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Abstract. We consider homogeneous factor models on uniformly sparse graph sequences converg-
ing locally to a (unimodular) random tree T , and study the existence of the free energy density φ,
the limit of the log-partition function divided by the number of vertices n as n tends to infinity.
We provide a new interpolation scheme and use it to prove existence of, and to explicitly compute,
the quantity φ subject to uniqueness of a relevant Gibbs measure for the factor model on T . By
way of example we compute φ for the independent set (or hard-core) model at low fugacity, for the
ferromagnetic Ising model at all parameter values, and for the ferromagnetic Potts model with both
weak enough and strong enough interactions. Even beyond uniqueness our interpolation provides
useful explicit bounds on φ.

In the regimes in which we establish existence of the limit, we show that it coincides with the
Bethe free energy functional evaluated at a suitable fixed point of the belief propagation recur-
sions on T . In the special case that T has a Galton-Watson law, this formula coincides with the
non-rigorous ”Bethe prediction” obtained by statistical physicists using the “replica” or “cavity”
methods. Thus our work is a rigorous generalization of these heuristic calculations to the broader
class of sparse graph sequences converging locally to trees. We also provide a variational charac-
terization for the Bethe prediction in this general setting, which is of independent interest.

1. Introduction

Let G = (V,E) be a finite undirected graph, and X a finite alphabet of spins. A factor model
on G is a probability measure on the space of (spin) configurations σ ∈X V of form

νβ,BG,ψ(σ) =
1

ZG,ψ(β,B)

∏
(ij)∈E

ψβ(σi, σj)
∏
i∈V

ψ̄B(σi), (1.1)

where ψ ≡ ψβ is a symmetric function X 2 → R≥0 parametrized by β ∈ R, ψ̄ ≡ ψ̄B is a positive
function X → R≥0 parametrized by B ∈ R, and ZG,ψ(β,B) is the normalizing constant, called

the partition function (with its logarithm called the free energy). The pair ψ ≡ (ψ, ψ̄) is called a
specification for the factor model (1.1).

In this paper we study the asymptotics of the free energy for sequences of (random) graphs Gn =
(Vn = [n], En) in the thermodynamic limit n → ∞. More precisely, with Zn(β,B) ≡ ZGn,ψ(β,B)

and En denoting expectation with respect to the law of Gn, we seek to establish the existence of
the free energy density

φ(β,B) ≡ lim
n→∞

φn(β,B), where φn(β,B) ≡ 1

n
En[logZn(β,B)], (1.2)
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and to determine its value. (In the literature, φ(β,B) is also referred to as the “free entropy
density” or “pressure.”)

The primary example we consider is the q-Potts model on G with inverse temperature β and
magnetic field B, the probability measure on X V (with X = [q] ≡ {1, . . . , q}) given by

νβ,BG (σ) =
1

ZG(β,B)
exp

{
β
∑

(ij)∈E

δσi,σj +B
∑
i∈V

δσi,1

}
. (1.3)

The model is said to be ferromagnetic if β ≥ 0, anti-ferromagnetic otherwise. (In analogy with
the Potts model, in the general factor model setting we continue to refer to β as the interaction or
temperature parameter and to B as the magnetic field.)

Potts models have been intensively studied in statistical mechanics because of their key role
in the theory of phase transitions [40], critical phenomena [43], and conformally invariant scaling
limits [33]. As demonstrated for instance in [30] for the Ising model (i.e. the Potts model with
q = 2), determining the limit (1.2) plays a key role in characterizing the asymptotic structure of the

measures νβ,BGn in the thermodynamic limit. Potts models are also of great interest in combinatorics:
recall in fact that the partition function admits a random-cluster representation ([14, 19]; see also
§4.2), which at B = 0 reads

ZG(β, 0) =
∑
F⊆E

(eβ − 1)|F |qk(F ),

with k(F ) denoting the number of connected components induced by the subset of edges F ⊆ E
(cf. (4.2)). Up to a multiplicative constant this coincides with the Tutte polynomial TG(x, y) of G
evaluated at x = 1 + q(eβ − 1)−1, y = eβ (see e.g. [37]).

