g) on mF+ ∪L1 follows by elementary algebra. In conclusion, we
have just proved that

Proposition 1.3.5. The integral µ(f) assigns a unique value to each f ∈ mF+ ∪
L1(S,F , µ). Further,
a). µ(f) = µ(g) whenever µ({s : f(s) 6= g(s)}) = 0.
b). µ is linear, that is for any f, h, g ∈ mF+ ∪ L1 and c ≥ 0,

µ(h+ g) = µ(h) + µ(g) , µ(cf) = cµ(f) .

c). µ is monotone, that is µ(f) ≤ µ(g) if f(s) ≤ g(s) for all s ∈ S.

Our proof of the identity µ(h + g) = µ(h) + µ(g) is an example of the following
general approach to proving that certain properties hold for all h ∈ L1.

Definition 1.3.6 (Standard Machine). To prove the validity of a certain property
for all h ∈ L1(S,F , µ), break your proof to four easier steps, following those of
Definition 1.3.1.
Step 1. Prove the property for h which is an indicator function.
Step 2. Using linearity, extend the property to all SF+.
Step 3. Using MON extend the property to all h ∈ mF+.
Step 4. Extend the property in question to h ∈ L1 by writing h = h+ − h− and
using linearity.

Here is another application of the standard machine.
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Exercise 1.3.7. Suppose that a probability measure P on (R,B) is such that
P(B) = λ(fIB) for the Lebesgue measure λ on R, some non-negative Borel function
f(·) and all B ∈ B. Using the standard machine, prove that then P(h) = λ(fh) for
any Borel function h such that either h ≥ 0 or λ(f |h|) <∞.
Hint: See the proof of Proposition 1.3.56.

We shall see more applications of the standard machine later (for example, when
proving Proposition 1.3.56 and Theorem 1.3.61).
We next strengthen the non-negativity and monotonicity properties of Lebesgue’s

integral µ(·) by showing that

Lemma 1.3.8. If µ(h) = 0 for h ∈ mF+, then µ({s : h(s) > 0}) = 0. Conse-
quently, if for f, g ∈ L1(S,F , µ) both µ(f) = µ(g) and µ({s : f(s) > g(s)}) = 0,
then µ({s : f(s) 6= g(s)}) = 0.

Proof. By continuity below of the measure µ we have that

µ({s : h(s) > 0}) = lim
n→∞

µ({s : h(s) > n−1})

(see Exercise 1.1.4). Hence, if µ({s : h(s) > 0}) > 0, then for some n <∞,

0 < n−1µ({s : h(s) > n−1}) = µ0(n
−1Ih>n−1) ≤ µ(h) ,

where the right most inequality is a consequence of the definition of µ(h) and the
fact that h ≥ n−1Ih>n−1 ∈ SF+. Thus, our assumption that µ(h) = 0 must imply
that µ({s : h(s) > 0}) = 0.

To prove the second part of the lemma, consider h̃ = g − f which is non-negative
outside a set N ∈ F such that µ(N) = 0. Hence, h = (g − f)INc ∈ mF+ and

0 = µ(g) − µ(f) = µ(h̃) = µ(h) by Proposition 1.3.5, implying that µ({s : h(s) >

0}) = 0 by the preceding proof. The same applies for h̃ and the statement of the
lemma follows. �

We conclude this subsection by stating the results of Proposition 1.3.5 and Lemma
1.3.8 in terms of the expectation on a probability space (Ω,F ,P).

Theorem 1.3.9. The mathematical expectation E[X ] is well defined for every R.V.
X on (Ω,F ,P) provided either X ≥ 0 almost surely, or X ∈ L1(Ω,F ,P). Further,

(a) EX = EY whenever X
a.s.
= Y .

(b) The expectation is a linear operation, for if Y and Z are integrable R.V. then
for any constants α, β the R.V. αY +βZ is integrable and E(αY +βZ) = α(EY )+
β(EZ). The same applies when Y, Z ≥ 0 almost surely and α, β ≥ 0.
(c) The expectation is monotone. That is, if Y and Z are either integrable or
non-negative and Y ≥ Z almost surely, then EY ≥ EZ. Further, if Y and Z are

integrable with Y ≥ Z a.s. and EY = EZ, then Y
a.s.
= Z.

(d) Constants are invariant under the expectation. That is, if X
a.s.
= c for non-

random c ∈ (−∞,∞], then EX = c.

Remark. Part (d) of the theorem relies on the fact that P is a probability mea-
sure, namely P(Ω) = 1. Indeed, it is obtained by considering the expectation of
the simple function cIΩ to which X equals with probability one.

The linearity of the expectation (i.e. part (b) of the preceding theorem), is often
extremely helpful when looking for an explicit formula for it. We next provide a
few examples of this.
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Exercise 1.3.10. Write (Ω,F ,P) for a random experiment whose outcome is a
recording of the results of n independent rolls of a balanced six-sided dice (including
their order). Compute the expectation of the random variable D(ω) which counts
the number of different faces of the dice recorded in these n rolls.

Exercise 1.3.11 (Matching). In a random matching experiment, we apply a
random permutation π to the integers {1, 2, . . . , n}, where each of the possible n!
permutations is equally likely. Let Zi = I{π(i)=i} be the random variable indicating
whether i = 1, 2, . . . , n is a fixed point of the random permutation, and Xn =∑n

i=1 Zi count the number of fixed points of the random permutation (i.e. the
number of self-matchings). Show that E[Xn(Xn − 1) · · · (Xn − k + 1)] = 1 for
k = 1, 2, . . . , n.

Similarly, here is an elementary application of the monotonicity of the expectation
(i.e. part (c) of the preceding theorem).

Exercise 1.3.12. Suppose an integrable random variable X is such that E(XIA) =
0 for each A ∈ σ(X). Show that necessarily X = 0 almost surely.

1.3.2. Inequalities. The linearity of the expectation often allows us to com-
pute EX even when we cannot compute the distribution function FX . In such cases
the expectation can be used to bound tail probabilities, based on the following clas-
sical inequality.

Theorem 1.3.13 (Markov’s inequality). Suppose ψ : R 7→ [0,∞] is a Borel
function and let ψ∗(A) = inf{ψ(y) : y ∈ A} for any A ∈ B. Then for any R.V. X,

ψ∗(A)P(X ∈ A) ≤ E(ψ(X)IX∈A) ≤ Eψ(X).

Proof. By the definition of ψ∗(A) and non-negativity of ψ we have that

ψ∗(A)Ix∈A ≤ ψ(x)Ix∈A ≤ ψ(x) ,

for all x ∈ R. Therefore, ψ∗(A)IX∈A ≤ ψ(X)IX∈A ≤ ψ(X) for every ω ∈ Ω.
We deduce the stated inequality by the monotonicity of the expectation and the
identity E(ψ∗(A)IX∈A) = ψ∗(A)P(X ∈ A) (due to Step 2 of Definition 1.3.1). �

We next specify three common instances of Markov’s inequality.

Example 1.3.14. (a). Taking ψ(x) = x+ and A = [a,∞) for some a > 0 we have
that ψ∗(A) = a. Markov’s inequality is then

P(X ≥ a) ≤ EX+

a
,

which is particularly appealing when X ≥ 0, so EX+ = EX.
(b). Taking ψ(x) = |x|q and A = (−∞,−a] ∪ [a,∞) for some a > 0, we get that
ψ∗(A) = aq. Markov’s inequality is then aqP(|X | ≥ a) ≤ E|X |q. Considering q = 2
and X = Y −EY for Y ∈ L2, this amounts to

P(|Y −EY | ≥ a) ≤ Var(Y )

a2
,

which we call Chebyshev’s inequality (c.f. Definition 1.3.67 for the variance and
moments of random variable Y ).
(c). Taking ψ(x) = eθx for some θ > 0 and A = [a,∞) for some a ∈ R we have
that ψ∗(A) = eθa. Markov’s inequality is then

P(X ≥ a) ≤ e−θaEeθX .
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This bound provides an exponential decay in a, at the cost of requiring X to have
finite exponential moments.

In general, we cannot compute EX explicitly from the Definition 1.3.1 except
for discrete R.V.s and for R.V.s having a probability density function. We thus
appeal to the properties of the expectation listed in Theorem 1.3.9, or use various
inequalities to bound one expectation by another. To this end, we start with
Jensen’s inequality, dealing with the effect that a convex function makes on the
expectation.

Proposition 1.3.15 (Jensen’s inequality). Suppose g(·) is a convex function
on an open interval G of R, that is,

λg(x) + (1− λ)g(y) ≥ g(λx+ (1− λ)y) ∀ x, y ∈ G, 0 ≤ λ ≤ 1.

If X is an integrable R.V. with P(X ∈ G) = 1 and g(X) is also integrable, then
E(g(X)) ≥ g(EX).

Proof. The convexity of g(·) on G implies that g(·) is continuous on G (hence
g(X) is a random variable) and the existence for each c ∈ G of b = b(c) ∈ R such
that

(1.3.3) g(x) ≥ g(c) + b(x− c), ∀x ∈ G .
Since G is an open interval of R with P(X ∈ G) = 1 and X is integrable, it follows
that EX ∈ G. Assuming (1.3.3) holds for c = EX , that X ∈ G a.s., and that both
X and g(X) are integrable, we have by Theorem 1.3.9 that

E(g(X)) = E(g(X)IX∈G) ≥ E[(g(c)+b(X−c))IX∈G] = g(c)+b(EX−c) = g(EX) ,

as stated. To derive (1.3.3) note that if (c− h2, c+ h1) ⊆ G for positive h1 and h2,
then by convexity of g(·),

h2

h1 + h2
g(c+ h1) +

h1

h1 + h2
g(c− h2) ≥ g(c) ,

which amounts to [g(c + h1) − g(c)]/h1 ≥ [g(c) − g(c − h2)]/h2. Considering the
infimum over h1 > 0 and the supremum over h2 > 0 we deduce that

inf
h>0,c+h∈G

g(c+ h)− g(c)

h
:= (D+g)(c) ≥ (D−g)(c) := sup

h>0,c−h∈G

g(c)− g(c− h)

h
.

With G an open set, obviously (D−g)(x) > −∞ and (D+g)(x) <∞ for any x ∈ G
(in particular, g(·) is continuous on G). Now for any b ∈ [(D−g)(c), (D+g)(c)] ⊂ R

we get (1.3.3) out of the definition of D+g and D−g. �

Remark. Since g(·) is convex if and only if −g(·) is concave, we may as well state
Jensen’s inequality for concave functions, just reversing the sign of the inequality in
this case. A trivial instance of Jensen’s inequality happens when X(ω) = xIA(ω)+
yIAc(ω) for some x, y ∈ R and A ∈ F such that P(A) = λ. Then,

EX = xP(A) + yP(Ac) = xλ+ y(1− λ) ,

whereas g(X(ω)) = g(x)IA(ω) + g(y)IAc(ω). So,

Eg(X) = g(x)λ + g(y)(1− λ) ≥ g(xλ + y(1− λ)) = g(EX) ,

as g is convex.



1.3. INTEGRATION AND THE (MATHEMATICAL) EXPECTATION 37

Applying Jensen’s inequality, we show that the spaces Lq(Ω,F ,P) of Definition
1.3.2 are nested in terms of the parameter q ≥ 1.

Lemma 1.3.16. Fixing Y ∈ mF , the mapping q 7→ ||Y ||q = [E|Y |q]1/q is non-
decreasing for q > 0. Hence, the space Lq(Ω,F ,P) is contained in Lr(Ω,F ,P) for
any r ≤ q.

Proof. Fix q > r > 0 and consider the sequence of bounded R.V. Xn(ω) =

{min(|Y (ω)|, n)}r. Obviously, Xn and X
q/r
n are both in L1. Apply Jensen’s In-

equality for the convex function g(x) = |x|q/r and the non-negative R.V. Xn, to
get that

(EXn)
q
r ≤ E(X

q
r
n ) = E[{min(|Y |, n)}q ] ≤ E(|Y |q) .

For n ↑ ∞ we have that Xn ↑ |Y |r, so by monotone convergence E (|Y |r)
q
r ≤

(E|Y |q). Taking the 1/q-th power yields the stated result ||Y ||r ≤ ||Y ||q ≤ ∞. �

We next bound the expectation of the product of two R.V. while assuming nothing
about the relation between them.

Proposition 1.3.17 (Hölder’s inequality). Let X,Y be two random variables
on the same probability space. If p, q > 1 with 1

p + 1
q = 1, then

(1.3.4) E|XY | ≤ ||X ||p||Y ||q .

Remark. Recall that if XY is integrable then E|XY | is by itself an upper bound
on |[EXY ]|. The special case of p = q = 2 in Hölder’s inequality

E|XY | ≤
√

EX2
√

EY 2 ,

is called the Cauchy-Schwarz inequality.

Proof. Fixing p > 1 and q = p/(p− 1) let λ = ||X ||p and ξ = ||Y ||q. If λ = 0

then |X |p a.s.
= 0 (see Theorem 1.3.9). Likewise, if ξ = 0 then |Y |q a.s.

= 0. In either
case, the inequality (1.3.4) trivially holds. As this inequality also trivially holds
when either λ = ∞ or ξ = ∞, we may and shall assume hereafter that both λ and
ξ are finite and strictly positive. Recall that

xp

p
+
yq

q
− xy ≥ 0, ∀x, y ≥ 0

(c.f. [Dur03, Page 462] where it is proved by considering the first two derivatives
in x). Taking x = |X |/λ and y = |Y |/ξ, we have by linearity and monotonicity of
the expectation that

1 =
1

p
+

1

q
=

E|X |p
λpp

+
E|Y |q
ξqq

≥ E|XY |
λξ

,

yielding the stated inequality (1.3.4). �

A direct consequence of Hölder’s inequality is the triangle inequality for the norm
||X ||p in Lp(Ω,F ,P), that is,

Proposition 1.3.18 (Minkowski’s inequality). If X,Y ∈ Lp(Ω,F ,P), p ≥ 1,
then ||X + Y ||p ≤ ||X ||p + ||Y ||p.



38 1. PROBABILITY, MEASURE AND INTEGRATION

Proof. With |X+Y | ≤ |X |+ |Y |, by monotonicity of the expectation we have
the stated inequality in case p = 1. Considering hereafter p > 1, it follows from
Hölder’s inequality (Proposition 1.3.17) that

E|X + Y |p = E(|X + Y ||X + Y |p−1)

≤ E(|X ||X + Y |p−1) + E(|Y ||X + Y |p−1)

≤ (E|X |p) 1
p (E|X + Y |(p−1)q)

1
q + (E|Y |p) 1

p (E|X + Y |(p−1)q)
1
q

= (||X ||p + ||Y ||p) (E|X + Y |p) 1
q

(recall that (p− 1)q = p). Since X,Y ∈ Lp and

|x+ y|p ≤ (|x|+ |y|)p ≤ 2p−1(|x|p + |y|p), ∀x, y ∈ R, p > 1,

if follows that ap = E|X + Y |p < ∞. There is nothing to prove unless ap > 0, in

which case dividing by (ap)
1/q we get that

(E|X + Y |p)1− 1
q ≤ ||X ||p + ||Y ||p ,

giving the stated inequality (since 1− 1
q = 1

p ). �

Remark. Jensen’s inequality applies only for probability measures, while both
Hölder’s inequality µ(|fg|) ≤ µ(|f |p)1/pµ(|g|q)1/q and Minkowski’s inequality ap-
ply for any measure µ, with exactly the same proof we provided for probability
measures.

To practice your understanding of Markov’s inequality, solve the following exercise.

Exercise 1.3.19. Let X be a non-negative random variable with Var(X) ≤ 1/2.
Show that then P(−1 + EX ≤ X ≤ 2EX) ≥ 1/2.

To practice your understanding of the proof of Jensen’s inequality, try to prove
its extension to convex functions on Rn.

Exercise 1.3.20. Suppose g : Rn → R is a convex function and X1, X2, . . . , Xn

are integrable random variables, defined on the same probability space and such that
g(X1, . . . , Xn) is integrable. Show that then Eg(X1, . . . , Xn) ≥ g(EX1, . . . ,EXn).
Hint: Use convex analysis to show that g(·) is continuous and further that for any
c ∈ Rn there exists b ∈ Rn such that g(x) ≥ g(c) + 〈b, x − c〉 for all x ∈ Rn (with
〈·, ·〉 denoting the inner product of two vectors in Rn).

Exercise 1.3.21. Let Y ≥ 0 with v = E(Y 2) <∞.

(a) Show that for any 0 ≤ a < EY ,

P(Y > a) ≥ (EY − a)2

E(Y 2)

Hint: Apply the Cauchy-Schwarz inequality to Y IY >a.
(b) Show that (E|Y 2 − v|)2 ≤ 4v(v − (EY )2).
(c) Derive the second Bonferroni inequality,

P(

n⋃

i=1

Ai) ≥
n∑

i=1

P(Ai)−
∑

1≤j<i≤n

P(Ai ∩ Aj) .

How does it compare with the bound of part (a) for Y =
∑n

i=1 IAi
?



1.3. INTEGRATION AND THE (MATHEMATICAL) EXPECTATION 39

1.3.3. Convergence, limits and expectation. Asymptotic behavior is a
key issue in probability theory. We thus explore here various notions of convergence
of random variables and the relations among them, focusing on the integrability
conditions needed for exchanging the order of limit and expectation operations.
Unless explicitly stated otherwise, throughout this section we assume that all R.V.
are defined on the same probability space (Ω,F ,P).
In Definition 1.2.25 we have encountered the convergence almost surely of R.V. A

weaker notion of convergence is convergence in probability as defined next.

Definition 1.3.22. We say that R.V. Xn converge to a given R.V. X∞ in prob-

ability, denoted Xn
p→ X∞, if P({ω : |Xn(ω) −X∞(ω)| > ε}) → 0 as n → ∞, for

any fixed ε > 0. This is equivalent to |Xn −X∞| p→ 0, and is a special case of the
convergence in µ-measure of fn ∈ mF to f∞ ∈ mF , that is µ({s : |fn(s)−f∞(s)| >
ε}) → 0 as n→∞, for any fixed ε > 0.

Our next exercise and example clarify the relationship between convergence almost
surely and convergence in probability.

Exercise 1.3.23. Verify that convergence almost surely to a finite limit implies

convergence in probability, that is if Xn
a.s.→ X∞ ∈ R then Xn

p→ X∞.

Remark 1.3.24. Generalizing Definition 1.3.22, for a separable metric space (S, ρ)
we say that (S,BS)-valued random variablesXn converge toX∞ in probability if and
only if for every ε > 0, P(ρ(Xn, X∞) > ε) → 0 as n → ∞ (see [Dud89, Section
9.2] for more details). Equipping S = R with a suitable metric (for example,
ρ(x, y) = |ϕ(x) − ϕ(y)| with ϕ(x) = x/(1 + |x|) : R 7→ [−1, 1]), this definition
removes the restriction to X∞ finite in Exercise 1.3.23.

In general, Xn
p→ X∞ does not imply that Xn

a.s.→ X∞.

Example 1.3.25. Consider the probability space ((0, 1],B(0,1], U) and Xn(ω) =
1[tn,tn+sn](ω) with sn ↓ 0 as n → ∞ slowly enough and tn ∈ [0, 1 − sn] are such
that any ω ∈ (0, 1] is in infinitely many intervals [tn, tn + sn]. The latter property
applies if tn = (i− 1)/k and sn = 1/k when n = k(k − 1)/2 + i, i = 1, 2, . . . , k and

k = 1, 2, . . . (plot the intervals [tn, tn + sn] to convince yourself). Then, Xn
p→ 0

(since sn = U(Xn 6= 0) → 0), whereas fixing each ω ∈ (0, 1], we have that Xn(ω) =
1 for infinitely many values of n, hence Xn does not converge a.s. to zero.

Associated with each space Lq(Ω,F ,P) is the notion of Lq convergence which we
now define.

Definition 1.3.26. We say that Xn converges in Lq to X∞, denoted Xn
Lq

→ X∞,
if Xn, X∞ ∈ Lq and ||Xn − X∞||q → 0 as n → ∞ (i.e., E (|Xn −X∞|q) → 0 as
n→∞.

Remark. For q = 2 we have the explicit formula

||Xn −X ||22 = E(X2
n)− 2E(XnX) + E(X2).

Thus, it is often easiest to check convergence in L2.

The following immediate corollary of Lemma 1.3.16 provides an ordering of Lq

convergence in terms of the parameter q.

Corollary 1.3.27. If Xn
Lq

→ X∞ and q ≥ r, then Xn
Lr

→ X∞.
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Next note that the Lq convergence implies the convergence of the expectation of
|Xn|q.
Exercise 1.3.28. Fixing q ≥ 1, use Minkowski’s inequality (Proposition 1.3.18),

to show that if Xn
Lq

→ X∞, then E|Xn|q→E|X∞|q and for q = 1, 2, 3, . . . also
EXq

n → EXq
∞.

Further, it follows from Markov’s inequality that the convergence in Lq implies
convergence in probability (for any value of q).

Proposition 1.3.29. If Xn
Lq

→ X∞, then Xn
p→ X∞.

Proof. Fixing q > 0 recall that Markov’s inequality results with

P(|Y | > ε) ≤ ε−qE[|Y |q ] ,
for any R.V. Y and any ε > 0 (c.f part (b) of Example 1.3.14). The assumed
convergence in Lq means that E[|Xn −X∞|q] → 0 as n→∞, so taking Y = Yn =
Xn −X∞, we necessarily have also P(|Xn −X∞| > ε) → 0 as n→∞. Since ε > 0

is arbitrary, we see that Xn
p→ X∞ as claimed. �

The converse of Proposition 1.3.29 does not hold in general. As we next demon-
strate, even the stronger almost surely convergence (see Exercise 1.3.23), and having
a non-random constant limit are not enough to guarantee the Lq convergence, for
any q > 0.

Example 1.3.30. Fixing q > 0, consider the probability space ((0, 1],B(0,1], U)

and the R.V. Yn(ω) = n1/qI[0,n−1](ω). Since Yn(ω) = 0 for all n ≥ n0 and some

finite n0 = n0(ω), it follows that Yn(ω)
a.s.→ 0 as n → ∞. However, E[|Yn|q ] =

nU([0, n−1]) = 1 for all n, so Yn does not converge to zero in Lq (see Exercise
1.3.28).

Considering Example 1.3.25, where Xn
Lq

→ 0 while Xn does not converge a.s. to
zero, and Example 1.3.30 which exhibits the converse phenomenon, we conclude
that the convergence in Lq and the a.s. convergence are in general non comparable,
and neither one is a consequence of convergence in probability.
Nevertheless, a sequence Xn can have at most one limit, regardless of which con-

vergence mode is considered.

Exercise 1.3.31. Check that if Xn
Lq

→ X and Xn
a.s.→ Y then X

a.s.
= Y .

Though we have just seen that in general the order of the limit and expectation
operations is non-interchangeable, we examine for the remainder of this subsection
various conditions which do allow for such an interchange. Note in passing that
upon proving any such result under certain point-wise convergence conditions, we
may with no extra effort relax these to the corresponding almost sure convergence
(and the same applies for integrals with respect to measures, see part (a) of Theorem
1.3.9, or that of Proposition 1.3.5).

Turning to do just that, we first outline the results which apply in the more
general measure theory setting, starting with the proof of the monotone convergence
theorem.
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Proof of Theorem 1.3.4. By part (c) of Proposition 1.3.5, the proof of
which did not use Theorem 1.3.4, we know that µ(hn) is a non-decreasing sequence
that is bounded above by µ(h). It therefore suffices to show that

lim
n→∞

µ(hn) = sup
n
{µ0(ψ) : ψ ∈ SF+, ψ ≤ hn}

≥ sup{µ0(ϕ) : ϕ ∈ SF+, ϕ ≤ h} = µ(h)(1.3.5)

(see Step 3 of Definition 1.3.1). That is, it suffices to find for each non-negative
simple function ϕ ≤ h a sequence of non-negative simple functions ψn ≤ hn such
that µ0(ψn) → µ0(ϕ) as n → ∞. To this end, fixing ϕ, we may and shall choose

without loss of generality a representation ϕ =
m∑

l=1

clIAl
such that Al ∈ F are

disjoint and further clµ(Al) > 0 for l = 1, . . . ,m (see proof of Lemma 1.3.3). Using
hereafter the notation f∗(A) = inf{f(s) : s ∈ A} for f ∈ mF+ and A ∈ F , the
condition ϕ(s) ≤ h(s) for all s ∈ S is equivalent to cl ≤ h∗(Al) for all l, so

µ0(ϕ) ≤
m∑

l=1

h∗(Al)µ(Al) = V .

Suppose first that V <∞, that is 0 < h∗(Al)µ(Al) <∞ for all l. In this case, fixing
λ < 1, consider for each n the disjoint sets Al,λ,n = {s ∈ Al : hn(s) ≥ λh∗(Al)} ∈ F
and the corresponding

ψλ,n(s) =

m∑

l=1

λh∗(Al)IAl,λ,n
(s) ∈ SF+ ,

where ψλ,n(s) ≤ hn(s) for all s ∈ S. If s ∈ Al then h(s) > λh∗(Al). Thus, hn ↑ h
implies that Al,λ,n ↑ Al as n→∞, for each l. Consequently, by definition of µ(hn)
and the continuity from below of µ,

lim
n→∞

µ(hn) ≥ lim
n→∞

µ0(ψλ,n) = λV .

Taking λ ↑ 1 we deduce that limn µ(hn) ≥ V ≥ µ0(ϕ). Next suppose that V = ∞,
so without loss of generality we may and shall assume that h∗(A1)µ(A1) = ∞.
Fixing x ∈ (0, h∗(A1)) let A1,x,n = {s ∈ A1 : hn(s) ≥ x} ∈ F noting that A1,x,n ↑
A1 as n → ∞ and ψx,n(s) = xIA1,x,n

(s) ≤ hn(s) for all n and s ∈ S, is a non-
negative simple function. Thus, again by continuity from below of µ we have that

lim
n→∞

µ(hn) ≥ lim
n→∞

µ0(ψx,n) = xµ(A1) .

Taking x ↑ h∗(A1) we deduce that limn µ(hn) ≥ h∗(A1)µ(A1) = ∞, completing the
proof of (1.3.5) and that of the theorem. �

Considering probability spaces, Theorem 1.3.4 tells us that we can exchange the
order of the limit and the expectation in case of monotone upward a.s. convergence
of non-negative R.V. (with the limit possibly infinite). That is,

Theorem 1.3.32 (Monotone convergence theorem). If Xn ≥ 0 and Xn(ω) ↑
X∞(ω) for almost every ω, then EXn ↑ EX∞.

In Example 1.3.30 we have a point-wise convergent sequence of R.V. whose ex-
pectations exceed that of their limit. In a sense this is always the case, as stated
next in Fatou’s lemma (which is a direct consequence of the monotone convergence
theorem).
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Lemma 1.3.33 (Fatou’s lemma). For any measure space (S,F , µ) and any fn ∈
mF , if fn(s) ≥ g(s) for some µ-integrable function g, all n and µ-almost-every
s ∈ S, then

(1.3.6) lim inf
n→∞

µ(fn) ≥ µ(lim inf
n→∞

fn) .

Alternatively, if fn(s) ≤ g(s) for all n and a.e. s, then

(1.3.7) lim sup
n→∞

µ(fn) ≤ µ(lim sup
n→∞

fn) .

Proof. Assume first that fn ∈ mF+ and let hn(s) = infk≥n fk(s), noting
that hn ∈ mF+ is a non-decreasing sequence, whose point-wise limit is h(s) :=
lim infn→∞ fn(s). By the monotone convergence theorem, µ(hn) ↑ µ(h). Since
fn(s) ≥ hn(s) for all s ∈ S, the monotonicity of the integral (see Proposition 1.3.5)
implies that µ(fn) ≥ µ(hn) for all n. Considering the lim inf as n → ∞ we arrive
at (1.3.6).
Turning to extend this inequality to the more general setting of the lemma, note

that our conditions imply that fn
a.e.
= g + (fn − g)+ for each n. Considering the

countable union of the µ-negligible sets in which one of these identities is violated,
we thus have that

h := lim inf
n→∞

fn
a.e.
= g + lim inf

n→∞
(fn − g)+ .

Further, µ(fn) = µ(g) + µ((fn − g)+) by the linearity of the integral in mF+ ∪ L1.
Taking n→∞ and applying (1.3.6) for (fn − g)+ ∈ mF+ we deduce that

lim inf
n→∞

µ(fn) ≥ µ(g) + µ(lim inf
n→∞

(fn − g)+) = µ(g) + µ(h− g) = µ(h)

(where for the right most identity we used the linearity of the integral, as well as
the fact that −g is µ-integrable).
Finally, we get (1.3.7) for fn by considering (1.3.6) for −fn. �

Remark. In terms of the expectation, Fatou’s lemma is the statement that if
R.V. Xn ≥ X , almost surely, for some X ∈ L1 and all n, then

(1.3.8) lim inf
n→∞

E(Xn) ≥ E(lim inf
n→∞

Xn) ,

whereas if Xn ≤ X , almost surely, for some X ∈ L1 and all n, then

(1.3.9) lim sup
n→∞

E(Xn) ≤ E(lim sup
n→∞

Xn) .

Some text books call (1.3.9) and (1.3.7) the Reverse Fatou Lemma (e.g. [Wil91,
Section 5.4]).

Using Fatou’s lemma, we can easily prove Lebesgue’s dominated convergence the-
orem (in short DOM).

Theorem 1.3.34 (Dominated convergence theorem). For any measure space
(S,F , µ) and any fn ∈ mF , if for some µ-integrable function g and µ-almost-every
s ∈ S both fn(s) → f∞(s) as n → ∞, and |fn(s)| ≤ g(s) for all n, then f∞ is
µ-integrable and further µ(|fn − f∞|) → 0 as n→∞.

Proof. Up to a µ-negligible subset of S, our assumption that |fn| ≤ g and
fn → f∞, implies that |f∞| ≤ g, hence f∞ is µ-integrable. Applying Fatou’s lemma
(1.3.7) for |fn − f∞| ≤ 2g such that lim supn |fn − f∞| = 0, we conclude that

0 ≤ lim sup
n→∞

µ(|fn − f∞|) ≤ µ(lim sup
n→∞

|fn − f∞|) = µ(0) = 0 ,
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as claimed. �

By Minkowski’s inequality, µ(|fn − f∞|) → 0 implies that µ(|fn|) → µ(|f∞|). The
dominated convergence theorem provides us with a simple sufficient condition for
the converse implication in case also fn → f∞ a.e.

Lemma 1.3.35 (Scheffé’s lemma). If fn ∈ mF converges a.e. to f∞ ∈ mF and
µ(|fn|) → µ(|f∞|) <∞ then µ(|fn − f∞|) → 0 as n→∞.

Remark. In terms of expectation, Scheffé’s lemma states that if Xn
a.s.→ X∞ and

E|Xn| → E|X∞| <∞, then Xn
L1

→ X∞ as well.

Proof. As already noted, we may assume without loss of generality that
fn(s) → f∞(s) for all s ∈ S, that is gn(s) = fn(s) − f∞(s) → 0 as n → ∞,
for all s ∈ S. Further, since µ(|fn|) → µ(|f∞|) <∞, we may and shall assume also
that fn are R-valued and µ-integrable for all n ≤∞, hence gn ∈ L1(S,F , µ) as well.
Suppose first that fn ∈ mF+ for all n ≤ ∞. In this case, 0 ≤ (gn)− ≤ f∞ for all
n and s. As (gn)−(s) → 0 for every s ∈ S, applying the dominated convergence
theorem we deduce that µ((gn)−) → 0. From the assumptions of the lemma (and
the linearity of the integral on L1), we get that µ(gn) = µ(fn) − µ(f∞) → 0 as
n → ∞. Since |x| = x + 2x− for any x ∈ R, it thus follows by linearity of the
integral on L1 that µ(|gn|) = µ(gn) + 2µ((gn)−) → 0 for n→∞, as claimed.
In the general case of fn ∈ mF , we know that both 0 ≤ (fn)+(s) → (f∞)+(s) and

0 ≤ (fn)−(s) → (f∞)−(s) for every s, so by (1.3.6) of Fatou’s lemma, we have that

µ(|f∞|) = µ((f∞)+) + µ((f∞)−) ≤ lim inf
n→∞

µ((fn)−) + lim inf
n→∞

µ((fn)+)

≤ lim inf
n→∞

[µ((fn)−) + µ((fn)+)] = lim
n→∞

µ(|fn|) = µ(|f∞|) .

Hence, necessarily both µ((fn)+) → µ((f∞)+) and µ((fn)−) → µ((f∞)−). Since
|x− y| ≤ |x+ − y+|+ |x− − y−| for all x, y ∈ R and we already proved the lemma
for the non-negative (fn)− and (fn)+, we see that

lim
n→∞

µ(|fn − f∞|) ≤ lim
n→∞

µ(|(fn)+ − (f∞)+|) + lim
n→∞

µ(|(fn)− − (f∞)−|) = 0 ,

concluding the proof of the lemma. �

We conclude this sub-section with quite a few exercises, starting with an alterna-
tive characterization of convergence almost surely.

Exercise 1.3.36. Show that Xn
a.s.→ 0 if and only if for each ε > 0 there is n

so that for each random integer M with M(ω) ≥ n for all ω ∈ Ω we have that
P({ω : |XM(ω)(ω)| > ε}) < ε.

Exercise 1.3.37. Let Yn be (real-valued) random variables on (Ω,F ,P), and Nk

positive integer valued random variables on the same probability space.

(a) Show that YNk
(ω) = YNk(ω)(ω) are random variables on (Ω,F).

(b) Show that if Yn
a.s→ Y∞ and Nk

a.s.→ ∞ then YNk

a.s.→ Y∞.

(c) Provide an example of Yn
p→ 0 and Nk

a.s.→ ∞ such that almost surely
YNk

= 1 for all k.

(d) Show that if Yn
a.s.→ Y∞ and P(Nk > r) → 1 as k → ∞, for every fixed

r <∞, then YNk

p→ Y∞.
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In the following four exercises you find some of the many applications of the
monotone convergence theorem.

Exercise 1.3.38. You are now to relax the non-negativity assumption in the mono-
tone convergence theorem.

(a) Show that if E[(X1)−] <∞ and Xn(ω) ↑ X(ω) for almost every ω, then
EXn ↑ EX.

(b) Show that if in addition supn E[(Xn)+] <∞, then X ∈ L1(Ω,F ,P).

Exercise 1.3.39. In this exercise you are to show that for any R.V. X ≥ 0,

(1.3.10) EX = lim
δ↓0

EδX for EδX =

∞∑

j=0

jδP({ω : jδ < X(ω) ≤ (j + 1)δ}) .

First use monotone convergence to show that Eδk
X converges to EX along the

sequence δk = 2−k. Then, check that EδX ≤ EηX + η for any δ, η > 0 and deduce
from it the identity (1.3.10).
Applying (1.3.10) verify that if X takes at most countably many values {x1, x2, . . .},

then EX =
∑

i xiP({ω : X(ω) = xi}) (this applies to every R.V. X ≥ 0 on a
countable Ω). More generally, verify that such formula applies whenever the series
is absolutely convergent (which amounts to X ∈ L1).

Exercise 1.3.40. Use monotone convergence to show that for any sequence of
non-negative R.V. Yn,

E(

∞∑

n=1

Yn) =

∞∑

n=1

EYn .

Exercise 1.3.41. Suppose Xn, X ∈ L1(Ω,F ,P) are such that

(a) Xn ≥ 0 almost surely, E[Xn] = 1, E[Xn logXn] ≤ 1, and
(b) E[XnY ] → E[XY ] as n → ∞, for each bounded random variable Y on

(Ω,F).

Show that then X ≥ 0 almost surely, E[X ] = 1 and E[X logX ] ≤ 1.
Hint: Jensen’s inequality is handy for showing that E[X logX ] ≤ 1.

Next come few direct applications of the dominated convergence theorem.

Exercise 1.3.42.

(a) Show that for any random variable X, the function t 7→ E[e−|t−X|] is con-
tinuous on R (this function is sometimes called the bilateral exponential
transform).

(b) Suppose X ≥ 0 is such that EXq < ∞ for some q > 0. Show that then
q−1(EXq − 1) → E logX as q ↓ 0 and deduce that also q−1 logEXq →
E logX as q ↓ 0.

Hint: Fixing x ≥ 0 deduce from convexity of q 7→ xq that q−1(xq − 1) ↓ logx as
q ↓ 0.

Exercise 1.3.43. Suppose X is an integrable random variable.

(a) Show that E(|X |I{X>n}) → 0 as n→∞.
(b) Deduce that for any ε > 0 there exists δ > 0 such that

sup{E[|X |IA] : P(A) ≤ δ} ≤ ε .
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(c) Provide an example of X ≥ 0 with EX = ∞ for which the preceding fails,
that is, P(Ak) → 0 as k →∞ while E[XIAk

] is bounded away from zero.

The following generalization of the dominated convergence theorem is also left as
an exercise.

Exercise 1.3.44. Suppose gn(·) ≤ fn(·) ≤ hn(·) are µ-integrable functions in the
same measure space (S,F , µ) such that for µ-almost-every s ∈ S both gn(s) →
g∞(s), fn(s) → f∞(s) and hn(s) → h∞(s) as n→∞. Show that if further g∞ and
h∞ are µ-integrable functions such that µ(gn) → µ(g∞) and µ(hn) → µ(h∞), then
f∞ is µ-integrable and µ(fn) → µ(f∞).

Finally, here is a demonstration of one of the many issues that are particularly
easy to resolve with respect to the L2(Ω,F ,P) norm.

Exercise 1.3.45. Let X = (X(t))t∈R be a mapping from R into L2(Ω,F ,P).
Show that t 7→ X(t) is a continuous mapping (with respect to the norm ‖ · ‖2 on
L2(Ω,F ,P)), if and only if both

µ(t) = E[X(t)] and r(s, t) = E[X(s)X(t)]− µ(s)µ(t)

are continuous real-valued functions (r(s, t) is continuous as a map from R2 to R).

1.3.4. L1-convergence and uniform integrability. For probability theory,

the dominated convergence theorem states that if random variables Xn
a.s.→ X∞ are

such that |Xn| ≤ Y for all n and some random variable Y such that EY <∞, then

X∞ ∈ L1 and Xn
L1

→ X∞. Since constants have finite expectation (see part (d) of
Theorem 1.3.9), we have as its corollary the bounded convergence theorem, that is,

Corollary 1.3.46 (Bounded Convergence). Suppose that a.s. |Xn(ω)| ≤ K for

some finite non-random constant K and all n. If Xn
a.s.→ X∞, then X∞ ∈ L1 and

Xn
L1

→ X∞.

We next state a uniform integrability condition that together with convergence in
probability implies the convergence in L1.

Definition 1.3.47. A possibly uncountable collection of R.V.-s {Xα, α ∈ I} is
called uniformly integrable (U.I.) if

(1.3.11) lim
M→∞

sup
α

E[|Xα|I|Xα|>M ] = 0 .

Our next lemma shows that U.I. is a relaxation of the condition of dominated
convergence, and that U.I. still implies the boundedness in L1 of {Xα, α ∈ I}.
Lemma 1.3.48. If |Xα| ≤ Y for all α and some R.V. Y such that EY <∞, then

the collection {Xα} is U.I. In particular, any finite collection of integrable R.V. is
U.I.
Further, if {Xα} is U.I. then supα E|Xα| <∞.

Proof. By monotone convergence, E[Y IY≤M ] ↑ EY as M ↑ ∞, for any R.V.
Y ≥ 0. Hence, if in addition EY < ∞, then by linearity of the expectation,
E[Y IY >M ] ↓ 0 as M ↑ ∞. Now, if |Xα| ≤ Y then |Xα|I|Xα|>M ≤ Y IY >M ,

hence E[|Xα|I|Xα|>M ] ≤ E[Y IY >M ], which does not depend on α, and for Y ∈ L1

converges to zero when M → ∞. We thus proved that if |Xα| ≤ Y for all α and
some Y such that EY <∞, then {Xα} is a U.I. collection of R.V.-s



46 1. PROBABILITY, MEASURE AND INTEGRATION

For a finite collection of R.V.-s Xi ∈ L1, i = 1, . . . , k, take Y = |X1|+ |X2|+ · · ·+
|Xk| ∈ L1 such that |Xi| ≤ Y for i = 1, . . . , k, to see that any finite collection of
integrable R.V.-s is U.I.
Finally, since

E|Xα| = E[|Xα|I|Xα|≤M ] + E[|Xα|I|Xα|>M ] ≤M + sup
α

E[|Xα|I|Xα|>M ] ,

we see that if {Xα, α ∈ I} is U.I. then supα E|Xα| <∞. �

We next state and prove Vitali’s convergence theorem for probability measures,
deferring the general case to Exercise 1.3.53.

Theorem 1.3.49 (Vitali’s convergence theorem). Suppose Xn
p→ X∞. Then,

the collection {Xn} is U.I. if and only if Xn
L1

→ X∞ which in turn is equivalent to
Xn being integrable for all n ≤ ∞ and E|Xn| → E|X∞|.
Remark. In view of Lemma 1.3.48, Vitali’s theorem relaxes the assumed a.s.

convergence Xn → X∞ of the dominated (or bounded) convergence theorem, and
of Scheffé’s lemma, to that of convergence in probability.

Proof. Suppose first that |Xn| ≤M for some non-random finite constant M
and all n. For each ε > 0 let Bn,ε = {ω : |Xn(ω) − X∞(ω)| > ε}. The assumed
convergence in probability means that P(Bn,ε) → 0 as n → ∞ (see Definition
1.3.22). Since P(|X∞| ≥ M + ε) ≤ P(Bn,ε), taking n → ∞ and considering
ε = εk ↓ 0, we get by continuity from below of P that almost surely |X∞| ≤ M .
So, |Xn−X∞| ≤ 2M and by linearity and monotonicity of the expectation, for any
n and ε > 0,

E|Xn −X∞| = E[|Xn −X∞|IBc
n,ε

] + E[|Xn −X∞|IBn,ε
]

≤ E[εIBc
n,ε

] + E[2MIBn,ε
] ≤ ε+ 2MP(Bn,ε) .

Since P(Bn,ε) → 0 as n→∞, it follows that lim supn→∞ E|Xn−X∞| ≤ ε. Taking
ε ↓ 0 we deduce that E|Xn −X∞| → 0 in this case.
Moving to deal now with the general case of a collection {Xn} that is U.I., let
ϕM (x) = max(min(x,M),−M). As |ϕM (x)−ϕM (y)| ≤ |x−y| for any x, y ∈ R, our

assumption Xn
p→ X∞ implies that ϕM (Xn)

p→ ϕM (X∞) for any fixed M < ∞.
With |ϕM (·)| ≤ M , we then have by the preceding proof of bounded convergence

that ϕM (Xn)
L1

→ ϕM (X∞). Further, by Minkowski’s inequality, also E|ϕM (Xn)| →
E|ϕM (X∞)|. By Lemma 1.3.48, our assumption that {Xn} are U.I. implies their
L1 boundedness, and since |ϕM (x)| ≤ |x| for all x, we deduce that for any M ,

(1.3.12) ∞ > c := sup
n

E|Xn| ≥ lim
n→∞

E|ϕM (Xn)| = E|ϕM (X∞)| .

With |ϕM (X∞)| ↑ |X∞| as M ↑ ∞, it follows from monotone convergence that
E|ϕM (X∞)| ↑ E|X∞|, hence E|X∞| ≤ c < ∞ in view of (1.3.12). Fixing ε >
0, choose M = M(ε) < ∞ large enough for E[|X∞|I|X∞|>M ] < ε, and further
increasing M if needed, by the U.I. condition also E[|Xn|I|Xn|>M ] < ε for all n.
Considering the expectation of the inequality |x−ϕM (x)| ≤ |x|I|x|>M (which holds
for all x ∈ R), with x = Xn and x = X∞, we obtain that

E|Xn −X∞| ≤ E|Xn − ϕM (Xn)|+ E|ϕM (Xn)− ϕM (X∞)|+ E|X∞ − ϕM (X∞)|
≤ 2ε+ E|ϕM (Xn)− ϕM (X∞)| .
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Recall that ϕM (Xn)
L1

→ ϕM (X∞), hence lim supn E|Xn −X∞| ≤ 2ε. Taking ε→ 0
completes the proof of L1 convergence of Xn to X∞.

Suppose now that Xn
L1

→ X∞. Then, by Jensen’s inequality (for the convex
function g(x) = |x|),

|E|Xn| −E|X∞|| ≤ E[| |Xn| − |X∞| |] ≤ E|Xn −X∞| → 0.

That is, E|Xn| → E|X∞| and Xn, n ≤ ∞ are integrable.