Mathematical statistical mechanics has focused so far on specific graph sequences Gn, e.g. on
finite exhaustions of the rectangular grid or other regular lattices in d dimensions with d fixed.
Under mild conditions on the sequence, existence of the free energy density is a consequence of the
following well-known argument (see e.g. [34, Propn. 2.3.2]): each graph Gn can be decomposed into
smaller blocks by deleting a collection of edges whose number is negligible in comparison with the
volume. Consequently the sequence logZGn is approximately sub-additive in n, implying existence
of the limit (see [22]).

In this paper we consider sparse graphs with a locally tree-like structure — formally, graph
sequences Gn converging locally weakly to (random) trees; see Defn. 1.1 below. Although the
study of statistical mechanics “beyond Zd” is not directly motivated by physics considerations,
physicists have been interested in models on alternative graph structures for a long time (an early
example being [12]). Moreover, the study of factor models on sparse graphs has many motivations
coming from computer science and statistical inference (see [8, 29]). Indeed, another example we
will consider is the independent set or hard-core model on G with fugacity λ > 0, the probability
measure on X V (with X = {0, 1}) given by

νλG(σ) =
1

ZG(λ)

∏
(ij)∈E

1{σiσj 6= 1}
∏
i∈V

λσi , (1.4)

(where B ≡ log λ is the magnetic field). This model always has anti-ferromagnetic interactions, and
is of significant interest in computer science. The independent set decision problem is NP-complete
(via the clique decision problem [7, 24]). As λ increases the measure νλG becomes increasingly
concentrated on the maximal independent sets; the optimization problem of finding such sets is
NP-hard [26] and hard to approximate ([44] and references therein). The problem of counting
independent sets (i.e. computing ZG(1)) for graphs of maximum degree ∆ is #P -complete for
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∆ ≥ 3 ([18] and references therein). Although there exists a ptas (polynomial-time approximation
scheme) for ZG(λ) for λ below a certain “uniqueness threshold” [39], there is strong evidence that
computation is hard above this threshold (see [31, 36, 39] and the references therein).

Since infinite trees are non-amenable, Gn cannot be decomposed by removing a vanishing fraction
of edges, so the preceding argument no longer applies: in physics terms, surface effects are non-
negligible even in the thermodynamic limit. Despite this, statistical physicists expect the free energy
density (1.2) to exist on a large class of locally tree-like graphs. Even more surprisingly, employing
non-rigorous but mathematically sophisticated heuristics such as the “replica” or “cavity” methods
they derive exact formulae for this limit for a number of statistical mechanics models on locally
tree-like graphs (see e.g. [29] and the references therein). The primary example considered in
these works is the graph chosen uniformly at random from those with n vertices and m = m(n)
edges, with m/n → γ ∈ R; such graphs converge locally to the Galton-Watson tree with Pois(2γ)
offspring distribution. The Galton-Watson tree with general offspring distribution can be obtained
as the local weak limit of random graphs with specified degree profile corresponding to the offspring
distribution; the physics heuristics extend to this and even more general settings.

There is no good argument for why the limit (1.2) exists; the heuristic replica or cavity meth-
ods compute this limit starting from the postulate that it exists. A significant breakthrough
was achieved by the interpolation method first developed by Guerra and Toninelli [21] for the
Sherrington-Kirkpatrick model from spin-glass theory, and then generalized to a number of sta-
tistical physics models on sparse graphs [15, 16, 32] and related constraint satisfaction problems
[4]. This method establishes super-additivity of logZGn which implies existence of the limit (1.2).
Unfortunately, this approach appears limited to models with repulsive interactions, i.e. in which
higher weight is given to configurations in which neighboring vertices take different values. In par-
ticular, it does not apply to the ferromagnetic Potts model. This is especially puzzling because the
heuristic physics predictions do not distinguish between the two cases, and there is no fundamental
reason why the limit should be computable in one case and not in the other. Further, this interpola-
tion method only applies to very restricted classes of graph sequences (typically, uniformly random
given the degree sequence); notably, existence of the limit is not proved for deterministic graph
sequences. Finally, the method gives no way to actually compute the limit, although interpolation
has been used to prove upper bounds [15, 16, 32].

In this paper we follow a different approach relying only on local weak convergence of the graph
sequence (Gn)n≥1 to some limiting (random) tree. The general idea is that the corresponding factor
models (1.1) must converge (passing to a subsequence as needed), to a Gibbs measure on the limiting
tree; the task then “reduces” to the one of identifying the correct limit. This is still a substantial
challenge because, in general, there is an uncountable number of “candidate” Gibbs measures
for the limit. Nevertheless, this program was carried through in [9] for Ising models on graphs
converging locally to Galton-Watson tree, under a “uniform sparsity” assumption (Defn. 1.3), on
the degree distribution (it is further assumed in [9] that the distribution has finite second moment;
this condition was relaxed in [11], thereby handling the case of power law graphs). The result
of [9, 11] provides also a fairly explicit expression Φ(β,B) for the free energy density, defined
solely in terms of the limiting tree. This expression coincides with the so-called “Bethe prediction”
of statistical physics, derived earlier for random graphs with given degree distribution using the
“replica” or “cavity” methods.

We develop this approach here in more generality. Rather than considering a specific model
such as the Ising, we establish results for general abstract factor models satisfying mild regularity
conditions (see (H1) below), covering in particular the Potts and independent set models. We
also make no distributional assumptions on the graphs Gn or the limiting random tree, other
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than some integrability conditions (see Defn. 1.3 and (H2) below). In this setting we develop a
general interpolation scheme (Thm. 1.13) which, under appropriate assumptions, bounds differences
φn(β,B) in the limit n → ∞ by differences in a functional Φ(β,B) (see (1.10)) defined solely in
terms of the limiting tree. Although we continue to refer to this Φ(β,B) as the “Bethe prediction,”
we remark that it is a considerable generalization of earlier formulae obtained in the special case of
Galton-Watson trees by statistical physics methods. It is defined as the evaluation of the “Bethe
free energy functional” (1.9) at a specific Gibbs measure on the limiting tree, and corresponds to
what physicists call the “replica symmetric solution”: whereas it is expected to hold in the high-
temperature regime (i.e. with small enough interactions), for many factor models it is incorrect
at low temperature. However, we will show that in “uniqueness regimes,” where the set of Gibbs
measures on the limiting tree corresponding to the factor model specification ψ is a singleton, the
upper and lower bounds of Thm. 1.13 match to completely verify the Bethe prediction (Thm. 1.14).

We then apply our interpolation scheme to compute the free energy density in specific models.
We verify the Bethe prediction for the independent set model with low fugacity (Thm. 1.11) as a
consequence of Thm. 1.14. Further, by using monotonicity properties to restrict the set of relevant
Gibbs measures, we obtain results for the Potts model going beyond the implications of Thm. 1.14:
for q = 2 (Ising), we verify the Bethe prediction for all β ≥ 0, B ∈ R (Thm. 1.8), extending the
results of [9, 11] to general locally tree-like graph sequences. For general q, we verify the prediction
in regimes of non-negative (β,B) in which two specific Gibbs measures on the limiting tree coincide,
namely, the Gibbs measures arising from free and 1 boundary conditions coincide (see Defn. 1.7
below). This condition is satisfied throughout the range {β ≥ 0, B > 0} for q = 2; when q ≥ 3
there are regimes of non-uniqueness in which it fails, but we will show that it is satisfied both at β
sufficiently small and sufficiently large, i.e. at high and low temperatures.

Thm. 1.13 can give useful bounds even beyond uniqueness regimes. As an illustration, we study
the Potts model in the case that Gn converges locally to the d-regular tree Td. In Thm. 1.10 we
explicitly characterize the non-uniqueness regime of this model and use Thm. 1.13 to give bounds
for φn(β,B) within this regime. In a forthcoming work with Allan Sly we prove that in this setting,
φ(β,B) exists and matches the lower bound of Thm. 1.10. We also compute there the asymptotic
free energy φ(λ) (all λ ≥ 0) for the independent set model on d-regular bipartite graphs. In contrast,
for generic non-bipartite Gn the consensus in physics is for a full replica symmetry breaking for
large enough λ, and consequently there does not exist even a heuristic prediction for the free energy
density in this regime.

As mentioned above, the Bethe prediction Φ(β,B) is the evaluation of the Bethe free energy
functional at a specific Gibbs measure on the limiting tree. This Gibbs measure has a characteri-
zation in terms of “messages” hx→y ≡ h(T,x→y) defined on the directed edges x→ y of each tree T ,
such that the entire collection of messages is a fixed point of a certain “belief propagation recursion”
(1.14). Motivated by the finite-graph optimization of [41], we provide a variational characterization
of the Bethe prediction (Thm. 1.16) which is of independent interest. In particular, this formulation
suggests non-trivial connections with large deviation principles.