It thus remains only to show that if Xn
p→ X∞, all of which are integrable and

E|Xn| → E|X∞| then the collection {Xn} is U.I. To the end, for any M > 1, let

ψM (x) = |x|I|x|≤M−1 + (M − 1)(M − |x|)I(M−1,M ](|x|) ,
a piecewise-linear, continuous, bounded function, such that ψM (x) = |x| for |x| ≤
M−1 and ψM (x) = 0 for |x| ≥M . Fixing ε > 0, with X∞ integrable, by dominated
convergence E|X∞|−Eψm(X∞) ≤ ε for some finitem = m(ε). Further, as |ψm(x)−
ψm(y)| ≤ (m − 1)|x− y| for any x, y ∈ R, our assumption Xn

p→ X∞ implies that

ψm(Xn)
p→ ψm(X∞). Hence, by the preceding proof of bounded convergence,

followed by Minkowski’s inequality, we deduce that Eψm(Xn) → Eψm(X∞) as
n → ∞. Since |x|I|x|>m ≤ |x| − ψm(x) for all x ∈ R, our assumption E|Xn| →
E|X∞| thus implies that for some n0 = n0(ε) finite and all n ≥ n0 and M ≥ m(ε),

E[|Xn|I|Xn|>M ] ≤ E[|Xn|I|Xn|>m] ≤ E|Xn| −Eψm(Xn)

≤ E|X∞| −Eψm(X∞) + ε ≤ 2ε .

As each Xn is integrable, E[|Xn|I|Xn|>M ] ≤ 2ε for some M ≥ m finite and all n
(including also n < n0(ε)). The fact that such finite M = M(ε) exists for any ε > 0
amounts to the collection {Xn} being U.I. �

The following exercise builds upon the bounded convergence theorem.

Exercise 1.3.50. Show that for any X ≥ 0 (do not assume E(1/X) <∞), both

(a) lim
y→∞

yE[X−1IX>y] = 0 and

(b) lim
y↓0

yE[X−1IX>y] = 0.

Next is an example of the advantage of Vitali’s convergence theorem over the
dominated convergence theorem.

Exercise 1.3.51. On ((0, 1],B(0,1], U), let Xn(ω) = (n/ logn)I(0,n−1)(ω) for n ≥
2. Show that the collection {Xn} is U.I. such that Xn

a.s.→ 0 and EXn → 0, but
there is no random variable Y with finite expectation such that Y ≥ Xn for all
n ≥ 2 and almost all ω ∈ (0, 1].

By a simple application of Vitali’s convergence theorem you can derive a classical
result of analysis, dealing with the convergence of Cesáro averages.

Exercise 1.3.52. Let Un denote a random variable whose law is the uniform
probability measure on (0, n], namely, Lebesgue measure restricted to the interval

(0, n] and normalized by n−1 to a probability measure. Show that g(Un)
p→ 0 as

n → ∞, for any Borel function g(·) such that |g(y)| → 0 as y → ∞. Further,
assuming that also supy |g(y)| < ∞, deduce that E|g(Un)| = n−1

∫ n

0 |g(y)|dy → 0
as n→∞.
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Here is Vitali’s convergence theorem for a general measure space.

Exercise 1.3.53. Given a measure space (S,F , µ), suppose fn, f∞ ∈ mF with
µ(|fn|) finite and µ(|fn − f∞| > ε) → 0 as n → ∞, for each fixed ε > 0. Show
that µ(|fn − f∞|) → 0 as n → ∞ if and only if both supn µ(|fn|I|fn|>k) → 0 and
supn µ(|fn|IAk

) → 0 for k →∞ and some {Ak} ⊆ F such that µ(Ac
k) <∞.

We conclude this subsection with a useful sufficient criterion for uniform integra-
bility and few of its consequences.

Exercise 1.3.54. Let f ≥ 0 be a Borel function such that f(r)/r →∞ as r →∞.
Suppose Ef(|Xα|) ≤ C for some finite non-random constant C and all α ∈ I. Show
that then {Xα : α ∈ I} is a uniformly integrable collection of R.V.

Exercise 1.3.55.

(a) Construct random variables Xn such that supn E(|Xn|) < ∞, but the
collection {Xn} is not uniformly integrable.

(b) Show that if {Xn} is a U.I. collection and {Yn} is a U.I. collection, then
{Xn + Yn} is also U.I.

(c) Show that if Xn
p→ X∞ and the collection {Xn} is uniformly integrable,

then E(XnIA) → E(X∞IA) as n→∞, for any measurable set A.

1.3.5. Expectation, density and Riemann integral. Applying the stan-
dard machine we now show that fixing a measure space (S,F , µ), each non-negative
measurable function f induces a measure fµ on (S,F), with f being the natural
generalization of the concept of probability density function.

Proposition 1.3.56. Fix a measure space (S,F , µ). Every f ∈ mF+ induces
a measure fµ on (S,F) via (fµ)(A) = µ(fIA) for all A ∈ F . These measures
satisfy the composition relation h(fµ) = (hf)µ for all f, h ∈ mF+. Further, h ∈
L1(S,F , fµ) if and only if fh ∈ L1(S,F , µ) and then (fµ)(h) = µ(fh).

Proof. Fixing f ∈ mF+, obviously fµ is a non-negative set function on (S,F)
with (fµ)(∅) = µ(fI∅) = µ(0) = 0. To check that fµ is countably additive, hence
a measure, let A = ∪kAk for a countable collection of disjoint sets Ak ∈ F . Since∑n

k=1 fIAk
↑ fIA, it follows by monotone convergence and linearity of the integral

that,

µ(fIA) = lim
n→∞

µ(
n∑

k=1

fIAk
) = lim

n→∞

n∑

k=1

µ(fIAk
) =

∑

k

µ(fIAk
)

Thus, (fµ)(A) =
∑

k(fµ)(Ak) verifying that fµ is a measure.
Fixing f ∈ mF+, we turn to prove that the identity

(1.3.13) (fµ)(hIA) = µ(fhIA) ∀A ∈ F ,

holds for any h ∈ mF+. Since the left side of (1.3.13) is the value assigned to A
by the measure h(fµ) and the right side of this identity is the value assigned to
the same set by the measure (hf)µ, this would verify the stated composition rule
h(fµ) = (hf)µ. The proof of (1.3.13) proceeds by applying the standard machine:
Step 1. If h = IB for B ∈ F we have by the definition of the integral of an indicator
function that

(fµ)(IBIA) = (fµ)(IA∩B) = (fµ)(A ∩ B) = µ(fIA∩B) = µ(fIBIA) ,

which is (1.3.13).
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Step 2. Take h ∈ SF+ represented as h =
∑n

l=1 clIBl
with cl ≥ 0 and Bl ∈ F .

Then, by Step 1 and the linearity of the integrals with respect to fµ and with
respect to µ, we see that

(fµ)(hIA) =
n∑

l=1

cl(fµ)(IBl
IA) =

n∑

l=1

clµ(fIBl
IA) = µ(f

n∑

l=1

clIBl
IA) = µ(fhIA) ,

again yielding (1.3.13).
Step 3. For any h ∈ mF+ there exist hn ∈ SF+ such that hn ↑ h. By Step 2 we
know that (fµ)(hnIA) = µ(fhnIA) for any A ∈ F and all n. Further, hnIA ↑ hIA
and fhnIA ↑ fhIA, so by monotone convergence (for both integrals with respect to
fµ and µ),

(fµ)(hIA) = lim
n→∞

(fµ)(hnIA) = lim
n→∞

µ(fhnIA) = µ(fhIA) ,

completing the proof of (1.3.13) for all h ∈ mF+.
Writing h ∈ mF as h = h+ − h− with h+ = max(h, 0) ∈ mF+ and h− =
−min(h, 0) ∈ mF+, it follows from the composition rule that
∫
h±d(fµ) = (fµ)(h±IS) = h±(fµ)(S) = ((h±f)µ)(S) = µ(fh±IS) =

∫
fh±dµ .

Observing that fh± = (fh)± when f ∈ mF+, we thus deduce that h is fµ-
integrable if and only if fh is µ-integrable in which case

∫
hd(fµ) =

∫
fhdµ, as

stated. �

Fixing a measure space (S,F , µ), every set D ∈ F induces a σ-algebra FD =
{A ∈ F : A ⊆ D}. Let µD denote the restriction of µ to (D,FD). As a corollary
of Proposition 1.3.56 we express the integral with respect to µD in terms of the
original measure µ.

Corollary 1.3.57. Fixing D ∈ F let hD denote the restriction of h ∈ mF to
(D,FD). Then, µD(hD) = µ(hID) for any h ∈ mF+. Further, hD ∈ L1(D,FD, µD)
if and only if hID ∈ L1(S,F , µ), in which case also µD(hD) = µ(hID).

Proof. Note that the measure IDµ of Proposition 1.3.56 coincides with µD

on the σ-algebra FD and assigns to any set A ∈ F the same value it assigns to
A ∩ D ∈ FD. By Definition 1.3.1 this implies that (IDµ)(h) = µD(hD) for any
h ∈ mF+. The corollary is thus a re-statement of the composition and integrability
relations of Proposition 1.3.56 for f = ID. �

Remark 1.3.58. Corollary 1.3.57 justifies using hereafter the notation
∫

A fdµ or

µ(f ;A) for µ(fIA), or writing E(X ;A) =
∫

A
X(ω)dP (ω) for E(XIA). With this

notation in place, Proposition 1.3.56 states that each Z ≥ 0 such that EZ = 1
induces a probability measure Q = ZP such that Q(A) =

∫
A
ZdP for all A ∈ F ,

and then EQ(W ) :=
∫
WdQ = E(ZW ) whenever W ≥ 0 or ZW ∈ L1(Ω,F ,P)

(the assumption EZ = 1 translates to Q(Ω) = 1).

Proposition 1.3.56 is closely related to the probability density function of Definition
1.2.39. En-route to showing this, we first define the collection of Lebesgue integrable
functions.
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Definition 1.3.59. Consider Lebesgue’s measure λ on (R,B) as in Section 1.1.3,
and its completion λ on (R,B) (see Theorem 1.1.35). A set B ∈ B is called
Lebesgue measurable and f : R 7→ R is called Lebesgue integrable function if
f ∈ mB, and λ(|f |) < ∞. As we show in Proposition 1.3.64, any non-negative
Riemann integrable function is also Lebesgue integrable, and the integral values
coincide, justifying the notation

∫
B f(x)dx for λ(f ;B), where the function f and

the set B are both Lebesgue measurable.

Example 1.3.60. Suppose f is a non-negative Lebesgue integrable function such
that

∫
R
f(x)dx = 1. Then, P = fλ of Proposition 1.3.56 is a probability measure

on (R,B) such that P(B) = λ(f ;B) =
∫

B f(x)dx for any Lebesgue measurable set
B. By Theorem 1.2.36 it is easy to verify that F (α) = P((−∞, α]) is a distribution
function, such that F (α) =

∫ α

−∞ f(x)dx. That is, P is the law of a R.V. X : R 7→
R whose probability density function is f (c.f. Definition 1.2.39 and Proposition
1.2.44).

Our next theorem allows us to compute expectations of functions of a R.V. X
in the space (R,B,PX), using the law of X (c.f. Definition 1.2.33) and calculus,
instead of working on the original general probability space. One of its immediate

consequences is the “obvious” fact that if X
D
= Y then Eh(X) = Eh(Y ) for any

non-negative Borel function h.

Theorem 1.3.61 (Change of variables formula). Let X : Ω 7→ R be a ran-
dom variable on (Ω,F ,P) and h a Borel measurable function such that Eh+(X) <
∞ or Eh−(X) <∞. Then,

(1.3.14)

∫

Ω

h(X(ω))dP(ω) =

∫

R

h(x)dPX (x).

Proof. Apply the standard machine with respect to h ∈ mB:
Step 1. Taking h = IB for B ∈ B, note that by the definition of expectation of
indicators

Eh(X) = E[IB(X(ω))] = P({ω : X(ω) ∈ B}) = PX(B) =

∫
h(x)dPX(x).

Step 2. Representing h ∈ SF+ as h =
∑m

l=1 clIBl
for cl ≥ 0, the identity (1.3.14)

follows from Step 1 by the linearity of the expectation in both spaces.
Step 3. For h ∈ mB+, consider hn ∈ SF+ such that hn ↑ h. Since hn(X(ω)) ↑
h(X(ω)) for all ω, we get by monotone convergence on (Ω,F ,P), followed by ap-
plying Step 2 for hn, and finally monotone convergence on (R,B,PX), that

∫

Ω

h(X(ω))dP(ω) = lim
n→∞

∫

Ω

hn(X(ω))dP(ω)

= lim
n→∞

∫

R

hn(x)dPX (x) =

∫

R

h(x)dPX(x),

as claimed.
Step 4. Write a Borel function h(x) as h+(x) − h−(x). Then, by Step 3, (1.3.14)
applies for both non-negative functions h+ and h−. Further, at least one of these
two identities involves finite quantities. So, taking their difference and using the
linearity of the expectation (in both probability spaces), lead to the same result for
h. �
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Combining Theorem 1.3.61 with Example 1.3.60, we show that the expectation of
a Borel function of a R.V. X having a density fX can be computed by performing
calculus type integration on the real line.

Corollary 1.3.62. Suppose that the distribution function of a R.V. X is of
the form (1.2.3) for some Lebesgue integrable function fX(x). Then, for any
Borel measurable function h : R 7→ R, the R.V. h(X) is integrable if and only if∫
|h(x)|fX (x)dx <∞, in which case Eh(X) =

∫
h(x)fX(x)dx. The latter formula

applies also for any non-negative Borel function h(·).
Proof. Recall Example 1.3.60 that the law PX of X equals to the probability

measure fXλ. For h ≥ 0 we thus deduce from Theorem 1.3.61 that Eh(X) =
fXλ(h), which by the composition rule of Proposition 1.3.56 is given by λ(fXh) =∫
h(x)fX(x)dx. The decomposition h = h+ − h− then completes the proof of the

general case. �

Our next task is to compare Lebesgue’s integral (of Definition 1.3.1) with Rie-
mann’s integral. To this end recall,

Definition 1.3.63. A function f : (a, b] 7→ [0,∞] is Riemann integrable with inte-
gral R(f) <∞ if for any ε > 0 there exists δ = δ(ε) > 0 such that |∑l f(xl)λ(Jl)−
R(f)| < ε, for any xl ∈ Jl and {Jl} a finite partition of (a, b] into disjoint subin-
tervals whose length λ(Jl) < δ.

Lebesgue’s integral of a function f is based on splitting its range to small intervals
and approximating f(s) by a constant on the subset of S for which f(·) falls into
each such interval. As such, it accommodates an arbitrary domain S of the function,
in contrast to Riemann’s integral where the domain of integration is split into small
rectangles – hence limited to Rd. As we next show, even for S = (a, b], if f ≥ 0
(or more generally, f bounded), is Riemann integrable, then it is also Lebesgue
integrable, with the integrals coinciding in value.

Proposition 1.3.64. If f(x) is a non-negative Riemann integrable function on

an interval (a, b], then it is also Lebesgue integrable on (a, b] and λ(f) = R(f).

Proof. Let f∗(J) = inf{f(x) : x ∈ J} and f∗(J) = sup{f(x) : x ∈ J}.
Varying xl over Jl we see that

(1.3.15) R(f)− ε ≤
∑

l

f∗(Jl)λ(Jl) ≤
∑

l

f∗(Jl)λ(Jl) ≤ R(f) + ε ,

for any finite partition Π of (a, b] into disjoint subintervals Jl such that supl λ(Jl) ≤
δ. For any such partition, the non-negative simple functions `(Π) =

∑
l f∗(Jl)IJl

and u(Π) =
∑

l f
∗(Jl)IJl

are such that `(Π) ≤ f ≤ u(Π), whereas R(f) − ε ≤
λ(`(Π)) ≤ λ(u(Π)) ≤ R(f) + ε, by (1.3.15). Consider the dyadic partitions Πn

of (a, b] to 2n intervals of length (b − a)2−n each, such that Πn+1 is a refinement
of Πn for each n = 1, 2, . . .. Note that u(Πn)(x) ≥ u(Πn+1)(x) for all x ∈ (a, b]
and any n, hence u(Πn))(x) ↓ u∞(x) a Borel measurable R-valued function (see
Exercise 1.2.31). Similarly, `(Πn)(x) ↑ `∞(x) for all x ∈ (a, b], with `∞ also Borel
measurable, and by the monotonicity of Lebesgue’s integral,

R(f) ≤ lim
n∞

λ(`(Πn)) ≤ λ(`∞) ≤ λ(u∞) ≤ lim
n→∞

λ(u(Πn)) ≤ R(f) .

We deduce that λ(u∞) = λ(`∞) = R(f) for u∞ ≥ f ≥ `∞. The set {x ∈ (a, b] :
f(x) 6= `∞(x)} is a subset of the Borel set {x ∈ (a, b] : u∞(x) > `∞(x)} whose
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Lebesgue measure is zero (see Lemma 1.3.8). Consequently, f is Lebesgue measur-
able on (a, b] with λ(f) = λ(`∞) = R(f) as stated. �

Here is an alternative, direct proof of the fact that Q in Remark 1.3.58 is a
probability measure.

Exercise 1.3.65. Suppose E|X | < ∞ and A =
⋃

nAn for some disjoint sets
An ∈ F .

(a) Show that then

∞∑

n=0

E(X ;An) = E(X ;A) ,

that is, the sum converges absolutely and has the value on the right.
(b) Deduce from this that for Z ≥ 0 with EZ positive and finite, Q(A) :=

EZIA/EZ is a probability measure.
(c) Suppose that X and Y are non-negative random variables on the same

probability space (Ω,F ,P) such that EX = EY < ∞. Deduce from the
preceding that if EXIA = EY IA for any A in a π-system A such that

F = σ(A), then X
a.s.
= Y .

Exercise 1.3.66. Suppose P is a probability measure on (R,B) and f ≥ 0 is a
Borel function such that P(B) =

∫
B
f(x)dx for B = (−∞, b], b ∈ R. Using the

π−λ theorem show that this identity applies for all B ∈ B. Building on this result,
use the standard machine to directly prove Corollary 1.3.62 (without Proposition
1.3.56).

1.3.6. Mean, variance and moments. We start with the definition of mo-
ments of a random variable.

Definition 1.3.67. If k is a positive integer then EXk is called the kth moment
of X. When it is well defined, the first moment mX = EX is called the mean. If
EX2 <∞, then the variance of X is defined to be

(1.3.16) Var(X) = E(X −mX)2 = EX2 −m2
X ≤ EX2 .

Since E(aX + b) = aEX + b (linearity of the expectation), it follows from the
definition that

(1.3.17) Var(aX + b) = E(aX + b−E(aX + b))2 = a2E(X −mX)2 = a2
Var(X)

We turn to some examples, starting with R.V. having a density.

Example 1.3.68. If X has the exponential distribution then

EXk =

∫ ∞

0

xke−xdx = k!

for any k (see Example 1.2.40 for its density). The mean of X is mX = 1 and
its variance is EX2 − (EX)2 = 1. For any λ > 0, it is easy to see that T = X/λ
has density fT (t) = λe−λt1t>0, called the exponential density of parameter λ. By
(1.3.17) it follows that mT = 1/λ and Var(T ) = 1/λ2.
Similarly, if X has a standard normal distribution, then by symmetry, for k odd,

EXk =
1√
2π

∫ ∞

−∞
xke−x2/2dx = 0 ,
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whereas by integration by parts, the even moments satisfy the relation

(1.3.18) EX2` =
1√
2π

∫ ∞

−∞
x2`−1xe−x2/2dx = (2`− 1)EX2`−2 ,

for ` = 1, 2, . . .. In particular,

Var(X) = EX2 = 1 .

Consider G = σX + µ, where σ > 0 and µ ∈ R, whose density is

fG(y) =
1√

2πσ2
e−

(y−µ)2

2σ2 .

We call the law of G the normal distribution of mean µ and variance σ2 (as EG = µ
and Var(G) = σ2).

Next are some examples of R.V. with finite or countable set of possible values.

Example 1.3.69. We say that B has a Bernoulli distribution of parameter p ∈
[0, 1] if P(B = 1) = 1−P(B = 0) = p. Clearly,

EB = p · 1 + (1− p) · 0 = p .

Further, B2 = B so EB2 = EB = p and

Var(B) = EB2 − (EB)2 = p− p2 = p(1− p) .

Recall that N has a Poisson distribution with parameter λ ≥ 0 if

P(N = k) =
λk

k!
e−λ for k = 0, 1, 2, . . .

(where in case λ = 0, P(N = 0) = 1). Observe that for k = 1, 2, . . .,

E(N(N − 1) · · · (N − k + 1)) =

∞∑

n=k

n(n− 1) · · · (n− k + 1)
λn

n!
e−λ

= λk
∞∑

n=k

λn−k

(n− k)!
e−λ = λk .

Using this formula, it follows that EN = λ while

Var(N) = EN2 − (EN)2 = λ .

The random variable Z is said to have a Geometric distribution of success proba-
bility p ∈ (0, 1) if

P(Z = k) = p(1− p)k−1 for k = 1, 2, . . .

This is the distribution of the number of independent coin tosses needed till the first
appearance of a Head, or more generally, the number of independent trials till the
first occurrence in this sequence of a specific event whose probability is p. Then,

EZ =

∞∑

k=1

kp(1− p)k−1 =
1

p

EZ(Z − 1) =
∞∑

k=2

k(k − 1)p(1− p)k−1 =
2(1− p)

p2

Var(Z) = EZ(Z − 1) + EZ − (EZ)2 =
1− p

p2
.
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Exercise 1.3.70. Consider a counting random variable Nn =
∑n

i=1 IAi
.

(a) Provide a formula for Var(Nn) in terms of P(Ai) and P(Ai ∩ Aj) for
i 6= j.

(b) Using your formula, find the variance of the number Nn of empty boxes
when distributing at random r distinct balls among n distinct boxes, where
each of the possible nr assignments of balls to boxes is equally likely.

1.4. Independence and product measures

In Subsection 1.4.1 we build-up the notion of independence, from events to random
variables via σ-algebras, relating it to the structure of the joint distribution func-
tion. Subsection 1.4.2 considers finite product measures associated with the joint
law of independent R.V.-s. This is followed by Kolmogorov’s extension theorem
which we use in order to construct infinitely many independent R.V.-s. Subsection
1.4.3 is about Fubini’s theorem and its applications for computing the expectation
of functions of independent R.V.

1.4.1. Definition and conditions for independence. Recall the classical
definition that two events A,B ∈ F are independent if P(A ∩ B) = P(A)P(B).

For example, suppose two fair dice are thrown (i.e. Ω = {1, 2, 3, 4, 5, 6}2 with
F = 2Ω and the uniform probability measure). Let E1 = {Sum of two is 6} and
E2 = {first die is 4} then E1 and E2 are not independent since

P(E1) = P({(1, 5) (2, 4) (3, 3) (4, 2) (5, 1)}) =
5

36
, P(E2) = P({ω : ω1 = 4}) =

1

6
and

P(E1 ∩ E2) = P({(4, 2)}) =
1

36
6= P(E1)P(E2).

However one can check that E2 and E3 = {sum of dice is 7} are independent.

In analogy with the independence of events we define the independence of two
random vectors and more generally, that of two σ-algebras.

Definition 1.4.1. Two σ-algebras H,G ⊆ F are independent (also denoted P-
independent), if

P(G ∩H) = P(G)P(H), ∀G ∈ G, ∀H ∈ H ,

that is, two σ-algebras are independent if every event in one of them is independent
of every event in the other.
The random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) on the same prob-

ability space are independent if the corresponding σ-algebras σ(X1, . . . , Xn) and
σ(Y1, . . . , Ym) are independent.

Remark. Our definition of independence of random variables is consistent with
that of independence of events. For example, if the events A,B ∈ F are indepen-
dent, then so are IA and IB . Indeed, we need to show that σ(IA) = {∅,Ω, A,Ac}
and σ(IB) = {∅,Ω, B,Bc} are independent. Since P(∅) = 0 and ∅ is invariant under
intersections, whereas P(Ω) = 1 and all events are invariant under intersection with
Ω, it suffices to consider G ∈ {A,Ac} and H ∈ {B,Bc}. We check independence
first for G = A and H = Bc. Noting that A is the union of the disjoint events
A ∩ B and A ∩ Bc we have that

P(A ∩ Bc) = P(A)−P(A ∩B) = P(A)[1−P(B)] = P(A)P(Bc) ,
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where the middle equality is due to the assumed independence of A and B. The
proof for all other choices of G and H is very similar.

More generally we define the mutual independence of events as follows.

Definition 1.4.2. Events Ai ∈ F are P-mutually independent if for any L <∞
and distinct indices i1, i2, . . . , iL,

P(Ai1 ∩ Ai2 ∩ · · · ∩ AiL
) =

L∏

k=1

P(Aik
).

We next generalize the definition of mutual independence to σ-algebras, random
variables and beyond. This definition applies to the mutual independence of both
finite and infinite number of such objects.

Definition 1.4.3. We say that the collections of events Aα ⊆ F with α ∈ I
(possibly an infinite index set) are P-mutually independent if for any L < ∞ and
distinct α1, α2, . . . , αL ∈ I,

P(A1 ∩A2 ∩ · · · ∩ AL) =

L∏

k=1

P(Ak), ∀Ak ∈ Aαk
, k = 1, . . . , L .

We say that random variables Xα, α ∈ I are P-mutually independent if the σ-
algebras σ(Xα), α ∈ I are P-mutually independent.
When the probability measure P in consideration is clear from the context, we say

that random variables, or collections of events, are mutually independent.

Our next theorem gives a sufficient condition for the mutual independence of
a collection of σ-algebras which as we later show, greatly simplifies the task of
checking independence.

Theorem 1.4.4. Suppose Gi = σ(Ai) ⊆ F for i = 1, 2, · · · , n where Ai are π-
systems. Then, a sufficient condition for the mutual independence of Gi is that Ai,
i = 1, . . . , n are mutually independent.

Proof. Let H = Ai1 ∩Ai2 ∩· · ·∩AiL
, where i1, i2, . . . , iL are distinct elements

from {1, 2, . . . , n − 1} and Ai ∈ Ai for i = 1, . . . , n − 1. Consider the two finite
measures µ1(A) = P(A ∩ H) and µ2(A) = P(H)P(A) on the measurable space
(Ω,Gn). Note that

µ1(Ω) = P(Ω ∩H) = P(H) = P(H)P(Ω) = µ2(Ω) .

If A ∈ An, then by the mutual independence of Ai, i = 1, . . . , n, it follows that

µ1(A) = P(Ai1 ∩ Ai2 ∩ Ai3 ∩ · · · ∩AiL
∩ A) = (

L∏

k=1

P(Aik
))P(A)

= P(Ai1 ∩ Ai2 ∩ · · · ∩ AiL
)P(A) = µ2(A) .

Since the finite measures µ1(·) and µ2(·) agree on the π-system An and on Ω, it
follows that µ1 = µ2 on Gn = σ(An) (see Proposition 1.1.39). That is, P(G∩H) =
P(G)P(H) for any G ∈ Gn.
Since this applies for arbitrary Ai ∈ Ai, i = 1, . . . , n − 1, in view of Definition

1.4.3 we have just proved that if A1,A2, . . . ,An are mutually independent, then
A1,A2, . . . ,Gn are mutually independent.
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Applying the latter relation for Gn,A1, . . . ,An−1 (which are mutually independent
since Definition 1.4.3 is invariant to a permutation of the order of the collections) we
get that Gn,A1, . . . ,An−2,Gn−1 are mutually independent. After n such iterations
we have the stated result. �

Because the mutual independence of the collections of events Aα, α ∈ I amounts
to the mutual independence of any finite number of these collections, we have the
immediate consequence:

Corollary 1.4.5. If π-systems of events Aα, α ∈ I, are mutually independent,
then σ(Aα), α ∈ I, are also mutually independent.

Another immediate consequence deals with the closure of mutual independence
under projections.

Corollary 1.4.6. If the π-systems of events Hα,β, (α, β) ∈ J are mutually
independent, then the σ-algebras Gα = σ (∪βHα,β), are also mutually independent.

Proof. Let Aα be the collection of sets of the form A = ∩m
j=1Hj where Hj ∈

Hα,βj
for some m <∞ and distinct β1, . . . , βm. Since Hα,β are π-systems, it follows

that so is Aα for each α. Since a finite intersection of sets Ak ∈ Aαk
, k = 1, . . . , L is

merely a finite intersection of sets from distinct collections Hαk ,βj(k), the assumed
mutual independence of Hα,β implies the mutual independence of Aα. By Corollary
1.4.5, this in turn implies the mutual independence of σ(Aα). To complete the proof,
simply note that for any β, each H ∈ Hα,β is also an element of Aα, implying that
Gα ⊆ σ(Aα). �

Relying on the preceding corollary you can now establish the following character-
ization of independence (which is key to proving Kolmogorov’s 0-1 law).

Exercise 1.4.7. Show that if for each n ≥ 1 the σ-algebras FX
n = σ(X1, . . . , Xn)

and σ(Xn+1) are P-mutually independent then the random variables X1, X2, X3, . . .
are P-mutually independent. Conversely, show that if X1, X2, X3, . . . are indepen-
dent, then for each n ≥ 1 the σ-algebras FX

n and T X
n = σ(Xr , r > n) are indepen-

dent.

It is easy to check that a P-trivial σ-algebra H is P-independent of any other
σ-algebra G ⊆ F . Conversely, as we show next, independence is a great tool for
proving that a σ-algebra is P-trivial.

Lemma 1.4.8. If each of the σ-algebras Gk ⊆ Gk+1 is P-independent of a σ-algebra
H ⊆ σ(

⋃
k≥1 Gk) then H is P-trivial.

Remark. In particular, if H is P-independent of itself, then H is P-trivial.

Proof. Since Gk ⊆ Gk+1 for all k and Gk are σ-algebras, it follows that A =⋃
k≥1 Gk is a π-system. The assumed P-independence of H and Gk for each k

yields the P-independence of H and A. Thus, by Theorem 1.4.4 we have that
H and σ(A) are P-independent. Since H ⊆ σ(A) it follows that in particular
P(H) = P(H ∩H) = P(H)P(H) for each H ∈ H. So, necessarily P(H) ∈ {0, 1}
for all H ∈ H. That is, H is P-trivial. �

We next define the tail σ-algebra of a stochastic process.

Definition 1.4.9. For a stochastic process {Xk} we set T X
n = σ(Xr, r > n) and

call T X = ∩nT X
n the tail σ-algebra of the process {Xk}.
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As we next see, the P-triviality of the tail σ-algebra of independent random vari-
ables is an immediate consequence of Lemma 1.4.8. This result, due to Kolmogorov,
is just one of the many 0-1 laws that exist in probability theory.

Corollary 1.4.10 (Kolmogorov’s 0-1 law). If {Xk} are P-mutually indepen-
dent then the corresponding tail σ-algebra T X is P-trivial.

Proof. Note that FX
k ⊆ FX

k+1 and T X ⊆ FX = σ(Xk, k ≥ 1) = σ(
⋃

k≥1 FX
k )

(see Exercise 1.2.14 for the latter identity). Further, recall Exercise 1.4.7 that for
any n ≥ 1, the σ-algebras T X

n and FX
n are P-mutually independent. Hence, each of

the σ-algebras FX
k is also P-mutually independent of the tail σ-algebra T X, which

by Lemma 1.4.8 is thus P-trivial. �

Out of Corollary 1.4.6 we deduce that functions of disjoint collections of mutually
independent random variables are mutually independent.

Corollary 1.4.11. If R.V. Xk,j , 1 ≤ k ≤ m, 1 ≤ j ≤ l(k) are mutually indepen-

dent and fk : Rl(k) 7→ R are Borel functions, then Yk = fk(Xk,1, . . . , Xk,l(k)) are
mutually independent random variables for k = 1, . . . ,m.

Proof. We apply Corollary 1.4.6 for the index set J = {(k, j) : 1 ≤ k ≤
m, 1 ≤ j ≤ l(k)}, and mutually independent π-systems Hk,j = σ(Xk,j), to deduce
the mutual independence of Gk = σ(∪jHk,j). Recall that Gk = σ(Xk,j , 1 ≤ j ≤ l(k))
and σ(Yk) ⊆ Gk (see Definition 1.2.12 and Exercise 1.2.32). We complete the proof
by noting that Yk are mutually independent if and only if σ(Yk) are mutually
independent. �

Our next result is an application of Theorem 1.4.4 to the independence of random
variables.

Corollary 1.4.12. Real-valued random variables X1, X2, . . . , Xm on the same
probability space (Ω,F ,P) are mutually independent if and only if

(1.4.1) P(X1 ≤ x1, . . . , Xm ≤ xm) =
m∏

i=1

P(Xi ≤ xi) , ∀x1, . . . , xm ∈ R.

Proof. Let Ai denote the collection of subsets of Ω of the form X−1
i ((−∞, b])

for b ∈ R. Recall that Ai generates σ(Xi) (see Exercise 1.2.11), whereas (1.4.1)
states that the π-systems Ai are mutually independent (by continuity from below
of P, taking xi ↑ ∞ for i 6= i1, i 6= i2, . . . , i 6= iL, has the same effect as taking a
subset of distinct indices i1, . . . , iL from {1, . . . ,m}). So, just apply Theorem 1.4.4
to conclude the proof. �

The condition (1.4.1) for mutual independence of R.V.-s is further simplified when
these variables are either discrete valued, or having a density.

Exercise 1.4.13. Suppose (X1, . . . , Xm) are random variables and (S1, . . . , Sm)
are countable sets such that P(Xi ∈ Si) = 1 for i = 1, . . . ,m. Show that if

P(X1 = x1, . . . , Xm = xm) =

m∏

i=1

P(Xi = xi)

whenever xi ∈ Si, i = 1, . . . ,m, then X1, . . . , Xm are mutually independent.
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Exercise 1.4.14. Suppose the random vector X = (X1, . . . , Xm) has a joint prob-
ability density function fX(x) = g1(x1) · · · gm(xm). That is,

P((X1, . . . , Xm) ∈ A) =

∫

A

g1(x1) · · · gm(xm)dx1 . . . dxm , ∀A ∈ BRm ,

where gi are non-negative, Lebesgue integrable functions. Show that then X1, . . . , Xm

are mutually independent.

Beware that pairwise independence (of each pair Ak, Aj for k 6= j), does not imply
mutual independence of all the events in question and the same applies to three or
more random variables. Here is an illustrating example.

Exercise 1.4.15. Consider the sample space Ω = {0, 1, 2}2 with probability mea-
sure on (Ω, 2Ω) that assigns equal probability (i.e. 1/9) to each possible value of
ω = (ω1, ω2) ∈ Ω. Then, X(ω) = ω1 and Y (ω) = ω2 are independent R.V.
each taking the values {0, 1, 2} with equal (i.e. 1/3) probability. Define Z0 = X,
Z1 = (X + Y )mod3 and Z2 = (X + 2Y )mod3.

(a) Show that Z0 is independent of Z1, Z0 is independent of Z2, Z1 is inde-
pendent of Z2, but if we know the value of Z0 and Z1, then we also know
Z2.

(b) Construct four {−1, 1}-valued random variables such that any three of
them are independent but all four are not.
Hint: Consider products of independent random variables.

Here is a somewhat counter intuitive example about tail σ-algebras, followed by
an elaboration on the theme of Corollary 1.4.11.

Exercise 1.4.16. Let σ(A,A′) denote the smallest σ-algebra G such that any
function measurable on A or on A′ is also measurable on G. Let W0,W1,W2, . . .
be independent random variables with P(Wn = +1) = P(Wn = −1) = 1/2 for all
n. For each n ≥ 1, define Xn := W0W1. . .Wn.
(a) Prove that the variables X1, X2, . . . are independent.
(b) Show that S = σ(T W

0 , T X) is a strict subset of the σ-algebra F = ∩nσ(T W
0 , T X

n ).
Hint: Show that W0 ∈ mF is independent of S.

Exercise 1.4.17. Consider random variables (Xi,j , 1 ≤ i, j ≤ n) on the same
probability space. Suppose that the σ-algebras R1, . . . ,Rn are P-mutually indepen-
dent, where Ri = σ(Xi,j , 1 ≤ j ≤ n) for i = 1, . . . , n. Suppose further that the
σ-algebras C1, . . . , Cn are P-mutually independent, where Cj = σ(Xi,j , 1 ≤ i ≤ n).
Prove that the random variables (Xi,j , 1 ≤ i, j ≤ n) must then be P-mutually inde-
pendent.

We conclude this subsection with an application in number theory.

Exercise 1.4.18. Recall Euler’s zeta-function which for real s > 1 is given by
ζ(s) =

∑∞
k=1 k

−s. Fixing such s, let X and Y be independent random variables
with P(X = k) = P(Y = k) = k−s/ζ(s) for k = 1, 2, . . ..

(a) Show that the events Dp = {X is divisible by p}, with p a prime number,
are P-mutually independent.

(b) By considering the event {X = 1}, provide a probabilistic explanation of
Euler’s formula 1/ζ(s) =

∏
p(1− 1/ps).

(c) Show that the probability that no perfect square other than 1 divides X is
precisely 1/ζ(2s).



1.4. INDEPENDENCE AND PRODUCT MEASURES 59

(d) Show that P(G = k) = k−2s/ζ(2s), where G is the greatest common
divisor of X and Y .

1.4.2. Product measures and Kolmogorov’s theorem. Recall Example
1.1.20 that given two measurable spaces (Ω1,F1) and (Ω2,F2) the product (mea-
surable) space (Ω,F) consists of Ω = Ω1×Ω2 and F = F1×F2, which is the same
as F = σ(A) for

A =
{ m⊎

j=1

Aj ×Bj : Aj ∈ F1, Bj ∈ F2,m <∞
}
,

where throughout,
⊎

denotes the union of disjoint subsets of Ω.
We now construct product measures on such product spaces, first for two, then

for finitely many, probability (or even σ-finite) measures. As we show thereafter,
these product measures are associated with the joint law of independent R.V.-s.

Theorem 1.4.19. Given two σ-finite measures νi on (Ωi,Fi), i = 1, 2, there exists
a unique σ-finite measure µ2 on the product space (Ω,F) such that

µ2(

m⊎

j=1

Aj ×Bj) =

m∑

j=1

ν1(Aj)ν2(Bj), ∀Aj ∈ F1, Bj ∈ F2,m <∞ .

We denote µ2 = ν1 × ν2 and call it the product of the measures ν1 and ν2.

Proof. By Carathéodory’s extension theorem, it suffices to show that A is an
algebra on which µ2 is countably additive (see Theorem 1.1.30 for the case of finite
measures). To this end, note that Ω = Ω1 × Ω2 ∈ A. Further, A is closed under
intersections, since

(

m⊎

j=1

Aj ×Bj)
⋂

(

n⊎

i=1

Ci ×Di) =
⊎

i,j

[(Aj ×Bj) ∩ (Ci ×Di)]

=
⊎

i,j

(Aj ∩ Ci)× (Bj ∩Di) .

It is also closed under complementation, for

(

m⊎

j=1

Aj ×Bj)
c =

m⋂

j=1

[(Ac
j ×Bj) ∪ (Aj ×Bc

j ) ∪ (Ac
j ×Bc

j )] .

By DeMorgan’s law, A is an algebra.
Note that countable unions of disjoint elements of A are also countable unions of

disjoint elements of the collection R = {A × B : A ∈ F1, B ∈ F2} of measurable
rectangles . Hence, if we show that

(1.4.2)

m∑

j=1

ν1(Aj)ν2(Bj) =
∑

i

ν1(Ci)ν2(Di) ,

whenever
⊎m

j=1 Aj ×Bj =
⊎

i(Ci ×Di) for some m <∞, Aj , Ci ∈ F1 and Bj , Di ∈
F2, then we deduce that the value of µ2(E) is independent of the representation
we choose for E ∈ A in terms of measurable rectangles, and further that µ2 is
countably additive on A. To this end, note that the preceding set identity amounts
to

m∑

j=1

IAj
(x)IBj

(y) =
∑

i

ICi
(x)IDi

(y) ∀x ∈ Ω1, y ∈ Ω2 .
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Hence, fixing x ∈ Ω1, we have that ϕ(y) =
∑m

j=1 IAj
(x)IBj

(y) ∈ SF+ is the mono-

tone increasing limit of ψn(y) =
∑n

i=1 ICi
(x)IDi

(y) ∈ SF+ as n → ∞. Thus, by
linearity of the integral with respect to ν2 and monotone convergence,

g(x) :=

m∑

j=1

ν2(Bj)IAj
(x) = ν2(ϕ) = lim

n→∞
ν2(ψn) = lim

n→∞

n∑

i=1

ICi
(x)ν2(Di) .

We deduce that the non-negative g(x) ∈ mF1 is the monotone increasing limit of
the non-negative measurable functions hn(x) =

∑n
i=1 ν2(Di)ICi

(x). Hence, by the
same reasoning,

m∑

j=1

ν2(Bj)ν1(Aj) = ν1(g) = lim
n→∞

ν1(hn) =
∑

i

ν2(Di)ν1(Ci) ,

proving (1.4.2) and the theorem. �

It follows from Theorem 1.4.19 by induction on n that given any finite collection
of σ-finite measure spaces (Ωi,Fi, νi), i = 1, . . . , n, there exists a unique product
measure µn = ν1 × · · · × νn on the product space (Ω,F) (i.e., Ω = Ω1 × · · · × Ωn

and F = σ(A1 × · · · ×An;Ai ∈ Fi, i = 1, . . . , n)), such that

(1.4.3) µn(A1 × · · · × An) =

n∏

i=1

νi(Ai) ∀Ai ∈ Fi, i = 1, . . . , n.

Remark 1.4.20. A notable special case of this construction is when Ωi = R with
the Borel σ-algebra and Lebesgue measure λ of Section 1.1.3. The product space
is then Rn with its Borel σ-algebra and the product measure is λn, the Lebesgue
measure on Rn.

The notion of the law PX of a real-valued random variable X as in Definition
1.2.33, naturally extends to the joint law PX of a random vector X = (X1, . . . , Xn)

which is the probability measure PX = P ◦X−1 on (Rn,BRn).
We next characterize the joint law of independent random variables X1, . . . , Xn

as the product of the laws of Xi for i = 1, . . . , n.

Proposition 1.4.21. Random variables X1, . . . , Xn on the same probability space,
having laws νi = PXi

, are mutually independent if and only if their joint law is
µn = ν1 × · · · × νn.

Proof. By Definition 1.4.3 and the identity (1.4.3), if X1, . . . , Xn are mutually
independent then for Bi ∈ B,

PX(B1 × · · · ×Bn) = P(X1 ∈ B1, . . . , Xn ∈ Bn)

=

n∏

i=1

P(Xi ∈ Bi) =

n∏

i=1

νi(Bi) = ν1 × · · · × νn(B1 × · · · ×Bn) .

This shows that the law of (X1, . . . , Xn) and the product measure µn agree on the
collection of all measurable rectangles B1×· · ·×Bn, a π-system that generates BRn

(see Exercise 1.1.21). Consequently, these two probability measures agree on BRn

(c.f. Proposition 1.1.39).
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Conversely, if PX = ν1 × · · · × νn, then by same reasoning, for Borel sets Bi,

P(

n⋂

i=1

{ω : Xi(ω) ∈ Bi}) = PX(B1 × · · · ×Bn) = ν1 × · · · × νn(B1 × · · · ×Bn)

=

n∏

i=1

νi(Bi) =

n∏

i=1

P({ω : Xi(ω) ∈ Bi}) ,

which amounts to the mutual independence of X1, . . . , Xn. �

We wish to extend the construction of product measures to that of an infinite col-
lection of independent random variables. To this end, let N = {1, 2, . . .} denote the
set of natural numbers and RN = {x = (x1, x2, . . .) : xi ∈ R} denote the collection
of all infinite sequences of real numbers. We equip RN with the product σ-algebra
Bc = σ(R) generated by the collectionR of all finite dimensional measurable rectan-
gles (also called cylinder sets), that is sets of the form {x : x1 ∈ B1, . . . , xn ∈ Bn},
where Bi ∈ B, i = 1, . . . , n ∈ N (e.g. see Example 1.1.19).
Kolmogorov’s extension theorem provides the existence of a unique probability

measure P on (RN,Bc) whose projections coincide with a given consistent sequence
of probability measures µn on (Rn,BRn).

Theorem 1.4.22 (Kolmogorov’s extension theorem). Suppose we are given
probability measures µn on (Rn,BRn) that are consistent, that is,

µn+1(B1 × · · · ×Bn × R) = µn(B1 × · · · ×Bn) ∀Bi ∈ B, i = 1, . . . , n <∞
Then, there is a unique probability measure P on (RN,Bc) such that

(1.4.4) P({ω : ωi ∈ Bi, i = 1, . . . , n}) = µn(B1 × · · · ×Bn) ∀Bi ∈ B, i ≤ n <∞
Proof. (sketch only) We take a similar approach as in the proof of Theorem

1.4.19. That is, we use (1.4.4) to define the non-negative set function P0 on the
collection R of all finite dimensional measurable rectangles, where by the consis-
tency of {µn} the value of P0 is independent of the specific representation chosen
for a set in R. Then, we extend P0 to a finitely additive set function on the algebra

A =
{ m⊎

j=1

Ej : Ej ∈ R,m <∞
}
,

in the same linear manner we used when proving Theorem 1.4.19. Since A generates
Bc and P0(R

N) = µn(Rn) = 1, by Carathéodory’s extension theorem it suffices to
check that P0 is countably additive on A. The countable additivity of P0 is verified
by the method we already employed when dealing with Lebesgue’s measure. That
is, by the remark after Lemma 1.1.31, it suffices to prove that P0(Hn) ↓ 0 whenever
Hn ∈ A and Hn ↓ ∅. The proof by contradiction of the latter, adapting the
argument of Lemma 1.1.31, is based on approximating each H ∈ A by a finite
union Jk ⊆ H of compact rectangles, such that P0(H \ Jk) → 0 as k →∞. This is
done for example in [Dur03, Lemma A.7.2] or [Bil95, Page 490]. �

Example 1.4.23. To systematically construct an infinite sequence of independent
random variables {Xi} of prescribed laws PXi

= νi, we apply Kolmogorov’s exten-
sion theorem for the product measures µn = ν1 × · · · × νn constructed following
Theorem 1.4.19 (where it is by definition that the sequence µn is consistent). Al-
ternatively, for infinite product measures one can take arbitrary probability spaces
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(Ωi,Fi, νi) and directly show by contradiction that P0(Hn) ↓ 0 whenever Hn ∈ A
and Hn ↓ ∅ (for more details, see [Str93, Exercise 1.1.14]).