1.1. Local weak convergence and the Bethe prediction. We study factor models on graphs
which are “locally tree-like” in a sense which we now formalize, starting with a few notations and
conventions. All graphs are taken to be undirected and locally finite. In a graph G = (V,E), let
d denote graph distance, and for v ∈ V write Bt(v) for the sub-graph of G induced by {w ∈ V :
d(v, w) ≤ t}. Write v ∼ w if v, w are neighbors in G, and write ∂v for the set of neighbors of v and
Dv ≡ |∂v|. Let G• denote the space of isomorphism classes of (finite or infinite) rooted, connected
graphs (G, o). A metric on this space is given by defining the distance between (G1, o1) and (G2, o2)
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in G• to be 1/(1 + R) where R is the maximal r ∈ Z≥0 ∪ {∞} such that BR(o1) ∼= BR(o2); with
this definition G• is a complete separable metric space (see e.g. [1]). Let T• ⊂ G• denote the closed
subspace of (rooted) trees T ≡ (T, o), the acyclic elements of G•. We write T t for Bt(o) in T , and
in particular we use T 0 to denote the single-vertex tree. We now define the precise notion of graph
limits considered throughout this paper.

Definition 1.1. Let Gn = (Vn, En) (n ≥ 1) be a sequence of random graphs, and let In be a vertex
chosen uniformly at random from Vn. We say Gn converges locally (weakly) to the random tree T
if for each t ≥ 0, Bt(In) converges in law to T t in the space G•. We say in this case that the Gn
are locally tree-like.

We will make repeated use of the fact that local weak limits of graph sequences have the property
of unimodularity, whose definition we recall here (for a detailed account see [1]). Let G•• denote
the space of isomorphism classes of bi-rooted, connected graphs with a distinguished ordered pair,
denoted (G, i, j) (we do not require i ∼ j); G•• is metrizable in a similar manner as G•.

Definition 1.2. A Borel probability measure µ on G• is said to be unimodular if it obeys the
mass-transport principle:

Eµ
[ ∑
x∈V (G)

f(G, o, x)
]

= Eµ
[ ∑
x∈V (G)

f(G, x, o)
]
∀f : G•• → R≥0 Borel. (1.5)

We say that µ is involution invariant if (1.5) holds when restricted to f supported only on those
(G, x, y) with x ∼ y.

A measure µ on G is involution invariant if and only if it is unimodular [1, Propn. 2.2]. The
concept of unimodularity first appeared in [5], where it was observed that local weak limits of graph
sequences must be unimodular [5, §3.2]. The converse of this implication remains a well-known
open question (see [1]).

Definition 1.3. The graph sequence Gn is uniformly sparse if the DIn are uniformly integrable,
that is, if

lim
L→∞

(
lim sup
n→∞

En[DIn1{DIn ≥ L}]
)

= 0

(where En denotes expectation over the law of Gn and In).

We assume throughout that Gn (n ≥ 1) is a uniformly sparse graph sequence converging locally
weakly to the random tree T of (unimodular) law µ such that µ(Do = 0) < 1; this entire setting
is hereafter denoted Gn →lwc µ. In this setting we will describe general conditions under which
the asymptotic free energy φ(β,B) for the factor model (1.1) exists and agrees with the “Bethe
energy prediction,” which we now describe. (If the sequence of random graphs Gn is such that
Gn →lwc µ for per realization of the sequence (a.s.), then our results apply instead to the a.s. limit
of n−1 logZn(β,B).)

Let ∆X denote the (|X | − 1)-dimensional probability simplex. Let T +
• denote T• without the

single-vertex tree T 0, and let Te ⊂ G•• be the space of isomorphism classes of trees T ∈ T +
• rooted

at a directed edge x → y, written (T, x → y) or simply x → y for short. If T has law µ for µ
a unimodular measure on T•, we let µ↑ and µ↓ denote the laws of (T, J → o) and (T, o → J),
respectively, for J chosen uniformly at random from ∂o conditioned on the event {T ∈ T +

• }.
Unimodularity of µ is then equivalent to

Eµ↓ [Dxf(T, x→ y)] = Eµ↑ [Dyf(T, x→ y)],

so in particular µ↑ and µ↓ are equivalent measures.
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Definition 1.4. The message space is the space H ≡ Hµ of measurable functions

h : Te × R2 → ∆X , ((T, x→ y), β, B) 7→ (hβ,Bx→y(σ))σ∈X ,

taken up to µ↑-equivalence.