Remark. As we shall find in Sections 6.1 and 7.1, Kolmogorov’s extension theo-
rem is the key to the study of stochastic processes, where it relates the law of the
process to its finite dimensional distributions. Certain properties of R are key to the
proof of Kolmogorov’s extension theorem which indeed is false if (R,B) is replaced
with an arbitrary measurable space (S,S) (see the discussions in [Dur03, Section
1.4c] and [Dud89, notes for Section 12.1]). Nevertheless, as you show next, the
conclusion of this theorem applies for any B-isomorphic measurable space (S,S).

Definition 1.4.24. Two measurable spaces (S,S) and (T, T ) are isomorphic if
there exists a one to one and onto measurable mapping between them whose inverse
is also a measurable mapping. A measurable space (S,S) is B-isomorphic if it is
isomorphic to a Borel subset T of R equipped with the induced Borel σ-algebra
T = {B ∩ T : B ∈ B}.
Here is our generalized version of Kolmogorov’s extension theorem.

Corollary 1.4.25. Given a measurable space (S,S) let SN denote the collection
of all infinite sequences of elements in S equipped the product σ-algebra Sc generated
by the collection of all cylinder sets of the form {s : s1 ∈ A1, . . . , sn ∈ An}, where
Ai ∈ S for i = 1, . . . , n. If (S,S) is B-isomorphic then for any consistent sequence
of probability measures νn on (Sn,Sn) (that is, νn+1(A1× · · · ×An × S) = νn(A1×
· · · × An) for all n and Ai ∈ S), there exists a unique probability measure Q on
(SN,Sc) such that for all n and Ai ∈ S,

(1.4.5) Q({s : si ∈ Ai, i = 1, . . . , n}) = νn(A1 × · · · ×An) .

Next comes a guided proof of Corollary 1.4.25 out of Theorem 1.4.22.

Exercise 1.4.26.

(a) Verify that our proof of Theorem 1.4.22 applies in case (R,B) is replaced
by T ∈ B equipped with the induced Borel σ-algebra T (with RN and Bc

replaced by TN and Tc, respectively).
(b) Fixing such (T, T ) and (S,S) isomorphic to it, let g : S 7→ T be one to

one and onto such that both g and g−1 are measurable. Check that the
one to one and onto mappings gn(s) = (g(s1), . . . , g(sn)) are measurable
and deduce that µn(B) = νn(g−1

n (B)) are consistent probability measures
on (Tn, T n).

(c) Consider the one to one and onto mapping g∞(s) = (g(s1), . . . , g(sn), . . .)
from SN to TN and the unique probability measure P on (TN, Tc) for
which (1.4.4) holds. Verify that Sc is contained in the σ-algebra of subsets
A of SN for which g∞(A) is in Tc and deduce that Q(A) = P(g∞(A)) is
a probability measure on (SN,Sc).

(d) Conclude your proof of Corollary 1.4.25 by showing that this Q is the
unique probability measure for which (1.4.5) holds.

Remark. Recall that Carathéodory’s extension theorem applies for any σ-finite
measure. It follows that, by the same proof as in the preceding exercise, any
consistent sequence of σ-finite measures νn uniquely determines a σ-finite measure
Q on (SN,Sc) for which (1.4.5) holds, a fact which we use in later parts of this text
(for example, in the study of Markov chains in Section 6.1).
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Our next proposition shows that in most applications one encounters B-isomorphic
measurable spaces (for which Kolmogorov’s theorem applies).

Proposition 1.4.27. If S ∈ BM for a complete separable metric space M and S
is the restriction of BM to S then (S,S) is B-isomorphic.

Remark. While we do not provide the proof of this proposition, we note in passing
that it is an immediate consequence of [Dud89, Theorem 13.1.1].

1.4.3. Fubini’s theorem and its application. Returning to (Ω,F , µ) which
is the product of two σ-finite measure spaces, as in Theorem 1.4.19, we now prove
that:

Theorem 1.4.28 (Fubini’s theorem). Suppose µ = µ1 × µ2 is the product of
the σ-finite measures µ1 on (X,X) and µ2 on (Y,Y). If h ∈ mF for F = X× Y is
such that h ≥ 0 or

∫
|h| dµ <∞, then,
∫

X×Y

h dµ =

∫

X

[∫

Y

h(x, y) dµ2(y)

]
dµ1(x)(1.4.6)

=

∫

Y

[∫

X

h(x, y) dµ1(x)

]
dµ2(y)

Remark. The iterated integrals on the right side of (1.4.6) are finite and well
defined whenever

∫
|h|dµ < ∞. However, for h /∈ mF+ the inner integrals might

be well defined only in the almost everywhere sense.

Proof of Fubini’s theorem. Clearly, it suffices to prove the first identity
of (1.4.6), as the second immediately follows by exchanging the roles of the two
measure spaces. We thus prove Fubini’s theorem by showing that

(1.4.7) y 7→ h(x, y) ∈ mY , ∀x ∈ X,

(1.4.8) x 7→ fh(x) :=

∫

Y

h(x, y) dµ2(y) ∈ mX,

so the double integral on the right side of (1.4.6) is well defined and

(1.4.9)

∫

X×Y

h dµ =

∫

X

fh(x)dµ1(x) .

We do so in three steps, first proving (1.4.7)-(1.4.9) for finite measures and bounded
h, proceeding to extend these results to non-negative h and σ-finite measures, and
then showing that (1.4.6) holds whenever h ∈ mF and

∫
|h|dµ is finite.

Step 1. LetH denote the collection of bounded functions on X×Y for which (1.4.7)–
(1.4.9) hold. Assuming that both µ1(X) and µ2(Y) are finite, we deduce that H
contains all bounded h ∈ mF by verifying the assumptions of the monotone class
theorem (i.e. Theorem 1.2.7) for H and the π-system R = {A×B : A ∈ X, B ∈ Y}
of measurable rectangles (which generates F).
To this end, note that if h = IE and E = A×B ∈ R, then either h(x, ·) = IB(·) (in

case x ∈ A), or h(x, ·) is identically zero (when x 6∈ A). With IB ∈ mY we thus have
(1.4.7) for any such h. Further, in this case the simple function fh(x) = µ2(B)IA(x)
on (X,X) is in mX and

∫

X×Y

IEdµ = µ1 × µ2(E) = µ2(B)µ1(A) =

∫

X

fh(x)dµ1(x) .
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Consequently, IE ∈ H for all E ∈ R; in particular, the constant functions are in H.
Next, with both mY and mX vector spaces over R, by the linearity of h 7→ fh

over the vector space of bounded functions satisfying (1.4.7) and the linearity of
fh 7→ µ1(fh) and h 7→ µ(h) over the vector spaces of bounded measurable fh and
h, respectively, we deduce that H is also a vector space over R.
Finally, if non-negative hn ∈ H are such that hn ↑ h, then for each x ∈ X the

mapping y 7→ h(x, y) = supn hn(x, y) is in mY+ (by Theorem 1.2.22). Further,
fhn

∈ mX+ and by monotone convergence fhn
↑ fh (for all x ∈ X), so by the same

reasoning fh ∈ mX+. Applying monotone convergence twice more, it thus follows
that

µ(h) = sup
n
µ(hn) = sup

n
µ1(fhn

) = µ1(fh) ,

so h satisfies (1.4.7)–(1.4.9). In particular, if h is bounded then also h ∈ H .
Step 2. Suppose now that h ∈ mF+. If µ1 and µ2 are finite measures, then
we have shown in Step 1 that (1.4.7)–(1.4.9) hold for the bounded non-negative
functions hn = h ∧ n. With hn ↑ h we have further seen that (1.4.7)-(1.4.9) hold
also for the possibly unbounded h. Further, the closure of (1.4.8) and (1.4.9) with
respect to monotone increasing limits of non-negative functions has been shown
by monotone convergence, and as such it extends to σ-finite measures µ1 and µ2.
Turning now to σ-finite µ1 and µ2, recall that there exist En = An × Bn ∈ R
such that An ↑ X, Bn ↑ Y, µ1(An) < ∞ and µ2(Bn) < ∞. As h is the monotone
increasing limit of hn = hIEn

∈ mF+ it thus suffices to verify that for each n
the non-negative fn(x) =

∫
Y
hn(x, y)dµ2(y) is measurable with µ(hn) = µ1(fn).

Fixing n and simplifying our notations to E = En, A = An and B = Bn, recall
Corollary 1.3.57 that µ(hn) = µE(hE) for the restrictions hE and µE of h and µ to
the measurable space (E,FE). Also, as E = A × B we have that FE = XA × YB

and µE = (µ1)A × (µ2)B for the finite measures (µ1)A and (µ2)B . Finally, as
fn(x) = fhE

(x) :=
∫

B
hE(x, y)d(µ2)B(y) when x ∈ A and zero otherwise, it follows

that µ1(fn) = (µ1)A(fhE
). We have thus reduced our problem (for hn), to the case

of finite measures µE = (µ1)A× (µ2)B which we have already successfully resolved.
Step 3. Write h ∈ mF as h = h+ − h−, with h± ∈ mF+. By Step 2 we know that
y 7→ h±(x, y) ∈ mY for each x ∈ X, hence the same applies for y 7→ h(x, y). Let
X0 denote the subset of X for which

∫
Y
|h(x, y)|dµ2(y) < ∞. By linearity of the

integral with respect to µ2 we have that for all x ∈ X0

(1.4.10) fh(x) = fh+(x) − fh−(x)

is finite. By Step 2 we know that fh± ∈ mX, hence X0 = {x : fh+(x) + fh−(x) <
∞} is in X. From Step 2 we further have that µ1(fh±) = µ(h±) whereby our
assumption that

∫
|h| dµ = µ1(fh+ + fh−) < ∞ implies that µ1(X

c
0) = 0. Let

f̃h(x) = fh+(x) − fh−(x) on X0 and f̃h(x) = 0 for all x /∈ X0. Clearly, f̃h ∈ mX

is µ1-almost-everywhere the same as the inner integral on the right side of (1.4.6).
Moreover, in view of (1.4.10) and linearity of the integrals with respect to µ1 and
µ we deduce that

µ(h) = µ(h+)− µ(h−) = µ1(fh+)− µ1(fh−) = µ1(f̃h) ,

which is exactly the identity (1.4.6). �

Equipped with Fubini’s theorem, we have the following simpler formula for the
expectation of a Borel function h of two independent R.V.
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Theorem 1.4.29. Suppose that X and Y are independent random variables of
laws µ1 = PX and µ2 = PY . If h : R2 7→ R is a Borel measurable function such
that h ≥ 0 or E|h(X,Y )| <∞, then,

(1.4.11) Eh(X,Y ) =

∫ [ ∫
h(x, y) dµ1(x)

]
dµ2(y)

In particular, for Borel functions f, g : R 7→ R such that f, g ≥ 0 or E|f(X)| <∞
and E|g(Y )| <∞,

(1.4.12) E(f(X)g(Y )) = Ef(X)Eg(Y )

Proof. Subject to minor changes of notations, the proof of Theorem 1.3.61
applies to any (S,S)-valued R.V. Considering this theorem for the random vector
(X,Y ) whose joint law is µ1 × µ2 (c.f. Proposition 1.4.21), together with Fubini’s
theorem, we see that

Eh(X,Y ) =

∫

R2

h(x, y) d(µ1 × µ2)(x, y) =

∫ [ ∫
h(x, y) dµ1(x)

]
dµ2(y) ,

which is (1.4.11). Take now h(x, y) = f(x)g(y) for non-negative Borel functions
f(x) and g(y). In this case, the iterated integral on the right side of (1.4.11) can
be further simplified to,

E(f(X)g(Y )) =

∫ [∫
f(x)g(y) dµ1(x)

]
dµ2(y) =

∫
g(y)[

∫
f(x) dµ1(x)] dµ2(y)

=

∫
[Ef(X)]g(y) dµ2(y) = Ef(X)Eg(Y )

(with Theorem 1.3.61 applied twice here), which is the stated identity (1.4.12).
To deal with Borel functions f and g that are not necessarily non-negative, first

apply (1.4.12) for the non-negative functions |f | and |g| to get that E(|f(X)g(Y )|) =
E|f(X)|E|g(Y )| <∞. Thus, the assumed integrability of f(X) and of g(Y ) allows
us to apply again (1.4.11) for h(x, y) = f(x)g(y). Now repeat the argument we
used for deriving (1.4.12) in case of non-negative Borel functions. �

Another consequence of Fubini’s theorem is the following integration by parts for-
mula.

Lemma 1.4.30 (integration by parts). Suppose H(x) =
∫ x

−∞ h(y)dy for a
non-negative Borel function h and all x ∈ R. Then, for any random variable X,

(1.4.13) EH(X) =

∫

R

h(y)P(X > y)dy .

Proof. Combining the change of variables formula (Theorem 1.3.61), with our
assumption about H(·), we have that

EH(X) =

∫

R

H(x)dPX (x) =

∫

R

[ ∫

R

h(y)Ix>y dλ(y)
]
dPX (x) ,

where λ denotes Lebesgue’s measure on (R,B). For each y ∈ R, the expectation of
the simple function x 7→ h(x, y) = h(y)Ix>y with respect to (R,B,PX) is merely
h(y)P(X > y). Thus, applying Fubini’s theorem for the non-negative measurable
function h(x, y) on the product space R×R equipped with its Borel σ-algebra BR2 ,
and the σ-finite measures µ1 = PX and µ2 = λ, we have that

EH(X) =

∫

R

[ ∫

R

h(y)Ix>y dPX(x)
]
dλ(y) =

∫

R

h(y)P(X > y)dy ,
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as claimed. �

Indeed, as we see next, by combining the integration by parts formula with Hölder’s
inequality we can convert bounds on tail probabilities to bounds on the moments
of the corresponding random variables.

Lemma 1.4.31.

(a) For any r > p > 0 and any random variable Y ≥ 0,

EY p =

∫ ∞

0

pyp−1P(Y > y)dy =

∫ ∞

0

pyp−1P(Y ≥ y)dy

= (1− p

r
)

∫ ∞

0

pyp−1E[min(Y/y, 1)r]dy .

(b) If X,Y ≥ 0 are such that P(Y ≥ y) ≤ y−1E[XIY≥y] for all y > 0, then
‖Y ‖p ≤ q‖X‖p for any p > 1 and q = p/(p− 1).

(c) Under the same hypothesis also EY ≤ 1 + E[X(logY )+].

Proof. (a) The first identity is merely the integration by parts formula for
hp(y) = pyp−11y>0 and Hp(x) = xp1x≥0 and the second identity follows by the
fact that P(Y = y) = 0 up to a (countable) set of zero Lebesgue measure. Finally,
it is easy to check that Hp(x) =

∫
R
hp,r(x, y)dy for the non-negative Borel function

hp,r(x, y) = (1 − p/r)pyp−1 min(x/y, 1)r1x≥01y>0 and any r > p > 0. Hence,
replacing h(y)Ix>y throughout the proof of Lemma 1.4.30 by hp,r(x, y) we find that
E[Hp(X)] =

∫ ∞
0

E[hp,r(X, y)]dy, which is exactly our third identity.
(b) In a similar manner it follows from Fubini’s theorem that for p > 1 and any
non-negative random variables X and Y

E[XY p−1] = E[XHp−1(Y )] = E[

∫

R

hp−1(y)XIY≥ydy] =

∫

R

hp−1(y)E[XIY≥y]dy .

Thus, with y−1hp(y) = qhp−1(y) our hypothesis implies that

EY p =

∫

R

hp(y)P(Y ≥ y)dy ≤
∫

R

qhp−1(y)E[XIY≥y]dy = qE[XY p−1] .

Applying Hölder’s inequality we deduce that

EY p ≤ qE[XY p−1] ≤ q‖X‖p‖Y p−1‖q = q‖X‖p[EY
p]1/q

where the right-most equality is due to the fact that (p − 1)q = p. In case Y
is bounded, dividing both sides of the preceding bound by [EY p]1/q implies that
‖Y ‖p ≤ q‖X‖p. To deal with the general case, let Yn = Y ∧ n, n = 1, 2, . . . and
note that either {Yn ≥ y} is empty (for n < y) or {Yn ≥ y} = {Y ≥ y}. Thus, our
assumption implies that P(Yn ≥ y) ≤ y−1E[XIYn≥y] for all y > 0 and n ≥ 1. By
the preceding argument ‖Yn‖p ≤ q‖X‖p for any n. Taking n → ∞ it follows by
monotone convergence that ‖Y ‖p ≤ q‖X‖p.
(c) Considering part (a) with p = 1, we bound P(Y ≥ y) by one for y ∈ [0, 1] and
by y−1E[XIY≥y] for y > 1, to get by Fubini’s theorem that

EY =

∫ ∞

0

P(Y ≥ y)dy ≤ 1 +

∫ ∞

1

y−1E[XIY≥y]dy

= 1 + E[X

∫ ∞

1

y−1IY ≥ydy] = 1 + E[X(logY )+] .

�
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We further have the following corollary of (1.4.12), dealing with the expectation
of a product of mutually independent R.V.

Corollary 1.4.32. Suppose that X1, . . . , Xn are P-mutually independent random
variables such that either Xi ≥ 0 for all i, or E|Xi| <∞ for all i. Then,

(1.4.14) E
( n∏

i=1

Xi

)
=

n∏

i=1

EXi ,

that is, the expectation on the left exists and has the value given on the right.

Proof. By Corollary 1.4.11 we know that X = X1 and Y = X2 · · ·Xn are
independent. Taking f(x) = |x| and g(y) = |y| in Theorem 1.4.29, we thus have
that E|X1 · · ·Xn| = E|X1|E|X2 · · ·Xn| for any n ≥ 2. Applying this identity
iteratively for Xl, . . . , Xn, starting with l = m, then l = m + 1,m + 2, . . . , n − 1
leads to

(1.4.15) E|Xm · · ·Xn| =
n∏

k=m

E|Xk| ,

holding for any 1 ≤ m ≤ n. If Xi ≥ 0 for all i, then |Xi| = Xi and we have (1.4.14)
as the special case m = 1.
To deal with the proof in case Xi ∈ L1 for all i, note that for m = 2 the identity

(1.4.15) tells us that E|Y | = E|X2 · · ·Xn| < ∞, so using Theorem 1.4.29 with
f(x) = x and g(y) = y we have that E(X1 · · ·Xn) = (EX1)E(X2 · · ·Xn). Iterating
this identity for Xl, . . . , Xn, starting with l = 1, then l = 2, 3, . . . , n − 1 leads to
the desired result (1.4.14). �

Another application of Theorem 1.4.29 provides us with the familiar formula for
the probability density function of the sum X+Y of independent random variables
X and Y , having densities fX and fY respectively.

Corollary 1.4.33. Suppose that R.V. X with a Borel measurable probability
density function fX and R.V. Y with a Borel measurable probability density function
fY are independent. Then, the random variable Z = X + Y has the probability
density function

fZ(z) =

∫

R

fX(z − y)fY (y)dy .

Proof. Fixing z ∈ R, apply Theorem 1.4.29 for h(x, y) = 1(x+y≤z), to get
that

FZ(z) = P(X + Y ≤ z) = Eh(X,Y ) =

∫

R

[ ∫

R

h(x, y)dPX(x)
]
dPY (y) .

Considering the inner integral for a fixed value of y, we have that
∫

R

h(x, y)dPX(x) =

∫

R

I(−∞,z−y](x)dPX (x) = PX((−∞, z − y]) =

∫ z−y

−∞
fX(x)dx ,

where the right most equality is by the existence of a density fX(x) for X (c.f.

Definition 1.2.39). Clearly,
∫ z−y

−∞ fX(x)dx =
∫ z

−∞ fX(x − y)dx. Thus, applying

Fubini’s theorem for the Borel measurable function g(x, y) = fX(x − y) ≥ 0 and
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the product of the σ-finite Lebesgue’s measure on (−∞, z] and the probability
measure PY , we see that

FZ(z) =

∫

R

[ ∫ z

−∞
fX(x− y)dx

]
dPY (y) =

∫ z

−∞

[ ∫

R

fX(x− y)dPY (y)
]
dx

(in this application of Fubini’s theorem we replace one iterated integral by another,
exchanging the order of integrations). Since this applies for any z ∈ R, it follows
by definition that Z has the probability density

fZ(z) =

∫

R

fX(z − y)dPY (y) = EfX(z − Y ) .

With Y having density fY , the stated formula for fZ is a consequence of Corollary
1.3.62. �

Definition 1.4.34. The expression
∫
f(z − y)g(y)dy is called the convolution of

the non-negative Borel functions f and g, denoted by f ∗ g(z). The convolution of
measures µ and ν on (R,B) is the measure µ ∗ ν on (R,B) such that µ ∗ ν(B) =∫
µ(B − x)dν(x) for any B ∈ B (where B − x = {y : x+ y ∈ B}).

Corollary 1.4.33 states that if two independent random variables X and Y have
densities, then so does Z = X+Y , whose density is the convolution of the densities
of X and Y . Without assuming the existence of densities, one can show by a similar
argument that the law of X + Y is the convolution of the law of X and the law of
Y (c.f. [Dur03, Theorem 1.4.9] or [Bil95, Page 266]).
Convolution is often used in analysis to provide a more regular approximation to

a given function. Here are few of the reasons for doing so.

Exercise 1.4.35. Suppose Borel functions f, g are such that g is a probability
density and

∫
|f(x)|dx is finite. Consider the scaled densities gn(·) = ng(n·), n ≥ 1.

(a) Show that f ∗ g(y) is a Borel function with
∫
|f ∗ g(y)|dy ≤

∫
|f(x)|dx

and if g is uniformly continuous, then so is f ∗ g.
(b) Show that if g(x) = 0 whenever |x| ≥ 1, then f ∗gn(y) → f(y) as n→∞,

for any continuous f and each y ∈ R.

Next you find two of the many applications of Fubini’s theorem in real analysis.

Exercise 1.4.36. Show that the set Gf = {(x, y) ∈ R2 : 0 ≤ y ≤ f(x)} of points
under the graph of a non-negative Borel function f : R 7→ [0,∞) is in BR2 and
deduce the well-known formula λ× λ(Gf ) =

∫
f(x)dλ(x), for its area.

Exercise 1.4.37. For n ≥ 2, consider the unit sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1}
equipped with the topology induced by Rn. Let the surface measure of A ∈ BSn−1 be
ν(A) = nλn(C0,1(A)), for Ca,b(A) = {rx : r ∈ (a, b], x ∈ A} and the n-fold product
Lebesgue measure λn (as in Remark 1.4.20).

(a) Check that Ca,b(A) ∈ BRn and deduce that ν(·) is a finite measure on
Sn−1 (which is further invariant under orthogonal transformations).

(b) Verify that λn(Ca,b(A)) = bn−an

n ν(A) and deduce that for any B ∈ BRn

λn(B) =

∫ ∞

0

[ ∫

Sn−1

Irx∈B dν(x)
]
rn−1 dλ(r) .

Hint: Recall that λn(γB) = γnλn(B) for any γ ≥ 0 and B ∈ BRn.
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Combining (1.4.12) with Theorem 1.2.26 leads to the following characterization of
the independence between two random vectors (compare with Definition 1.4.1).

Exercise 1.4.38. Show that the Rn-valued random variable (X1, . . . , Xn) and the
Rm-valued random variable (Y1, . . . , Ym) are independent if and only if

E(h(X1, . . . , Xn)g(Y1, . . . , Ym)) = E(h(X1, . . . , Xn))E(g(Y1, . . . , Ym)),

for all bounded, Borel measurable functions g : Rm 7→ R and h : Rn 7→ R.
Then show that the assumption of h(·) and g(·) bounded can be relaxed to both
h(X1, . . . , Xn) and g(Y1, . . . , Ym) being in L1(Ω,F ,P).

Here is another application of (1.4.12):

Exercise 1.4.39. Show that E(f(X)g(X)) ≥ (Ef(X))(Eg(X)) for every random
variable X and any bounded non-decreasing functions f, g : R 7→ R.

In the following exercise you bound the exponential moments of certain random
variables.

Exercise 1.4.40. Suppose Y is an integrable random variable such that E[eY ] is
finite and E[Y ] = 0.

(a) Show that if |Y | ≤ κ then

logE[eY ] ≤ κ−2(eκ − κ− 1)E[Y 2] .

Hint: Use the Taylor expansion of eY − Y − 1.
(b) Show that if E[Y 2eY ] ≤ κ2E[eY ] then

logE[eY ] ≤ log cosh(κ) .

Hint: Note that ϕ(u) = log E[euY ] is convex, non-negative and finite
on [0, 1] with ϕ(0) = 0 and ϕ′(0) = 0. Verify that ϕ′′(u) + ϕ′(u)2 =
E[Y 2euY ]/E[euY ] is non-decreasing on [0, 1] and φ(u) = log cosh(κu)
satisfies the differential equation φ′′(u) + φ′(u)2 = κ2.

As demonstrated next, Fubini’s theorem is also handy in proving the impossibility
of certain constructions.

Exercise 1.4.41. Explain why it is impossible to have P-mutually independent
random variables Ut(ω), t ∈ [0, 1], on the same probability space (Ω,F ,P), having
each the uniform probability measure on [−1/2, 1/2], such that t 7→ Ut(ω) is a Borel
function for almost every ω ∈ Ω.
Hint: Show that E[(

∫ r

0
Ut(ω)dt)2] = 0 for all r ∈ [0, 1].

Random variables X and Y such that E(X2) < ∞ and E(Y 2) < ∞ are called
uncorrelated if E(XY ) = E(X)E(Y ). It follows from (1.4.12) that independent
random variables X , Y with finite second moment are uncorrelated. While the
converse is not necessarily true, it does apply for pairs of random variables that
take only two different values each.

Exercise 1.4.42. Suppose X and Y are uncorrelated random variables.

(a) Show that if X = IA and Y = IB for some A,B ∈ F then X and Y are
also independent.

(b) Using this, show that if {a, b}-valued R.V. X and {c, d}-valued R.V. Y
are uncorrelated, then they are also independent.
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(c) Give an example of a pair of R.V. X and Y that are uncorrelated but not
independent.

Next come a pair of exercises utilizing Corollary 1.4.32.

Exercise 1.4.43. Suppose X and Y are random variables on the same probability
space, X has a Poisson distribution with parameter λ > 0, and Y has a Poisson
distribution with parameter µ > λ (see Example 1.3.69).

(a) Show that if X and Y are independent then P(X ≥ Y ) ≤ exp(−(
√
µ −√

λ)2).
(b) Taking µ = γλ for γ > 1, find I(γ) > 0 such that P(X ≥ Y ) ≤

2 exp(−λI(γ)) even when X and Y are not independent.

Exercise 1.4.44. Suppose X and Y are independent random variables of identical
distribution such that X > 0 and E[X ] <∞.

(a) Show that E[X−1Y ] > 1 unless X(ω) = c for some non-random c and
almost every ω ∈ Ω.

(b) Provide an example in which E[X−1Y ] = ∞.

We conclude this section with a concrete application of Corollary 1.4.33, comput-
ing the density of the sum of mutually independent R.V., each having the same
exponential density. To this end, recall

Definition 1.4.45. The gamma density with parameters α > 0 and λ > 0 is given
by

fΓ(s) = Γ(α)−1λαsα−1e−λs1s>0 ,

where Γ(α) =
∫∞
0
sα−1e−sds is finite and positive. In particular, α = 1 corresponds

to the exponential density fT of Example 1.3.68.

Exercise 1.4.46. Suppose X has a gamma density of parameters α1 and λ and Y
has a gamma density of parameters α2 and λ. Show that if X and Y are indepen-
dent then X + Y has a gamma density of parameters α1 + α2 and λ. Deduce that
if T1, . . . , Tn are mutually independent R.V. each having the exponential density of
parameter λ, then Wn =

∑n
i=1 Ti has the gamma density of parameters α = n and

λ.



CHAPTER 2

Asymptotics: the law of large numbers

Building upon the foundations of Chapter 1 we turn to deal with asymptotic
theory. To this end, this chapter is devoted to degenerate limit laws, that is,
situations in which a sequence of random variables converges to a non-random
(constant) limit. Though not exclusively dealing with it, our focus here is on the
sequence of empirical averages n−1

∑n
i=1 Xi as n→∞.

Section 2.1 deals with the weak law of large numbers, where convergence in prob-
ability (or in Lq for some q > 1) is considered. This is strengthened in Section 2.3
to a strong law of large numbers, namely, to convergence almost surely. The key
tools for this improvement are the Borel-Cantelli lemmas, to which Section 2.2 is
devoted.

2.1. Weak laws of large numbers

A weak law of large numbers corresponds to the situation where the normalized
sums of large number of random variables converge in probability to a non-random
constant. Usually, the derivation of a weak low involves the computation of vari-
ances, on which we focus in Subsection 2.1.1. However, the L2 convergence we
obtain there is of a somewhat limited scope of applicability. To remedy this, we
introduce the method of truncation in Subsection 2.1.2 and illustrate its power in
a few representative examples.

2.1.1. L2 limits for sums of uncorrelated variables. The key to our
derivation of weak laws of large numbers is the computation of variances. As a
preliminary step we define the covariance of two R.V. and extend the notion of a
pair of uncorrelated random variables, to a (possibly infinite) family of R.V.

Definition 2.1.1. The covariance of two random variables X,Y ∈ L2(Ω,F ,P) is

Cov(X,Y ) = E[(X −EX)(Y −EY )] = EXY −EXEY ,

so in particular, Cov(X,X) = Var(X).
We say that random variables Xα ∈ L2(Ω,F ,P) are uncorrelated if

E(XαXβ) = E(Xα)E(Xβ) ∀α 6= β ,

or equivalently, if
Cov(Xα, Xβ) = 0 ∀α 6= β .

As we next show, the variance of the sum of finitely many uncorrelated random
variables is the sum of the variances of the variables.

Lemma 2.1.2. Suppose X1, . . . , Xn are uncorrelated random variables (which nec-
essarily are defined on the same probability space). Then,

(2.1.1) Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn) .

71
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Proof. Let Sn =
n∑

i=1

Xi. By Definition 1.3.67 of the variance and linearity of

the expectation we have that

Var(Sn) = E([Sn −ESn]2) = E
(
[

n∑

i=1

Xi −
n∑

i=1

EXi]
2
)

= E
(
[

n∑

i=1

(Xi −EXi)]
2
)
.

Writing the square of the sum as the sum of all possible cross-products, we get that

Var(Sn) =
n∑

i,j=1

E[(Xi −EXi)(Xj −EXj)]

=
n∑

i,j=1

Cov(Xi, Xj) =
n∑

i=1

Cov(Xi, Xi) =
n∑

i=1

Var(Xi) ,

where we use the fact that Cov(Xi, Xj) = 0 for each i 6= j since Xi and Xj are
uncorrelated. �

Equipped with this lemma we have our

Theorem 2.1.3 (L2 weak law of large numbers). Consider Sn =
n∑

i=1

Xi

for uncorrelated random variables X1, . . . , Xn, . . .. Suppose that Var(Xi) ≤ C and

EXi = x for some finite constants C, x, and all i = 1, 2, . . .. Then, n−1Sn
L2

→ x as

n→∞, and hence also n−1Sn
p→ x.

Proof. Our assumptions imply that E(n−1Sn) = x, and further by Lemma
2.1.2 we have the bound Var(Sn) ≤ nC. Recall the scaling property (1.3.17) of the
variance, implying that

E
[
(n−1Sn − x)2

]
= Var

(
n−1Sn

)
=

1

n2
Var(Sn) ≤ C

n
→ 0

as n→∞. Thus, n−1Sn
L2

→ x (recall Definition 1.3.26). By Proposition 1.3.29 this

implies that also n−1Sn
p→ x. �

The most important special case of Theorem 2.1.3 is,

Example 2.1.4. Suppose that X1, . . . , Xn are independent and identically dis-
tributed (or in short, i.i.d.), with EX2

1 <∞. Then, EX2
i = C and EXi = mX are

both finite and independent of i. So, the L2 weak law of large numbers tells us that

n−1Sn
L2

→ mX , and hence also n−1Sn
p→ mX .

Remark. As we shall see, the weaker condition E|Xi| <∞ suffices for the conver-
gence in probability of n−1Sn to mX . In Section 2.3 we show that it even suffices
for the convergence almost surely of n−1Sn to mX , a statement called the strong
law of large numbers.

Exercise 2.1.5. Show that the conclusion of the L2 weak law of large numbers
holds even for correlated Xi, provided EXi = x and Cov(Xi, Xj) ≤ r(|i− j|) for all
i, j, and some bounded sequence r(k) → 0 as k →∞.

With an eye on generalizing the L2 weak law of large numbers we observe that

Lemma 2.1.6. If the random variables Zn ∈ L2(Ω,F ,P) and the non-random bn

are such that b−2
n Var(Zn) → 0 as n→∞, then b−1

n (Zn −EZn)
L2

→ 0.
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Proof. We have E[(b−1
n (Zn −EZn))2] = b−2

n Var(Zn) → 0. �

Example 2.1.7. Let Zn =
∑n

k=1 Xk for uncorrelated random variables {Xk}. If
Var(Xk)/k → 0 as k → ∞, then Lemma 2.1.6 applies for Zn and bn = n, hence
n−1(Zn−EZn) → 0 in L2 (and in probability). Alternatively, if also Var(Xk) → 0,
then Lemma 2.1.6 applies even for Zn and bn = n−1/2.

Many limit theorems involve random variables of the form Sn =
n∑

k=1

Xn,k, that is,

the row sums of triangular arrays of random variables {Xn,k : k = 1, . . . , n}. Here
are two such examples, both relying on Lemma 2.1.6.

Example 2.1.8 (Coupon collector’s problem). Consider i.i.d. random vari-
ables U1, U2, . . ., each distributed uniformly on {1, 2, . . . , n}. Let |{U1, . . . , Ul}| de-
note the number of distinct elements among the first l variables, and τn

k = inf{l :
|{U1, . . . , Ul}| = k} be the first time one has k distinct values. We are interested
in the asymptotic behavior as n→∞ of Tn = τn

n , the time it takes to have at least
one representative of each of the n possible values.
To motivate the name assigned to this example, think of collecting a set of n

different coupons, where independently of all previous choices, each item is chosen
at random in such a way that each of the possible n outcomes is equally likely.
Then, Tn is the number of items one has to collect till having the complete set.
Setting τn

0 = 0, let Xn,k = τn
k − τn

k−1 denote the additional time it takes to get
an item different from the first k − 1 distinct items collected. Note that Xn,k has

a geometric distribution of success probability qn,k = 1− k−1
n , hence EXn,k = q−1

n,k

and Var(Xn,k) ≤ q−2
n,k (see Example 1.3.69). Since

Tn = τn
n − τn

0 =

n∑

k=1

(τn
k − τn

k−1) =

n∑

k=1

Xn,k ,

we have by linearity of the expectation that

ETn =

n∑

k=1

(
1− k − 1

n

)−1

= n

n∑

`=1

`−1 = n(logn+ γn) ,

where γn =
n∑

`=1

`−1 −
∫ n

1 x−1dx is between zero and one (by monotonicity of x 7→
x−1). Further, Xn,k is independent of each earlier waiting time Xn,j , j = 1, . . . , k−
1, hence we have by Lemma 2.1.2 that

Var(Tn) =
n∑

k=1

Var(Xn,k) ≤
n∑

k=1

(
1− k − 1

n

)−2

≤ n2
∞∑

`=1

`−2 = Cn2 ,

for some C <∞. Applying Lemma 2.1.6 with bn = n logn, we deduce that

Tn − n(log n+ γn)

n logn

L2

→ 0 .

Since γn/ logn→ 0, it follows that

Tn

n logn

L2

→ 1 ,

and Tn/(n logn) → 1 in probability as well.
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One possible extension of Example 2.1.8 concerns infinitely many possible coupons.
That is,

Exercise 2.1.9. Suppose {ξk} are i.i.d. positive integer valued random variables,
with P(ξ1 = i) = pi > 0 for i = 1, 2, . . .. Let Dl = |{ξ1, . . . , ξl}| denote the number
of distinct elements among the first l variables.

(a) Show that Dn
a.s.→ ∞ as n→∞.

(b) Show that n−1EDn → 0 as n→∞ and deduce that n−1Dn
p→ 0.

Hint: Recall that (1− p)n ≥ 1− np for any p ∈ [0, 1] and n ≥ 0.

Example 2.1.10 (An occupancy problem). Suppose we distribute at random
r distinct balls among n distinct boxes, where each of the possible nr assignments
of balls to boxes is equally likely. We are interested in the asymptotic behavior of
the number Nn of empty boxes when r/n → α ∈ [0,∞], while n → ∞. To this

end, let Ai denote the event that the i-th box is empty, so Nn =
n∑

i=1

IAi
. Since

P(Ai) = (1 − 1/n)r for each i, it follows that E(n−1Nn) = (1 − 1/n)r → e−α.

Further, EN2
n =

n∑
i,j=1

P(Ai ∩ Aj) and P(Ai ∩ Aj) = (1 − 2/n)r for each i 6= j.

Hence, splitting the sum according to i = j or i 6= j, we see that

Var(n−1Nn) =
1

n2
EN2

n − (1− 1

n
)2r =

1

n
(1− 1

n
)r + (1− 1

n
)(1− 2

n
)r − (1− 1

n
)2r .

As n→∞, the first term on the right side goes to zero, and with r/n→ α, each of
the other two terms converges to e−2α. Consequently, Var(n−1Nn) → 0, so applying
Lemma 2.1.6 for bn = n we deduce that

Nn

n
→ e−α

in L2 and in probability.

2.1.2. Weak laws and truncation. Our next order of business is to extend
the weak law of large numbers for row sums Sn in triangular arrays of independent
Xn,k which lack a finite second moment. Of course, with Sn no longer in L2, there
is no way to establish convergence in L2. So, we aim to retain only the convergence
in probability, using truncation. That is, we consider the row sums Sn for the
truncated array Xn,k = Xn,kI|Xn,k |≤bn

, with bn →∞ slowly enough to control the

variance of Sn and fast enough for P(Sn 6= Sn) → 0. As we next show, this gives
the convergence in probability for Sn which translates to same convergence result
for Sn.

Theorem 2.1.11 (Weak law for triangular arrays). Suppose that for each
n, the random variables Xn,k, k = 1, . . . , n are pairwise independent. Let Xn,k =
Xn,kI|Xn,k |≤bn

for non-random bn > 0 such that as n→∞ both

(a)
n∑

k=1

P(|Xn,k| > bn) → 0,

and

(b) b−2
n

n∑
k=1

Var(Xn,k) → 0.

Then, b−1
n (Sn − an)

p→ 0 as n→∞, where Sn =
n∑

k=1

Xn,k and an =
n∑

k=1

EXn,k.
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Proof. Let Sn =
∑n

k=1 Xn,k. Clearly, for any ε > 0,
{∣∣Sn − an

bn

∣∣ > ε

}
⊆

{
Sn 6= Sn

} ⋃ {∣∣Sn − an

bn

∣∣ > ε

}
.

Consequently,

(2.1.2) P
(∣∣Sn − an

bn

∣∣ > ε
)
≤ P(Sn 6= Sn) + P

(∣∣Sn − an

bn

∣∣ > ε
)
.

To bound the first term, note that our condition (a) implies that as n→∞,

P(Sn 6= Sn) ≤ P
( n⋃

k=1

{Xn,k 6= Xn,k}
)

≤
n∑

k=1

P(Xn,k 6= Xn,k) =
n∑

k=1

P(|Xn,k| > bn) → 0 .

Turning to bound the second term in (2.1.2), recall that pairwise independence
is preserved under truncation, hence Xn,k, k = 1, . . . , n are uncorrelated random
variables (to convince yourself, apply (1.4.12) for the appropriate functions). Thus,
an application of Lemma 2.1.2 yields that as n→∞,

Var(b−1
n Sn) = b−2

n

n∑

k=1

Var(Xn,k) → 0 ,

by our condition (b). Since an = ESn, from Chebyshev’s inequality we deduce that
for any fixed ε > 0,

P
(∣∣Sn − an

bn

∣∣ > ε
)
≤ ε−2

Var(b−1
n Sn) → 0 ,

as n→∞. In view of (2.1.2), this completes the proof of the theorem. �

Specializing the weak law of Theorem 2.1.11 to a single sequence yields the fol-
lowing.

Proposition 2.1.12 (Weak law of large numbers). Consider i.i.d. random

variables {Xi}, such that xP(|X1| > x) → 0 as x → ∞. Then, n−1Sn − µn
p→ 0,

where Sn =
n∑

i=1

Xi and µn = E[X1I{|X1|≤n}].

Proof. We get the result as an application of Theorem 2.1.11 for Xn,k = Xk

and bn = n, in which case an = nµn. Turning to verify condition (a) of this
theorem, note that

n∑

k=1

P(|Xn,k| > n) = nP(|X1| > n) → 0

as n → ∞, by our assumption. Thus, all that remains to do is to verify that
condition (b) of Theorem 2.1.11 holds here. This amounts to showing that as
n→∞,

∆n = n−2
n∑

k=1

Var(Xn,k) = n−1
Var(Xn,1) → 0 .
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Recall that for any R.V. Z,

Var(Z) = EZ2 − (EZ)2 ≤ E|Z|2 =

∫ ∞

0

2yP(|Z| > y)dy

(see part (a) of Lemma 1.4.31 for the right identity). Considering Z = Xn,1 =
X1I{|X1|≤n} for which P(|Z| > y) = P(|X1| > y) − P(|X1| > n) ≤ P(|X1| > y)
when 0 < y < n and P(|Z| > y) = 0 when y ≥ n, we deduce that

∆n = n−1
Var(Z) ≤ n−1

∫ n

0

g(y)dy ,

where by our assumption, g(y) = 2yP(|X1| > y) → 0 for y → ∞. Further, the
non-negative Borel function g(y) ≤ 2y is then uniformly bounded on [0,∞), hence
n−1

∫ n

0
g(y)dy → 0 as n → ∞ (c.f. Exercise 1.3.52). Verifying that ∆n → 0, we

established condition (b) of Theorem 2.1.11 and thus completed the proof of the
proposition. �

Remark. The condition xP(|X1| > x) → 0 for x→∞ is indeed necessary for the

existence of non-random µn such that n−1Sn − µn
p→ 0 (c.f. [Fel71, Page 234-236]

for a proof).

Exercise 2.1.13. Let {Xi} be i.i.d. with P(X1 = (−1)kk) = 1/(ck2 log k) for
integers k ≥ 2 and a normalization constant c =

∑
k 1/(k2 log k). Show that

E|X1| = ∞, but there is a non-random µ <∞ such that n−1Sn
p→ µ.

As a corollary to Proposition 2.1.12 we next show that n−1Sn
p→ mX as soon as

the i.i.d. random variables Xi are in L1.

Corollary 2.1.14. Consider Sn =
n∑

k=1

Xk for i.i.d. random variables {Xi} such

that E|X1| <∞. Then, n−1Sn
p→ EX1 as n→∞.

Proof. In view of Proposition 2.1.12, it suffices to show that if E|X1| < ∞,
then both nP(|X1| > n) → 0 and EX1 − µn = E[X1I{|X1|>n}] → 0 as n → ∞.
To this end, recall that E|X1| < ∞ implies that P(|X1| < ∞) = 1 and hence
the sequence X1I{|X1|>n} converges to zero a.s. and is bounded by the integrable
|X1|. Thus, by dominated convergence E[X1I{|X1|>n}] → 0 as n → ∞. Applying
dominated convergence for the sequence nI{|X1|>n} (which also converges a.s. to
zero and is bounded by the integrable |X1|), we deduce that nP(|X1| > n) =
E[nI{|X1|>n}] → 0 when n→∞, thus completing the proof of the corollary. �

We conclude this section by considering an example for which E|X1| = ∞ and
Proposition 2.1.12 does not apply, but nevertheless, Theorem 2.1.11 allows us to

deduce that c−1
n Sn

p→ 1 for some cn such that cn/n→∞.

Example 2.1.15. Let {Xi} be i.i.d. random variables such that P(X1 = 2j) =
2−j for j = 1, 2, . . .. This has the interpretation of a game, where in each of its
independent rounds you win 2j dollars if it takes exactly j tosses of a fair coin
to get the first Head. This example is called the St. Petersburg paradox, since
though EX1 = ∞, you clearly would not pay an infinite amount just in order to
play this game. Applying Theorem 2.1.11 we find that one should be willing to pay

roughly n log2 n dollars for playing n rounds of this game, since Sn/(n log2 n)
p→ 1

as n → ∞. Indeed, the conditions of Theorem 2.1.11 apply for bn = 2mn provided
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the integers mn are such that mn− log2 n→∞. Taking mn ≤ log2 n+log2(log2 n)
implies that bn ≤ n log2 n and an/(n log2 n) = mn/ log2 n→ 1 as n→∞, with the

consequence of Sn/(n log2 n)
p→ 1 (for details see [Dur03, Example 1.5.7]).

2.2. The Borel-Cantelli lemmas

When dealing with asymptotic theory, we often wish to understand the relation
between countably many events An in the same probability space. The two Borel-
Cantelli lemmas of Subsection 2.2.1 provide information on the probability of the set
of outcomes that are in infinitely many of these events, based only on P(An). There
are numerous applications to these lemmas, few of which are given in Subsection
2.2.2 while many more appear in later sections of these notes.

2.2.1. Limit superior and the Borel-Cantelli lemmas. We are often in-
terested in the limits superior and limits inferior of a sequence of events An on
the same measurable space (Ω,F).

Definition 2.2.1. For a sequence of subsets An ⊆ Ω, define

A∞ := lim supAn =

∞⋂

m=1

∞⋃

`=m

A`

= {ω : ω ∈ An for infinitely many n’s }
= {ω : ω ∈ An infinitely often } = {An i.o. }

Similarly,

lim inf An =

∞⋃

m=1

∞⋂

`=m

A`

= {ω : ω ∈ An for all but finitely many n’s }
= {ω : ω ∈ An eventually } = {An ev. }

Remark. Note that if An ∈ F are measurable, then so are lim supAn and
lim inf An. By DeMorgan’s law, we have that {An ev. } = {Ac

n i.o. }c, that is,
ω ∈ An for all n large enough if and only if ω ∈ Ac

n for finitely many n’s.
Also, if ω ∈ An eventually, then certainly ω ∈ An infinitely often, that is

lim inf An ⊆ lim supAn .

The notations lim supAn and lim inf An are due to the intimate connection of
these sets to the lim sup and lim inf of the indicator functions on the sets An. For
example,

lim sup
n→∞

IAn
(ω) = Ilim sup An

(ω),

since for a given ω ∈ Ω, the lim sup on the left side equals 1 if and only if the
sequence n 7→ IAn

(ω) contains an infinite subsequence of ones. In other words, if
and only if the given ω is in infinitely many of the sets An. Similarly,

lim inf
n→∞

IAn
(ω) = Ilim inf An

(ω),

since for a given ω ∈ Ω, the lim inf on the left side equals 1 if and only if there
are only finitely many zeros in the sequence n 7→ IAn

(ω) (for otherwise, their limit
inferior is zero). In other words, if and only if the given ω is in An for all n large
enough.
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In view of the preceding remark, Fatou’s lemma yields the following relations.

Exercise 2.2.2. Prove that for any sequence An ∈ F ,

P(lim supAn) ≥ lim sup
n→∞

P(An) ≥ lim inf
n→∞

P(An) ≥ P(lim inf An) .

Show that the right most inequality holds even when the probability measure is re-
placed by an arbitrary measure µ(·), but the left most inequality may then fail unless
µ(

⋃
k≥n Ak) <∞ for some n.

Practice your understanding of the concepts of lim sup and lim inf of sets by solving
the following exercise.

Exercise 2.2.3. Assume that P(lim supAn) = 1 and P(lim inf Bn) = 1. Prove
that P(lim sup(An ∩Bn)) = 1. What happens if the condition on {Bn} is weakened
to P(lim supBn) = 1?

Our next result, called the first Borel-Cantelli lemma, states that if the probabil-
ities P(An) of the individual events An converge to zero fast enough, then almost
surely, An occurs for only finitely many values of n, that is, P(An i.o.) = 0. This
lemma is extremely useful, as the possibly complex relation between the different
events An is irrelevant for its conclusion.

Lemma 2.2.4 (Borel-Cantelli I). Suppose An ∈ F and
∞∑

n=1
P(An) <∞. Then,

P(An i.o.) = 0.

Proof. Define N(ω) =
∑∞

k=1 IAk
(ω). By the monotone convergence theorem

and our assumption,

E[N(ω)] = E
[ ∞∑

k=1

IAk
(ω)

]
=

∞∑

k=1

P(Ak) <∞.

Since the expectation of N is finite, certainly P({ω : N(ω) = ∞}) = 0. Noting
that the set {ω : N(ω) = ∞} is merely {ω : An i.o.}, the conclusion P(An i.o.) = 0
of the lemma follows. �

Our next result, left for the reader to prove, relaxes somewhat the conditions of
Lemma 2.2.4.

Exercise 2.2.5. Suppose An ∈ F are such that
∞∑

n=1
P(An ∩ Ac

n+1) < ∞ and

P(An) → 0. Show that then P(An i.o.) = 0.

The first Borel-Cantelli lemma states that if the series
∑

n P(An) converges then
almost every ω is in finitely many sets An. If P(An) → 0, but the series

∑
n P(An)

diverges, then the event {An i.o.} might or might not have positive probability. In
this sense, the Borel-Cantelli I is not tight, as the following example demonstrates.

Example 2.2.6. Consider the uniform probability measure U on ((0, 1],B(0,1]),
and the events An = (0, 1/n]. Then An ↓ ∅, so {An i.o.} = ∅, but U(An) = 1/n,
so

∑
n U(An) = ∞ and the Borel-Cantelli I does not apply.

Recall also Example 1.3.25 showing the existence of An = (tn, tn + 1/n] such that
U(An) = 1/n while {An i.o.} = (0, 1]. Thus, in general the probability of {An i.o.}
depends on the relation between the different events An.
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As seen in the preceding example, the divergence of the series
∑

n P(An) is not
sufficient for the occurrence of a set of positive probability of ω values, each of
which is in infinitely many events An. However, upon adding the assumption that
the events An are mutually independent (flagrantly not the case in Example 2.2.6),
we conclude that almost all ω must be in infinitely many of the events An:

Lemma 2.2.7 (Borel-Cantelli II). Suppose An ∈ F are mutually independent

and
∞∑

n=1
P(An) = ∞. Then, necessarily P(An i.o.) = 1.

Proof. Fix 0 < m < n < ∞. Use the mutual independence of the events A`

and the inequality 1− x ≤ e−x for x ≥ 0, to deduce that

P
( n⋂

`=m

Ac
`

)
=

n∏

`=m

P(Ac
`) =

n∏

`=m

(1−P(A`))

≤
n∏

`=m

e−P(A`) = exp(−
n∑

`=m

P(A`)) .

As n → ∞, the set
n⋂

`=m

Ac
` shrinks. With the series in the exponent diverging, by

continuity from above of the probability measure P(·) we see that for any m,

P
( ∞⋂

`=m

Ac
`

)
≤ exp(−

∞∑

`=m

P(A`)) = 0 .

Take the complement to see that P(Bm) = 1 for Bm =
⋃∞

`=mA` and all m. Since
Bm ↓ {An i.o. } when m ↑ ∞, it follows by continuity from above of P(·) that

P(An i.o.) = lim
m→∞

P(Bm) = 1 ,

as stated. �

As an immediate corollary of the two Borel-Cantelli lemmas, we observe yet an-
other 0-1 law.

Corollary 2.2.8. If An ∈ F are P-mutually independent then P(An i.o.) is
either 0 or 1. In other words, for any given sequence of mutually independent
events, either almost all outcomes are in infinitely many of these events, or almost
all outcomes are in finitely many of them.

The Kochen-Stone lemma, left as an exercise, generalizes Borel-Cantelli II to sit-
uations lacking independence.

Exercise 2.2.9. Suppose Ak are events on the same probability space such that∑
k P(Ak) = ∞ and

lim sup
n→∞

( n∑

k=1

P(Ak)
)2

/
( ∑

1≤j,k≤n

P(Aj ∩Ak)
)

= α > 0 .

Prove that then P(An i.o. ) ≥ α.
Hint: Consider part (a) of Exercise 1.3.21 for Yn =

∑
k≤n IAk

and an = λEYn.
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2.2.2. Applications. In the sequel we explore various applications of the two
Borel-Cantelli lemmas. In doing so, unless explicitly stated otherwise, all events
and random variables are defined on the same probability space.
We know that the convergence a.s. of Xn to X∞ implies the convergence in prob-

ability of Xn to X∞, but not vice versa (see Exercise 1.3.23 and Example 1.3.25).
As our first application of Borel-Cantelli I, we refine the relation between these
two modes of convergence, showing that convergence in probability is equivalent to
convergence almost surely along sub-sequences.

Theorem 2.2.10. Xn
p→ X∞ if and only if for every subsequence m 7→ Xn(m)

there exists a further sub-subsequence Xn(mk) such that Xn(mk)
a.s.→ X∞ as k →∞.

We start the proof of this theorem with a simple analysis lemma.

Lemma 2.2.11. Let yn be a sequence in a topological space. If every subsequence
yn(m) has a further sub-subsequence yn(mk) that converges to y, then yn → y.

Proof. If yn does not converge to y, then there exists an open set G containing
y and a subsequence yn(m) such that yn(m) /∈ G for all m. But clearly, then we
cannot find a further subsequence of yn(m) that converges to y. �

Remark. Applying Lemma 2.2.11 to yn = E|Xn−X∞| we deduce thatXn
L1

→ X∞
if and only if any subsequence n(m) has a further sub-subsequence n(mk) such that

Xn(mk)
L1

→ X∞ as k →∞.

Proof of Theorem 2.2.10. First, we show sufficiency, assuming Xn
p→ X∞.

Fix a subsequence n(m) and εk ↓ 0. By the definition of convergence in probability,
there exists a sub-subsequence n(mk) ↑ ∞ such that P

(
|Xn(mk) −X∞| > εk

)
≤

2−k. Call this sequence of events Ak =
{
ω : |Xn(mk)(ω)−X∞(ω)| > εk

}
. Then

the series
∑

k P(Ak) converges. Therefore, by Borel-Cantelli I, P(lim supAk) =
0. For any ω /∈ lim supAk there are only finitely many values of k such that
|Xn(mk) −X∞| > εk, or alternatively, |Xn(mk) −X∞| ≤ εk for all k large enough.
Since εk ↓ 0, it follows that Xn(mk)(ω) → X∞(ω) when ω /∈ lim supAk, that is,
with probability one.
Conversely, fix δ > 0. Let yn = P(|Xn−X∞| > δ). By assumption, for every sub-

sequence n(m) there exists a further subsequence n(mk) so that Xn(mk) converges
to X∞ almost surely, hence in probability, and in particular, yn(mk) → 0. Applying
Lemma 2.2.11 we deduce that yn → 0, and since δ > 0 is arbitrary it follows that

Xn
p→ X∞. �

It is not hard to check that convergence almost surely is invariant under application
of an a.s. continuous mapping.

Exercise 2.2.12. Let g : R 7→ R be a Borel function and denote by Dg its set of

discontinuities. Show that if Xn
a.s.→ X∞ finite valued, and P(X∞ ∈ Dg) = 0, then

g(Xn)
a.s.→ g(X∞) as well (recall Exercise 1.2.28 that Dg ∈ B). This applies for a

continuous function g in which case Dg = ∅.
A direct consequence of Theorem 2.2.10 is that convergence in probability is also

preserved under an a.s. continuous mapping (and if the mapping is also bounded,
we even get L1 convergence).
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Corollary 2.2.13. Suppose Xn
p→ X∞, g is a Borel function and P(X∞ ∈ Dg) =

0. Then, g(Xn)
p→ g(X∞). If in addition g is bounded, then g(Xn)

L1

→ g(X∞) (and
Eg(Xn) → Eg(X∞)).

Proof. Fix a subsequence Xn(m). By Theorem 2.2.10 there exists a subse-
quence Xn(mk) such that P(A) = 1 for A = {ω : Xn(mk)(ω) → X∞(ω) as k →∞}.
Let B = {ω : X∞(ω) /∈ Dg}, noting that by assumption P(B) = 1. For any
ω ∈ A ∩ B we have g(Xn(mk)(ω)) → g(X∞(ω)) by the continuity of g outside Dg .

Therefore, g(Xn(mk))
a.s.→ g(X∞). Now apply Theorem 2.2.10 in the reverse direc-

tion: For any subsequence, we have just constructed a further subsequence with

convergence a.s., hence g(Xn)
p→ g(X∞).

Finally, if g is bounded, then the collection {g(Xn)} is U.I. yielding, by Vitali’s
convergence theorem, its convergence in L1 (and hence that Eg(Xn) → Eg(X∞)).

�

You are next to extend the scope of Theorem 2.2.10 and the continuous mapping
of Corollary 2.2.13 to random variables taking values in a separable metric space.

Exercise 2.2.14. Recall the definition of convergence in probability in a separable
metric space (S, ρ) as in Remark 1.3.24.

(a) Extend the proof of Theorem 2.2.10 to apply for any (S,BS)-valued ran-
dom variables {Xn, n ≤∞} (and in particular for R-valued variables).

(b) Denote by Dg the set of discontinuities of a Borel measurable g : S 7→
R (defined similarly to Exercise 1.2.28, where real-valued functions are

considered). Suppose Xn
p→ X∞ and P(X∞ ∈ Dg) = 0. Show that then

g(Xn)
p→ g(X∞) and if in addition g is bounded, then also g(Xn)

L1

→
g(X∞).

The following result in analysis is obtained by combining the continuous mapping
of Corollary 2.2.13 with the weak law of large numbers.

Exercise 2.2.15 (Inverting Laplace transforms). The Laplace transform of
a bounded, continuous function h(x) on [0,∞) is the function Lh(s) =

∫ ∞
0 e−sxh(x)dx

on (0,∞).

(a) Show that for any s > 0 and positive integer k,

(−1)k−1 s
kL

(k−1)
h (s)

(k − 1)!
=

∫ ∞

0

e−sx s
kxk−1

(k − 1)!
h(x)dx = E[h(Wk)] ,

where L
(k−1)
h (·) denotes the (k−1)-th derivative of the function Lh(·) and

Wk has the gamma density with parameters k and s.
(b) Recall Exercise 1.4.46 that for s = n/y the law of Wn coincides with the

law of n−1
∑n

i=1 Ti where Ti ≥ 0 are i.i.d. random variables, each having
the exponential distribution of parameter 1/y (with ET1 = y and finite
moments of all order, c.f. Example 1.3.68). Deduce that the inversion
formula

h(y) = lim
n→∞

(−1)n−1 (n/y)n

(n− 1)!
L

(n−1)
h (n/y) ,

holds for any y > 0.
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The next application of Borel-Cantelli I provides our first strong law of large
numbers.

Proposition 2.2.16. Suppose E[Z2
n] ≤ C for some C < ∞ and all n. Then,

n−1Zn
a.s.→ 0 as n→∞.

Proof. Fixing δ > 0 let Ak = {ω : |k−1Zk(ω)| > δ} for k = 1, 2, . . .. Then, by
Chebyshev’s inequality and our assumption,

P(Ak) = P({ω : |Zk(ω)| ≥ kδ}) ≤ E(Z2
k)

(kδ)2
≤ C

δ2
k−2 .

Since
∑

k k
−2 < ∞, it follows by Borel Cantelli I that P(A∞) = 0, where A∞ =

{ω : |k−1Zk(ω)| > δ for infinitely many values of k}. Hence, for any fixed
δ > 0, with probability one k−1|Zk(ω)| ≤ δ for all large enough k, that is,
lim supn→∞ n−1|Zn(ω)| ≤ δ a.s. Considering a sequence δm ↓ 0 we conclude that
n−1Zn → 0 for n→∞ and a.e. ω. �

Exercise 2.2.17. Let Sn =
n∑

l=1

Xl, where {Xi} are i.i.d. random variables with

EX1 = 0 and EX4
1 <∞.

(a) Show that n−1Sn
a.s.→ 0.

Hint: Verify that Proposition 2.2.16 applies for Zn = n−1S2
n.

(b) Show that n−1Dn
a.s.→ 0 where Dn denotes the number of distinct integers

among {ξk, k ≤ n} and {ξk} are i.i.d. integer valued random variables.
Hint: Dn ≤ 2M +

∑n
k=1 I|ξk |≥M .

In contrast, here is an example where the empirical averages of integrable, zero
mean independent variables do not converge to zero. Of course, the trick is to have
non-identical distributions, with the bulk of the probability drifting to negative one.

Exercise 2.2.18. Suppose Xi are mutually independent random variables such
that P(Xn = n2 − 1) = 1 − P(Xn = −1) = n−2 for n = 1, 2, . . .. Show that

EXn = 0, for all n, while n−1
∑n

i=1Xi
a.s.→ −1 for n→∞.

Next we have few other applications of Borel-Cantelli I, starting with some addi-
tional properties of convergence a.s.

Exercise 2.2.19. Show that for any R.V. Xn

(a) Xn
a.s.→ 0 if and only if P(|Xn| > ε i.o. ) = 0 for each ε > 0.

(b) There exist non-random constants bn ↑ ∞ such that Xn/bn
a.s.→ 0.

Exercise 2.2.20. Show that if Wn > 0 and EWn ≤ 1 for every n, then almost
surely,

lim sup
n→∞

n−1 logWn ≤ 0 .

Our next example demonstrates how Borel-Cantelli I is typically applied in the
study of the asymptotic growth of running maxima of random variables.

Example 2.2.21 (Head runs). Let {Xk, k ∈ Z} be a two-sided sequence of i.i.d.
{0, 1}-valued random variables, with P(X1 = 1) = P(X1 = 0) = 1/2. With `m =
max{i : Xm−i+1 = · · · = Xm = 1} denoting the length of the run of 1’s going
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backwards from time m, we are interested in the asymptotics of the longest such
run during 1, 2, . . . , n, that is,

Ln = max{`m : m = 1, . . . , n}
= max{m− k : Xk+1 = · · · = Xm = 1 for some m = 1, . . . , n} .

Noting that `m + 1 has a geometric distribution of success probability p = 1/2, we
deduce by an application of Borel-Cantelli I that for each ε > 0, with probability
one, `n ≤ (1+ε) log2 n for all n large enough. Hence, on the same set of probability
one, we have N = N(ω) finite such that Ln ≤ max(LN , (1+ε) log2 n) for all n ≥ N .
Dividing by log2 n and considering n→∞ followed by εk ↓ 0, this implies that

lim sup
n→∞

Ln

log2 n

a.s.
≤ 1 .

For each fixed ε > 0 let An = {Ln < kn} for kn = [(1− ε) log2 n]. Noting that

An ⊆
mn⋂

i=1

Bc
i ,

for mn = [n/kn] and the independent events Bi = {X(i−1)kn+1 = · · · = Xikn
= 1},

yields a bound of the form P(An) ≤ exp(−nε/(2 log2 n)) for all n large enough (c.f.
[Dur03, Example 1.6.3] for details). Since

∑
n P(An) <∞, we have that

lim inf
n→∞

Ln

log2 n

a.s.
≥ 1

by yet another application of Borel-Cantelli I, followed by εk ↓ 0. We thus conclude
that

Ln

log2 n

a.s.→ 1 .

The next exercise combines both Borel-Cantelli lemmas to provide the 0-1 law for
another problem about head runs.

Exercise 2.2.22. Let {Xk} be a sequence of i.i.d. {0, 1}-valued random variables,
with P(X1 = 1) = p and P(X1 = 0) = 1− p. Let Ak be the event that Xm = · · · =
Xm+k−1 = 1 for some 2k ≤ m ≤ 2k+1 − k. Show that P(Ak i.o. ) = 1 if p ≥ 1/2
and P(Ak i.o. ) = 0 if p < 1/2.
Hint: When p ≥ 1/2 consider only m = 2k + (i− 1)k for i = 0, . . . , [2k/k].

Here are a few direct applications of the second Borel-Cantelli lemma.

Exercise 2.2.23. Suppose that {Zk} are i.i.d. random variables such that P(Z1 =
z) < 1 for any z ∈ R.

(a) Show that P(Zk converges for k →∞) = 0.
(b) Determine the values of lim supn→∞(Zn/ logn) and lim infn→∞(Zn/ logn)

in case Zk has the exponential distribution (of parameter λ = 1).

After deriving the classical bounds on the tail of the normal distribution, you
use both Borel-Cantelli lemmas in bounding the fluctuations of the sums of i.i.d.
standard normal variables.

Exercise 2.2.24. Let {Gi} be i.i.d. standard normal random variables.
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(a) Show that for any x > 0,

(x−1 − x−3)e−x2/2 ≤
∫ ∞

x

e−y2/2dy ≤ x−1e−x2/2 .

Many texts prove these estimates, for example see [Dur03, Theorem
1.1.4].

(b) Show that, with probability one,

lim sup
n→∞

Gn√
2 logn

= 1 .

(c) Let Sn = G1 + · · · + Gn. Recall that n−1/2Sn has the standard normal
distribution. Show that

P(|Sn| < 2
√
n logn, ev. ) = 1 .

Remark. Ignoring the dependence between the elements of the sequence Sk, the
bound in part (c) of the preceding exercise is not tight. The definite result here is
the law of the iterated logarithm (in short lil), which states that when the i.i.d.
summands are of zero mean and variance one,

(2.2.1) P(lim sup
n→∞

Sn√
2n log logn

= 1) = 1 .

We defer the derivation of (2.2.1) to Theorem 9.2.28, building on a similar lil for
the Brownian motion (but, see [Bil95, Theorem 9.5] for a direct proof of (2.2.1),
using both Borel-Cantelli lemmas).

The next exercise relates explicit integrability conditions for i.i.d. random vari-
ables to the asymptotics of their running maxima.

Exercise 2.2.25. Consider possibly R-valued, i.i.d. random variables {Yi} and
their running maxima Mn = maxk≤n Yk.

(a) Using (2.3.4) if needed, show that P(|Yn| > n i.o. ) = 0 if and only if
E[|Y1|] <∞.

(b) Show that n−1Yn
a.s.→ 0 if and only if E[|Y1|] <∞.

(c) Show that n−1Mn
a.s.→ 0 if and only if E[(Y1)+] <∞ and P(Y1 > −∞) >

0.
(d) Show that n−1Mn

p→ 0 if and only if nP(Y1 > n) → 0 and P(Y1 >
−∞) > 0.

(e) Show that n−1Yn
p→ 0 if and only if P(|Y1| <∞) = 1.

In the following exercise, you combine Borel Cantelli I and the variance computa-
tion of Lemma 2.1.2 to improve upon Borel Cantelli II.

Exercise 2.2.26. Suppose
∑∞

n=1 P(An) = ∞ for pairwise independent events
{Ai}. Let Sn =

∑n
i=1 IAi

be the number of events occurring among the first n.

(a) Prove that Var(Sn) ≤ E(Sn) and deduce from it that Sn/E(Sn)
p→ 1.

(b) Applying Borel-Cantelli I show that Snk
/E(Snk

)
a.s.→ 1 as k → ∞, where

nk = inf{n : E(Sn) ≥ k2}.
(c) Show that E(Snk+1

)/E(Snk
) → 1 and since n 7→ Sn is non-decreasing,

deduce that Sn/E(Sn)
a.s.→ 1.
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Remark. Borel-Cantelli II is the a.s. convergence Sn → ∞ for n →∞, which is
a consequence of part (c) of the preceding exercise (since ESn →∞).

We conclude this section with an example in which the asymptotic rate of growth
of random variables of interest is obtained by an application of Exercise 2.2.26.

Example 2.2.27 (Record values). Let {Xi} be a sequence of i.i.d. random
variables with a continuous distribution function FX (x). The event Ak = {Xk >
Xj , j = 1, . . . , k − 1} represents the occurrence of a record at the k instance (for
example, think of Xk as an athlete’s kth distance jump). We are interested in the

asymptotics of the count Rn =
n∑

i=1

IAi
of record events during the first n instances.

Because of the continuity of FX we know that a.s. the values of Xi, i = 1, 2, . . . are
distinct. Further, rearranging the random variables X1, X2, . . . , Xn in a decreasing
order induces a random permutation πn on {1, 2, . . . , n}, where all n! possible per-
mutations are equally likely. From this it follows that P(Ak) = P(πk(k) = 1) = 1/k,
and though definitely not obvious at first sight, the events Ak are mutually indepen-
dent (see [Dur03, Example 1.6.2] for details). So, ERn = log n+ γn where γn is

between zero and one, and from Exercise 2.2.26 we deduce that (log n)−1Rn
a.s.→ 1

as n → ∞. Note that this result is independent of the law of X, as long as the
distribution function FX is continuous.

2.3. Strong law of large numbers

In Corollary 2.1.14 we got the classical weak law of large numbers, namely, the
convergence in probability of the empirical averages n−1

∑n
i=1 Xi of i.i.d. integrable

random variables Xi to the mean EX1. Assuming in addition that EX4
1 <∞, you

used Borel-Cantelli I in Exercise 2.2.17 en-route to the corresponding strong law of
large numbers, that is, replacing the convergence in probability with the stronger
notion of convergence almost surely.
We provide here two approaches to the strong law of large numbers, both of which

get rid of the unnecessary finite moment assumptions. Subsection 2.3.1 follows
Etemadi’s (1981) direct proof of this result via the subsequence method. Subsection
2.3.2 deals in a more systematic way with the convergence of random series, yielding
the strong law of large numbers as one of its consequences.

2.3.1. The subsequence method. Etemadi’s key observation is that it es-
sentially suffices to consider non-negative Xi, for which upon proving the a.s. con-
vergence along a not too sparse subsequence nl, the interpolation to the whole
sequence can be done by the monotonicity of n 7→ ∑nXi. This is an example of
a general approach to a.s. convergence, called the subsequence method, which you
have already encountered in Exercise 2.2.26.
We thus start with the strong law for integrable, non-negative variables.

Proposition 2.3.1. Let Sn =
∑n

i=1Xi for non-negative, pairwise independent

and identically distributed, integrable random variables {Xi}. Then, n−1Sn
a.s.→

EX1 as n→∞.

Proof. The proof progresses along the themes of Section 2.1, starting with
the truncation Xk = XkI|Xk |≤k and its corresponding sums Sn =

∑n
i=1X i.
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Since {Xi} are identically distributed and x 7→ P(|X1| > x) is non-increasing, we
have that

∞∑

k=1

P(Xk 6= Xk) =
∞∑

k=1

P(|X1| > k) ≤
∫ ∞

0

P(|X1| > x)dx = E|X1| <∞

(see part (a) of Lemma 1.4.31 for the rightmost identity and recall our assumption
that X1 is integrable). Thus, by Borel-Cantelli I, with probability one, Xk(ω) =
Xk(ω) for all but finitely many k’s, in which case necessarily supn |Sn(ω)−Sn(ω)|
is finite. This shows that n−1(Sn − Sn)

a.s.→ 0, whereby it suffices to prove that

n−1Sn
a.s.→ EX1.

To this end, we next show that it suffices to prove the following lemma about
almost sure convergence of Sn along suitably chosen subsequences.

Lemma 2.3.2. Fixing α > 1 let nl = [αl]. Under the conditions of the proposition,

n−1
l (Snl

−ESnl
)

a.s.→ 0 as l →∞.

By dominated convergence, E[X1I|X1|≤k] → EX1 as k →∞, and consequently, as
n→∞,

1

n
ESn =

1

n

n∑

k=1

EXk =
1

n

n∑

k=1

E[X1I|X1|≤k] → EX1

(we have used here the consistency of Cesáro averages, c.f. Exercise 1.3.52 for an

integral version). Thus, assuming that Lemma 2.3.2 holds, we have that n−1
l Snl

a.s.→
EX1 when l→∞, for each α > 1.
We complete the proof of the proposition by interpolating from the subsequences
nl = [αl] to the whole sequence. To this end, fix α > 1. Since n 7→ Sn is non-
decreasing, we have for all ω ∈ Ω and any n ∈ [nl, nl+1],

nl

nl+1

Snl
(ω)

nl
≤ Sn(ω)

n
≤ nl+1

nl

Snl+1
(ω)

nl+1

With nl/nl+1 → 1/α for l → ∞, the a.s. convergence of m−1Sm along the subse-
quence m = nl implies that the event

Aα := {ω :
1

α
EX1 ≤ lim inf

n→∞
Sn(ω)

n
≤ lim sup

n→∞

Sn(ω)

n
≤ αEX1} ,

has probability one. Consequently, taking αm ↓ 1, we deduce that the event B :=⋂
mAαm

also has probability one, and further, n−1Sn(ω) → EX1 for each ω ∈ B.

We thus deduce that n−1Sn
a.s.→ EX1, as needed to complete the proof of the

proposition. �

Remark. The monotonicity of certain random variables (here n 7→ Sn), is crucial
to the successful application of the subsequence method. The subsequence nl for
which we need a direct proof of convergence is completely determined by the scaling
function b−1

n applied to this monotone sequence (here bn = n); we need bnl+1
/bnl

→
α, which should be arbitrarily close to 1. For example, same subsequences nl = [αl]
are to be used whenever bn is roughly of a polynomial growth in n, while even
nl = (l!)c would work in case bn = logn.
Likewise, the truncation level is determined by the highest moment of the basic

variables which is assumed to be finite. For example, we can take Xk = XkI|Xk |≤kp

for any p > 0 such that E|X1|1/p <∞.
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Proof of Lemma 2.3.2. Note that E[X
2

k] is non-decreasing in k. Further,
Xk are pairwise independent, hence uncorrelated, so by Lemma 2.1.2,

Var(Sn) =

n∑

k=1

Var(Xk) ≤
n∑

k=1

E[X
2

k] ≤ nE[X
2

n] = nE[X2
1I|X1 |≤n] .

Combining this with Chebychev’s inequality yield the bound

P(|Sn −ESn| ≥ εn) ≤ (εn)−2
Var(Sn) ≤ ε−2n−1E[X2

1 I|X1|≤n] ,

for any ε > 0. Applying Borel-Cantelli I for the events Al = {|Snl
−ESnl

| ≥ εnl},
followed by εm ↓ 0, we get the a.s. convergence to zero of n−1|Sn−ESn| along any
subsequence nl for which

∞∑

l=1

n−1
l E[X2

1I|X1|≤nl
] = E[X2

1

∞∑

l=1

n−1
l I|X1 |≤nl

] <∞

(the latter identity is a special case of Exercise 1.3.40). Since E|X1| < ∞, it thus
suffices to show that for nl = [αl] and any x > 0,

(2.3.1) u(x) :=

∞∑

l=1

n−1
l Ix≤nl

≤ cx−1 ,

where c = 2α/(α − 1) < ∞. To establish (2.3.1) fix α > 1 and x > 0, setting
L = min{l ≥ 1 : nl ≥ x}. Then, αL ≥ x, and since [y] ≥ y/2 for all y ≥ 1,

u(x) =

∞∑

l=L

n−1
l ≤ 2

∞∑

l=L

α−l = cα−L ≤ cx−1 .

So, we have established (2.3.1) and hence completed the proof of the lemma. �

As already promised, it is not hard to extend the scope of the strong law of large
numbers beyond integrable and non-negative random variables.

Theorem 2.3.3 (Strong law of large numbers). Let Sn =
∑n

i=1Xi for
pairwise independent and identically distributed random variables {Xi}, such that

either E[(X1)+] is finite or E[(X1)−] is finite. Then, n−1Sn
a.s.→ EX1 as n→∞.

Proof. First consider non-negative Xi. The case of EX1 < ∞ has already

been dealt with in Proposition 2.3.1. In case EX1 = ∞, consider S
(m)
n =

∑n
i=1X

(m)
i

for the bounded, non-negative, pairwise independent and identically distributed

random variables X
(m)
i = min(Xi,m) ≤ Xi. Since Proposition 2.3.1 applies for

{X(m)
i }, it follows that a.s. for any fixed m <∞,

(2.3.2) lim inf
n→∞

n−1Sn ≥ lim inf
n→∞

n−1S(m)
n = EX

(m)
1 = Emin(X1,m) .

Taking m ↑ ∞, by monotone convergence Emin(X1,m) ↑ EX1 = ∞, so (2.3.2)
results with n−1Sn →∞ a.s.
Turning to the general case, we have the decomposition Xi = (Xi)+ − (Xi)− of

each random variable to its positive and negative parts, with

(2.3.3) n−1Sn = n−1
n∑

i=1

(Xi)+ − n−1
n∑

i=1

(Xi)−

Since (Xi)+ are non-negative, pairwise independent and identically distributed,

it follows that n−1
∑n

i=1(Xi)+
a.s.→ E[(X1)+] as n → ∞. For the same reason,
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also n−1
∑n

i=1(Xi)−
a.s.→ E[(X1)−]. Our assumption that either E[(X1)+] < ∞ or

E[(X1)−] < ∞ implies that EX1 = E[(X1)+] − E[(X1)−] is well defined, and in
view of (2.3.3) we have the stated a.s. convergence of n−1Sn to EX1. �

Exercise 2.3.4. You are to prove now a converse to the strong law of large num-
bers (for a more general result, due to Feller (1946), see [Dur03, Theorem 1.8.9]).

(a) Let Y denote the integer part of a random variable Z ≥ 0. Show that
Y =

∑∞
n=1 I{Z≥n}, and deduce that

(2.3.4)

∞∑

n=1

P(Z ≥ n) ≤ EZ ≤ 1 +

∞∑

n=1

P(Z ≥ n) .

(b) Suppose {Xi} are i.i.d R.V.s with E[|X1|α] = ∞ for some α > 0. Show
that for any k > 0,

∞∑

n=1

P(|Xn| > kn1/α) = ∞ ,

and deduce that a.s. lim supn→∞ n−1/α|Xn| = ∞.
(c) Conclude that if Sn = X1 +X2 + · · ·+Xn, then

lim sup
n→∞

n−1/α|Sn| = ∞, a.s.

We provide next two classical applications of the strong law of large numbers, the
first of which deals with the large sample asymptotics of the empirical distribution
function.

Example 2.3.5 (Empirical distribution function). Let

Fn(x) = n−1
n∑

i=1

I(−∞,x](Xi) ,

denote the observed fraction of values among the first n variables of the sequence
{Xi} which do not exceed x. The functions Fn(·) are thus called the empirical
distribution functions of this sequence.
For i.i.d. {Xi} with distribution function FX our next result improves the strong

law of large numbers by showing that Fn converges uniformly to FX as n→∞.

Theorem 2.3.6 (Glivenko-Cantelli). For i.i.d. {Xi} with arbitrary distribu-
tion function FX , as n→∞,

Dn = sup
x∈R

|Fn(x) − FX(x)| a.s.→ 0 .

Remark. While outside our scope, we note in passing the Dvoretzky-Kiefer-
Wolfowitz inequality that P(Dn > ε) ≤ 2 exp(−2nε2) for any n and all ε > 0,
quantifying the rate of convergence of Dn to zero (see [DKW56], or [Mas90] for
the optimal pre-exponential constant).

Proof. By the right continuity of both x 7→ Fn(x) and x 7→ FX (x) (c.f.
Theorem 1.2.36), the value of Dn is unchanged when the supremum over x ∈ R is
replaced by the one over x ∈ Q (the rational numbers). In particular, this shows
that each Dn is a random variable (c.f. Theorem 1.2.22).



2.3. STRONG LAW OF LARGE NUMBERS 89

Applying the strong law of large numbers for the i.i.d. non-negative I(−∞,x](Xi)

whose expectation is FX(x), we deduce that Fn(x)
a.s.→ FX (x) for each fixed non-

random x ∈ R. Similarly, considering the strong law of large numbers for the i.i.d.

non-negative I(−∞,x)(Xi) whose expectation is FX (x−), we have that Fn(x−)
a.s.→

FX(x−) for each fixed non-random x ∈ R. Consequently, for any fixed l < ∞ and
x1,l, . . . , xl,l we have that

Dn,l = max(
l

max
k=1

|Fn(xk,l)− FX(xk,l)|, l
max
k=1

|Fn(x−k,l)− FX (x−k,l)|)
a.s.→ 0 ,

as n → ∞. Choosing xk,l = inf{x : FX (x) ≥ k/(l + 1)}, we get out of the
monotonicity of x 7→ Fn(x) and x 7→ FX(x) that Dn ≤ Dn,l + l−1 (c.f. [Bil95,
Proof of Theorem 20.6] or [Dur03, Proof of Theorem 1.7.4]). Therefore, taking
n→∞ followed by l →∞ completes the proof of the theorem. �

We turn to our second example, which is about counting processes.

Example 2.3.7 (Renewal theory). Let {τi} be i.i.d. positive, finite random
variables and Tn =

∑n
k=1 τk. Here Tn is interpreted as the time of the n-th occur-

rence of a given event, with τk representing the length of the time interval between
the (k − 1) occurrence and that of the k-th such occurrence. Associated with Tn is
the dual process Nt = sup{n : Tn ≤ t} counting the number of occurrences during
the time interval [0, t]. In the next exercise you are to derive the strong law for the
large t asymptotics of t−1Nt.

Exercise 2.3.8. Consider the setting of Example 2.3.7.

(a) By the strong law of large numbers argue that n−1Tn
a.s.→ Eτ1. Then,

adopting the convention 1
∞ = 0, deduce that t−1Nt

a.s.→ 1/Eτ1 for t→∞.
Hint: From the definition of Nt it follows that TNt

≤ t < TNt+1 for all
t ≥ 0.

(b) Show that t−1Nt
a.s.→ 1/Eτ2 as t → ∞, even if the law of τ1 is different

from that of the i.i.d. {τi, i ≥ 2}.
Here is a strengthening of the preceding result to convergence in L1.

Exercise 2.3.9. In the context of Example 2.3.7 fix δ > 0 such that P(τ1 > δ) > δ

and let T̃n =
∑n

k=1 τ̃k for the i.i.d. random variables τ̃i = δI{τi>δ}. Note that

T̃n ≤ Tn and consequently Nt ≤ Ñt = sup{n : T̃n ≤ t}.
(a) Show that lim supt→∞ t−2EÑ2

t <∞.
(b) Deduce that {t−1Nt : t ≥ 1} is uniformly integrable (see Exercise 1.3.54),

and conclude that t−1ENt → 1/Eτ1 when t→∞.

The next exercise deals with an elaboration over Example 2.3.7.

Exercise 2.3.10. For i = 1, 2, . . . the ith light bulb burns for an amount of time τi

and then remains burned out for time si before being replaced by the (i+ 1)th bulb.
Let Rt denote the fraction of time during [0, t] in which we have a working light.
Assuming that the two sequences {τi} and {si} are independent, each consisting of

i.i.d. positive and integrable random variables, show that Rt
a.s.→ Eτ1/(Eτ1 + Es1).

Here is another exercise, dealing with sampling “at times of heads” in independent
fair coin tosses, from a non-random bounded sequence of weights v(l), the averages
of which converge.
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Exercise 2.3.11. For a sequence {Bi} of i.i.d. Bernoulli random variables of
parameter p = 1/2, let Tn be the time that the corresponding partial sums reach

level n. That is, Tn = inf{k :
∑k

i=1 Bi ≥ n}, for n = 1, 2, . . ..

(a) Show that n−1Tn
a.s.→ 2 as n→∞.

(b) Given non-negative, non-random {v(k)} show that k−1
∑k

i=1 v(Ti)
a.s.→ s

as k →∞, for some non-random s, if and only if n−1
∑n

l=1 v(l)Bl
a.s.→ s/2

as n→∞.
(c) Deduce that if n−1

∑n
l=1 v(l)

2 is bounded and n−1
∑n

l=1 v(l) → s as n→
∞, then k−1

∑k
i=1 v(Ti)

a.s.→ s as k →∞.

Hint: For part (c) consider first the limit of n−1
∑n

l=1 v(l)(Bl − 0.5) as n→∞.

We conclude this subsection with few additional applications of the strong law of
large numbers, first to a problem of universal hypothesis testing, then an application
involving stochastic geometry, and finally one motivated by investment science.

Exercise 2.3.12. Consider i.i.d. [0, 1]-valued random variables {Xk}.
(a) Find Borel measurable functions fn : [0, 1]n 7→ {0, 1}, which are inde-

pendent of the law of Xk, such that fn(X1, X2, . . . , Xn)
a.s.→ 0 whenever

EX1 < 1/2 and fn(X1, X2, . . . , Xn)
a.s.→ 1 whenever EX1 > 1/2.

(b) Modify your answer to assure that fn(X1, X2, . . . , Xn)
a.s.→ 1 also in case

EX1 = 1/2.

Exercise 2.3.13. Let {Un} be i.i.d. random vectors, each uniformly distributed
on the unit ball {u ∈ R2 : |u| ≤ 1}. Consider the R2-valued random vectors
Xn = |Xn−1|Un, n = 1, 2, . . . starting at a non-random, non-zero vector X0 (that is,
each point is uniformly chosen in a ball centered at the origin and whose radius is the

distance from the origin to the previously chosen point). Show that n−1 log |Xn| a.s.→
−1/2 as n→∞.

Exercise 2.3.14. Let {Vn} be i.i.d. non-negative random variables. Fixing r > 0
and q ∈ (0, 1], consider the sequence W0 = 1 and Wn = (qr + (1 − q)Vn)Wn−1,
n = 1, 2, . . .. A motivating example is of Wn recording the relative growth of a
portfolio where a constant fraction q of one’s wealth is re-invested each year in a
risk-less asset that grows by r per year, with the remainder re-invested in a risky
asset whose annual growth factors are the random Vn.

(a) Show that n−1 logWn
a.s.→ w(q), for w(q) = E log(qr + (1− q)V1).

(b) Show that q 7→ w(q) is concave on (0, 1].
(c) Using Jensen’s inequality show that w(q) ≤ w(1) in case EV1 ≤ r. Fur-

ther, show that if EV −1
1 ≤ r−1, then the almost sure convergence applies

also for q = 0 and that w(q) ≤ w(0).
(d) Assuming that EV 2

1 <∞ and EV −2
1 <∞ show that sup{w(q) : q ∈ [0, 1]}

is finite, and further that the maximum of w(q) is obtained at some q∗ ∈
(0, 1) when EV1 > r > 1/EV −1

1 . Interpret your results in terms of the
preceding investment example.

Hint: Consider small q > 0 and small 1−q > 0 and recall that log(1+x) ≥ x−x2/2
for any x ≥ 0.

2.3.2. Convergence of random series. A second approach to the strong
law of large numbers is based on studying the convergence of random series. The
key tool in this approach is Kolmogorov’s maximal inequality, which we prove next.
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Proposition 2.3.15 (Kolmogorov’s maximal inequality). The random vari-
ables Y1, . . . , Yn are mutually independent, with EY 2

l < ∞ and EYl = 0 for l =
1, . . . , n. Then, for Zk = Y1 + · · ·+ Yk and any z > 0,

(2.3.5) z2P( max
1≤k≤n

|Zk| ≥ z) ≤ Var(Zn) .

Remark. Chebyshev’s inequality gives only z2P(|Zn| ≥ z) ≤ Var(Zn) which is
significantly weaker and insufficient for our current goals.

Proof. Fixing z > 0 we decompose the event A = {max1≤k≤n |Zk| ≥ z}
according to the minimal index k for which |Zk| ≥ z. That is, A is the union of the
disjoint events Ak = {|Zk| ≥ z > |Zj |, j = 1, . . . , k− 1} over 1 ≤ k ≤ n. Obviously,

(2.3.6) z2P(A) =

n∑

k=1

z2P(Ak) ≤
n∑

k=1

E[Z2
k ;Ak] ,

since Z2
k ≥ z2 on Ak. Further, EZn = 0 and Ak are disjoint, so

(2.3.7) Var(Zn) = EZ2
n ≥

n∑

k=1

E[Z2
n;Ak] .

It suffices to show that E[(Zn − Zk)Zk;Ak] = 0 for any 1 ≤ k ≤ n, since then

E[Z2
n;Ak]−E[Z2

k ;Ak] = E[(Zn − Zk)2;Ak] + 2E[(Zn − Zk)Zk;Ak]

= E[(Zn − Zk)2;Ak] ≥ 0 ,

and (2.3.5) follows by comparing (2.3.6) and (2.3.7). Since ZkIAk
can be represented

as a non-random Borel function of (Y1, . . . , Yk), it follows that ZkIAk
is measurable

on σ(Y1, . . . , Yk). Consequently, for fixed k and l > k the variables Yl and ZkIAk

are independent, hence uncorrelated. Further EYl = 0, so

E[(Zn − Zk)Zk;Ak] =

n∑

l=k+1

E[YlZkIAk
] =

n∑

l=k+1

E(Yl)E(ZkIAk
) = 0 ,

completing the proof of Kolmogorov’s inequality. �

Equipped with Kolmogorov’s inequality, we provide an easy to check sufficient
condition for the convergence of random series of independent R.V.

Theorem 2.3.16. Suppose {Xi} are independent random variables with Var(Xi) <
∞ and EXi = 0. If

∑
n Var(Xn) < ∞ then w.p.1. the random series

∑
nXn(ω)

converges (that is, the sequence Sn(ω) =
∑n

k=1 Xk(ω) has a finite limit S∞(ω)).

Proof. Applying Kolmogorov’s maximal inequality for the independent vari-
ables Yl = Xl+r, we have that for any ε > 0 and positive integers r and n,

P( max
r≤k≤r+n

|Sk − Sr| ≥ ε) ≤ ε−2
Var(Sr+n − Sr) = ε−2

r+n∑

l=r+1

Var(Xl) .

Taking n→∞, we get by continuity from below of P that

P(sup
k≥r

|Sk − Sr| ≥ ε) ≤ ε−2
∞∑

l=r+1

Var(Xl)
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By our assumption that
∑

n Var(Xn) is finite, it follows that
∑

l>r Var(Xl) → 0 as
r →∞. Hence, if we let Tr = supn,m≥r |Sn − Sm|, then for any ε > 0,

P(Tr ≥ 2ε) ≤ P(sup
k≥r

|Sk − Sr| ≥ ε) → 0

as r →∞. Further, r 7→ Tr(ω) is non-increasing, hence,

P(lim sup
M→∞

TM ≥ 2ε) = P(inf
M
TM ≥ 2ε) ≤ P(Tr ≥ 2ε) → 0 .

That is, TM (ω)
a.s.→ 0 for M →∞. By definition, the convergence to zero of TM (ω)

is the statement that Sn(ω) is a Cauchy sequence. Since every Cauchy sequence in
R converges to a finite limit, we have the stated a.s. convergence of Sn(ω). �

We next provide some applications of Theorem 2.3.16.

Example 2.3.17. Considering non-random an such that
∑

n a
2
n < ∞ and inde-

pendent Bernoulli variables Bn of parameter p = 1/2, Theorem 2.3.16 tells us that∑
n(−1)Bnan converges with probability one. That is, when the signs in

∑
n±an

are chosen on the toss of a fair coin, the series almost always converges (though
quite possibly

∑
n |an| = ∞).

Exercise 2.3.18. Consider the record events Ak of Example 2.2.27.

(a) Verify that the events Ak are mutually independent with P(Ak) = 1/k.
(b) Show that the random series

∑
n≥2(IAn

− 1/n)/ logn converges almost

surely and deduce that (logn)−1Rn
a.s.→ 1 as n→∞.

(c) Provide a counterexample to the preceding in case the distribution func-
tion FX(x) is not continuous.

The link between convergence of random series and the strong law of large numbers
is the following classical analysis lemma.

Lemma 2.3.19 (Kronecker’s lemma). Consider two sequences of real numbers
{xn} and {bn} where bn > 0 and bn ↑ ∞. If

∑
n xn/bn converges, then sn/bn → 0

for sn = x1 + · · ·+ xn.

Proof. Let un =
∑n

k=1(xk/bk) which by assumption converges to a finite
limit denoted u∞. Setting u0 = b0 = 0, “summation by parts” yields the identity,

sn =

n∑

k=1

bk(uk − uk−1) = bnun −
n∑

k=1

(bk − bk−1)uk−1 .

Since un → u∞ and bn ↑ ∞, the Cesáro averages b−1
n

∑n
k=1(bk − bk−1)uk−1 also

converge to u∞. Consequently, sn/bn → u∞ − u∞ = 0. �

Theorem 2.3.16 provides an alternative proof for the strong law of large numbers
of Theorem 2.3.3 in case {Xi} are i.i.d. (that is, replacing pairwise independence
by mutual independence). Indeed, applying the same truncation scheme as in the
proof of Proposition 2.3.1, it suffices to prove the following alternative to Lemma
2.3.2.

Lemma 2.3.20. For integrable i.i.d. random variables {Xk}, let Sm =
∑m

k=1Xk

and Xk = XkI|Xk |≤k. Then, n−1(Sn −ESn)
a.s.→ 0 as n→∞.
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Lemma 2.3.20, in contrast to Lemma 2.3.2, does not require the restriction to a
subsequence nl. Consequently, in this proof of the strong law there is no need for
an interpolation argument so it is carried directly for Xk, with no need to split each
variable to its positive and negative parts.

Proof of Lemma 2.3.20. We will shortly show that

(2.3.8)

∞∑

k=1

k−2
Var(Xk) ≤ 2E|X1| .

With X1 integrable, applying Theorem 2.3.16 for the independent variables Yk =
k−1(Xk − EXk) this implies that for some A with P(A) = 1, the random series∑

n Yn(ω) converges for all ω ∈ A. Using Kronecker’s lemma for bn = n and

xn = Xn(ω) − EXn we get that n−1
∑n

k=1(Xk − EXk) → 0 as n → ∞, for every
ω ∈ A, as stated.
The proof of (2.3.8) is similar to the computation employed in the proof of Lemma

2.3.2. That is, Var(Xk) ≤ EX
2

k = EX2
1 I|X1|≤k and k−2 ≤ 2/(k(k + 1)), yielding

that ∞∑

k=1

k−2
Var(Xk) ≤

∞∑

k=1

2

k(k + 1)
EX2

1I|X1|≤k = EX2
1v(|X1|) ,

where for any x > 0,

v(x) = 2

∞∑

k=dxe

1

k(k + 1)
= 2

∞∑

k=dxe

[1

k
− 1

k + 1

]
=

2

dxe ≤ 2x−1 .

Consequently, EX2
1v(|X1|) ≤ 2E|X1|, and (2.3.8) follows. �

Many of the ingredients of this proof of the strong law of large numbers are also
relevant for solving the following exercise.

Exercise 2.3.21. Let cn be a bounded sequence of non-random constants, and

{Xi} i.i.d. integrable R.V.-s of zero mean. Show that n−1
∑n

k=1 ckXk
a.s.→ 0 for

n→∞.

Next you find few exercises that illustrate how useful Kronecker’s lemma is when
proving the strong law of large numbers in case of independent but not identically
distributed summands.

Exercise 2.3.22. Let Sn =
∑n

k=1 Yk for independent random variables {Yi} such

that Var(Yk) < B <∞ and EYk = 0 for all k. Show that [n(logn)1+ε]−1/2Sn
a.s.→ 0

as n→∞ and ε > 0 is fixed (this falls short of the law of the iterated logarithm of
(2.2.1), but each Yk is allowed here to have a different distribution).

Exercise 2.3.23. Suppose the independent random variables {Xi} are such that
Var(Xk) ≤ pk <∞ and EXk = 0 for k = 1, 2, . . ..

(a) Show that if
∑

k pk <∞ then n−1
∑n

k=1 kXk
a.s.→ 0.

(b) Conversely, assuming
∑

k pk = ∞, give an example of independent ran-
dom variables {Xi}, such that Var(Xk) ≤ pk, EXk = 0, for which almost
surely lim supnXn(ω) = 1.

(c) Show that the example you just gave is such that with probability one, the
sequence n−1

∑n
k=1 kXk(ω) does not converge to a finite limit.

Exercise 2.3.24. Consider independent, non-negative random variables Xn.
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(a) Show that if

(2.3.9)

∞∑

n=1

[P(Xn ≥ 1) + E(XnIXn<1)] <∞

then the random series
∑

nXn(ω) converges w.p.1.
(b) Prove the converse, namely, that if

∑
nXn(ω) converges w.p.1. then

(2.3.9) holds.
(c) Suppose Gn are mutually independent random variables, with Gn having

the normal distribution N (µn, vn). Show that w.p.1. the random series∑
nG

2
n(ω) converges if and only if e =

∑
n(µ2

n + vn) is finite.
(d) Suppose τn are mutually independent random variables, with τn having

the exponential distribution of parameter λn > 0. Show that w.p.1. the
random series

∑
n τn(ω) converges if and only if

∑
n 1/λn is finite.

Hint: For part (b) recall that for any an ∈ [0, 1), the series
∑

n an is finite if and
only if

∏
n(1 − an) > 0. For part (c) let f(y) =

∑
n min((µn +

√
vny)

2, 1) and
observe that if e = ∞ then f(y) + f(−y) = ∞ for all y 6= 0.

You can now also show that for such strong law of large numbers (that is, with
independent but not identically distributed summands), it suffices to strengthen
the corresponding weak law (only) along the subsequence nr = 2r.

Exercise 2.3.25. Let Zk =
∑k

j=1 Yj where Yj are mutually independent R.V.-s.

(a) Fixing ε > 0 show that if 2−rZ2r
a.s.→ 0 then

∑
r P(|Z2r+1 − Z2r | > 2rε)

is finite and if m−1Zm
p→ 0 then maxm<k≤2m P(|Z2m − Zk| ≥ εm) → 0.

(b) Adapting the proof of Kolmogorov’s maximal inequality show that for any
n and z > 0,

P( max
1≤k≤n

|Zk| ≥ 2z) min
1≤k≤n

P(|Zn − Zk| < z) ≤ P(|Zn| > z) .

(c) Deduce that if both m−1Zm
p→ 0 and 2−rZ2r

a.s.→ 0 then also n−1Zn
a.s.→ 0.

Hint: For part (c) combine parts (a) and (b) with z = nε, n = 2r and the mutually
independent Yj+n, 1 ≤ j ≤ n, to show that

∑
r P(2−rDr ≥ 2ε) is finite for Dr =

max2r<k≤2r+1 |Zk − Z2r | and any fixed ε > 0.



CHAPTER 3

Weak convergence, clt and Poisson approximation

After dealing in Chapter 2 with examples in which random variables converge
to non-random constants, we focus here on the more general theory of weak con-
vergence, that is situations in which the laws of random variables converge to a
limiting law, typically of a non-constant random variable. To motivate this theory,
we start with Section 3.1 where we derive the celebrated Central Limit Theorem (in
short clt), the most widely used example of weak convergence. This is followed by
the exposition of the theory, to which Section 3.2 is devoted. Section 3.3 is about
the key tool of characteristic functions and their role in establishing convergence
results such as the clt. This tool is used in Section 3.4 to derive the Poisson ap-
proximation and provide an introduction to the Poisson process. In Section 3.5 we
generalize the characteristic function to the setting of random vectors and study
their properties while deriving the multivariate clt.

3.1. The Central Limit Theorem

We start this section with the property of the normal distribution that makes it
the likely limit for properly scaled sums of independent random variables. This is
followed by a bare-hands proof of the clt for triangular arrays in Subsection 3.1.1.
We then present in Subsection 3.1.2 some of the many examples and applications
of the clt.

Recall the normal distribution of mean µ ∈ R and variance v > 0, denoted here-
after N (µ, v), the density of which is

(3.1.1) f(y) =
1√
2πv

exp(− (y − µ)2

2v
) .

As we show next, the normal distribution is preserved when the sum of independent
variables is considered (which is the main reason for its role as the limiting law for
the clt).

Lemma 3.1.1. Let Yn,k be mutually independent random variables, each having
the normal distribution N (µn,k , vn,k). Then, Gn =

∑n
k=1 Yn,k has the normal

distribution N (µn, vn), with µn =
∑n

k=1 µn,k and vn =
∑n

k=1 vn,k.

Proof. Recall that Y has a N (µ, v) distribution if and only if Y − µ has the
N (0, v) distribution. Therefore, we may and shall assume without loss of generality
that µn,k = 0 for all k and n. Further, it suffices to prove the lemma for n = 2, as
the general case immediately follows by an induction argument. With n = 2 fixed,
we simplify our notations by omitting it everywhere. Next recall the formula of
Corollary 1.4.33 for the probability density function of G = Y1 + Y2, which for Yi

95
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of N (0, vi) distribution, i = 1, 2, is

fG(z) =

∫ ∞

−∞

1√
2πv1

exp(− (z − y)2

2v1
)

1√
2πv2

exp(− y2

2v2
)dy .

Comparing this with the formula of (3.1.1) for v = v1 + v2, it just remains to show
that for any z ∈ R,

(3.1.2) 1 =

∫ ∞

−∞

1√
2πu

exp(
z2

2v
− (z − y)2

2v1
− y2

2v2
)dy ,

where u = v1v2/(v1 + v2). It is not hard to check that the argument of the expo-
nential function in (3.1.2) is −(y − cz)2/(2u) for c = v2/(v1 + v2). Consequently,
(3.1.2) is merely the obvious fact that the N (cz, u) density function integrates to
one (as any density function should), no matter what the value of z is. �

Considering Lemma 3.1.1 for Yn,k = (nv)−1/2(Yk −µ) and i.i.d. random variables
Yk, each having a normal distribution of mean µ and variance v, we see that µn,k =

0 and vn,k = 1/n, so Gn = (nv)−1/2(
∑n

k=1 Yk − nµ) has the standard N (0, 1)
distribution, regardless of n.

3.1.1. Lindeberg’s clt for triangular arrays. Our next proposition, the

celebrated clt, states that the distribution of Ŝn = (nv)−1/2(
∑n

k=1 Xk − nµ) ap-
proaches the standard normal distribution in the limit n → ∞, even though Xk

may well be non-normal random variables.

Proposition 3.1.2 (Central Limit Theorem). Let

Ŝn =
1√
nv

(

n∑

k=1

Xk − nµ) ,

where {Xk} are i.i.d with v = Var(X1) ∈ (0,∞) and µ = E(X1). Then,

(3.1.3) lim
n→∞

P(Ŝn ≤ b) =
1√
2π

∫ b

−∞
exp(−y

2

2
)dy for every b ∈ R .

As we have seen in the context of the weak law of large numbers, it pays to extend
the scope of consideration to triangular arrays in which the random variables Xn,k

are independent within each row, but not necessarily of identical distribution. This
is the context of Lindeberg’s clt, which we state next.

Theorem 3.1.3 (Lindeberg’s clt). Let Ŝn =
∑n

k=1Xn,k for P-mutually in-
dependent random variables Xn,k, k = 1, . . . , n, such that EXn,k = 0 for all k
and

vn =

n∑

k=1

EX2
n,k → 1 as n→∞ .

Then, the conclusion (3.1.3) applies if for each ε > 0,

(3.1.4) gn(ε) =

n∑

k=1

E[X2
n,k; |Xn,k| ≥ ε] → 0 as n→∞ .

Note that the variables in different rows need not be independent of each other
and could even be defined on different probability spaces.
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Remark 3.1.4. Under the assumptions of Proposition 3.1.2 the variables Xn,k =

(nv)−1/2(Xk − µ) are mutually independent and such that

EXn,k = (nv)−1/2(EXk − µ) = 0, vn =
n∑

k=1

EX2
n,k =

1

nv

n∑

k=1

Var(Xk) = 1 .

Further, per fixed n these Xn,k are identically distributed, so

gn(ε) = nE[X2
n,1 ; |Xn,1| ≥ ε] = v−1E[(X1 − µ)2I|X1−µ|≥√nvε] .

For each ε > 0 the sequence (X1 − µ)2I|X1−µ|≥√nvε converges a.s. to zero for

n → ∞ and is dominated by the integrable random variable (X1 − µ)2. Thus, by
dominated convergence, gn(ε) → 0 as n → ∞. We conclude that all assumptions
of Theorem 3.1.3 are satisfied for this choice of Xn,k, hence Proposition 3.1.2 is a
special instance of Lindeberg’s clt, to which we turn our attention next.

Let rn = max{√vn,k : k = 1, . . . , n} for vn,k = EX2
n,k. Since for every n, k and

ε > 0,

vn,k = EX2
n,k = E[X2

n,k; |Xn,k| < ε] + E[X2
n,k; |Xn,k| ≥ ε] ≤ ε2 + gn(ε) ,

it follows that

r2n ≤ ε2 + gn(ε) ∀n, ε > 0 ,

hence Lindeberg’s condition (3.1.4) implies that rn → 0 as n→∞.

Remark. Lindeberg proved Theorem 3.1.3, introducing the condition (3.1.4).
Later, Feller proved that (3.1.3) plus rn → 0 implies that Lindeberg’s condition
holds. Together, these two results are known as the Feller-Lindeberg Theorem.

We see that the variables Xn,k are of uniformly small variance for large n. So,
considering independent random variables Yn,k that are also independent of the
Xn,k and such that each Yn,k has a N (0, vn,k) distribution, for a smooth function

h(·) one may control |Eh(Ŝn) − Eh(Gn)| by a Taylor expansion upon successively
replacing the Xn,k by Yn,k. This indeed is the outline of Lindeberg’s proof, whose
core is the following lemma.

Lemma 3.1.5. For h : R 7→ R of continuous and uniformly bounded second and
third derivatives, Gn having the N (0, vn) law, every n and ε > 0, we have that

|Eh(Ŝn)−Eh(Gn)| ≤
(ε

6
+
rn
2

)
vn‖h′′′‖∞ + gn(ε)‖h′′‖∞ ,

with ‖f‖∞ = supx∈R |f(x)| denoting the supremum norm.

Remark. Recall that Gn
D
= σnG for σn =

√
vn. So, assuming vn → 1 and

Lindeberg’s condition which implies that rn → 0 for n → ∞, it follows from the

lemma that |Eh(Ŝn) − Eh(σnG)| → 0 as n → ∞. Further, |h(σnx) − h(x)| ≤
|σn − 1||x|‖h′‖∞, so taking the expectation with respect to the standard normal
law we see that |Eh(σnG)−Eh(G)| → 0 if the first derivative of h is also uniformly
bounded. Hence,

(3.1.5) lim
n→∞

Eh(Ŝn) = Eh(G) ,
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for any continuous function h(·) of continuous and uniformly bounded first three
derivatives. This is actually all we need from Lemma 3.1.5 in order to prove Lin-
deberg’s clt. Further, as we show in Section 3.2, convergence in distribution as in
(3.1.3) is equivalent to (3.1.5) holding for all continuous, bounded functions h(·).

Proof of Lemma 3.1.5. LetGn =
∑n

k=1 Yn,k for mutually independent Yn,k,
distributed according to N (0, vn,k), that are independent of {Xn,k}. Fixing n and
h, we simplify the notations by eliminating n, that is, we write Yk for Yn,k, and Xk

for Xn,k. To facilitate the proof define the mixed sums

Ul =

l−1∑

k=1

Xk +

n∑

k=l+1

Yk , l = 1, . . . , n

Note the following identities

Gn = U1 + Y1, Ul +Xl = Ul+1 + Yl+1, l = 1, . . . , n− 1, Un +Xn = Ŝn ,

which imply that,

(3.1.6) |Eh(Gn)−Eh(Ŝn)| = |Eh(U1 + Y1)−Eh(Un +Xn)| ≤
n∑

l=1

∆l ,

where ∆l = |E[h(Ul + Yl) − h(Ul + Xl)]|, for l = 1, . . . , n. For any l and ξ ∈ R,
consider the remainder term

Rl(ξ) = h(Ul + ξ)− h(Ul)− ξh′(Ul)−
ξ2

2
h′′(Ul)

in second order Taylor’s expansion of h(·) at Ul. By Taylor’s theorem, we have that

|Rl(ξ)| ≤ ‖h′′′‖∞
|ξ|3
6
, (from third order expansion)

|Rl(ξ)| ≤ ‖h′′‖∞|ξ|2, (from second order expansion)

whence,

(3.1.7) |Rl(ξ)| ≤ min

{
‖h′′′‖∞

|ξ|3
6
, ‖h′′‖∞|ξ|2

}
.

Considering the expectation of the difference between the two identities,

h(Ul +Xl) = h(Ul) +Xlh
′(Ul) +

X2
l

2
h′′(Ul) +Rl(Xl) ,

h(Ul + Yl) = h(Ul) + Ylh
′(Ul) +

Y 2
l

2
h′′(Ul) +Rl(Yl) ,

we get that

∆l ≤
∣∣∣E[(Xl − Yl)h

′(Ul)]
∣∣∣ +

∣∣∣E
[
(
X2

l

2
− Y 2

l

2
)h′′(Ul)

]∣∣∣ + |E[Rl(Xl)−Rl(Yl)]| .

Recall that Xl and Yl are independent of Ul and chosen such that EXl = EYl and
EX2

l = EY 2
l . As the first two terms in the bound on ∆l vanish we have that

(3.1.8) ∆l ≤ E|Rl(Xl)|+ E|Rl(Yl)| .
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Further, utilizing (3.1.7),

E|Rl(Xl)| ≤ ‖h′′′‖∞E
[ |Xl|3

6
; |Xl| ≤ ε

]
+ ‖h′′‖∞E[|Xl|2; |Xl| ≥ ε]

≤ ε

6
‖h′′′‖∞E[|Xl|2] + ‖h′′‖∞E[X2

l ; |Xl| ≥ ε] .

Summing these bounds over l = 1, . . . , n, by our assumption that
∑n

l=1 EX2
l = vn

and the definition of gn(ε), we get that

(3.1.9)

n∑

l=1

E|Rl(Xl)| ≤
ε

6
vn‖h′′′‖∞ + gn(ε)‖h′′‖∞ .

Recall that Yl/
√
vn,l is a standard normal random variable, whose fourth moment

is 3 (see (1.3.18)). By monotonicity in q of the Lq-norms (c.f. Lemma 1.3.16), it

follows that E[|Yl/
√
vn,l|3] ≤ 3, hence E|Yl|3 ≤ 3v

3/2
n,l ≤ 3rnvn,l. Utilizing once

more (3.1.7) and the fact that vn =
∑n

l=1 vn,l, we arrive at

(3.1.10)
n∑

l=1

E|Rl(Yl)| ≤
‖h′′′‖∞

6

n∑

l=1

E|Yl|3 ≤
rn
2
vn‖h′′′‖∞ .

Plugging (3.1.8)–(3.1.10) into (3.1.6) completes the proof of the lemma. �

In view of (3.1.5), Lindeberg’s clt builds on the following elementary lemma,
whereby we approximate the indicator function on (−∞, b] by continuous, bounded
functions hk : R 7→ R for each of which Lemma 3.1.5 applies.

Lemma 3.1.6. There exist h±k (x) of continuous and uniformly bounded first three

derivatives, such that 0 ≤ h−k (x) ↑ I(−∞,b)(x) and 1 ≥ h+
k (x) ↓ I(−∞,b](x) as

k →∞.

Proof. There are many ways to prove this. Here is one which is from first prin-
ciples, hence requires no analysis knowledge. The function ψ : [0, 1] 7→ [0, 1] given

by ψ(x) = 140
∫ 1

x
u3(1−u)3du is monotone decreasing, with continuous derivatives

of all order, such that ψ(0) = 1, ψ(1) = 0 and whose first three derivatives at 0 and
at 1 are all zero. Its extension φ(x) = ψ(min(x, 1)+) to a function on R that is one
for x ≤ 0 and zero for x ≥ 1 is thus non-increasing, with continuous and uniformly
bounded first three derivatives. It is easy to check that the translated and scaled
functions h+

k (x) = φ(k(x − b)) and h−k (x) = φ(k(x − b) + 1) have all the claimed
properties. �

Proof of Theorem 3.1.3. Applying (3.1.5) for h−k (·), then taking k → ∞
we have by monotone convergence that

lim inf
n→∞

P(Ŝn < b) ≥ lim
n→∞

E[h−k (Ŝn)] = E[h−k (G)] ↑ FG(b−) .

Similarly, considering h+
k (·), then taking k →∞ we have by bounded convergence

that

lim sup
n→∞

P(Ŝn ≤ b) ≤ lim
n→∞

E[h+
k (Ŝn)] = E[h+

k (G)] ↓ FG(b) .

Since FG(·) is a continuous function we conclude that P(Ŝn ≤ b) converges to
FG(b) = FG(b−), as n→∞. This holds for every b ∈ R as claimed. �
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3.1.2. Applications of the clt. We start with the simpler, i.i.d. case. In

doing so, we use the notation Zn
D−→ G when the analog of (3.1.3) holds for the

sequence {Zn}, that is P(Zn ≤ b) → P(G ≤ b) as n→∞ for all b ∈ R (where G is
a standard normal variable).

Example 3.1.7 (Normal approximation of the Binomial). Consider i.i.d.
random variables {Bi}, each of whom is Bernoulli of parameter 0 < p < 1 (i.e.
P (B1 = 1) = 1− P (B1 = 0) = p). The sum Sn = B1 + · · ·+Bn has the Binomial
distribution of parameters (n, p), that is,

P(Sn = k) =

(
n

k

)
pk(1− p)n−k , k = 0, . . . , n .

For example, if Bi indicates that the ith independent toss of the same coin lands on
a Head then Sn counts the total numbers of Heads in the first n tosses of the coin.
Recall that EB = p and Var(B) = p(1− p) (see Example 1.3.69), so the clt states

that (Sn−np)/
√
np(1− p)

D−→ G. It allows us to approximate, for all large enough
n, the typically non-computable weighted sums of binomial terms by integrals with
respect to the standard normal density.

Here is another example that is similar and almost as widely used.

Example 3.1.8 (Normal approximation of the Poisson distribution). It
is not hard to verify that the sum of two independent Poisson random variables has
the Poisson distribution, with a parameter which is the sum of the parameters of
the summands. Thus, by induction, if {Xi} are i.i.d. each of Poisson distribution
of parameter 1, then Nn = X1 + . . . + Xn has a Poisson distribution of param-
eter n. Since E(N1) = Var(N1) = 1 (see Example 1.3.69), the clt applies for
(Nn−n)/n1/2. This provides an approximation for the distribution function of the
Poisson variable Nλ of parameter λ that is a large integer. To deal with non-integer
values λ = n + η for some η ∈ (0, 1), consider the mutually independent Poisson

variables Nn, Nη and N1−η. Since Nλ
D
= Nn+Nη and Nn+1

D
= Nn+Nη+N1−η, this

provides a monotone coupling , that is, a construction of the random variables Nn,
Nλ and Nn+1 on the same probability space, such that Nn ≤ Nλ ≤ Nn+1. Because

of this monotonicity, for any ε > 0 and all n ≥ n0(b, ε) the event {(Nλ−λ)/
√
λ ≤ b}

is between {(Nn+1 − (n+ 1))/
√
n+ 1 ≤ b− ε} and {(Nn − n)/

√
n ≤ b+ ε}. Con-

sidering the limit as n→∞ followed by ε→ 0, it thus follows that the convergence

(Nn − n)/n1/2 D−→ G implies also that (Nλ − λ)/λ1/2 D−→ G as λ→∞. In words,
the normal distribution is a good approximation of a Poisson with large parameter.

In Theorem 2.3.3 we established the strong law of large numbers when the sum-
mandsXi are only pairwise independent. Unfortunately, as the next example shows,
pairwise independence is not good enough for the clt.

Example 3.1.9. Consider i.i.d. {ξi} such that P(ξi = 1) = P(ξi = −1) = 1/2
for all i. Set X1 = ξ1 and successively let X2k+j = Xjξk+2 for j = 1, . . . , 2k and
k = 0, 1, . . .. Note that each Xl is a {−1, 1}-valued variable, specifically, a product
of a different finite subset of ξi-s that corresponds to the positions of ones in the
binary representation of 2l− 1 (with ξ1 for its least significant digit, ξ2 for the next
digit, etc.). Consequently, each Xl is of zero mean and if l 6= r then in EXlXr

at least one of the ξi-s will appear exactly once, resulting with EXlXr = 0, hence
with {Xl} being uncorrelated variables. Recall part (b) of Exercise 1.4.42, that such
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variables are pairwise independent. Further, EXl = 0 and Xl ∈ {−1, 1} mean that
P(Xl = −1) = P(Xl = 1) = 1/2 are identically distributed. As for the zero mean
variables Sn =

∑n
j=1 Xj , we have arranged things such that S1 = ξ1 and for any

k ≥ 0

S2k+1 =

2k∑

j=1

(Xj +X2k+j) =

2k∑

j=1

Xj(1 + ξk+2) = S2k(1 + ξk+2) ,

hence S2k = ξ1
∏k+1

i=2 (1 + ξi) for all k ≥ 1. In particular, S2k = 0 unless ξ2 = ξ3 =

. . . = ξk+1 = 1, an event of probability 2−k. Thus, P(S2k 6= 0) = 2−k and certainly
the clt result (3.1.3) does not hold along the subsequence n = 2k.

We turn next to applications of Lindeberg’s triangular array clt, starting with
the asymptotic of the count of record events till time n� 1.

Exercise 3.1.10. Consider the count Rn of record events during the first n in-
stances of i.i.d. R.V. with a continuous distribution function, as in Example 2.2.27.
Recall that Rn = B1+· · ·+Bn for mutually independent Bernoulli random variables
{Bk} such that P(Bk = 1) = 1−P(Bk = 0) = k−1.

(a) Check that bn/ logn→ 1 where bn = Var(Rn).
(b) Show that Lindeberg’s clt applies for Xn,k = (logn)−1/2(Bk − k−1).

(c) Recall that |ERn− logn| ≤ 1, and conclude that (Rn− logn)/
√

logn
D−→

G.

Remark. Let Sn denote the symmetric group of permutations on {1, . . . , n}. For
s ∈ Sn and i ∈ {1, . . . , n}, denoting by Li(s) the smallest j ≤ n such that sj(i) = i,
we call {sj(i) : 1 ≤ j ≤ Li(s)} the cycle of s containing i. If each s ∈ Sn is equally
likely, then the law of the number Tn(s) of different cycles in s is the same as that
of Rn of Example 2.2.27 (for a proof see [Dur03, Example 1.5.4]). Consequently,

Exercise 3.1.10 also shows that in this setting (Tn − logn)/
√

logn
D−→ G.

Part (a) of the following exercise is a special case of Lindeberg’s clt, known also
as Lyapunov’s theorem.

Exercise 3.1.11 (Lyapunov’s theorem). Let Sn =
∑n

k=1Xk for {Xk} mutually
independent such that vn = Var(Sn) <∞.

(a) Show that if there exists q > 2 such that

lim
n→∞

v−q/2
n

n∑

k=1

E(|Xk −EXk|q) = 0 ,

then v
−1/2
n (Sn −ESn)

D−→ G.

(b) Use the preceding result to show that n−1/2Sn
D−→ G when also EXk = 0,

EX2
k = 1 and E|Xk|q ≤ C for some q > 2, C <∞ and k = 1, 2, . . ..

(c) Show that (logn)−1/2Sn
D−→ G when the mutually independent Xk are

such that P(Xk = 0) = 1−k−1 and P(Xk = −1) = P(Xk = 1) = 1/(2k).

The next application of Lindeberg’s clt involves the use of truncation (which we
have already introduced in the context of the weak law of large numbers), to derive
the clt for normalized sums of certain i.i.d. random variables of infinite variance.
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Proposition 3.1.12. Suppose {Xk} are i.i.d of symmetric distribution, that is

X1
D
= −X1 (or P(X1 > x) = P(X1 < −x) for all x) such that P(|X1| > x) = x−2

for x ≥ 1. Then, 1√
n log n

∑n
k=1 Xk

D−→ G as n→∞.

Remark 3.1.13. Note that Var(X1) = EX2
1 =

∫∞
0 2xP(|X1| > x)dx = ∞ (c.f.

part (a) of Lemma 1.4.31), so the usual clt of Proposition 3.1.2 does not apply here.
Indeed, the infinite variance of the summands results in a different normalization
of the sums Sn =

∑n
k=1 Xk that is tailored to the specific tail behavior of x 7→

P(|X1| > x).
Caution should be exercised here, since when P(|X1| > x) = x−α for x > 1 and

some 0 < α < 2, there is no way to approximate the distribution of (Sn − an)/bn
by the standard normal distribution. Indeed, in this case bn = n1/α and the
approximation is by an α-stable law (c.f. Definition 3.3.31 and Exercise 3.3.33).

Proof. We plan to apply Lindeberg’s clt for the truncated random variables
Xn,k = b−1

n XkI|Xk |≤cn
where bn =

√
n logn and cn ≥ 1 are such that both cn/bn →

0 and cn/
√
n → ∞. Indeed, for each n the variables Xn,k, k = 1, . . . , n, are i.i.d.

of bounded and symmetric distribution (since both the distribution of Xk and the
truncation function are symmetric). Consequently, EXn,k = 0 for all n and k.
Further, we have chosen bn such that

vn = nEX2
n,1 =

n

b2n
EX2

1 I|X1|≤cn
=

n

b2n

∫ cn

0

2x[P(|X1| > x)−P(|X1| > cn)]dx

=
n

b2n

[ ∫ 1

0

2xdx+

∫ cn

1

2

x
dx−

∫ cn

0

2x

c2n
dx

]
=

2n log cn
b2n

→ 1

as n → ∞. Finally, note that |Xn,k| ≤ cn/bn → 0 as n → ∞, implying that
gn(ε) = 0 for any ε > 0 and all n large enough, hence Lindeberg’s condition

trivially holds. We thus deduce from Lindeberg’s clt that 1√
n log n

Sn
D−→ G as

n → ∞, where Sn =
∑n

k=1XkI|Xk |≤cn
is the sum of the truncated variables. We

have chosen the truncation level cn large enough to assure that

P(Sn 6= Sn) ≤
n∑

k=1

P(|Xk | > cn) = nP(|X1| > cn) = nc−2
n → 0

for n→∞, hence we may now conclude that 1√
n log n

Sn
D−→ G as claimed. �

We conclude this section with Kolmogorov’s three series theorem, the most defin-
itive result on the convergence of random series.

Theorem 3.1.14 (Kolmogorov’s three series theorem). Suppose {Xk} are

independent random variables. For non-random c > 0 let X
(c)
n = XnI|Xn|≤c be the

corresponding truncated variables and consider the three series

(3.1.11)
∑

n

P(|Xn| > c),
∑

n

EX(c)
n ,

∑

n

Var(X(c)
n ).

Then, the random series
∑

nXn converges a.s. if and only if for some c > 0 all
three series of (3.1.11) converge.

Remark. By convergence of a series we mean the existence of a finite limit to the
sum of its first m entries when m → ∞. Note that the theorem implies that if all
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three series of (3.1.11) converge for some c > 0, then they necessarily converge for
every c > 0.

Proof. We prove the sufficiency first, that is, assume that for some c > 0
all three series of (3.1.11) converge. By Theorem 2.3.16 and the finiteness of∑

n Var(X
(c)
n ) it follows that the random series

∑
n(X

(c)
n − EX

(c)
n ) converges a.s.

Then, by our assumption that
∑

n EX
(c)
n converges, also

∑
nX

(c)
n converges a.s.

Further, by assumption the sequence of probabilities P(Xn 6= X
(c)
n ) = P(|Xn| > c)

is summable, hence by Borel-Cantelli I, we have that a.s. Xn 6= X
(c)
n for at most

finitely many n’s. The convergence a.s. of
∑

nX
(c)
n thus results with the conver-

gence a.s. of
∑

nXn, as claimed.
We turn to prove the necessity of convergence of the three series in (3.1.11) to the

convergence of
∑

nXn, which is where we use the clt. To this end, assume the
random series

∑
nXn converges a.s. (to a finite limit) and fix an arbitrary constant

c > 0. The convergence of
∑

nXn implies that |Xn| → 0, hence a.s. |Xn| > c
for only finitely many n’s. In view of the independence of these events and Borel-
Cantelli II, necessarily the sequence P(|Xn| > c) is summable, that is, the series∑

n P(|Xn| > c) converges. Further, the convergence a.s. of
∑

nXn then results

with the a.s. convergence of
∑

nX
(c)
n .

Suppose now that the non-decreasing sequence vn =
∑n

k=1 Var(X
(c)
k ) is unbounded,

in which case the latter convergence implies that a.s. Tn = v
−1/2
n

∑n
k=1X

(c)
k → 0

when n → ∞. We further claim that in this case Lindeberg’s clt applies for

Ŝn =
∑n

k=1 Xn,k, where

Xn,k = v−1/2
n (X

(c)
k −m

(c)
k ), and m

(c)
k = EX

(c)
k .

Indeed, per fixed n the variables Xn,k are mutually independent of zero mean

and such that
∑n

k=1 EX2
n,k = 1. Further, since |X(c)

k | ≤ c and we assumed that

vn ↑ ∞ it follows that |Xn,k| ≤ 2c/
√
vn → 0 as n→∞, resulting with Lindeberg’s

condition holding (as gn(ε) = 0 when ε > 2c/
√
vn, i.e. for all n large enough).

Combining Lindeberg’s clt conclusion that Ŝn
D−→ G and Tn

a.s.→ 0, we deduce that

(Ŝn−Tn)
D−→ G (c.f. Exercise 3.2.8). However, since Ŝn−Tn = −v−1/2

n
∑n

k=1 m
(c)
k

are non-random, the sequence P(Ŝn − Tn ≤ 0) is composed of zeros and ones,
hence cannot converge to P(G ≤ 0) = 1/2. We arrive at a contradiction to our

assumption that vn ↑ ∞, and so conclude that the sequence Var(X
(c)
n ) is summable,

that is, the series
∑

n Var(X
(c)
n ) converges.

By Theorem 2.3.16, the summability of Var(X
(c)
n ) implies that the series

∑
n(X

(c)
n −

m
(c)
n ) converges a.s. We have already seen that

∑
nX

(c)
n converges a.s. so it follows

that their difference
∑

nm
(c)
n , which is the middle term of (3.1.11), converges as

well. �

3.2. Weak convergence

Focusing here on the theory of weak convergence, we first consider in Subsection
3.2.1 the convergence in distribution in a more general setting than that of the clt.
This is followed by the study in Subsection 3.2.2 of weak convergence of probability
measures and the theory associated with it. Most notably its relation to other modes
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of convergence, such as convergence in total variation or point-wise convergence of
probability density functions. We conclude by introducing in Subsection 3.2.3 the
key concept of uniform tightness which is instrumental to the derivation of weak
convergence statements, as demonstrated in later sections of this chapter.

3.2.1. Convergence in distribution. Motivated by the clt, we explore here
the convergence in distribution, its relation to convergence in probability, some
additional properties and examples in which the limiting law is not the normal law.
To start off, here is the definition of convergence in distribution.

Definition 3.2.1. We say that R.V.-s Xn converge in distribution to a R.V. X∞,

denoted by Xn
D−→ X∞, if FXn

(α) → FX∞(α) as n→∞ for each fixed α which is
a continuity point of FX∞ .
Similarly, we say that distribution functions Fn converge weakly to F∞, denoted

by Fn
w→ F∞, if Fn(α) → F∞(α) as n → ∞ for each fixed α which is a continuity

point of F∞.

Remark. If the limit R.V. X∞ has a probability density function, or more gener-
ally whenever FX∞ is a continuous function, the convergence in distribution of Xn

to X∞ is equivalent to the point-wise convergence of the corresponding distribu-
tion functions. Such is the case of the clt, since the normal R.V. G has a density.
Further,

Exercise 3.2.2. Show that if Fn
w→ F∞ and F∞(·) is a continuous function then

also supx |Fn(x)− F∞(x)| → 0.

The clt is not the only example of convergence in distribution we have already
met. Recall the Glivenko-Cantelli theorem (see Theorem 2.3.6), whereby a.s. the
empirical distribution functions Fn of an i.i.d. sequence of variables {Xi} converge
uniformly, hence point-wise to the true distribution function FX .

Here is an explicit necessary and sufficient condition for the convergence in distri-
bution of integer valued random variables

Exercise 3.2.3. Let Xn, 1 ≤ n ≤ ∞ be integer valued R.V.-s. Show that Xn
D−→

X∞ if and only if P(Xn = k) →n→∞ P(X∞ = k) for each k ∈ Z.

In contrast with all of the preceding examples, we demonstrate next why the

convergence Xn
D−→ X∞ has been chosen to be strictly weaker than the point-

wise convergence of the corresponding distribution functions. We also see that
Eh(Xn) → Eh(X∞) or not, depending upon the choice of h(·), and even within the
collection of continuous functions with image in [−1, 1], the rate of this convergence
is not uniform in h.

Example 3.2.4. The random variables Xn = 1/n converge in distribution to
X∞ = 0. Indeed, it is easy to check that FXn

(α) = I[1/n,∞)(α) converge to
FX∞(α) = I[0,∞)(α) at each α 6= 0. However, there is no convergence at the
discontinuity point α = 0 of FX∞ as FX∞(0) = 1 while FXn

(0) = 0 for all n.
Further, Eh(Xn) = h( 1

n ) → h(0) = Eh(X∞) if and only if h(x) is continuous at
x = 0, and the rate of convergence varies with the modulus of continuity of h(x) at
x = 0.
More generally, if Xn = X + 1/n then FXn

(α) = FX (α − 1/n) → FX (α−) as
n→ ∞. So, in order for X + 1/n to converge in distribution to X as n → ∞, we
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have to restrict such convergence to the continuity points of the limiting distribution
function FX , as done in Definition 3.2.1.

We have seen in Examples 3.1.7 and 3.1.8 that the normal distribution is a good
approximation for the Binomial and the Poisson distributions (when the corre-
sponding parameter is large). Our next example is of the same type, now with the
approximation of the Geometric distribution by the Exponential one.

Example 3.2.5 (Exponential approximation of the Geometric). Let Zp

be a random variable with a Geometric distribution of parameter p ∈ (0, 1), that is,

P(Zp ≥ k) = (1− p)k−1 for any positive integer k. As p→ 0, we see that

P(pZp > t) = (1− p)bt/pc → e−t for all t ≥ 0

That is, pZp
D−→ T , with T having a standard exponential distribution. As Zp

corresponds to the number of independent trials till the first occurrence of a spe-
cific event whose probability is p, this approximation corresponds to waiting for the
occurrence of rare events.

At this point, you are to check that convergence in probability implies the con-
vergence in distribution, which is hence weaker than all notions of convergence
explored in Section 1.3.3 (and is perhaps a reason for naming it weak convergence).
The converse cannot hold, for example because convergence in distribution does not
require Xn and X∞ to be even defined on the same probability space. However,
convergence in distribution is equivalent to convergence in probability when the
limiting random variable is a non-random constant.

Exercise 3.2.6. Show that if Xn
p→ X∞, then Xn

D−→ X∞. Conversely, if

Xn
D−→ X∞ and X∞ is almost surely a non-random constant, then Xn

p→ X∞.

Further, as the next theorem shows, given Fn
w→ F∞, it is possible to construct

random variables Yn, n ≤ ∞ such that FYn
= Fn and Yn

a.s.→ Y∞. The catch
of course is to construct the appropriate coupling, that is, to specify the relation
between the different Yn’s.

Theorem 3.2.7. Let Fn be a sequence of distribution functions that converges
weakly to F∞. Then there exist random variables Yn, 1 ≤ n ≤∞ on the probability

space ((0, 1],B(0,1], U) such that FYn
= Fn for 1 ≤ n ≤ ∞ and Yn

a.s.−→ Y∞.

Proof. We use Skorokhod’s representation as in the proof of Theorem 1.2.36.
That is, for ω ∈ (0, 1] and 1 ≤ n ≤ ∞ let Y +

n (ω) ≥ Y −
n (ω) be

Y +
n (ω) = sup{y : Fn(y) ≤ ω}, Y −

n (ω) = sup{y : Fn(y) < ω} .
While proving Theorem 1.2.36 we saw that FY −n

= Fn for any n ≤ ∞, and as

remarked there Y −
n (ω) = Y +

n (ω) for all but at most countably many values of ω,
hence P(Y −

n = Y +
n ) = 1. It thus suffices to show that for all ω ∈ (0, 1),

Y +
∞(ω) ≥ lim sup

n→∞
Y +

n (ω) ≥ lim sup
n→∞

Y −
n (ω)

≥ lim inf
n→∞

Y −
n (ω) ≥ Y −

∞(ω) .(3.2.1)

Indeed, then Y −
n (ω) → Y −

∞(ω) for any ω ∈ A = {ω : Y +
∞(ω) = Y −

∞(ω)} where
P(A) = 1. Hence, setting Yn = Y +

n for 1 ≤ n ≤ ∞ would complete the proof of the
theorem.
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Turning to prove (3.2.1) note that the two middle inequalities are trivial. Fixing
ω ∈ (0, 1) we proceed to show that

(3.2.2) Y +
∞(ω) ≥ lim sup

n→∞
Y +

n (ω) .

Since the continuity points of F∞ form a dense subset of R (see Exercise 1.2.38),
it suffices for (3.2.2) to show that if z > Y +

∞(ω) is a continuity point of F∞, then
necessarily z ≥ Y +

n (ω) for all n large enough. To this end, note that z > Y +
∞(ω)

implies by definition that F∞(z) > ω. Since z is a continuity point of F∞ and

Fn
w→ F∞ we know that Fn(z) → F∞(z). Hence, Fn(z) > ω for all sufficiently large

n. By definition of Y +
n and monotonicity of Fn, this implies that z ≥ Y +

n (ω), as
needed. The proof of

(3.2.3) lim inf
n→∞

Y −
n (ω) ≥ Y −

∞(ω) ,

is analogous. For y < Y −
∞(ω) we know by monotonicity of F∞ that F∞(y) < ω.

Assuming further that y is a continuity point of F∞, this implies that Fn(y) < ω
for all sufficiently large n, which in turn results with y ≤ Y −

n (ω). Taking continuity
points yk of F∞ such that yk ↑ Y −

∞(ω) will yield (3.2.3) and complete the proof. �

The next exercise provides useful ways to get convergence in distribution for one
sequence out of that of another sequence. Its result is also called the converging
together lemma or Slutsky’s lemma.

Exercise 3.2.8. Suppose that Xn
D−→ X∞ and Yn

D−→ Y∞, where Y∞ is non-
random and for each n the variables Xn and Yn are defined on the same probability
space.

(a) Show that then Xn + Yn
D−→ X∞ + Y∞.

Hint: Recall that the collection of continuity points of FX∞ is dense.

(b) Deduce that if Zn −Xn
D−→ 0 then Xn

D−→ X if and only if Zn
D−→ X.

(c) Show that YnXn
D−→ Y∞X∞.

For example, here is an application of Exercise 3.2.8 en-route to a clt connected
to renewal theory.

Exercise 3.2.9.

(a) Suppose {Nm} are non-negative integer-valued random variables and bm →
∞ are non-random integers such that Nm/bm

p→ 1. Show that if Sn =∑n
k=1 Xk for i.i.d. random variables {Xk} with v = Var(X1) ∈ (0,∞)

and E(X1) = 0, then SNm
/
√
vbm

D−→ G as m→∞.

Hint: Use Kolmogorov’s inequality to show that SNm
/
√
vbm−Sbm

/
√
vbm

p→
0.

(b) Let Nt = sup{n : Sn ≤ t} for Sn =
∑n

k=1 Yk and i.i.d. random variables
Yk > 0 such that v = Var(Y1) ∈ (0,∞) and E(Y1) = 1. Show that

(Nt − t)/
√
vt

D−→ G as t→∞.

Theorem 3.2.7 is key to solving the following:

Exercise 3.2.10. Suppose that Zn
D−→ Z∞. Show that then bn(f(c + Zn/bn) −

f(c))/f ′(c)
D−→ Z∞ for every positive constants bn → ∞ and every Borel function
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f : R → R (not necessarily continuous) that is differentiable at c ∈ R, with a
derivative f ′(c) 6= 0.

Consider the following exercise as a cautionary note about your interpretation of
Theorem 3.2.7.

Exercise 3.2.11. Let Mn =
∑n

k=1

∏k
i=1 Ui and Wn =

∑n
k=1

∏n
i=k Ui, where {Ui}

are i.i.d. uniformly on [0, c] and c > 0.

(a) Show that Mn
a.s.−→M∞ as n→∞, with M∞ taking values in [0,∞].

(b) Prove that M∞ is a.s. finite if and only if c < e (but EM∞ is finite only
for c < 2).

(c) In case c < e prove that Wn
D−→ M∞ as n → ∞ while Wn can not have

an almost sure limit. Explain why this does not contradict Theorem 3.2.7.

The next exercise relates the decay (in n) of sups |FX∞(s) − FXn
(s)| to that of

sup |Eh(Xn)−Eh(X∞)| over all functions h : R 7→ [−M,M ] with supx |h′(x)| ≤ L.

Exercise 3.2.12. Let ∆n = sups |FX∞(s)− FXn
(s)|.

(a) Show that if supx |h(x)| ≤ M and supx |h′(x)| ≤ L, then for any b > a,
C = 4M + L(b− a) and all n

|Eh(Xn)−Eh(X∞)| ≤ C∆n + 4MP(X∞ /∈ [a, b]) .

(b) Show that if X∞ ∈ [a, b] and fX∞(x) ≥ η > 0 for all x ∈ [a, b], then
|Qn(α) − Q∞(α)| ≤ η−1∆n for any α ∈ (∆n, 1 − ∆n), where Qn(α) =
sup{x : FXn

(x) < α} denotes α-quantile for the law of Xn. Using this,

construct Yn
D
= Xn such that P(|Yn − Y∞| > η−1∆n) ≤ 2∆n and deduce

the bound of part (a), albeit the larger value 4M + L/η of C.

Here is another example of convergence in distribution, this time in the context
of extreme value theory.

Exercise 3.2.13. Let Mn = max1≤i≤n {Ti}, where Ti, i = 1, 2, . . . are i.i.d. ran-
dom variables of distribution function FT (t). Noting that FMn

(x) = FT (x)n, show

that b−1
n (Mn − an)

D−→M∞ when:

(a) FT (t) = 1 − e−t for t ≥ 0 (i.e. Ti are Exponential of parameter one).
Here, an = logn, bn = 1 and FM∞

(y) = exp(−e−y) for y ∈ R.
(b) FT (t) = 1 − t−α for t ≥ 1 and α > 0. Here, an = 0, bn = n1/α and

FM∞
(y) = exp(−y−α) for y > 0.

(c) FT (t) = 1 − |t|α for −1 ≤ t ≤ 0 and α > 0. Here, an = 0, bn = n−1/α

and FM∞
(y) = exp(−|y|α) for y ≤ 0.

Remark. Up to the linear transformation y 7→ (y− µ)/σ, the three distributions
of M∞ provided in Exercise 3.2.13 are the only possible limits of maxima of i.i.d.
random variables. They are thus called the extreme value distributions of Type 1
(or Gumbel-type), in case (a), Type 2 (or Fréchet-type), in case (b), and Type 3
(or Weibull-type), in case (c). Indeed,

Exercise 3.2.14.

(a) Building upon part (a) of Exercise 2.2.24, show that if G has the standard
normal distribution, then for any y ∈ R

lim
t→∞

1− FG(t+ y/t)

1− FG(t)
= e−y .
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(b) Let Mn = max1≤i≤n {Gi} for i.i.d. standard normal random variables

Gi. Show that bn(Mn− bn)
D−→M∞ where FM∞

(y) = exp(−e−y) and bn
is such that 1− FG(bn) = n−1.

(c) Show that bn/
√

2 logn→ 1 as n→∞ and deduce that Mn/
√

2 logn
p→ 1.

(d) More generally, suppose Tt = inf{x ≥ 0 : Mx ≥ t}, where x 7→ Mx

is some monotone non-decreasing family of random variables such that

M0 = 0. Show that if e−tTt
D−→ T∞ as t → ∞ with T∞ having the

standard exponential distribution then (Mx− logx)
D−→M∞ as x→∞,

where FM∞
(y) = exp(−e−y).

Our next example is of a more combinatorial flavor.

Exercise 3.2.15 (The birthday problem). Suppose {Xi} are i.i.d. with each
Xi uniformly distributed on {1, . . . , n}. Let Tn = min{k : Xk = Xl, for some l < k}
mark the first coincidence among the entries of the sequence X1, X2, . . ., so

P(Tn > r) =
r∏

k=2

(1− k − 1

n
) ,

is the probability that among r items chosen uniformly and independently from
a set of n different objects, no two are the same (the name “birthday problem”
corresponds to n = 365 with the items interpreted as the birthdays for a group of
size r). Show that P(n−1/2Tn > s) → exp(−s2/2) as n→∞, for any fixed s ≥ 0.
Hint: Recall that −x− x2 ≤ log(1− x) ≤ −x for x ∈ [0, 1/2].

The symmetric, simple random walk on the integers is the sequence of random
variables Sn =

∑n
k=1 ξk where ξk are i.i.d. such that P(ξk = 1) = P(ξk = −1) = 1

2 .

From the clt we already know that n−1/2Sn
D−→ G. The next exercise provides

the asymptotics of the first and last visits to zero by this random sequence, namely
R = inf{` ≥ 1 : S` = 0} and Ln = sup{` ≤ n : S` = 0}. Much more is known about
this random sequence (c.f. [Dur03, Section 3.3] or [Fel68, Chapter 3]).

Exercise 3.2.16. Let qn,r = P(S1 > 0, . . . , Sn−1 > 0, Sn = r) and

pn,r = P(Sn = r) = 2−n

(
n

k

)
k = (n+ r)/2 .

(a) Counting paths of the walk, prove the discrete reflection principle that
Px(R < n, Sn = y) = P−x(Sn = y) = pn,x+y for any positive integers
x, y, where Px(·) denote probabilities for the walk starting at S0 = x.

(b) Verify that qn,r = 1
2 (pn−1,r−1 − pn−1,r+1) for any n, r ≥ 1.

Hint: Paths of the walk contributing to qn,r must have S1 = 1. Hence,
use part (a) with x = 1 and y = r.

(c) Deduce that P(R > n) = pn−1,0 + pn−1,1 and that P(L2n = 2k) =
p2k,0p2n−2k,0 for k = 0, 1, . . . , n.

(d) Using Stirling’s formula (that
√

2πn(n/e)n/n! → 1 as n → ∞), show

that
√
πnP(R > 2n) → 1 and that (2n)−1L2n

D−→ X, where X has the
arc-sine probability density function fX(x) = 1

π
√

x(1−x)
on [0, 1].

(e) Let H2n count the number of 1 ≤ k ≤ 2n such that Sk ≥ 0 and Sk−1 ≥ 0.

Show that H2n
D
= L2n, hence (2n)−1H2n

D−→ X.
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3.2.2. Weak convergence of probability measures. We first extend the
definition of weak convergence from distribution functions to measures on Borel
σ-algebras.

Definition 3.2.17. For a topological space S, let Cb(S) denote the collection of all
continuous bounded functions on S. We say that a sequence of probability measures
νn on a topological space S equipped with its Borel σ-algebra (see Example 1.1.15),

converges weakly to a probability measure ν∞, denoted νn
w⇒ ν∞, if νn(h) → ν∞(h)

for each h ∈ Cb(S).

As we show next, Definition 3.2.17 is an alternative definition of convergence in
distribution, which, in contrast to Definition 3.2.1, applies to more general R.V.
(for example to the Rd-valued random variables we consider in Section 3.5).

Proposition 3.2.18. The weak convergence of distribution functions is equivalent
to the weak convergence of the corresponding laws as probability measures on (R,B).

Consequently, Xn
D−→ X∞ if and only if for each h ∈ Cb(R), we have Eh(Xn) →

Eh(X∞) as n→∞.

Proof. Suppose first that Fn
w→ F∞ and let Yn, 1 ≤ n ≤ ∞ be the random

variables given by Theorem 3.2.7 such that Yn
a.s.→ Y∞. For h ∈ Cb(R) we have by

continuity of h that h(Yn)
a.s.→ h(Y∞), and by bounded convergence also

Pn(h) = E(h(Yn)) → E(h(Y∞)) = P∞(h) .

Conversely, suppose that Pn
w⇒ P∞ per Definition 3.2.17. Fixing α ∈ R, let the

non-negative h±k ∈ Cb(R) be such that h−k (x) ↑ I(−∞,α)(x) and h+
k (x) ↓ I(−∞,α](x)

as k →∞ (c.f. Lemma 3.1.6 for a construction of such functions). We have by the
weak convergence of the laws when n → ∞, followed by monotone convergence as
k →∞, that

lim inf
n→∞

Pn((−∞, α)) ≥ lim
n→∞

Pn(h−k ) = P∞(h−k ) ↑ P∞((−∞, α)) = F∞(α−) .

Similarly, considering h+
k (·) and then k → ∞, we have by bounded convergence

that

lim sup
n→∞

Pn((−∞, α]) ≤ lim
n→∞

Pn(h+
k ) = P∞(h+

k ) ↓ P∞((−∞, α]) = F∞(α) .

For any continuity point α of F∞ we conclude that Fn(α) = Pn((−∞, α]) converges
as n→∞ to F∞(α) = F∞(α−), thus completing the proof. �

By yet another application of Theorem 3.2.7 we find that convergence in distri-
bution is preserved under a.s. continuous mappings (see Corollary 2.2.13 for the
analogous statement for convergence in probability).

Proposition 3.2.19 (Continuous mapping). For a Borel function g let Dg

denote its set of points of discontinuity. If Xn
D−→ X∞ and P(X∞ ∈ Dg) = 0,

then g(Xn)
D−→ g(X∞). If in addition g is bounded then Eg(Xn) → Eg(X∞).

Proof. Given Xn
D−→ X∞, by Theorem 3.2.7 there exists Yn

D
= Xn, such that

Yn
a.s.−→ Y∞. Fixing h ∈ Cb(R), clearly Dh◦g ⊆ Dg , so

P(Y∞ ∈ Dh◦g) ≤ P(Y∞ ∈ Dg) = 0.
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Therefore, by Exercise 2.2.12, it follows that h(g(Yn))
a.s.−→ h(g(Y∞)). Since h ◦ g is

bounded and Yn
D
= Xn for all n, it follows by bounded convergence that

Eh(g(Xn)) = Eh(g(Yn)) → E(h(g(Y∞)) = Eh(g(X∞)) .

This holds for any h ∈ Cb(R), so by Proposition 3.2.18, we conclude that g(Xn)
D−→

g(X∞). �

Our next theorem collects several equivalent characterizations of weak convergence
of probability measures on (R,B). To this end we need the following definition.

Definition 3.2.20. For a subset A of a topological space S, we denote by ∂A the
boundary of A, that is ∂A = A \ Ao is the closed set of points in the closure of A
but not in the interior of A. For a measure µ on (S,BS) we say that A ∈ BS is a
µ-continuity set if µ(∂A) = 0.

Theorem 3.2.21 (portmanteau theorem). The following four statements are
equivalent for any probability measures νn, 1 ≤ n ≤ ∞ on (R,B).

(a) νn
w⇒ ν∞

(b) For every closed set F , one has lim sup
n→∞

νn(F ) ≤ ν∞(F )

(c) For every open set G, one has lim inf
n→∞

νn(G) ≥ ν∞(G)

(d) For every ν∞-continuity set A, one has lim
n→∞

νn(A) = ν∞(A)

Remark. As shown in Subsection 3.5.1, this theorem holds with (R,B) replaced
by any metric space S and its Borel σ-algebra BS.

For νn = PXn
we get the formulation of the Portmanteau theorem for random

variables Xn, 1 ≤ n ≤ ∞, where the following four statements are then equivalent

to Xn
D−→ X∞:

(a) Eh(Xn) → Eh(X∞) for each bounded continuous h
(b) For every closed set F one has lim sup

n→∞
P(Xn ∈ F ) ≤ P(X∞ ∈ F )

(c) For every open set G one has lim inf
n→∞

P(Xn ∈ G) ≥ P(X∞ ∈ G)

(d) For every Borel set A such that P(X∞ ∈ ∂A) = 0, one has
lim

n→∞
P(Xn ∈ A) = P(X∞ ∈ A)

Proof. It suffices to show that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a), which we
shall establish in that order. To this end, with Fn(x) = νn((−∞, x]) denoting the

corresponding distribution functions, we replace νn
w⇒ ν∞ of (a) by the equivalent

condition Fn
w→ F∞ (see Proposition 3.2.18).

(a) ⇒ (b). Assuming Fn
w→ F∞, we have the random variables Yn, 1 ≤ n ≤ ∞ of

Theorem 3.2.7, such that PYn
= νn and Yn

a.s.→ Y∞. Since F is closed, the function
IF is upper semi-continuous bounded by one, so it follows that a.s.

lim sup
n→∞

IF (Yn) ≤ IF (Y∞) ,

and by Fatou’s lemma,

lim sup
n→∞

νn(F ) = lim sup
n→∞

EIF (Yn) ≤ E lim sup
n→∞

IF (Yn) ≤ EIF (Y∞) = ν∞(F ) ,

as stated in (b).
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(b) ⇒ (c). The complement F = Gc of an open set G is a closed set, so by (b) we
have that

1− lim inf
n→∞

νn(G) = lim sup
n→∞

νn(Gc) ≤ ν∞(Gc) = 1− ν∞(G) ,

implying that (c) holds. In an analogous manner we can show that (c) ⇒ (b), so
(b) and (c) are equivalent.
(c) ⇒ (d). Since (b) and (c) are equivalent, we assume now that both (b) and (c)
hold. Then, applying (c) for the open set G = Ao and (b) for the closed set F = A
we have that

ν∞(A) ≥ lim sup
n→∞

νn(A) ≥ lim sup
n→∞

νn(A)

≥ lim inf
n→∞

νn(A) ≥ lim inf
n→∞

νn(Ao) ≥ ν∞(Ao) .(3.2.4)

Further, A = Ao ∪ ∂A so ν∞(∂A) = 0 implies that ν∞(A) = ν∞(Ao) = ν∞(A)
(with the last equality due to the fact that Ao ⊆ A ⊆ A). Consequently, for such a
set A all the inequalities in (3.2.4) are equalities, yielding (d).
(d) ⇒ (a). Consider the set A = (−∞, α] where α is a continuity point of F∞.
Then, ∂A = {α} and ν∞({α}) = F∞(α) − F∞(α−) = 0. Applying (d) for this
choice of A, we have that

lim
n→∞

Fn(α) = lim
n→∞

νn((−∞, α]) = ν∞((−∞, α]) = F∞(α) ,

which is our version of (a). �

We turn to relate the weak convergence to the convergence point-wise of proba-
bility density functions. To this end, we first define a new concept of convergence
of measures, the convergence in total-variation.

Definition 3.2.22. The total variation norm of a finite signed measure ν on the
measurable space (S,F) is

‖ν‖tv = sup{ν(h) : h ∈ mF , sup
s∈S

|h(s)| ≤ 1}.

We say that a sequence of probability measures νn converges in total variation to a

probability measure ν∞, denoted νn
t.v.−→ ν∞, if ‖νn − ν∞‖tv → 0.

Remark. Note that ‖ν‖tv = 1 for any probability measure ν (since ν(h) ≤
ν(|h|) ≤ ‖h‖∞ν(1) ≤ 1 for the functions h considered, with equality for h = 1). By
a similar reasoning, ‖ν− ν ′‖tv ≤ 2 for any two probability measures ν, ν ′ on (S,F).

Convergence in total-variation obviously implies weak convergence of the same
probability measures, but the converse fails, as demonstrated for example by νn =
δ1/n, the probability measure on (R,B) assigning probability one to the point 1/n,
which converge weakly to ν∞ = δ0 (see Example 3.2.4), whereas ‖νn − ν∞‖ = 2
for all n. The difference of course has to do with the non-uniformity of the weak
convergence with respect to the continuous function h.
To gain a better understanding of the convergence in total-variation, we consider

an important special case.

Proposition 3.2.23. Suppose P = fµ and Q = gµ for some measure µ on (S,F)
and f, g ∈ mF+ such that µ(f) = µ(g) = 1. Then,

(3.2.5) ‖P−Q‖tv =

∫

S

|f(s)− g(s)|dµ(s) .
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Further, suppose νn = fnµ with fn ∈ mF+ such that µ(fn) = 1 for all n ≤ ∞.

Then, νn
t.v.−→ ν∞ if fn(s) → f∞(s) for µ-almost-every s ∈ S.

Proof. For any measurable function h : S 7→ [−1, 1] we have that

(fµ)(h)− (gµ)(h) = µ(fh)− µ(gh) = µ((f − g)h) ≤ µ(|f − g|) ,
with equality when h(s) = sgn((f(s)−g(s)) (see Proposition 1.3.56 for the left-most
identity and note that fh and gh are in L1(S,F , µ)). Consequently, ‖P −Q‖tv =
sup{(fµ)(h)− (gµ)(h) : h as above } = µ(|f − g|), as claimed.
For νn = fnµ, we thus have that ‖νn−ν∞‖tv = µ(|fn−f∞|), so the convergence in

total-variation is equivalent to fn → f∞ in L1(S,F , µ). Since fn ≥ 0 and µ(fn) = 1
for any n ≤ ∞, it follows from Scheffé’s lemma (see Lemma 1.3.35) that the latter
convergence is a consequence of fn(s) → f∞(s) for µ a.e. s ∈ S. �

Two specific instances of Proposition 3.2.23 are of particular value in applications.

Example 3.2.24. Let νn = PXn
denote the laws of random variables Xn that

have probability density functions fn, n = 1, 2, . . . ,∞. Recall Exercise 1.3.66 that
then νn = fnλ for Lebesgue’s measure λ on (R,B). Hence, by the preceding propo-
sition, the convergence point-wise of fn(x) to f∞(x) implies the convergence in

total-variation of PXn
to PX∞ , and in particular implies that Xn

D−→ X∞.

Example 3.2.25. Similarly, if Xn are integer valued for n = 1, 2 . . ., then νn =

fnλ̃ for fn(k) = P(Xn = k) and the counting measure λ̃ on (Z, 2Z) such that

λ̃({k}) = 1 for each k ∈ Z. So, by the preceding proposition, the point-wise con-
vergence of Exercise 3.2.3 is not only necessary and sufficient for weak convergence
but also for convergence in total-variation of the laws of Xn to that of X∞.

In the next exercise, you are to rephrase Example 3.2.25 in terms of the topological
space of all probability measures on Z.

Exercise 3.2.26. Show that d(µ, ν) = ‖µ−ν‖tv is a metric on the collection of all
probability measures on Z, and that in this space the convergence in total variation
is equivalent to the weak convergence which in turn is equivalent to the point-wise
convergence at each x ∈ Z.

Hence, under the framework of Example 3.2.25, the Glivenko-Cantelli theorem
tells us that the empirical measures of integer valued i.i.d. R.V.-s {Xi} converge in
total-variation to the true law of X1.
Here is an example from statistics that corresponds to the framework of Example

3.2.24.

Exercise 3.2.27. Let Vn+1 denote the central value on a list of 2n+1 values (that
is, the (n + 1)th largest value on the list). Suppose the list consists of mutually
independent R.V., each chosen uniformly in [0, 1).

(a) Show that Vn+1 has probability density function (2n + 1)
(
2n
n

)
vn(1− v)

n

at each v ∈ [0, 1).

(b) Verify that the density fn(v) of V̂n =
√

2n(2Vn+1 − 1) is of the form
fn(v) = cn(1 − v2/(2n))n for some normalization constant cn that is

independent of |v| ≤
√

2n.
(c) Deduce that for n → ∞ the densities fn(v) converge point-wise to the

standard normal density, and conclude that V̂n
D−→ G.
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Here is an interesting interpretation of the clt in terms of weak convergence of
probability measures.

Exercise 3.2.28. Let M denote the set of probability measures ν on (R,B) for
which

∫
x2dν(x) = 1 and

∫
xdν(x) = 0, and γ ∈ M denote the standard normal

distribution. Consider the mapping T : M 7→ M where Tν is the law of (X1 +

X2)/
√

2 for X1 and X2 i.i.d. of law ν each. Explain why the clt implies that

Tmν
w⇒ γ as m→ ∞, for any ν ∈ M. Show that Tγ = γ (see Lemma 3.1.1), and

explain why γ is the unique, globally attracting fixed point of T in M.

Your next exercise is the basis behind the celebrated method of moments for weak
convergence.

Exercise 3.2.29. Suppose that X and Y are [0, 1]-valued random variables such
that E(Xn) = E(Y n) for n = 0, 1, 2, . . ..

(a) Show that Ep(X) = Ep(Y ) for any polynomial p(·).
(b) Show that Eh(X) = Eh(Y ) for any continuous function h : [0, 1] 7→ R

and deduce that X
D
= Y .

Hint: Recall Weierstrass approximation theorem, that if h is continuous on [0, 1]
then there exist polynomials pn such that supx∈[0,1] |h(x) − pn(x)| → 0 as n→∞.

We conclude with the following example about weak convergence of measures in
the space of infinite binary sequences.

Exercise 3.2.30. Consider the topology of coordinate wise convergence on S =
{0, 1}N and the Borel probability measures {νn} on S, where νn is the uniform

measure over the
(
2n
n

)
binary sequences of precisely n ones among the first 2n

coordinates, followed by zeros from position 2n + 1 onwards. Show that νn
w⇒ ν∞

where ν∞ denotes the law of i.i.d. Bernoulli random variables of parameter p = 1/2.
Hint: Any open subset of S is a countable union of disjoint sets of the form Aθ,k =
{ω ∈ S : ωi = θi, i = 1, . . . , k} for some θ = (θ1, . . . , θk) ∈ {0, 1}k and k ∈ N.

3.2.3. Uniform tightness and vague convergence. So far we have studied
the properties of weak convergence. We turn to deal with general ways to establish
such convergence, a subject to which we return in Subsection 3.3.2. To this end,
the most important concept is that of uniform tightness, which we now define.

Definition 3.2.31. We say that a probability measure µ on (S,BS) is tight if for
each ε > 0 there exists a compact set Kε ⊆ S such that µ(Kc

ε) < ε. A collection
{µβ} of probability measures on (S,BS) is called uniformly tight if for each ε > 0
there exists one compact set Kε such that µβ(Kc

ε) < ε for all β.

Since bounded closed intervals are compact and [−M,M ]c ↓ ∅ as M ↑ ∞, by
continuity from above we deduce that each probability measure µ on (R,B) is
tight. The same argument applies for a finite collection of probability measures on
(R,B) (just choose the maximal value among the finitely many values of M = Mε

that are needed for the different measures). Further, in the case of S = R which we
study here one can take without loss of generality the compact Kε as a symmetric
bounded interval [−Mε,Mε], or even consider instead (−Mε,Mε] (whose closure
is compact) in order to simplify notations. Thus, expressing uniform tightness
in terms of the corresponding distribution functions leads in this setting to the
following alternative definition.
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Definition 3.2.32. A sequence of distribution functions Fn is called uniformly
tight, if for every ε > 0 there exists M = Mε such that

lim sup
n→∞

[1− Fn(M) + Fn(−M)] < ε .

Remark. As most texts use in the context of Definition 3.2.32 “tight” (or “tight
sequence”) instead of uniformly tight, we shall adopt the same convention here.

Uniform tightness of distribution functions has some structural resemblance to the
U.I. condition (1.3.11). As such we have the following simple sufficient condition
for uniform tightness (which is the analog of Exercise 1.3.54).

Exercise 3.2.33. A sequence of probability measures νn on (R,B) is uniformly
tight if supn νn(f(|x|)) is finite for some non-negative Borel function such that
f(r) → ∞ as r → ∞. Alternatively, if supn Ef(|Xn|) < ∞ then the distribution
functions FXn

form a tight sequence.

The importance of uniform tightness is that it guarantees the existence of limit
points for weak convergence.

Theorem 3.2.34 (Prohorov theorem). A collection Γ of probability measures
on a complete, separable metric space S equipped with its Borel σ-algebra BS, is
uniformly tight if and only if for any sequence νm ∈ Γ there exists a subsequence
νmk

that converges weakly to some probability measure ν∞ on (S,BS) (where ν∞ is
not necessarily in Γ and may depend on the subsequence mk).

Remark. For a proof of Prohorov’s theorem, which is beyond the scope of these
notes, see [Dud89, Theorem 11.5.4].

Instead of Prohorov’s theorem, we prove here a bare-hands substitute for the
special case S = R. When doing so, it is convenient to have the following notion of
convergence of distribution functions.

Definition 3.2.35. When a sequence Fn of distribution functions converges to a
right continuous, non-decreasing function F∞ at all continuous points of F∞, we

say that Fn converges vaguely to F∞, denoted Fn
v→ F∞.

In contrast with weak convergence, the vague convergence allows for the limit
F∞(x) = ν∞((−∞, x]) to correspond to a measure ν∞ such that ν∞(R) < 1.

Example 3.2.36. Suppose Fn = pI[n,∞)+qI[−n,∞)+(1−p−q)F for some p, q ≥ 0
such that p+q ≤ 1 and a distribution function F that is independent of n. It is easy

to check that Fn
v→ F∞ as n→∞, where F∞ = q+ (1− p− q)F is the distribution

function of an R-valued random variable, with probability mass p at +∞ and mass
q at −∞. If p+ q > 0 then F∞ is not a distribution function of any measure on R

and Fn does not converge weakly.

The preceding example is generic, that is, the space R is compact, so the only loss
of mass when dealing with weak convergence on R has to do with its escape to ±∞.
It is thus not surprising that every sequence of distribution functions have vague
limit points, as stated by the following theorem.

Theorem 3.2.37 (Helly’s selection theorem). For every sequence Fn of dis-
tribution functions, there is a subsequence Fnk

and a non-decreasing right contin-
uous function F∞ such that Fnk

(y) → F∞(y) as k → ∞ at all continuity points y

of F∞, that is Fnk

v→ F∞.
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Deferring the proof of Helly’s theorem to the end of this section, uniform tightness
is exactly what prevents probability mass from escaping to ±∞, thus assuring the
existence of limit points for weak convergence.

Lemma 3.2.38. The sequence of distribution functions {Fn} is uniformly tight if
and only if each vague limit point of this sequence is a distribution function. That

is, if and only if when Fnk

v→ F , necessarily 1− F (x) + F (−x) → 0 as x→∞.

Proof. Suppose first that {Fn} is uniformly tight and Fnk

v→ F . Fixing ε > 0,
there exist r1 < −Mε and r2 > Mε that are both continuity points of F . Then, by
the definition of vague convergence and the monotonicity of Fn,

1− F (r2) + F (r1) = lim
k→∞

(1− Fnk
(r2) + Fnk

(r1))

≤ lim sup
n→∞

(1− Fn(Mε) + Fn(−Mε)) < ε .

It follows that lim supx→∞(1 − F (x) + F (−x)) ≤ ε and since ε > 0 is arbitrarily
small, F must be a distribution function of some probability measure on (R,B).
Conversely, suppose {Fn} is not uniformly tight, in which case by Definition 3.2.32,

for some ε > 0 and nk ↑ ∞
(3.2.6) 1− Fnk

(k) + Fnk
(−k) ≥ ε for all k.

By Helly’s theorem, there exists a vague limit point F to Fnk
as k → ∞. That

is, for some kl ↑ ∞ as l → ∞ we have that Fnkl

v→ F . For any two continuity
points r1 < 0 < r2 of F , we thus have by the definition of vague convergence, the
monotonicity of Fnkl

, and (3.2.6), that

1− F (r2) + F (r1) = lim
l→∞

(1− Fnkl
(r2) + Fnkl

(r1))

≥ lim inf
l→∞

(1− Fnkl
(kl) + Fnkl

(−kl)) ≥ ε.

Considering now r = min(−r1, r2) →∞, this shows that infr(1−F (r)+F (−r)) ≥ ε,
hence the vague limit point F cannot be a distribution function of a probability
measure on (R,B). �

Remark. Comparing Definitions 3.2.31 and 3.2.32 we see that if a collection Γ
of probability measures on (R,B) is uniformly tight, then for any sequence νm ∈ Γ
the corresponding sequence Fm of distribution functions is uniformly tight. In view
of Lemma 3.2.38 and Helly’s theorem, this implies the existence of a subsequence

mk and a distribution function F∞ such that Fmk

w→ F∞. By Proposition 3.2.18

we deduce that νmk

w⇒ ν∞, a probability measure on (R,B), thus proving the only
direction of Prohorov’s theorem that we ever use.

Proof of Theorem 3.2.37. Fix a sequence of distribution function Fn. The
key to the proof is to observe that there exists a sub-sequence nk and a non-
decreasing function H : Q 7→ [0, 1] such that Fnk

(q) → H(q) for any q ∈ Q.
This is done by a standard analysis argument called the principle of ‘diagonal

selection’. That is, let q1, q2, . . ., be an enumeration of the set Q of all rational
numbers. There exists then a limit point H(q1) to the sequence Fn(q1) ∈ [0, 1],

that is a sub-sequence n
(1)
k such that F

n
(1)
k

(q1) → H(q1). Since F
n

(1)
k

(q2) ∈ [0, 1],

there exists a further sub-sequences n
(2)
k of n

(1)
k such that

F
n

(i)
k

(qi) → H(qi) for i = 1, 2.
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In the same manner we get a collection of nested sub-sequences n
(i)
k ⊆ n

(i−1)
k such

that

F
n

(i)
k

(qj) → H(qj), for all j ≤ i.

The diagonal n
(k)
k then has the property that

F
n

(k)
k

(qj) → H(qj), for all j,

so nk = n
(k)
k is our desired sub-sequence, and since each Fn is non-decreasing, the

limit function H must also be non-decreasing on Q.
Let F∞(x) := inf{H(q) : q ∈ Q, q > x}, noting that F∞ ∈ [0, 1] is non-decreasing.

Further, F∞ is right continuous, since

lim
xn↓x

F∞(xn) = inf{H(q) : q ∈ Q, q > xn for some n}

= inf{H(q) : q ∈ Q, q > x} = F∞(x).

Suppose that x is a continuity point of the non-decreasing function F∞. Then, for
any ε > 0 there exists y < x such that F∞(x) − ε < F∞(y) and rational numbers
y < r1 < x < r2 such that H(r2) < F∞(x) + ε. It follows that

(3.2.7) F∞(x)− ε < F∞(y) ≤ H(r1) ≤ H(r2) < F∞(x) + ε .

Recall that Fnk
(x) ∈ [Fnk

(r1), Fnk
(r2)] and Fnk

(ri) → H(ri) as k →∞, for i = 1, 2.
Thus, by (3.2.7) for all k large enough

F∞(x) − ε < Fnk
(r1) ≤ Fnk

(x) ≤ Fnk
(r2) < F∞(x) + ε,

which since ε > 0 is arbitrary implies Fnk
(x) → F∞(x) as k →∞. �

Exercise 3.2.39. Suppose that the sequence of distribution functions {FXk
} is

uniformly tight and EX2
k <∞ are such that EX2

n →∞ as n→∞. Show that then
also Var(Xn) →∞ as n→∞.

Hint: If |EXnl
|2 →∞ then supl Var(Xnl

) <∞ yields Xnl
/EXnl

L2

→ 1, whereas the

uniform tightness of {FXnl
} implies that Xnl

/EXnl

p→ 0.

Using Lemma 3.2.38 and Helly’s theorem, you next explore the possibility of estab-
lishing weak convergence for non-negative random variables out of the convergence
of the corresponding Laplace transforms.

Exercise 3.2.40.

(a) Based on Exercise 3.2.29 show that if Z ≥ 0 and W ≥ 0 are such that

E(e−sZ) = E(e−sW ) for each s > 0, then Z
D
= W .

(b) Further, show that for any Z ≥ 0, the function LZ(s) = E(e−sZ) is
infinitely differentiable at all s > 0 and for any positive integer k,

E[Zk] = (−1)k lim
s↓0

dk

dsk
LZ(s) ,

even when (both sides are) infinite.
(c) Suppose that Xn ≥ 0 are such that L(s) = limn E(e−sXn) exists for all

s > 0 and L(s) → 1 for s ↓ 0. Show that then the sequence of distribution
functions {FXn

} is uniformly tight and that there exists a random variable

X∞ ≥ 0 such that Xn
D−→ X∞ and L(s) = E(e−sX∞) for all s > 0.
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Hint: To show that Xn
D−→ X∞ try reading and adapting the proof of

Theorem 3.3.17.
(d) Let Xn = n−1

∑n
k=1 kIk for Ik ∈ {0, 1} independent random variables,

with P(Ik = 1) = k−1. Show that there exists X∞ ≥ 0 such that Xn
D−→

X∞ and E(e−sX∞) = exp(
∫ 1

0 t
−1(e−st − 1)dt) for all s > 0.

Remark. The idea of using transforms to establish weak convergence shall be
further developed in Section 3.3, with the Fourier transform instead of the Laplace
transform.

3.3. Characteristic functions

This section is about the fundamental concept of characteristic function, its rele-
vance for the theory of weak convergence, and in particular for the clt.
In Subsection 3.3.1 we define the characteristic function, providing illustrating ex-

amples and certain general properties such as the relation between finite moments
of a random variable and the degree of smoothness of its characteristic function. In
Subsection 3.3.2 we recover the distribution of a random variable from its charac-
teristic function, and building upon it, relate tightness and weak convergence with
the point-wise convergence of the associated characteristic functions. We conclude
with Subsection 3.3.3 in which we re-prove the clt of Section 3.1 as an applica-
tion of the theory of characteristic functions we have thus developed. The same
approach will serve us well in other settings which we consider in the sequel (c.f.
Sections 3.4 and 3.5).

3.3.1. Definition, examples, moments and derivatives. We start off
with the definition of the characteristic function of a random variable. To this
end, recall that a C-valued random variable is a function Z : Ω 7→ C such that the
real and imaginary parts of Z are measurable, and for Z = X + iY with X,Y ∈ R

integrable random variables (and i =
√
−1), let E(Z) = E(X) + iE(Y ) ∈ C.

Definition 3.3.1. The characteristic function ΦX of a random variable X is the
map R 7→ C given by

ΦX (θ) = E[eiθX ] = E[cos(θX)] + iE[sin(θX)]

where θ ∈ R and obviously both cos(θX) and sin(θX) are integrable R.V.-s.
We also denote by Φµ(θ) the characteristic function associated with a probability

measure µ on (R,B). That is, Φµ(θ) = µ(eiθx) is the characteristic function of a
R.V. X whose law PX is µ.

Here are some of the properties of characteristic functions, where the complex
conjugate x− iy of z = x+ iy ∈ C is denoted throughout by z and the modulus of

z = x+ iy is |z| =
√
x2 + y2.

Proposition 3.3.2. Let X be a R.V. and ΦX its characteristic function, then

(a) ΦX(0) = 1

(b) ΦX(−θ) = ΦX(θ)
(c) |ΦX(θ)| ≤ 1
(d) θ 7→ ΦX(θ) is a uniformly continuous function on R

(e) ΦaX+b(θ) = eibθΦX(aθ)
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Proof. For (a), ΦX(0) = E[ei0X ] = E[1] = 1. For (b), note that

ΦX(−θ) = E cos(−θX) + iE sin(−θX)

= E cos(θX)− iE sin(θX) = ΦX(θ) .

For (c), note that the function |z| =
√
x2 + y2 : R2 7→ R is convex, hence by

Jensen’s inequality (c.f. Exercise 1.3.20),

|ΦX(θ)| = |EeiθX | ≤ E|eiθX | = 1

(since the modulus |eiθx| = 1 for any real x and θ).
For (d), since ΦX(θ+h)−ΦX (θ) = EeiθX(eihX−1), it follows by Jensen’s inequality

for the modulus function that

|ΦX(θ + h)− ΦX(θ)| ≤ E[|eiθX ||eihX − 1|] = E|eihX − 1| = δ(h)

(using the fact that |zv| = |z||v|). Since 2 ≥ |eihX − 1| → 0 as h→ 0, by bounded
convergence δ(h) → 0. As the bound δ(h) on the modulus of continuity of ΦX (θ)
is independent of θ, we have uniform continuity of ΦX(·) on R.
For (e) simply note that ΦaX+b(θ) = Eeiθ(aX+b) = eiθbEei(aθ)X = eiθbΦX(aθ). �

We also have the following relation between finite moments of the random variable
and the derivatives of its characteristic function.

Lemma 3.3.3. If E|X |n < ∞, then the characteristic function ΦX(θ) of X has
continuous derivatives up to the n-th order, given by

(3.3.1)
dk

dθk
ΦX(θ) = E[(iX)keiθX ] , for k = 1, . . . , n

Proof. Note that for any x, h ∈ R

eihx − 1 = ix

∫ h

0

eiuxdu .

Consequently, for any h 6= 0, θ ∈ R and positive integer k we have the identity

∆k,h(x) = h−1
(
(ix)k−1ei(θ+h)x − (ix)k−1eiθx

)
− (ix)keiθx(3.3.2)

= (ix)keiθxh−1

∫ h

0

(eiux − 1)du ,

from which we deduce that |∆k,h(x)| ≤ 2|x|k for all θ and h 6= 0, and further that
|∆k,h(x)| → 0 as h→ 0. Thus, for k = 1, . . . , n we have by dominated convergence
(and Jensen’s inequality for the modulus function) that

|E∆k,h(X)| ≤ E|∆k,h(X)| → 0 for h→ 0.

Taking k = 1, we have from (3.3.2) that

E∆1,h(X) = h−1(ΦX (θ + h)− ΦX(θ)) −E[iXeiθX ] ,

so its convergence to zero as h → 0 amounts to the identity (3.3.1) holding for
k = 1. In view of this, considering now (3.3.2) for k = 2, we have that

E∆2,h(X) = h−1(Φ′
X (θ + h)− Φ′

X(θ)) −E[(iX)2eiθX ] ,

and its convergence to zero as h → 0 amounts to (3.3.1) holding for k = 2. We
continue in this manner for k = 3, . . . , n to complete the proof of (3.3.1). The
continuity of the derivatives follows by dominated convergence from the convergence
to zero of |(ix)kei(θ+h)x − (ix)keiθx| ≤ 2|x|k as h→ 0 (with k = 1, . . . , n). �
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The converse of Lemma 3.3.3 does not hold. That is, there exist random variables
with E|X | = ∞ for which ΦX(θ) is differentiable at θ = 0 (c.f. Exercise 3.3.23).
However, as we see next, the existence of a finite second derivative of ΦX(θ) at
θ = 0 implies that EX2 <∞.

Lemma 3.3.4. If lim infθ→0 θ
−2(2ΦX(0)−ΦX (θ)−ΦX (−θ)) <∞, then EX2 <∞.

Proof. Note that θ−2(2ΦX(0)− ΦX(θ) − ΦX(−θ)) = Egθ(X), where

gθ(x) = θ−2(2− eiθx − e−iθx) = 2θ−2[1− cos(θx)] → x2 for θ → 0 .

Since gθ(x) ≥ 0 for all θ and x, it follows by Fatou’s lemma that

lim inf
θ→0

Egθ(X) ≥ E[lim inf
θ→0

gθ(X)] = EX2 ,

thus completing the proof of the lemma. �

We continue with a few explicit computations of the characteristic function.

Example 3.3.5. Consider a Bernoulli random variable B of parameter p, that is,
P(B = 1) = p and P(B = 0) = 1− p. Its characteristic function is by definition

ΦB(θ) = E[eiθB] = peiθ + (1− p)ei0θ = peiθ + 1− p .

The same type of explicit formula applies to any discrete valued R.V. For example,
if N has the Poisson distribution of parameter λ then

(3.3.3) ΦN (θ) = E[eiθN ] =

∞∑

k=0

(λeiθ)k

k!
e−λ = exp(λ(eiθ − 1)) .

The characteristic function has an explicit form also when the R.V. X has a
probability density function fX as in Definition 1.2.39. Indeed, then by Corollary
1.3.62 we have that

(3.3.4) ΦX(θ) =

∫

R

eiθxfX(x)dx ,

which is merely the Fourier transform of the density fX (and is well defined since
cos(θx)fX (x) and sin(θx)fX (x) are both integrable with respect to Lebesgue’s mea-
sure).

Example 3.3.6. If G has the N (µ, v) distribution, namely, the probability density
function fG(y) is given by (3.1.1), then its characteristic function is

ΦG(θ) = eiµθ−vθ2/2 .

Indeed, recall Example 1.3.68 that G = σX + µ for σ =
√
v and X of a standard

normal distribution N (0, 1). Hence, considering part (e) of Proposition 3.3.2 for

a =
√
v and b = µ, it suffices to show that ΦX(θ) = e−θ2/2. To this end, as X is

integrable, we have from Lemma 3.3.3 that

Φ′
X(θ) = E(iXeiθX) =

∫

R

−x sin(θx)fX (x)dx

(since x cos(θx)fX (x) is an integrable odd function, whose integral is thus zero).
The standard normal density is such that f ′X(x) = −xfX(x), hence integrating by
parts we find that

Φ′
X(θ) =

∫

R

sin(θx)f ′X (x)dx = −
∫

R

θ cos(θx)fX (x)dx = −θΦX(θ)
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(since sin(θx)fX (x) is an integrable odd function). We know that ΦX(0) = 1 and

since ϕ(θ) = e−θ2/2 is the unique solution of the ordinary differential equation
ϕ′(θ) = −θϕ(θ) with ϕ(0) = 1, it follows that ΦX(θ) = ϕ(θ).

Example 3.3.7. In another example, applying the formula (3.3.4) we see that
the random variable U = U(a, b) whose probability density function is fU (x) =
(b− a)−11a<x<b, has the characteristic function

ΦU (θ) =
eiθb − eiθa

iθ(b− a)

(recall that
∫ b

a
ezxdx = (ezb − eza)/z for any z ∈ C). For a = −b the characteristic

function simplifies to sin(bθ)/(bθ). Or, in case b = 1 and a = 0 we have ΦU (θ) =
(eiθ − 1)/(iθ) for the random variable U of Example 1.1.26.
For a = 0 and z = −λ + iθ, λ > 0, the same integration identity applies also

when b → ∞ (since the real part of z is negative). Consequently, by (3.3.4), the
exponential distribution of parameter λ > 0 whose density is fT (t) = λe−λt1t>0

(see Example 1.3.68), has the characteristic function ΦT (θ) = λ/(λ− iθ).
Finally, for the density fS(s) = 0.5e−|s| it is not hard to check that ΦS(θ) =

0.5/(1− iθ) + 0.5/(1 + iθ) = 1/(1 + θ2) (just break the integration over s ∈ R in
(3.3.4) according to the sign of s).

We next express the characteristic function of the sum of independent random
variables in terms of the characteristic functions of the summands. This relation
makes the characteristic function a useful tool for proving weak convergence state-
ments involving sums of independent variables.

Lemma 3.3.8. If X and Y are two independent random variables, then

ΦX+Y (θ) = ΦX(θ)ΦY (θ)

Proof. By the definition of the characteristic function

ΦX+Y (θ) = Eeiθ(X+Y ) = E[eiθXeiθY ] = E[eiθX ]E[eiθY ] ,

where the right-most equality is obtained by the independence of X and Y (i.e.
applying (1.4.12) for the integrable f(x) = g(x) = eiθx). Observing that the right-
most expression is ΦX(θ)ΦY (θ) completes the proof. �

Here are three simple applications of this lemma.

Example 3.3.9. If X and Y are independent and uniform on (−1/2, 1/2) then
by Corollary 1.4.33 the random variable ∆ = X + Y has the triangular density,
f∆(x) = (1 − |x|)1|x|≤1. Thus, by Example 3.3.7, Lemma 3.3.8, and the trigono-

metric identity cos θ = 1− 2 sin2(θ/2) we have that its characteristic function is

Φ∆(θ) = [ΦX (θ)]2 =
(2 sin(θ/2)

θ

)2

=
2(1− cos θ)

θ2
.

Exercise 3.3.10. Let X, X̃ be i.i.d. random variables.

(a) Show that the characteristic function of Z = X − X̃ is a non-negative,
real-valued function.

(b) Prove that there do not exist a < b and i.i.d. random variables X, X̃

such that X − X̃ is the uniform random variable on (a, b).
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In the next exercise you construct a random variable X whose law has no atoms
while its characteristic function does not converge to zero for θ →∞.

Exercise 3.3.11. Let X = 2
∑∞

k=1 3−kBk for {Bk} i.i.d. Bernoulli random vari-
ables such that P(Bk = 1) = P(Bk = 0) = 1/2.

(a) Show that ΦX(3kπ) = ΦX(π) 6= 0 for k = 1, 2, . . ..
(b) Recall that X has the uniform distribution on the Cantor set C, as speci-

fied in Example 1.2.42. Verify that x 7→ FX (x) is everywhere continuous,
hence the law PX has no atoms (i.e. points of positive probability).

3.3.2. Inversion, continuity and convergence. Is it possible to recover the
distribution function from the characteristic function? Then answer is essentially
yes.

Theorem 3.3.12 (Lévy’s inversion theorem). Suppose ΦX is the characteris-
tic function of random variable X whose distribution function is FX . For any real
numbers a < b and θ, let

(3.3.5) ψa,b(θ) =
1

2π

∫ b

a

e−iθudu =
e−iθa − e−iθb

i2πθ
.

Then,

(3.3.6) lim
T↑∞

∫ T

−T

ψa,b(θ)ΦX (θ)dθ =
1

2
[FX(b) + FX (b−)]− 1

2
[FX(a) + FX (a−)] .

Furthermore, if
∫

R
|ΦX (θ)|dθ <∞, then X has the bounded continuous probability

density function

(3.3.7) fX(x) =
1

2π

∫

R

e−iθxΦX(θ)dθ .

Remark. The identity (3.3.7) is a special case of the Fourier transform inversion
formula, and as such is in ‘duality’ with ΦX(θ) =

∫
R
eiθxfX(x)dx of (3.3.4). The

formula (3.3.6) should be considered its integrated version, which thereby holds
even in the absence of a density for X .

Here is a simple application of the ‘duality’ between (3.3.7) and (3.3.4).

Example 3.3.13. The Cauchy density is fX(x) = 1/[π(1 + x2)]. Recall Example
3.3.7 that the density fS(s) = 0.5e−|s| has the positive, integrable characteristic
function 1/(1 + θ2). Thus, by (3.3.7),

0.5e−|s| =
1

2π

∫

R

1

1 + t2
e−itsdt .

Multiplying both sides by two, then changing t to x and s to −θ, we get (3.3.4) for
the Cauchy density, resulting with its characteristic function ΦX(θ) = e−|θ|.

When using characteristic functions for proving limit theorems we do not need
the explicit formulas of Lévy’s inversion theorem, but rather only the fact that the
characteristic function determines the law, that is:

Corollary 3.3.14. If the characteristic functions of two random variables X and

Y are the same, that is ΦX(θ) = ΦY (θ) for all θ, then X
D
= Y .



122 3. WEAK CONVERGENCE, clt AND POISSON APPROXIMATION

Remark. While the real-valued moment generating function MX(s) = E[esX ] is
perhaps a simpler object than the characteristic function, it has a somewhat limited
scope of applicability. For example, the law of a random variable X is uniquely
determined by MX(·) provided MX(s) is finite for all s ∈ [−δ, δ], some δ > 0 (c.f.
[Bil95, Theorem 30.1]). More generally, assuming all moments of X are finite, the
Hamburger moment problem is about uniquely determining the law of X from a
given sequence of moments EXk. You saw in Exercise 3.2.29 that this is always
possible when X has bounded support, but unfortunately, this is not always the
case when X has unbounded support. For more on this issue, see [Dur03, Section
2.3e].

Proof of Corollary 3.3.14. Since ΦX = ΦY , comparing the right side of
(3.3.6) for X and Y shows that

[FX (b) + FX(b−)]− [FX(a) + FX (a−)] = [FY (b) + FY (b−)]− [FY (a) + FY (a−)] .

As FX is a distribution function, both FX (a) → 0 and FX (a−) → 0 when a ↓ −∞.
For this reason also FY (a) → 0 and FY (a−) → 0. Consequently,

FX (b) + FX (b−) = FY (b) + FY (b−) for all b ∈ R .

In particular, this implies that FX = FY on the collection C of continuity points
of both FX and FY . Recall that FX and FY have each at most a countable set of
points of discontinuity (see Exercise 1.2.38), so the complement of C is countable,
and consequently C is a dense subset of R. Thus, as distribution functions are non-
decreasing and right-continuous we know that FX(b) = inf{FX(x) : x > b, x ∈ C}
and FY (b) = inf{FY (x) : x > b, x ∈ C}. Since FX(x) = FY (x) for all x ∈ C, this

identity extends to all b ∈ R, resulting with X
D
= Y . �

Remark. In Lemma 3.1.1, it was shown directly that the sum of independent
random variables of normal distributions N (µk , vk) has the normal distribution
N (µ, v) where µ =

∑
k µk and v =

∑
k vk . The proof easily reduces to dealing

with two independent random variables, X of distribution N (µ1, v1) and Y of
distribution N (µ2, v2) and showing that X+Y has the normal distribution N (µ1 +
µ2, v1+v2). Here is an easy proof of this result via characteristic functions. First by
the independence of X and Y (see Lemma 3.3.8), and their normality (see Example
3.3.6),

ΦX+Y (θ) = ΦX(θ)ΦY (θ) = exp(iµ1θ − v1θ
2/2) exp(iµ2θ − v2θ

2/2)

= exp(i(µ1 + µ2)θ −
1

2
(v1 + v2)θ

2)

We recognize this expression as the characteristic function corresponding to the
N (µ1 + µ2, v1 + v2) distribution, which by Corollary 3.3.14 must indeed be the
distribution of X + Y .

Proof of Lévy’s inversion theorem. Consider the product µ of the law
PX ofX which is a probability measure on R and Lebesgue’s measure of θ ∈ [−T, T ],
noting that µ is a finite measure on R× [−T, T ] of total mass 2T .
Fixing a < b ∈ R let ha,b(x, θ) = ψa,b(θ)e

iθx, where by (3.3.5) and Jensen’s
inequality for the modulus function (and the uniform measure on [a, b]),

|ha,b(x, θ)| = |ψa,b(θ)| ≤
1

2π

∫ b

a

|e−iθu|du =
b− a

2π
.
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Consequently,
∫
|ha,b|dµ <∞, and applying Fubini’s theorem, we conclude that

JT (a, b) :=

∫ T

−T

ψa,b(θ)ΦX (θ)dθ =

∫ T

−T

ψa,b(θ)
[ ∫

R

eiθxdPX(x)
]
dθ

=

∫ T

−T

[ ∫

R

ha,b(x, θ)dPX (x)
]
dθ =

∫

R

[ ∫ T

−T

ha,b(x, θ)dθ
]
dPX(x) .

Since ha,b(x, θ) is the difference between the function eiθu/(i2πθ) at u = x− a and
the same function at u = x− b, it follows that

∫ T

−T

ha,b(x, θ)dθ = R(x− a, T )−R(x− b, T ) .

Further, as the cosine function is even and the sine function is odd,

R(u, T ) =

∫ T

−T

eiθu

i2πθ
dθ =

∫ T

0

sin(θu)

πθ
dθ =

sgn(u)

π
S(|u|T ) ,

with S(r) =
∫ r

0
x−1 sinx dx for r > 0.

Even though the Lebesgue integral
∫∞
0 x−1 sinx dx does not exist, because both

the integral of the positive part and the integral of the negative part are infinite,
we still have that S(r) is uniformly bounded on (0,∞) and

lim
r↑∞

S(r) =
π

2

(c.f. Exercise 3.3.15). Consequently,

lim
T↑∞

[R(x− a, T )−R(x− b, T )] = ga,b(x) =





0 if x < a or x > b
1
2 if x = a or x = b

1 if a < x < b

.

Since S(·) is uniformly bounded, so is |R(x− a, T )−R(x− b, T )| and by bounded
convergence,

lim
T↑∞

JT (a, b) = lim
T↑∞

∫

R

[R(x− a, T )−R(x− b, T )]dPX(x) =

∫

R

ga,b(x)dPX (x)

=
1

2
PX({a}) + PX((a, b)) +

1

2
PX({b}) .

With PX({a}) = FX (a) − FX(a−), PX((a, b)) = FX(b−) − FX(a) and PX({b}) =
FX(b)− FX(b−), we arrive at the assertion (3.3.6).

Suppose now that
∫

R
|ΦX(θ)|dθ = C <∞. This implies that both the real and the

imaginary parts of eiθxΦX(θ) are integrable with respect to Lebesgue’s measure on
R, hence fX(x) of (3.3.7) is well defined. Further, |fX(x)| ≤ C is uniformly bounded
and by dominated convergence with respect to Lebesgue’s measure on R,

lim
h→0

|fX(x+ h)− fX(x)| ≤ lim
h→0

1

2π

∫

R

|e−iθx||ΦX(θ)||e−iθh − 1|dθ = 0,

implying that fX(·) is also continuous. Turning to prove that fX(·) is the density
of X , note that

|ψa,b(θ)ΦX (θ)| ≤ b− a

2π
|ΦX(θ)| ,



124 3. WEAK CONVERGENCE, clt AND POISSON APPROXIMATION

so by dominated convergence we have that

(3.3.8) lim
T↑∞

JT (a, b) = J∞(a, b) =

∫

R

ψa,b(θ)ΦX (θ)dθ .

Further, in view of (3.3.5), upon applying Fubini’s theorem for the integrable func-
tion e−iθuI[a,b](u)ΦX(θ) with respect to Lebesgue’s measure on R2, we see that

J∞(a, b) =
1

2π

∫

R

[ ∫ b

a

e−iθudu
]
ΦX(θ)dθ =

∫ b

a

fX(u)du ,

for the bounded continuous function fX(·) of (3.3.7). In particular, J∞(a, b) must
be continuous in both a and b. Comparing (3.3.8) with (3.3.6) we see that

J∞(a, b) =
1

2
[FX(b) + FX(b−)]− 1

2
[FX (a) + FX(a−)] ,

so the continuity of J∞(·, ·) implies that FX(·) must also be continuous everywhere,
with

FX (b)− FX (a) = J∞(a, b) =

∫ b

a

fX(u)du ,

for all a < b. This shows that necessarily fX(x) is a non-negative real-valued
function, which is the density of X . �

Exercise 3.3.15. Integrating
∫
z−1eizdz around the contour formed by the “up-

per” semi-circles of radii ε and r and the intervals [−r,−ε] and [r, ε], deduce that
S(r) =

∫ r

0 x
−1 sinxdx is uniformly bounded on (0,∞) with S(r) → π/2 as r →∞.

Our strategy for handling the clt and similar limit results is to establish the
convergence of characteristic functions and deduce from it the corresponding con-
vergence in distribution. One ingredient for this is of course the fact that the
characteristic function uniquely determines the corresponding law. Our next result
provides an important second ingredient, that is, an explicit sufficient condition for
uniform tightness in terms of the limit of the characteristic functions.

Lemma 3.3.16. Suppose {νn} are probability measures on (R,B) and Φνn
(θ) =

νn(eiθx) the corresponding characteristic functions. If Φνn
(θ) → Φ(θ) as n → ∞,

for each θ ∈ R and further Φ(θ) is continuous at θ = 0, then the sequence {νn} is
uniformly tight.

Remark. To see why continuity of the limit Φ(·) at 0 is required, consider the
sequence νn of normal distributions N (0, n2). From Example 3.3.6 we see that
the point-wise limit Φ(θ) = Iθ=0 of Φνn

(θ) = exp(−n2θ2/2) exists but is dis-
continuous at θ = 0. However, for any M < ∞ we know that νn([−M,M ]) =
ν1([−M/n,M/n]) → 0 as n → ∞, so clearly the sequence {νn} is not uniformly
tight. Indeed, the corresponding distribution functions Fn(x) = F1(x/n) converge
vaguely to F∞(x) = F1(0) = 1/2 which is not a distribution function (reflecting
escape of all the probability mass to ±∞).

Proof. We start the proof by deriving the key inequality

(3.3.9)
1

r

∫ r

−r

(1− Φµ(θ))dθ ≥ µ([−2/r, 2/r]c) ,
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which holds for every probability measure µ on (R,B) and any r > 0, relating the
smoothness of the characteristic function at 0 with the tail decay of the correspond-
ing probability measure at ±∞. To this end, fixing r > 0, note that

J(x) :=

∫ r

−r

(1− eiθx)dθ = 2r −
∫ r

−r

(cos θx + i sin θx)dθ = 2r − 2 sin rx

x
.

So J(x) is non-negative (since | sinu| ≤ |u| for all u), and bounded below by 2r −
2/|x| (since | sinu| ≤ 1). Consequently,

(3.3.10) J(x) ≥ max(2r − 2

|x| , 0) ≥ rI{|x|>2/r} .

Now, applying Fubini’s theorem for the function 1−eiθx whose modulus is bounded
by 2 and the product of the probability measure µ and Lebesgue’s measure on
[−r, r], which is a finite measure of total mass 2r, we get the identity

∫ r

−r

(1− Φµ(θ))dθ =

∫ r

−r

[ ∫

R

(1− eiθx)dµ(x)
]
dθ =

∫

R

J(x)dµ(x) .

Thus, the lower bound (3.3.10) and monotonicity of the integral imply that

1

r

∫ r

−r

(1− Φµ(θ))dθ =
1

r

∫

R

J(x)dµ(x) ≥
∫

R

I{|x|>2/r}dµ(x) = µ([−2/r, 2/r]c) ,

hence establishing (3.3.9).
We turn to the application of this inequality for proving the uniform tightness.

Since Φνn
(0) = 1 for all n and Φνn

(0) → Φ(0), it follows that Φ(0) = 1. Further,
Φ(θ) is continuous at θ = 0, so for any ε > 0, there exists r = r(ε) > 0 such that

ε

4
≥ |1− Φ(θ)| for all θ ∈ [−r, r],

and hence also
ε

2
≥ 1

r

∫ r

−r

|1− Φ(θ)|dθ .

The point-wise convergence of Φνn
to Φ implies that |1−Φνn

(θ)| → |1−Φ(θ)|. By
bounded convergence with respect to Uniform measure of θ on [−r, r], it follows
that for some finite n0 = n0(ε) and all n ≥ n0,

ε ≥ 1

r

∫ r

−r

|1− Φνn
(θ)|dθ ,

which in view of (3.3.9) results with

ε ≥ 1

r

∫ r

−r

[1− Φνn
(θ)]dθ ≥ νn([−2/r, 2/r]c) .

Since ε > 0 is arbitrary and M = 2/r is independent of n, by Definition 3.2.32 this
amounts to the uniform tightness of the sequence {νn}. �

Building upon Corollary 3.3.14 and Lemma 3.3.16 we can finally relate the point-
wise convergence of characteristic functions to the weak convergence of the corre-
sponding measures.

Theorem 3.3.17 (Lévy’s continuity theorem). Let νn, 1 ≤ n ≤∞ be proba-
bility measures on (R,B).

(a) If νn
w⇒ ν∞, then Φνn

(θ) → Φν∞(θ) for each θ ∈ R.
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(b) Conversely, if Φνn
(θ) converges point-wise to a limit Φ(θ) that is contin-

uous at θ = 0, then {νn} is a uniformly tight sequence and νn
w⇒ ν such

that Φν = Φ.

Proof. For part (a), since both x 7→ cos(θx) and x 7→ sin(θx) are bounded
continuous functions, the assumed weak convergence of νn to ν∞ implies that
Φνn

(θ) = νn(eiθx) → ν∞(eiθx) = Φν∞(θ) (c.f. Definition 3.2.17).
Turning to deal with part (b), recall that by Lemma 3.3.16 we know that the

collection Γ = {νn} is uniformly tight. Hence, by Prohorov’s theorem (see the
remark preceding the proof of Lemma 3.2.38), for every subsequence νn(m) there is a
further sub-subsequence νn(mk) that converges weakly to some probability measure
ν∞. Though in general ν∞ might depend on the specific choice of n(m), we deduce
from part (a) of the theorem that necessarily Φν∞ = Φ. Since the characteristic
function uniquely determines the law (see Corollary 3.3.14), here the same limit
ν = ν∞ applies for all choices of n(m). In particular, fixing h ∈ Cb(R), the sequence
yn = νn(h) is such that every subsequence yn(m) has a further sub-subsequence
yn(mk) that converges to y = ν(h). Consequently, yn = νn(h) → y = ν(h) (see

Lemma 2.2.11), and since this applies for all h ∈ Cb(R), we conclude that νn
w⇒ ν

such that Φν = Φ. �

Here is a direct consequence of Lévy’s continuity theorem.

Exercise 3.3.18. Show that if Xn
D−→ X∞, Yn

D−→ Y∞ and Yn is independent of

Xn for 1 ≤ n ≤ ∞, then Xn + Yn
D−→ X∞ + Y∞.

Combining Exercise 3.3.18 with the Portmanteau theorem and the clt, you can
now show that a finite second moment is necessary for the convergence in distribu-
tion of n−1/2

∑n
k=1 Xk for i.i.d. {Xk}.

Exercise 3.3.19. Suppose {Xk, X̃k} are i.i.d. and n−1/2
∑n

k=1 Xk
D−→ Z (with

the limit Z ∈ R).

(a) Set Yk = Xk − X̃k and show that n−1/2
∑n

k=1 Yk
D−→ Z − Z̃, with Z and

Z̃ i.i.d.
(b) Let Uk = YkI|Yk |≤b and Vk = YkI|Yk|>b. Show that for any u < ∞ and

all n,

P(
n∑

k=1

Yk ≥ u
√
n) ≥ P(

n∑

k=1

Uk ≥ u
√
n,

n∑

k=1

Vk ≥ 0) ≥ 1

2
P(

n∑

k=1

Uk ≥ u
√
n) .

(c) Apply the Portmanteau theorem and the clt for the bounded i.i.d. {Uk}
to get that for any u, b <∞,

P(Z − Z̃ ≥ u) ≥ 1

2
P(G ≥ u/

√
EU2

1 ) .

Considering the limit b→∞ followed by u→∞ deduce that EY 2
1 <∞.

(d) Conclude that if n−1/2
∑n

k=1 Xk
D−→ Z, then necessarily EX2

1 <∞.

Remark. The trick of replacing Xk by the variables Yk = Xk − X̃k whose law is

symmetric (i.e. Yk
D
= −Yk), is very useful in many problems. It is often called the

symmetrization trick.
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Exercise 3.3.20. Provide an example of a random variable X with a bounded
probability density function but for which

∫
R
|ΦX(θ)|dθ = ∞, and another example

of a random variable X whose characteristic function ΦX(θ) is not differentiable at
θ = 0.

As you find out next, Lévy’s inversion theorem can help when computing densities.

Exercise 3.3.21. Suppose the random variables Uk are i.i.d. where the law of each
Uk is the uniform probability measure on (−1, 1). Considering Example 3.3.7, show
that for each n ≥ 2, the probability density function of Sn =

∑n
k=1 Uk is

fSn
(s) =

1

π

∫ ∞

0

cos(θs)(sin θ/θ)ndθ ,

and deduce that
∫∞
0

cos(θs)(sin θ/θ)ndθ = 0 for all s > n ≥ 2.

Exercise 3.3.22. Deduce from Example 3.3.13 that if {Xk} are i.i.d. each having
the Cauchy density, then n−1

∑n
k=1Xk has the same distribution as X1, for any

value of n.

We next relate differentiability of ΦX(·) with the weak law of large numbers and
show that it does not imply that E|X | is finite.

Exercise 3.3.23. Let Sn =
∑n

k=1 Xk where the i.i.d. random variables {Xk} have
each the characteristic function ΦX(·).

(a) Show that if dΦX

dθ (0) = z ∈ C, then z = ia for some a ∈ R and n−1Sn
p→ a

as n→∞.
(b) Show that if n−1Sn

p→ a, then ΦX(±hk)nk → e±ia for any hk ↓ 0 and

nk = [1/hk], and deduce that dΦX

dθ (0) = ia.

(c) Conclude that the weak law of large numbers holds (i.e. n−1Sn
p→ a for

some non-random a), if and only if ΦX(·) is differentiable at θ = 0 (this
result is due to E.J.G. Pitman, see [Pit56]).

(d) Use Exercise 2.1.13 to provide a random variable X for which ΦX(·) is
differentiable at θ = 0 but E|X | = ∞.

As you show next, Xn
D−→ X∞ yields convergence of ΦXn

(·) to ΦX∞(·), uniformly
over compact subsets of R.

Exercise 3.3.24. Show that if Xn
D−→ X∞ then for any r finite,

lim
n→∞

sup
|θ|≤r

|ΦXn
(θ)− ΦX∞(θ)| = 0 .

Hint: By Theorem 3.2.7 you may further assume that Xn
a.s.→ X∞.

Characteristic functions of modulus one correspond to lattice or degenerate laws,
as you show in the following refinement of part (c) of Proposition 3.3.2.

Exercise 3.3.25. Suppose |ΦY (θ)| = 1 for some θ 6= 0.

(a) Show that Y is a (2π/θ)-lattice random variable, namely, that Y mod (2π/θ)
is P-degenerate.
Hint: Check conditions for equality when applying Jensen’s inequality for

(cos θY, sin θY ) and the convex function g(x, y) =
√
x2 + y2.

(b) Deduce that if in addition |ΦY (λθ)| = 1 for some λ /∈ Q then Y must be
P-degenerate, in which case ΦY (θ) = exp(iθc) for some c ∈ R.
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Building on the preceding two exercises, you are to prove next the following con-
vergence of types result.

Exercise 3.3.26. Suppose Zn
D−→ Y and βnZn + γn

D−→ Ŷ for some Ŷ , non-P-
degenerate Y , and non-random βn ≥ 0, γn.

(a) Show that βn → β ≥ 0 finite.
Hint: Start with the finiteness of limit points of {βn}.

(b) Deduce that γn → γ finite.

(c) Conclude that Ŷ
D
= βY + γ.

Hint: Recall Slutsky’s lemma.

Remark. This convergence of types fails for P-degenerate Y . For example, if

Zn
D
= N (0, n−3), then both Zn

D−→ 0 and nZn
D−→ 0. Similarly, if Zn

D
= N (0, 1)

then βnZn
D
= N (0, 1) for the non-converging sequence βn = (−1)n (of alternating

signs).

Mimicking the proof of Lévy’s inversion theorem, for random variables of bounded
support you get the following alternative inversion formula, based on the theory of
Fourier series.

Exercise 3.3.27. Suppose R.V. X supported on (0, t) has the characteristic func-
tion ΦX and the distribution function FX . Let θ0 = 2π/t and ψa,b(·) be as in

(3.3.5), with ψa,b(0) = b−a
2π .

(a) Show that for any 0 < a < b < t

lim
T↑∞

T∑

k=−T

θ0(1−
|k|
T

)ψa,b(kθ0)ΦX (kθ0) =
1

2
[FX (b)+FX (b−)]− 1

2
[FX (a)+FX (a−)] .

Hint: Recall that ST (r) =
∑T

k=1(1− k/T ) sinkr
k is uniformly bounded for

r ∈ (0, 2π) and integer T ≥ 1, and ST (r) → π−r
2 as T →∞.

(b) Show that if
∑

k |ΦX(kθ0)| < ∞ then X has the bounded continuous
probability density function, given for x ∈ (0, t) by

fX(x) =
θ0
2π

∑

k∈Z

e−ikθ0xΦX(kθ0) .

(c) Deduce that if R.V.s X and Y supported on (0, t) are such that ΦX(kθ0) =

ΦY (kθ0) for all k ∈ Z, then X
D
= Y .

Here is an application of the preceding exercise for the random walk on the circle
S1 of radius one (c.f. Definition 5.1.6 for the random walk on R).

Exercise 3.3.28. Let t = 2π and Ω denote the unit circle S1 parametrized by
the angular coordinate to yield the identification Ω = [0, t] where both end-points
are considered the same point. We equip Ω with the topology induced by [0, t] and
the surface measure λΩ similarly induced by Lebesgue’s measure (as in Exercise
1.4.37). In particular, R.V.-s on (Ω,BΩ) correspond to Borel periodic functions on
R, of period t. In this context we call U of law t−1λΩ a uniform R.V. and call
Sn = (

∑n
k=1 ξk)mod t, with i.i.d ξ, ξk ∈ Ω, a random walk.

(a) Verify that Exercise 3.3.27 applies for θ0 = 1 and R.V.-s on Ω.
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(b) Show that if probability measures νn on (Ω,BΩ) are such that Φνn
(k) →

ϕ(k) for n→∞ and fixed k ∈ Z, then νn
w⇒ ν∞ and ϕ(k) = Φν∞(k) for

all k ∈ Z.
Hint: Since Ω is compact the sequence {νn} is uniformly tight.

(c) Show that ΦU (k) = 1k=0 and ΦSn
(k) = Φξ(k)

n. Deduce from these facts

that if ξ has a density with respect to λΩ then Sn
D−→ U as n→∞.

Hint: Recall part (a) of Exercise 3.3.25.
(d) Check that if ξ = α is non-random for some α/t /∈ Q, then Sn does

not converge in distribution, but SKn

D−→ U for Kn which are uniformly
chosen in {1, 2, . . . , n}, independently of the sequence {ξk}.

3.3.3. Revisiting the clt. Applying the theory of Subsection 3.3.2 we pro-
vide an alternative proof of the clt, based on characteristic functions. One can
prove many other weak convergence results for sums of random variables by prop-
erly adapting this approach, which is exactly what we will do when demonstrating
the convergence to stable laws (see Exercise 3.3.33), and in proving the Poisson
approximation theorem (in Subsection 3.4.1), and the multivariate clt (in Section
3.5).
To this end, we start by deriving the analog of the bound (3.1.7) for the charac-

teristic function.

Lemma 3.3.29. If a random variable X has E(X) = 0 and E(X2) = v <∞, then
for all θ ∈ R,

∣∣∣ΦX (θ)−
(
1− 1

2
vθ2

)∣∣∣ ≤ θ2Emin(|X |2, |θ||X |3/6).

Proof. Let R2(x) = eix−1− ix− (ix)2/2. Then, rearranging terms, recalling
E(X) = 0 and using Jensen’s inequality for the modulus function, we see that

∣∣∣ΦX(θ)−
(
1− 1

2
vθ2

)∣∣∣ =
∣∣∣E

[
eiθX −1− iθX− i2

2
θ2X2

]∣∣∣ =
∣∣∣ER2(θX)

∣∣∣ ≤ E|R2(θX)|.

Since |R2(x)| ≤ min(|x|2, |x|3/6) for any x ∈ R (see also Exercise 3.3.34), by mono-
tonicity of the expectation we get that E|R2(θX)| ≤ Emin(|θX |2, |θX |3/6), com-
pleting the proof of the lemma. �

The following simple complex analysis estimate is needed for relating the approx-
imation of the characteristic function of summands to that of their sum.

Lemma 3.3.30. Suppose zn,k ∈ C are such that zn =
∑n

k=1 zn,k → z∞ and ηn =∑n
k=1 |zn,k|2 → 0 when n→∞. Then,

ϕn :=
n∏

k=1

(1 + zn,k) → exp(z∞) for n→∞.

Proof. Recall that the power series expansion

log(1 + z) =

∞∑

k=1

(−1)k−1zk

k
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converges for |z| < 1. In particular, for |z| ≤ 1/2 it follows that

| log(1 + z)− z| ≤
∞∑

k=2

|z|k
k

≤ |z|2
∞∑

k=2

2−(k−2)

k
≤ |z|2

∞∑

k=2

2−(k−1) = |z|2 .

Let δn = max{|zn,k| : k = 1, . . . , n}. Note that δ2n ≤ ηn, so our assumption that
ηn → 0 implies that δn ≤ 1/2 for all n sufficiently large, in which case

| logϕn − zn| = | log
n∏

k=1

(1 + zn,k)−
n∑

k=1

zn,k| ≤
n∑

k=1

| log(1 + zn,k)− zn,k| ≤ ηn .

With zn → z∞ and ηn → 0, it follows that logϕn → z∞. Consequently, ϕn →
exp(z∞) as claimed. �

We will give now an alternative proof of the clt of Theorem 3.1.2.

Proof of Theorem 3.1.2. From Example 3.3.6 we know that ΦG(θ) = e−
θ2

2

is the characteristic function of the standard normal distribution. So, by Lévy’s
continuity theorem it suffices to show that ΦbSn

(θ) → exp(−θ2/2) as n → ∞, for

each θ ∈ R. Recall that Ŝn =
∑n

k=1 Xn,k, with Xn,k = (Xk − µ)/
√
vn i.i.d.

random variables, so by independence (see Lemma 3.3.8) and scaling (see part (e)
of Proposition 3.3.2), we have that

ϕn := ΦbSn
(θ) =

n∏

k=1

ΦXn,k
(θ) = ΦY (n−1/2θ)n = (1 + zn/n)n,

where Y = (X1 − µ)/
√
v and zn = zn(θ) := n[ΦY (n−1/2θ) − 1]. Applying Lemma

3.3.30 for zn,k = zn/n it remains only to show that zn → −θ2/2 (for then ηn =
|zn|2/n→ 0). Indeed, since E(Y ) = 0 and E(Y 2) = 1, we have from Lemma 3.3.29
that

|zn + θ2/2| =
∣∣n[ΦY (n−1/2θ)− 1] + θ2/2

∣∣ ≤ EVn ,

for Vn = min(|θY |2, n−1/2|θY |3/6). With Vn
a.s.→ 0 as n → ∞ and Vn ≤ |θ|2|Y |2

which is integrable, it follows by dominated convergence that EVn → 0 as n→∞,
hence zn → −θ2/2 completing the proof of Theorem 3.1.2. �

We proceed with a brief introduction of stable laws, their domain of attraction
and the corresponding limit theorems (which are a natural generalization of the
clt).

Definition 3.3.31. Random variable Y has a stable law if it is non-degenerate

and for any m ≥ 1 there exist constants dm > 0 and cm, such that Y1 + . . .+Ym
D
=

dmY + cm, where {Yi} are i.i.d. copies of Y . Such variable has a symmetric stable

law if in addition Y
D
= −Y . We further say that random variable X is in the

domain of attraction of non-degenerate Y if there exist constants bn > 0 and an

such that Zn(X) = (Sn − an)/bn
D−→ Y for Sn =

∑n
k=1Xk and i.i.d. copies Xk of

X.

By definition, the collection of stable laws is closed under the affine map Y 7→
±√vY +µ for µ ∈ R and v > 0 (which correspond to the centering and scale of the
law, but not necessarily its mean and variance). Clearly, each stable law is in its
own domain of attraction and as we see next, only stable laws have a non-empty
domain of attraction.
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Proposition 3.3.32. If X is in the domain of attraction of some non-degenerate
variable Y , then Y must have a stable law.

Proof. Fix m ≥ 1, and setting n = km let βn = bn/bk > 0 and γn =
(an −mak)/bk. We then have the representation

βnZn(X) + γn =

m∑

i=1

Z
(i)
k ,

where Z
(i)
k = (X(i−1)k+1 + . . .+Xik − ak)/bk are i.i.d. copies of Zk(X). From our

assumption that Zk(X)
D−→ Y we thus deduce (by at most m − 1 applications of

Exercise 3.3.18), that βnZn(X)+γn
D−→ Ŷ , where Ŷ = Y1+. . .+Ym for i.i.d. copies

{Yi} of Y . Moreover, by assumption Zn(X)
D−→ Y , hence by the convergence of

types Ŷ
D
= dmY + cm for some finite non-random dm ≥ 0 and cm (c.f. Exercise

3.3.26). Recall Lemma 3.3.8 that ΦbY (θ) = [ΦY (θ)]m. So, with Y assumed non-

degenerate the same applies to Ŷ (see Exercise 3.3.25), and in particular dm > 0.
Since this holds for any m ≥ 1, by definition Y has a stable law. �

We have already seen two examples of symmetric stable laws, namely those asso-
ciated with the zero-mean normal density and with the Cauchy density of Example
3.3.13. Indeed, as you show next, for each α ∈ (0, 2) there corresponds the sym-
metric α-stable variable Yα whose characteristic function is ΦYα

(θ) = exp(−|θ|α)
(so the Cauchy distribution corresponds to the symmetric stable of index α = 1
and the normal distribution corresponds to index α = 2).

Exercise 3.3.33. Fixing α ∈ (0, 2), suppose X
D
= −X and P(|X | > x) = x−α for

all x ≥ 1.

(a) Check that ΦX(θ) = 1−γ(|θ|)|θ|α where γ(r) = α
∫∞

r
(1−cosu)u−(α+1)du

converges as r ↓ 0 to γ(0) finite and positive.

(b) Setting ϕα,0(θ) = exp(−|θ|α), bn = (γ(0)n)1/α and Ŝn = b−1
n

∑n
k=1 Xk

for i.i.d. copies Xk of X, deduce that ΦbSn
(θ) → ϕα,0(θ) as n → ∞, for

any fixed θ ∈ R.
(c) Conclude that X is in the domain of attraction of a symmetric stable

variable Yα, whose characteristic function is ϕα,0(·).
(d) Fix α = 1 and show that with probability one lim supn→∞ Ŝn = ∞ and

lim infn→∞ Ŝn = −∞.
Hint: Recall Kolmogorov’s 0-1 law. The same proof applies for any α > 0
once we verify that Yα has unbounded support.

(e) Show that if α = 1 then 1
n log n

∑n
k=1 |Xk| → 1 in probability but not

almost surely (in contrast, X is integrable when α > 1, in which case the
strong law of large numbers applies).

Remark. While outside the scope of these notes, one can show that (up to scaling)
any symmetric stable variable must be of the form Yα for some α ∈ (0, 2]. Further,

for any α ∈ (0, 2) the necessary and sufficient condition for X
D
= −X to be in the

domain of attraction of Yα is that the function L(x) = xαP(|X | > x) is slowly
varying at ∞ (that is, L(ux)/L(x) → 1 for x → ∞ and fixed u > 0). Indeed, as
shown for example in [Bre92, Theorem 9.32], up to the mapping Y 7→ √

vY + µ,
the collection of all stable laws forms a two parameter family Yα,κ, parametrized
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by the index α ∈ (0, 2] and skewness κ ∈ [−1, 1]. The corresponding characteristic
functions are

(3.3.11) ϕα,κ(θ) = exp(−|θ|α(1 + iκsgn(θ)gα(θ))) ,

where g1(r) = (2/π) log |r| and gα = tan(πα/2) is constant for all α 6= 1 (in
particular, g2 = 0 so the parameter κ is irrelevant when α = 2). Further, in case
α < 2 the domain of attraction of Yα,κ consists precisely of the random variables
X for which L(x) = xαP(|X | > x) is slowly varying at ∞ and (P(X > x)−P(X <
−x))/P(|X | > x) → κ as x → ∞ (for example, see [Bre92, Theorem 9.34]). To
complete this picture, we recall [Fel71, Theorem XVII.5.1], that X is in the domain
of attraction of the normal variable Y2 if and only if L(x) = E[X2I|X|≤x] is slowly

varying (as is of course the case whenever EX2 is finite).

As shown in the following exercise, controlling the modulus of the remainder term
for the n-th order Taylor approximation of eix one can generalize the bound on
ΦX(θ) beyond the case n = 2 of Lemma 3.3.29.

Exercise 3.3.34. For any x ∈ R and non-negative integer n, let

Rn(x) = eix −
n∑

k=0

(ix)k

k!
.

(a) Show that Rn(x) =
∫ x

0
iRn−1(y)dy for all n ≥ 1 and deduce by induction

on n that

|Rn(x)| ≤ min
(2|x|n

n!
,
|x|n+1

(n+ 1)!

)
for all x ∈ R, n = 0, 1, 2, . . . .

(b) Conclude that if E|X |n <∞ then

∣∣ΦX(θ)−
n∑

k=0

(iθ)kEXk

k!

∣∣ ≤ |θ|nE
[
min

(2|X |n
n!

,
|θ||X |n+1

(n+ 1)!

)]
.

By solving the next exercise you generalize the proof of Theorem 3.1.2 via char-
acteristic functions to the setting of Lindeberg’s clt.

Exercise 3.3.35. Consider Ŝn =
∑n

k=1Xn,k for mutually independent random
variables Xn,k, k = 1, . . . , n, of zero mean and variance vn,k, such that vn =∑n

k=1 vn,k → 1 as n→∞.

(a) Fixing θ ∈ R show that

ϕn = ΦbSn
(θ) =

n∏

k=1

(1 + zn,k) ,

where zn,k = ΦXn,k
(θ)− 1.

(b) With z∞ = −θ2/2, use Lemma 3.3.29 to verify that |zn,k| ≤ 2θ2vn,k and
further, for any ε > 0,

|zn − vnz∞| ≤
n∑

k=1

|zn,k − vn,kz∞| ≤ θ2gn(ε) +
|θ|3
6
εvn ,

where zn =
∑n

k=1 zn,k and gn(ε) is given by (3.1.4).
(c) Recall that Lindeberg’s condition gn(ε) → 0 implies that r2n = maxk vn,k →

0 as n → ∞. Deduce that then zn → z∞ and ηn =
∑n

k=1 |zn,k|2 → 0
when n→∞.
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(d) Applying Lemma 3.3.30, conclude that Ŝn
D−→ G.

We conclude this section with an exercise that reviews various techniques one may
use for establishing convergence in distribution for sums of independent random
variables.

Exercise 3.3.36. Throughout this problem Sn =
∑n

k=1 Xk for mutually indepen-
dent random variables {Xk}.

(a) Suppose that P(Xk = kα) = P(Xk = −kα) = 1/(2kβ) and P(Xk = 0) =
1 − k−β. Show that for any fixed α ∈ R and β > 1, the series Sn(ω)
converges almost surely as n→∞.

(b) Consider the setting of part (a) when 0 ≤ β < 1 and γ = 2α − β + 1 is

positive. Find non-random bn such that b−1
n Sn

D−→ Z and 0 < FZ(z) < 1
for some z ∈ R. Provide also the characteristic function ΦZ(θ) of Z.

(c) Repeat part (b) in case β = 1 and α > 0 (see Exercise 3.1.11 for α = 0).
(d) Suppose now that P(Xk = 2k) = P(Xk = −2k) = 1/(2k2) and P(Xk =

1) = P(Xk = −1) = 0.5(1− k−2). Show that Sn/
√
n

D−→ G.

3.4. Poisson approximation and the Poisson process

Subsection 3.4.1 deals with the Poisson approximation theorem and few of its ap-
plications. It leads naturally to the introduction of the Poisson process in Subsection
3.4.2, where we also explore its relation to sums of i.i.d. Exponential variables and
to order statistics of i.i.d. uniform random variables.

3.4.1. Poisson approximation. The Poisson approximation theorem is about
the law of the sum Sn of a large number (= n) of independent random variables.
In contrast to the clt that also deals with such objects, here all variables are non-
negative integer valued and the variance of Sn remains bounded, allowing for the
approximation in law of Sn by an integer valued variable. The Poisson distribution
results when the number of terms in the sum grows while the probability that each
of them is non-zero decays. As such, the Poisson approximation is about counting
the number of occurrences among many independent rare events.

Theorem 3.4.1 (Poisson approximation). Let Sn =

n∑

k=1

Zn,k, where for each

n the random variables Zn,k for 1 ≤ k ≤ n, are mutually independent, each taking
value in the set of nonnegative integers. Suppose that pn,k = P(Zn,k = 1) and
εn,k = P(Zn,k ≥ 2) are such that as n→∞,

(a)

n∑

k=1

pn,k → λ <∞,

(b) max
k=1,··· ,n

{pn,k} → 0,

(c)

n∑

k=1

εn,k → 0.

Then, Sn
D−→ Nλ of a Poisson distribution with parameter λ, as n→∞.
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Proof. The first step of the proof is to apply truncation by comparing Sn

with

Sn =

n∑

k=1

Zn,k ,

where Zn,k = Zn,kIZn,k≤1 for k = 1, . . . , n. Indeed, observe that,

P(Sn 6= Sn) ≤
n∑

k=1

P(Zn,k 6= Zn,k) =
n∑

k=1

P(Zn,k ≥ 2)

=

n∑

k=1

εn,k → 0 for n→∞, by assumption (c) .

Hence, (Sn − Sn)
p→ 0. Consequently, the convergence Sn

D−→ Nλ of the sums of

truncated variables imply that also Sn
D−→ Nλ (c.f. Exercise 3.2.8).

As seen in the context of the clt, characteristic functions are a powerful tool
for the convergence in distribution of sums of independent random variables (see
Subsection 3.3.3). This is also evident in our proof of the Poisson approximation

theorem. That is, to prove that Sn
D−→ Nλ, if suffices by Levy’s continuity theorem

to show the convergence of the characteristic functions ΦSn
(θ) → ΦNλ

(θ) for each
θ ∈ R.
To this end, recall that Zn,k are independent Bernoulli variables of parameters
pn,k, k = 1, . . . , n. Hence, by Lemma 3.3.8 and Example 3.3.5 we have that for
zn,k = pn,k(eiθ − 1),

ΦSn
(θ) =

n∏

k=1

ΦZn,k
(θ) =

n∏

k=1

(1− pn,k + pn,ke
iθ) =

n∏

k=1

(1 + zn,k) .

Our assumption (a) implies that for n→∞

zn :=

n∑

k=1

zn,k = (

n∑

k=1

pn,k)(eiθ − 1) → λ(eiθ − 1) := z∞ .

Further, since |zn,k| ≤ 2pn,k, our assumptions (a) and (b) imply that for n→∞,

ηn =

n∑

k=1

|zn,k|2 ≤ 4

n∑

k=1

p2
n,k ≤ 4( max

k=1,...,n
{pn,k})(

n∑

k=1

pn,k) → 0 .

Applying Lemma 3.3.30 we conclude that when n→∞,

ΦSn
(θ) → exp(z∞) = exp(λ(eiθ − 1)) = ΦNλ

(θ)

(see (3.3.3) for the last identity), thus completing the proof. �

Remark. Recall Example 3.2.25 that the weak convergence of the laws of the
integer valued Sn to that of Nλ also implies their convergence in total variation.
In the setting of the Poisson approximation theorem, taking λn =

∑n
k=1 pn,k, the

more quantitative result

||PSn
−PNλn

||tv =

∞∑

k=0

|P(Sn = k)−P(Nλn
= k)| ≤ 2 min(λ−1

n , 1)

n∑

k=1

p2
n,k

due to Stein (1987) also holds (see also [Dur03, (2.6.5)] for a simpler argument,
due to Hodges and Le Cam (1960), which is just missing the factor min(λ−1

n , 1)).
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For the remainder of this subsection we list applications of the Poisson approxi-
mation theorem, starting with

Example 3.4.2 (Poisson approximation for the Binomial). Take indepen-
dent variables Zn,k ∈ {0, 1}, so εn,k = 0, with pn,k = pn that does not depend on

k. Then, the variable Sn = Sn has the Binomial distribution of parameters (n, pn).
By Stein’s result, the Binomial distribution of parameters (n, pn) is approximated
well by the Poisson distribution of parameter λn = npn, provided pn → 0. In case
λn = npn → λ <∞, Theorem 3.4.1 yields that the Binomial (n, pn) laws converge
weakly as n→∞ to the Poisson distribution of parameter λ. This is in agreement
with Example 3.1.7 where we approximate the Binomial distribution of parameters
(n, p) by the normal distribution, for in Example 3.1.8 we saw that, upon the same
scaling, Nλn

is also approximated well by the normal distribution when λn →∞.

Recall the occupancy problem where we distribute at random r distinct balls
among n distinct boxes and each of the possible nr assignments of balls to boxes is
equally likely. In Example 2.1.10 we considered the asymptotic fraction of empty
boxes when r/n → α and n → ∞. Noting that the number of balls Mn,k in the
k-th box follows the Binomial distribution of parameters (r, n−1), we deduce from

Example 3.4.2 that Mn,k
D−→ Nα. Thus, P(Mn,k = 0) → P(Nα = 0) = e−α.

That is, for large n each box is empty with probability about e−α, which may
explain (though not prove) the result of Example 2.1.10. Here we use the Poisson
approximation theorem to tackle a different regime, in which r = rn is of order
n logn, and consequently, there are fewer empty boxes.

Proposition 3.4.3. Let Sn denote the number of empty boxes. Assuming r = rn

is such that ne−r/n → λ ∈ [0,∞), we have that Sn
D−→ Nλ as n→∞.

Proof. Let Zn,k = IMn,k=0 for k = 1, . . . , n, that is Zn,k = 1 if the k-th box

is empty and Zn,k = 0 otherwise. Note that Sn =
∑n

k=1 Zn,k, with each Zn,k

having the Bernoulli distribution of parameter pn = (1 − n−1)r. Our assumption
about rn guarantees that npn → λ. If the occupancy Zn,k of the various boxes were
mutually independent, then the stated convergence of Sn toNλ would have followed
from Theorem 3.4.1. Unfortunately, this is not the case, so we present a bare-
hands approach showing that the dependence is weak enough to retain the same
conclusion. To this end, first observe that for any l = 1, 2, . . . , n, the probability
that given boxes k1 < k2 < . . . < kl are all empty is,

P(Zn,k1 = Zn,k2 = · · · = Zn,kl
= 1) = (1− l

n
)r .

Let pl = pl(r, n) = P(Sn = l) denote the probability that exactly l boxes are empty
out of the n boxes into which the r balls are placed at random. Then, considering
all possible choices of the locations of these l ≥ 1 empty boxes we get the identities
pl(r, n) = bl(r, n)p0(r, n− l) for

(3.4.1) bl(r, n) =

(
n

l

)(
1− l

n

)r
.

Further, p0(r, n) = 1−P( at least one empty box), so that by the inclusion-exclusion
formula,

(3.4.2) p0(r, n) =

n∑

l=0

(−1)lbl(r, n) .
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According to part (b) of Exercise 3.4.4, p0(r, n) → e−λ. Further, for fixed l we
have that (n − l)e−r/(n−l) → λ, so as before we conclude that p0(r, n − l) → e−λ.
By part (a) of Exercise 3.4.4 we know that bl(r, n) → λl/l! for fixed l, hence
pl(r, n) → e−λλl/l!. As pl = P(Sn = l), the proof of the proposition is thus
complete. �

The following exercise provides the estimates one needs during the proof of Propo-
sition 3.4.3 (for more details, see [Dur03, Theorem 2.6.6]).

Exercise 3.4.4. Assuming ne−r/n → λ, show that

(a) bl(r, n) of (3.4.1) converges to λl/l! for each fixed l.
(b) p0(r, n) of (3.4.2) converges to e−λ.

Finally, here is an application of Proposition 3.4.3 to the coupon collector’s prob-
lem of Example 2.1.8, where Tn denotes the number of independent trials, it takes
to have at least one representative of each of the n possible values (and each trial
produces a value Ui that is distributed uniformly on the set of n possible values).

Example 3.4.5 (Revisiting the coupon collector’s problem). For any
x ∈ R, we have that

(3.4.3) lim
n→∞

P(Tn − n logn ≤ nx) = exp(−e−x),

which is an improvement over our weak law result that Tn/n logn→ 1. Indeed, to
derive (3.4.3) view the first r trials of the coupon collector as the random placement
of r balls into n distinct boxes that correspond to the n possible values. From this
point of view, the event {Tn ≤ r} corresponds to filling all n boxes with the r
balls, that is, having none empty. Taking r = rn = [n logn + nx] we have that
ne−r/n → λ = e−x, and so it follows from Proposition 3.4.3 that P(Tn ≤ rn) →
P(Nλ = 0) = e−λ, as stated in (3.4.3).
Note that though Tn =

∑n
k=1 Xn,k with Xn,k independent, the convergence in dis-

tribution of Tn, given by (3.4.3), is to a non-normal limit. This should not surprise
you, for the terms Xn,k with k near n are large and do not satisfy Lindeberg’s
condition.

Exercise 3.4.6. Recall that τn
` denotes the first time one has ` distinct values

when collecting coupons that are uniformly distributed on {1, 2, . . . , n}. Using the
Poisson approximation theorem show that if n → ∞ and ` = `(n) is such that

n−1/2` → λ ∈ [0,∞), then τn
` − `

D−→ N with N a Poisson random variable of
parameter λ2/2.

3.4.2. Poisson Process. The Poisson process is a continuous time stochastic
process ω 7→ Nt(ω), t ≥ 0 which belongs to the following class of counting processes.

Definition 3.4.7. A counting process is a mapping ω 7−→ Nt(ω), where Nt(ω)
is a piecewise constant, nondecreasing, right continuous function of t ≥ 0, with
N0(ω) = 0 and (countably) infinitely many jump discontinuities, each of whom is
of size one.
Associated with each sample path Nt(ω) of such a process are the jump times

0 = T0 < T1 < · · · < Tn < · · · such that Tk = inf{t ≥ 0 : Nt ≥ k} for each k, or
equivalently

Nt = sup{k ≥ 0 : Tk ≤ t}.
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In applications we find such Nt as counting the number of discrete events occurring
in the interval [0, t] for each t ≥ 0, with Tk denoting the arrival or occurrence time
of the k-th such event.

Remark. It is possible to extend the notion of counting processes to discrete
events indexed on Rd, d ≥ 2. This is done by assigning random integer counts
NA to Borel subsets A of Rd in an additive manner, that is, NA∪B = NA + NB

whenever A and B are disjoint. Such processes are called point processes. See also
Exercise 7.1.13 for more about Poisson point process and inhomogeneous Poisson
processes of non-constant rate.

Among all counting processes we characterize the Poisson process by the joint
distribution of its jump (arrival) times {Tk}.
Definition 3.4.8. The Poisson process of rate λ > 0 is the unique counting

process with the gaps between jump times τk = Tk − Tk−1, k = 1, 2, . . . being i.i.d.
random variables, each having the exponential distribution of parameter λ.

Thus, from Exercise 1.4.46 we deduce that the k-th arrival time Tk of the Poisson
process of rate λ has the gamma density of parameters α = k and λ,

fTk
(u) =

λkuk−1

(k − 1)!
e−λu1u>0 .

As we have seen in Example 2.3.7, counting processes appear in the context of
renewal theory. In particular, as shown in Exercise 2.3.8, the Poisson process of

rate λ satisfies the strong law of large numbers t−1Nt
a.s.→ λ.

Recall that a random variable N has the Poisson(µ) law if

P(N = n) =
µn

n!
e−µ, n = 0, 1, 2, . . . .

Our next proposition, which is often used as an alternative definition of the Poisson
process, also explains its name.

Proposition 3.4.9. For any ` and any 0 = t0 < t1 < · · · < t`, the increments
Nt1 , Nt2 −Nt1 , . . . , Nt`

−Nt`−1
, are independent random variables and for some

λ > 0 and all t > s ≥ 0, the increment Nt −Ns has the Poisson(λ(t− s)) law.

Thus, the Poisson process has independent increments, each having a Poisson law,
where the parameter of the count Nt − Ns is proportional to the length of the
corresponding interval [s, t].

The proof of Proposition 3.4.9 relies on the lack of memory of the exponential
distribution. That is, if the law of a random variable T is exponential (of some
parameter λ > 0), then for all t, s ≥ 0,

(3.4.4) P(T > t+ s|T > t) =
P(T > t+ s)

P(T > t)
=
e−λ(t+s)

e−λt
= e−λs = P(T > s) .

Indeed, the key to the proof of Proposition 3.4.9 is the following lemma.

Lemma 3.4.10. Fixing t > 0, the variables {τ ′j} with τ ′1 = TNt+1 − t, and τ ′j =
TNt+j − TNt+j−1, j ≥ 2 are i.i.d. each having the exponential distribution of pa-
rameter λ. Further, the collection {τ ′j} is independent of Nt which has the Poisson
distribution of parameter λt.
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Remark. Note that in particular, Et = TNt+1 − t which counts the time till
next arrival occurs, hence called the excess life time at t, follows the exponential
distribution of parameter λ.

Proof. Fixing t > 0 and n ≥ 1 let Hn(x) = P(t ≥ Tn > t − x). With
Hn(x) =

∫ x

0 fTn
(t− y)dy and Tn independent of τn+1, we get by Fubini’s theorem

(for It≥Tn>t−τn+1), and the integration by parts of Lemma 1.4.30 that

P(Nt = n) = P(t ≥ Tn > t− τn+1) = E[Hn(τn+1)]

=

∫ t

0

fTn
(t− y)P(τn+1 > y)dy

=

∫ t

0

λn(t− y)n−1

(n− 1)!
e−λ(t−y)e−λydy = e−λt (λt)

n

n!
.(3.4.5)

As this applies for any n ≥ 1, it follows that Nt has the Poisson distribution of
parameter λt. Similarly, observe that for any s1 ≥ 0 and n ≥ 1,

P(Nt = n, τ ′1 > s1) = P(t ≥ Tn > t− τn+1 + s1)

=

∫ t

0

fTn
(t− y)P(τn+1 > s1 + y)dy

= e−λs1P(Nt = n) = P(τ1 > s1)P(Nt = n) .

Since T0 = 0, P(Nt = 0) = e−λt and T1 = τ1, in view of (3.4.4) this conclusion
extends to n = 0, proving that τ ′1 is independent of Nt and has the same exponential
law as τ1.
Next, fix arbitrary integer k ≥ 2 and non-negative sj ≥ 0 for j = 1, . . . , k. Then,

for any n ≥ 0, since {τn+j , j ≥ 2} are i.i.d. and independent of (Tn, τn+1),

P(Nt = n, τ ′j > sj , j = 1, . . . , k)

= P(t ≥ Tn > t− τn+1 + s1, Tn+j − Tn+j−1 > sj , j = 2, . . . , k)

= P(t ≥ Tn > t− τn+1 + s1)

k∏

j=2

P(τn+j > sj) = P(Nt = n)

k∏

j=1

P(τj > sj).

Since sj ≥ 0 and n ≥ 0 are arbitrary, this shows that the random variables Nt and
τ ′j , j = 1, . . . , k are mutually independent (c.f. Corollary 1.4.12), with each τ ′j hav-
ing an exponential distribution of parameter λ. As k is arbitrary, the independence
of Nt and the countable collection {τ ′j} follows by Definition 1.4.3. �

Proof of Proposition 3.4.9. Fix t, sj ≥ 0, j = 1, . . . , k, and non-negative
integers n and mj , 1 ≤ j ≤ k. The event {Nsj

= mj , 1 ≤ j ≤ k} is of the form
{(τ1, . . . , τr) ∈ H} for r = mk + 1 and

H =

k⋂

j=1

{x ∈ [0,∞)r : x1 + · · ·+ xmj
≤ sj < x1 + · · ·+ xmj+1} .

Since the event {(τ ′1, . . . , τ ′r) ∈ H} is merely {Nt+sj
− Nt = mj , 1 ≤ j ≤ k}, it

follows form Lemma 3.4.10 that

P(Nt = n,Nt+sj
−Nt = mj , 1 ≤ j ≤ k) = P(Nt = n, (τ ′1, . . . , τ

′
r) ∈ H)

= P(Nt = n)P((τ1, . . . , τr) ∈ H) = P(Nt = n)P(Nsj
= mj , 1 ≤ j ≤ k) .
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By induction on ` this identity implies that if 0 = t0 < t1 < t2 < · · · < t`, then

(3.4.6) P(Nti
−Nti−1 = ni, 1 ≤ i ≤ `) =

∏̀

i=1

P(Nti−ti−1 = ni)

(the case ` = 1 is trivial, and to advance the induction to ` + 1 set k = `, t = t1,

n = n1 and sj = tj+1 − t1, mj =
∑j+1

i=2 ni).
Considering (3.4.6) for ` = 2, t2 = t > s = t1, and summing over the values of n1

we see that P(Nt −Ns = n2) = P(Nt−s = n2), hence by (3.4.5) we conclude that
Nt −Ns has the Poisson distribution of parameter λ(t− s), as claimed. �

The Poisson process is also related to the order statistics {Vn,k} for the uniform
measure, as stated in the next two exercises.

Exercise 3.4.11. Let U1, U2, . . . , Un be i.i.d. with each Ui having the uniform
measure on (0, 1]. Denote by Vn,k the k-th smallest number in {U1, . . . , Un}.

(a) Show that (Vn,1, . . . , Vn,n) has the same law as (T1/Tn+1, . . . , Tn/Tn+1),
where {Tk} are the jump (arrival) times for a Poisson process of rate λ
(see Subsection 1.4.2 for the definition of the law PX of a random vector
X).

(b) Taking λ = 1, deduce that nVn,k
D−→ Tk as n→∞ while k is fixed, where

Tk has the gamma density of parameters α = k and s = 1.

Exercise 3.4.12. Fixing any positive integer n and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t,
show that

P(Tk ≤ tk, k = 1, . . . , n|Nt = n) =
n!

tn

∫ t1

0

∫ t2

x1

· · · (
∫ tn

xn−1

dxn)dxn−1 · · · dx1 .

That is, conditional on the event Nt = n, the first n jump times {Tk : k = 1, . . . , n}
have the same law as the order statistics {Vn,k : k = 1, . . . , n} of a sample of n i.i.d
random variables U1, . . . , Un, each of which is uniformly distributed in [0, t].

Here is an application of Exercise 3.4.12.

Exercise 3.4.13. Consider a Poisson process Nt of rate λ and jump times {Tk}.

(a) Compute the values of g(n) = E(INt=n

n∑

k=1

Tk).

(b) Compute the value of v = E(

Nt∑

k=1

(t− Tk)).

(c) Suppose that Tk is the arrival time to the train station of the k-th pas-
senger on a train that departs the station at time t. What is the meaning
of Nt and of v in this case?

The representation of the order statistics {Vn,k} in terms of the jump times of
a Poisson process is very useful when studying the large n asymptotics of their
spacings {Rn,k}. For example,

Exercise 3.4.14. Let Rn,k = Vn,k − Vn,k−1, k = 1, . . . , n, denote the spacings
between Vn,k of Exercise 3.4.11 (with Vn,0 = 0). Show that as n→∞,

(3.4.7)
n

log n
max

k=1,...,n
Rn,k

p→ 1 ,
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and further for each fixed x ≥ 0,

(3.4.8) Gn(x) := n−1
n∑

k=1

I{Rn,k>x/n}
p→ e−x ,

(3.4.9) Bn(x) := P( min
k=1,...,n

Rn,k > x/n2) → e−x .

As we show next, the Poisson approximation theorem provides a characterization
of the Poisson process that is very attractive for modeling real-world phenomena.

Corollary 3.4.15. If Nt is a Poisson process of rate λ > 0, then for any fixed
k, 0 < t1 < t2 < · · · < tk and nonnegative integers n1, n2, · · · , nk,

P(Ntk+h −Ntk
= 1|Ntj

= nj , j ≤ k) = λh+ o(h),

P(Ntk+h −Ntk
≥ 2|Ntj

= nj , j ≤ k) = o(h),

where o(h) denotes a function f(h) such that h−1f(h) → 0 as h ↓ 0.

Proof. Fixing k, the tj and the nj , denote by A the event {Ntj
= nj , j ≤ k}.

For a Poisson process of rate λ the random variable Ntk+h −Ntk
is independent of

A with P(Ntk+h−Ntk
= 1) = e−λhλh and P(Ntk+h−Ntk

≥ 2) = 1−e−λh(1+λh).
Since e−λh = 1−λh+o(h) we see that the Poisson process satisfies this corollary. �

Our next exercise explores the phenomenon of thinning, that is, the partitioning
of Poisson variables as sums of mutually independent Poisson variables of smaller
parameter.

Exercise 3.4.16. Suppose {Xi} are i.i.d. with P(Xi = j) = pj for j = 0, 1, . . . , k
and N a Poisson random variable of parameter λ that is independent of {Xk}. Let

Nj =
N∑

i=1

IXi=j j = 0, . . . , k .

(a) Show that the variables Nj , j = 0, 1, . . . , k are mutually independent with
Nj having a Poisson distribution of parameter λpj .

(b) Show that the sub-sequence of jump times {T̃k} obtained by independently
keeping with probability p each of the jump times {Tk} of a Poisson pro-

cess Nt of rate λ, yields in turn a Poisson process Ñt of rate λp.

We conclude this section noting the superposition property, namely that the sum
of two independent Poisson processes is yet another Poisson process.

Exercise 3.4.17. Suppose Nt = N
(1)
t +N

(2)
t where N

(1)
t and N

(2)
t are two inde-

pendent Poisson processes of rates λ1 > 0 and λ2 > 0, respectively. Show that Nt

is a Poisson process of rate λ1 + λ2.

3.5. Random vectors and the multivariate clt

The goal of this section is to extend the clt to random vectors, that is, Rd-valued
random variables. Towards this end, we revisit in Subsection 3.5.1 the theory
of weak convergence, this time in the more general setting of Rd-valued random
variables. Subsection 3.5.2 is devoted to the extension of characteristic functions
and Lévy’s theorems to the multivariate setting, culminating with the Cramér-
wold reduction of convergence in distribution of random vectors to that of their
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one dimensional linear projections. Finally, in Subsection 3.5.3 we introduce the
important concept of Gaussian random vectors and prove the multivariate clt.

3.5.1. Weak convergence revisited. Recall Definition 3.2.17 of weak con-
vergence for a sequence of probability measures on a topological space S, which
suggests the following definition for convergence in distribution of S-valued random
variables.

Definition 3.5.1. We say that (S,BS)-valued random variables Xn converge in

distribution to a (S,BS)-valued random variable X∞, denoted by Xn
D−→ X∞, if

PXn

w⇒ PX∞ .

As already remarked, the Portmanteau theorem about equivalent characterizations
of the weak convergence holds also when the probability measures νn are on a Borel
measurable space (S,BS) with (S, ρ) any metric space (and in particular for S = Rd).

Theorem 3.5.2 (portmanteau theorem). The following five statements are
equivalent for any probability measures νn, 1 ≤ n ≤ ∞ on (S,BS), with (S, ρ) any
metric space.

(a) νn
w⇒ ν∞

(b) For every closed set F , one has lim sup
n→∞

νn(F ) ≤ ν∞(F )

(c) For every open set G, one has lim inf
n→∞

νn(G) ≥ ν∞(G)

(d) For every ν∞-continuity set A, one has lim
n→∞

νn(A) = ν∞(A)

(e) If the Borel function g : S 7→ R is such that ν∞(Dg) = 0, then νn ◦g−1 w⇒
ν∞ ◦ g−1 and if in addition g is bounded then νn(g) → ν∞(g).

Remark. For S = R, the equivalence of (a)–(d) is the content of Theorem 3.2.21
while Proposition 3.2.19 derives (e) out of (a) (in the context of convergence in

distribution, that is, Xn
D−→ X∞ and P(X∞ ∈ Dg) = 0 implying that g(Xn)

D−→
g(X∞)). In addition to proving the converse of the continuous mapping property,
we extend the validity of this equivalence to any metric space (S, ρ), for we shall
apply it again in Subsection 9.2, considering there S = C([0,∞)), the metric space
of all continuous functions on [0,∞).

Proof. The derivation of (b) ⇒ (c) ⇒ (d) in Theorem 3.2.21 applies for any
topological space. The direction (e) ⇒ (a) is also obvious since h ∈ Cb(S) has
Dh = ∅ and Cb(S) is a subset of the bounded Borel functions on the same space
(c.f. Exercise 1.2.20). So taking g ∈ Cb(S) in (e) results with (a). It thus remains
only to show that (a) ⇒ (b) and that (d) ⇒ (e), which we proceed to show next.
(a) ⇒ (b). Fixing A ∈ BS let ρA(x) = infy∈A ρ(x, y) : S 7→ [0,∞). Since |ρA(x) −
ρA(x′)| ≤ ρ(x, x′) for any x, x′, it follows that x 7→ ρA(x) is a continuous function
on (S, ρ). Consequently, hr(x) = (1 − rρA(x))+ ∈ Cb(S) for all r ≥ 0. Further,
ρA(x) = 0 for all x ∈ A, implying that hr ≥ IA for all r. Thus, applying part (a)
of the Portmanteau theorem for hr we have that

lim sup
n→∞

νn(A) ≤ lim
n→∞

νn(hr) = ν∞(hr) .

As ρA(x) = 0 if and only if x ∈ A it follows that hr ↓ IA as r →∞, resulting with

lim sup
n→∞

νn(A) ≤ ν∞(A) .
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Taking A = A = F a closed set, we arrive at part (b) of the theorem.
(d) ⇒ (e). Fix a Borel function g : S 7→ R with K = supx |g(x)| < ∞ such that
ν∞(Dg) = 0. Clearly, {α ∈ R : ν∞ ◦ g−1({α}) > 0} is a countable set. Thus, fixing
ε > 0 we can pick ` < ∞ and α0 < α1 < · · · < α` such that ν∞ ◦ g−1({αi}) = 0
for 0 ≤ i ≤ `, α0 < −K < K < α` and αi − αi−1 < ε for 1 ≤ i ≤ `. Let
Ai = {x : αi−1 < g(x) ≤ αi} for i = 1, . . . , `, noting that ∂Ai ⊂ {x : g(x) = αi−1,
or g(x) = αi} ∪ Dg. Consequently, by our assumptions about g(·) and {αi} we
have that ν∞(∂Ai) = 0 for each i = 1, . . . , `. It thus follows from part (d) of the
Portmanteau theorem that

∑̀

i=1

αiνn(Ai) →
∑̀

i=1

αiν∞(Ai)

as n→∞. Our choice of αi and Ai is such that g ≤ ∑`
i=1 αiIAi

≤ g + ε, resulting
with

νn(g) ≤
∑̀

i=1

αiνn(Ai) ≤ νn(g) + ε

for n = 1, 2, . . . ,∞. Considering first n → ∞ followed by ε ↓ 0, we establish that
νn(g) → ν∞(g). More generally, recall that Dh◦g ⊆ Dg for any g : S 7→ R and h ∈
Cb(R). Thus, by the preceding proof νn(h ◦ g) → ν∞(h ◦ g) as soon as ν∞(Dg) = 0.

This applies for every h ∈ Cb(R), so in this case νn ◦ g−1 w⇒ ν∞ ◦ g−1. �

We next show that the relation of Exercise 3.2.6 between convergences in proba-
bility and in distribution also extends to any metric space (S, ρ), a fact we will later
use in Subsection 9.2, when considering the metric space of all continuous functions
on [0,∞).

Corollary 3.5.3. If random variables Xn, 1 ≤ n ≤ ∞ on the same probability

space and taking value in a metric space (S, ρ) are such that ρ(Xn, X∞)
p→ 0, then

Xn
D−→ X∞.

Proof. Fixing h ∈ Cb(S) and ε > 0, we have by continuity of h(·) that Gr ↑ S,
where

Gr = {y ∈ S : |h(x)− h(y)| ≤ ε whenever ρ(x, y) ≤ r−1} .
By definition, if X∞ ∈ Gr and ρ(Xn, X∞) ≤ r−1 then |h(Xn)−h(X∞)| ≤ ε. Hence,
for any n, r ≥ 1,

E[|h(Xn)− h(X∞)|] ≤ ε+ 2‖h‖∞(P(X∞ /∈ Gr) + P(ρ(Xn, X∞) > r−1)) ,

where ‖h‖∞ = supx∈S |h(x)| is finite (by the boundedness of h). Considering n→∞
followed by r → ∞ we deduce from the convergence in probability of ρ(Xn, X∞)
to zero, that

lim sup
n→∞

E[|h(Xn)− h(X∞)|] ≤ ε+ 2‖h‖∞ lim
r→∞

P(X∞ /∈ Gr) = ε .

Since this applies for any ε > 0, it follows by the triangle inequality that Eh(Xn) →
Eh(X∞) for all h ∈ Cb(S), i.e. Xn

D−→ X∞. �

Remark. The notion of distribution function for an Rd-valued random vector
X = (X1, . . . , Xd) is

FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) .
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Inducing a partial order on Rd by x ≤ y if and only if x− y has only non-negative
coordinates, each distribution function FX(x) has the three properties listed in
Theorem 1.2.36. Unfortunately, these three properties are not sufficient for a given
function F : Rd 7→ [0, 1] to be a distribution function. For example, since the mea-

sure of each rectangle A =
∏d

i=1(ai, bi] should be positive, the additional constraint

of the form ∆AF =
∑2d

j=1±F (xj) ≥ 0 should hold if F (·) is to be a distribution

function. Here xj enumerates the 2d corners of the rectangle A and each corner is
taken with a positive sign if and only if it has an even number of coordinates from
the collection {a1, . . . , ad}. Adding the fourth property that ∆AF ≥ 0 for each
rectangle A ⊂ Rd, we get the necessary and sufficient conditions for F (·) to be a
distribution function of some Rd-valued random variable (c.f. [Dur03, Theorem
A.1.6] or [Bil95, Theorem 12.5] for a detailed proof).

Recall Definition 3.2.31 of uniform tightness, where for S = Rd we can take Kε =
[−Mε,Mε]

d with no loss of generality. Though Prohorov’s theorem about uniform
tightness (i.e. Theorem 3.2.34) is beyond the scope of these notes, we shall only
need in the sequel the fact that a uniformly tight sequence of probability measures
has at least one limit point. This can be proved for S = Rd in a manner similar
to what we have done in Theorem 3.2.37 and Lemma 3.2.38 for S = R1, using the
corresponding concept of distribution function FX (·) (see [Dur03, Theorem 2.9.2]
for more details).

3.5.2. Characteristic function. We start by extending the useful notion of
characteristic function to the context of Rd-valued random variables (which we also
call hereafter random vectors).

Definition 3.5.4. Adopting the notation (x, y) =
∑d

i=1 xiyi for x, y ∈ Rd, a ran-

dom vector X = (X1, X2, · · · , Xd) with values in Rd has the characteristic function

ΦX(θ) = E[ei(θ,X)] ,

where θ = (θ1, θ2, · · · , θd) ∈ Rd and i =
√
−1.

Remark. The characteristic function ΦX : Rd 7→ C exists for any X since

(3.5.1) ei(θ,X) = cos(θ,X) + i sin(θ,X) ,

with both real and imaginary parts being bounded (hence integrable) random vari-
ables. Actually, it is easy to check that all five properties of Proposition 3.3.2 hold,
where part (e) is modified to ΦAtX+b(θ) = exp(i(b, θ))ΦX (Aθ), for any non-random

d × d-dimensional matrix A and b ∈ Rd (with At denoting the transpose of the
matrix A).

Here is the extension of the notion of probability density function (as in Definition
1.2.39) to a random vector.

Definition 3.5.5. Suppose fX is a non-negative Borel measurable function with∫
Rd fX(x)dx = 1. We say that a random vector X = (X1, . . . , Xd) has a probability

density function fX(·) if for every b = (b1, . . . , bd),

FX (b) =

∫ b1

−∞
· · ·

∫ bd

−∞
fX(x1, . . . , xd)dxd · · · dx1
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(such fX is sometimes called the joint density of X1, . . . , Xd). This is the same as

saying that the law of X is of the form fXλ
d with λd the d-fold product Lebesgue

measure on Rd (i.e. the d > 1 extension of Example 1.3.60).

Example 3.5.6. We have the following extension of the Fourier transform formula
(3.3.4) to random vectors X with density,

ΦX(θ) =

∫

Rd

ei(θ,x)fX(x)dx

(this is merely a special case of the extension of Corollary 1.3.62 to h : Rd 7→ R).

We next state and prove the corresponding extension of Lévy’s inversion theorem.

Theorem 3.5.7 (Lévy’s inversion theorem). Suppose ΦX(θ) is the character-
istic function of random vector X = (X1, . . . , Xd) whose law is PX , a probability

measure on (Rd,BRd). If A = [a1, b1]× · · · × [ad, bd] with PX(∂A) = 0, then

(3.5.2) PX(A) = lim
T→∞

∫

[−T,T ]d

d∏

j=1

ψaj ,bj
(θj)ΦX(θ)dθ

for ψa,b(·) of (3.3.5). Further, the characteristic function determines the law of a
random vector. That is, if ΦX(θ) = ΦY (θ) for all θ then X has the same law as Y .

Proof. We derive (3.5.2) by adapting the proof of Theorem 3.3.12. First apply
Fubini’s theorem with respect to the product of Lebesgue’s measure on [−T, T ]d

and the law of X (both of which are finite measures on Rd) to get the identity

JT (a, b) :=

∫

[−T,T ]d

d∏

j=1

ψaj ,bj
(θj)ΦX(θ)dθ =

∫

Rd

[ d∏

j=1

∫ T

−T

haj ,bj
(xj , θj)dθj

]
dPX(x)

(where ha,b(x, θ) = ψa,b(θ)e
iθx). In the course of proving Theorem 3.3.12 we have

seen that for j = 1, . . . , d the integral over θj is uniformly bounded in T and that
it converges to gaj ,bj

(xj) as T ↑ ∞. Thus, by bounded convergence it follows that

lim
T↑∞

JT (a, b) =

∫

Rd

ga,b(x)dPX(x) ,

where

ga,b(x) =
d∏

j=1

gaj ,bj
(xj) ,

is zero on Ac and one on Ao (see the explicit formula for ga,b(x) provided there).
So, our assumption that PX(∂A) = 0 implies that the limit of JT (a, b) as T ↑ ∞ is
merely PX(A), thus establishing (3.5.2).
Suppose now that ΦX(θ) = ΦY (θ) for all θ. Adapting the proof of Corollary 3.3.14

to the current setting, let J = {α ∈ R : P(Xj = α) > 0 or P(Yj = α) > 0 for some
j = 1, . . . , d} noting that if all the coordinates {aj , bj , j = 1, . . . , d} of a rectangle
A are from the complement of J then both PX(∂A) = 0 and PY (∂A) = 0. Thus,
by (3.5.2) we have that PX(A) = PY (A) for any A in the collection C of rectangles
with coordinates in the complement of J . Recall that J is countable, so for any
rectangle A there exists An ∈ C such that An ↓ A, and by continuity from above of
both PX and PY it follows that PX(A) = PY (A) for every rectangle A. In view of
Proposition 1.1.39 and Exercise 1.1.21 this implies that the probability measures
PX and PY agree on all Borel subsets of Rd. �
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We next provide the ingredients needed when using characteristic functions en-
route to the derivation of a convergence in distribution result for random vectors.
To this end, we start with the following analog of Lemma 3.3.16.

Lemma 3.5.8. Suppose the random vectors Xn, 1 ≤ n ≤ ∞ on Rd are such that
ΦXn

(θ) → ΦX
∞

(θ) as n → ∞ for each θ ∈ Rd. Then, the corresponding sequence
of laws {PXn

} is uniformly tight.

Proof. Fixing θ ∈ Rd consider the sequence of random variables Yn = (θ,Xn).
Since ΦYn

(α) = ΦXn
(αθ) for 1 ≤ n ≤ ∞, we have that ΦYn

(α) → ΦY∞(α) for all
α ∈ R. The uniform tightness of the laws of Yn then follows by Lemma 3.3.16.
Considering θ1, . . . , θd which are the unit vectors in the d different coordinates,
we have the uniform tightness of the laws of Xn,j for the sequence of random
vectors Xn = (Xn,1, Xn,2, . . . , Xn,d) and each fixed coordinate j = 1, . . . , d. For
the compact sets Kε = [−Mε,Mε]

d and all n,

P(Xn /∈ Kε) ≤
d∑

j=1

P(|Xn,j | > Mε) .

As d is finite, this leads from the uniform tightness of the laws of Xn,j for each
j = 1, . . . , d to the uniform tightness of the laws of Xn. �

Equipped with Lemma 3.5.8 we are ready to state and prove Lévy’s continuity
theorem.

Theorem 3.5.9 (Lévy’s continuity theorem). Let Xn, 1 ≤ n ≤ ∞ be random

vectors with characteristic functions ΦXn
(θ). Then, Xn

D−→ X∞ if and only if

ΦXn
(θ) → ΦX

∞
(θ) as n→∞ for each fixed θ ∈ Rd.

Proof. This is a re-run of the proof of Theorem 3.3.17, adapted to Rd-valued
random variables. First, both x 7→ cos((θ, x)) and x 7→ sin((θ, x)) are bounded

continuous functions, so if Xn
D−→ X∞, then clearly as n→∞,

ΦXn
(θ) = E

[
ei(θ,Xn)

]
→ E

[
ei(θ,X

∞
)
]

= ΦX
∞

(θ).

For the converse direction, assuming that ΦXn
→ ΦX

∞
point-wise, we know from

Lemma 3.5.8 that the collection {PXn
} is uniformly tight. Hence, by Prohorov’s

theorem, for every subsequence n(m) there is a further sub-subsequence n(mk) such
that PXn(mk)

converges weakly to some probability measure PY , possibly dependent

upon the choice of n(m). As Xn(mk)
D−→ Y , we have by the preceding part of the

proof that ΦXn(mk)
→ ΦY , and necessarily ΦY = ΦX

∞
. The characteristic function

determines the law (see Theorem 3.5.7), so Y
D
= X∞ is independent of the choice

of n(m). Thus, fixing h ∈ Cb(R
d), the sequence yn = Eh(Xn) is such that every

subsequence yn(m) has a further sub-subsequence yn(mk) that converges to y∞.

Consequently, yn → y∞ (see Lemma 2.2.11). This applies for all h ∈ Cb(R
d), so we

conclude that Xn
D−→ X∞, as stated. �

Remark. As in the case of Theorem 3.3.17, it is not hard to show that if ΦXn
(θ) →

Φ(θ) as n → ∞ and Φ(θ) is continuous at θ = 0 then Φ is necessarily the charac-

teristic function of some random vector X∞ and consequently Xn
D−→ X∞.
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The proof of the multivariate clt is just one of the results that rely on the following
immediate corollary of Lévy’s continuity theorem.

Corollary 3.5.10 (Cramér-Wold device). A sufficient condition for Xn
D−→

X∞ is that (θ,Xn)
D−→ (θ,X∞) for each θ ∈ Rd.

Proof. Since (θ,Xn)
D−→ (θ,X∞) it follows by Lévy’s continuity theorem (for

d = 1, that is, Theorem 3.3.17), that

lim
n→∞

E
[
ei(θ,Xn)

]
= E

[
ei(θ,X

∞
)
]
.

As this applies for any θ ∈ Rd, we get that Xn
D−→ X∞ by applying Lévy’s

continuity theorem in Rd (i.e., Theorem 3.5.9), now in the converse direction. �

Remark. Beware that it is not enough to consider only finitely many values of
θ in the Cramér-Wold device. For example, consider the random vectors Xn =
(Xn, Yn) with {Xn, Y2n} i.i.d. and Y2n+1 = X2n+1. Convince yourself that in this

case Xn
D−→ X1 and Yn

D−→ Y1 but the random vectors Xn do not converge in
distribution (to any limit).

The computation of the characteristic function is much simplified in the presence
of independence.

Exercise 3.5.11. Show that if Y = (Y1, . . . , Yd) with Yk mutually independent
R.V., then for all θ = (θ1, . . . , θd) ∈ Rd,

(3.5.3) ΦY (θ) =
d∏

k=1

ΦYk
(θk)

Conversely, show that if (3.5.3) holds for all θ ∈ Rd, the random variables Yk,
k = 1, . . . , d are mutually independent of each other.

3.5.3. Gaussian random vectors and the multivariate clt. Recall the
following linear algebra concept.

Definition 3.5.12. An d × d matrix A with entries Ajk is called nonnegative
definite (or positive semidefinite) if Ajk = Akj for all j, k, and for any θ ∈ Rd

(θ,Aθ) =

d∑

j=1

d∑

k=1

θjAjkθk ≥ 0.

We are ready to define the class of multivariate normal distributions via the cor-
responding characteristic functions.

Definition 3.5.13. We say that a random vector X = (X1, X2, · · · , Xd) is Gauss-
ian, or alternatively that it has a multivariate normal distribution if

(3.5.4) ΦX(θ) = e−
1
2 (θ,Vθ)ei(θ,µ),

for some nonnegative definite d× d matrix V, some µ = (µ1, . . . , µd) ∈ Rd and all

θ = (θ1, . . . , θd) ∈ Rd. We denote such a law by N (µ,V).

Remark. For d = 1 this definition coincides with Example 3.3.6.
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Our next proposition proves that the multivariate N (µ,V) distribution is well
defined and further links the vector µ and the matrix V to the first two moments
of this distribution.

Proposition 3.5.14. The formula (3.5.4) corresponds to the characteristic func-
tion of a probability measure on Rd. Further, the parameters µ and V of the Gauss-
ian random vector X are merely µj = EXj and Vjk = Cov(Xj , Xk), j, k = 1, . . . , d.

Proof. Any nonnegative definite matrix V can be written as V = UtD2U for
some orthogonal matrix U (i.e., such that UtU = I, the d× d-dimensional identity
matrix), and some diagonal matrix D. Consequently,

(θ,Vθ) = (Aθ,Aθ)

for A = DU and all θ ∈ Rd. We claim that (3.5.4) is the characteristic function
of the random vector X = AtY + µ, where Y = (Y1, . . . , Yd) has i.i.d. coordinates
Yk, each of which has the standard normal distribution. Indeed, by Exercise 3.5.11
ΦY (θ) = exp(− 1

2 (θ, θ)) is the product of the characteristic functions exp(−θ2
k/2) of

the standard normal distribution (see Example 3.3.6), and by part (e) of Proposition
3.3.2, ΦX(θ) = exp(i(θ, µ))ΦY (Aθ), yielding the formula (3.5.4).

We have just shown that X has the N (µ,V) distribution if X = AtY + µ for a

Gaussian random vector Y (whose distribution is N (0, I)), such that EYj = 0 and
Cov(Yj , Yk) = 1j=k for j, k = 1, . . . , d. It thus follows by linearity of the expec-
tation and the bi-linearity of the covariance that EXj = µj and Cov(Xj , Xk) =
[EAtY (AtY )t]jk = (AtIA)jk = Vjk , as claimed. �

Definition 3.5.13 allows for V that is non-invertible, so for example the constant
random vector X = µ is considered a Gaussian random vector though it obviously
does not have a density. The reason we make this choice is to have the collection
of multivariate normal distributions closed with respect to L2-convergence, as we
prove below to be the case.

Proposition 3.5.15. Suppose Gaussian random vectors Xn converge in L2 to
a random vector X∞, that is, E[‖Xn − X∞‖2] → 0 as n → ∞. Then, X∞ is
a Gaussian random vector, whose parameters are the limits of the corresponding
parameters of Xn.

Proof. Recall that the convergence in L2 ofXn toX∞ implies that µ
n

= EXn

converge to µ∞ = EX∞ and the element-wise convergence of the covariance matri-

ces Vn to the corresponding covariance matrix V∞. Further, the L2-convergence
implies the corresponding convergence in probability and hence, by bounded con-

vergence ΦXn
(θ) → ΦX

∞
(θ) for each θ ∈ Rd. Since ΦXn

(θ) = e−
1
2 (θ,Vnθ)ei(θ,µ

n
),

for any n <∞, it follows that the same applies for n = ∞. It is a well known fact
of linear algebra that the element-wise limit V∞ of nonnegative definite matrices
Vn is necessarily also nonnegative definite. In view of Definition 3.5.13, we see that
the limit X∞ is a Gaussian random vector, whose parameters are the limits of the
corresponding parameters of Xn. �

One of the main reasons for the importance of the multivariate normal distribution
is the following clt (which is the multivariate extension of Proposition 3.1.2).
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Theorem 3.5.16 (Multivariate clt). Let Ŝn = n−
1
2

n∑

k=1

(Xk −µ), where {Xk}

are i.i.d. random vectors with finite second moments and such that µ = EX1.

Then, Ŝn
D−→ G, with G having the N (0,V) distribution and where V is the d× d-

dimensional covariance matrix of X1.

Proof. Consider the i.i.d. random vectors Y k = Xk − µ each having also the

covariance matrix V. Fixing an arbitrary vector θ ∈ Rd we proceed to show that

(θ, Ŝn)
D−→ (θ,G), which in view of the Cramér-Wold device completes the proof

of the theorem. Indeed, note that (θ, Ŝn) = n−
1
2

∑n
k=1 Zk, where Zk = (θ, Y k) are

i.i.d. R-valued random variables, having zero mean and variance

vθ = Var(Z1) = E[(θ, Y 1)
2] = (θ, E[Y 1Y

t
1] θ) = (θ,Vθ) .

Observing that the clt of Proposition 3.1.2 thus applies to (θ, Ŝn), it remains only
to verify that the resulting limit distribution N (0, vθ) is indeed the law of (θ,G).
To this end note that by Definitions 3.5.4 and 3.5.13, for any s ∈ R,

Φ(θ,G)(s) = ΦG(sθ) = e−
1
2 s2(θ,Vθ) = e−vθs2/2 ,

which is the characteristic function of the N (0, vθ) distribution (see Example 3.3.6).
Since the characteristic function uniquely determines the law (see Corollary 3.3.14),
we are done. �

Here is an explicit example for which the multivariate clt applies.

Example 3.5.17. The simple random walk on Zd is Sn =
∑n

k=1 Xk where X,
Xk are i.i.d. random vectors such that

P(X = +ei) = P(X = −ei) =
1

2d
i = 1, . . . , d,

and ei is the unit vector in the i-th direction, i = 1, . . . , d. In this case EX = 0
and if i 6= j then EXiXj = 0, resulting with the covariance matrix V = (1/d)I for

the multivariate normal limit in distribution of n−1/2Sn.

Building on Lindeberg’s clt for weighted sums of i.i.d. random variables, the
following multivariate normal limit is the basis for the convergence of random walks
to Brownian motion, to which Section 9.2 is devoted.

Exercise 3.5.18. Suppose {ξk} are i.i.d. with Eξ1 = 0 and Eξ21 = 1. Consider

the random functions Ŝn(t) = n−1/2S(nt) where S(t) =
∑[t]

k=1 ξk + (t − [t])ξ[t]+1

and [t] denotes the integer part of t.

(a) Verify that Lindeberg’s clt applies for Ŝn =
∑n

k=1 an,kξk whenever the
non-random {an,k} are such that rn = max{|an,k| : k = 1, . . . , n} → 0
and vn =

∑n
k=1 a

2
n,k → 1.

(b) Let c(s, t) = min(s, t) and fixing 0 = t0 ≤ t1 < · · · < td, denote by C the
d× d matrix of entries Cjk = c(tj , tk). Show that for any θ ∈ Rd,

d∑

r=1

(tr − tr−1)(

r∑

j=1

θj)
2 = (θ,Cθ) ,

(c) Using the Cramér-Wold device deduce that (Ŝn(t1), . . . , Ŝn(td))
D−→ G

with G having the N (0,C) distribution.
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As we see in the next exercise, there is more to a Gaussian random vector than
each coordinate having a normal distribution.

Exercise 3.5.19. Suppose X1 has a standard normal distribution and S is inde-
pendent of X1 and such that P(S = 1) = P(S = −1) = 1/2.

(a) Check that X2 = SX1 also has a standard normal distribution.
(b) Check that X1 and X2 are uncorrelated random variables, each having

the standard normal distribution, while X = (X1, X2) is not a Gaussian
random vector and where X1 and X2 are not independent variables.

Motivated by the proof of Proposition 3.5.14 here is an important property of
Gaussian random vectors which may also be considered to be an alternative to
Definition 3.5.13.

Exercise 3.5.20. A random vector X has the multivariate normal distribution

if and only if (
∑d

i=1 ajiXi, j = 1, . . . ,m) is a Gaussian random vector for any
non-random coefficients a11, a12, . . . , amd ∈ R.

The classical definition of the multivariate normal density applies for a strict subset
of the distributions we consider in Definition 3.5.13.

Definition 3.5.21. We say that X has a non-degenerate multivariate normal
distribution if the matrix V is invertible, or alternatively, when V is (strictly)
positive definite matrix, that is (θ,Vθ) > 0 whenever θ 6= 0.

We next relate the density of a random vector with its characteristic function, and
provide the density for the non-degenerate multivariate normal distribution.

Exercise 3.5.22.

(a) Show that if
∫

Rd |ΦX (θ)|dθ < ∞, then X has the bounded continuous
probability density function

(3.5.5) fX(x) =
1

(2π)d

∫

Rd

e−i(θ,x)ΦX(θ)dθ .

(b) Show that a random vector X with a non-degenerate multivariate normal
distribution N (µ,V) has the probability density function

fX(x) = (2π)−d/2(detV)−1/2 exp
(
− 1

2
(x− µ,V−1(x− µ))

)
.

Here is an application to the uniform distribution over the sphere in Rn, as n→∞.

Exercise 3.5.23. Suppose {Yk} are i.i.d. random variables with EY 2
1 = 1 and

EY1 = 0. Let Wn = n−1
∑n

k=1 Y
2
k and Xn,k = Yk/

√
Wn for k = 1, . . . , n.

(a) Noting that Wn
a.s.→ 1 deduce that Xn,1

D−→ Y1.

(b) Show that n−1/2
∑n

k=1 Xn,k
D−→ G whose distribution is N (0, 1).

(c) Show that if {Yk} are standard normal random variables, then the ran-
dom vector Xn = (Xn,1, . . . , Xn,n) has the uniform distribution over the
surface of the sphere of radius

√
n in Rn (i.e., the unique measure sup-

ported on this sphere and invariant under orthogonal transformations),
and interpret the preceding results for this special case.
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We conclude the section with the following exercise, which is a multivariate, Lin-
deberg’s type clt.

Exercise 3.5.24. Let yt denotes the transpose of the vector y ∈ Rd and ‖y‖
its Euclidean norm. The independent random vectors {Y k} on Rd are such that

Y k
D
= −Y k,

lim
n→∞

n∑

k=1

P(‖Y k‖ >
√
n) = 0,

and for some symmetric, (strictly) positive definite matrix V and any fixed ε ∈
(0, 1],

lim
n→∞

n−1
n∑

k=1

E(Y kY
t
kI‖Y k‖≤ε

√
n) = V.

(a) Let Tn =
∑n

k=1 Xn,k for Xn,k = n−1/2Y kI‖Y k‖≤
√

n. Show that Tn
D−→

G, with G having the N (0,V) multivariate normal distribution.

(b) Let Ŝn = n−1/2
∑n

k=1 Y k and show that Ŝn
D−→ G.

(c) Show that (Ŝn)tV−1Ŝn
D−→ Z and identify the law of Z.



Bibliography
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