Remark 1.5. For (T, x → y) ∈ Te let Tx→y denote the component sub-tree rooted at x which
results from deleting edge (x, y) from T . The interpretation of hx→y is that it is a message from
x to y on the tree T , giving the distribution of σx for the factor model (1.1) on Tx→y. Indeed,
although we do not require it in general, in our concrete examples hx→y depends only on this
component sub-tree.

For T ∈ T• and h ∈ H, let

ΦT (β,B, h) ≡ Φvx
T (β,B, h)− Φe

T (β,B, h) ≡ Φvx
T (β,B, h)− 1

2

∑
j∈∂o

Φ
(oj)
T (β,B, h) (1.6)

where

Φvx
T (β,B, h) ≡ log

{∑
σ

ψ̄(σ)
∏
j∈∂o

(∑
σj

ψ(σ, σj)hj→o(σj)

)}
, (1.7)

Φ
(oj)
T (β,B, h) ≡ log

{∑
σ,σj

ψ(σ, σj)hj→o(σj)ho→j(σ)

}
. (1.8)

We take the usual convention that the empty sum is zero and the empty product is one, so ΦT =
log(

∑
σ ψ̄(σ)) in case T = T 0. Although we suppress it from the notation, in the above equations

ψ and h are taken to be evaluated at (β,B). The Bethe free energy functional on H for the factor
model (1.1) on Gn →lwc µ is defined by

Φµ(β,B, h) ≡ Eµ[ΦT (β,B, h)], (1.9)

provided the integral is well-defined (see Lem. 2.2). The Bethe prediction is that the asymptotic
free energy φ(β,B) of (1.2) exists and equals

ΦBethe
µ (β,B) ≡ Φµ(β,B, h?) (1.10)

where h? ∈ H is a certain fixed point of the “belief propagation recursion” (1.15) below. We often
drop the subscript µ when it is clear from context.

Remark 1.6. In the case that the recursion (1.15) has multiple fixed points, the Bethe prediction
is defined to be the supremum of Φ(β,B, h) over admissible fixed points h. While in the abstract
factor model setting all fixed points are admissible, in specific models typically there are “natural”
criteria restricting the set of admissible fixed points. We will demonstrate this in the Ising and
Potts models where restrictions are imposed by monotonicity and symmetry considerations.

The rationale for the Bethe prediction is explained in detail in [8, §3]. In brief, when G is a
finite tree and µG is the law of (G, I) for I a uniform element of V (µG is a measure on T•, but
not necessarily unimodular), the equations (1.15) have a unique solution, given by the so-called
“standard message set” (see [8, Rmk. 3.5]). In this setting it holds exactly that |V |−1 logZG(β,B) =
ΦµG(β,B) [8, Propn. 3.7]. The heuristic then is that for Gn locally tree-like, the (normalized) free
energy φn is approximated by a similar expression for n large. We emphasize that no averaging
over the vertices of the tree T takes place in the definition of ΦT : instead, the averaging of Φ(G,v)

over the vertices v ∈ G in the evaluation of ΦµG(β,B) corresponds to the averaging with respect
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to the law µ in the evaluation of the Bethe prediction Φµ(β,B). Indeed, for non-amenable T ∈ T•
the sub-trees T t typically do not converge locally weakly to T (see e.g. [8, Lem. 2.8]).

Here is is a terminology which we adopt throughout the paper:

Definition 1.7. If G is any graph and U a sub-graph, the external boundary ∂U of U is the set
of vertices of G\U adjacent to U . Let U+ denote the sub-graph of G induced by the vertices in
VU∪∂U . For U finite (so U+ is finite, since G is locally finite), and ν‡ a measure on X ∂U , the factor
model on U with ν‡ boundary conditions is the probability measure on configurations σU ∈ X VU

given by

ν‡U,G,ψ(σU ) ∼=
ˆ ∏

(ij)∈EU+

ψ(σi, σj)
∏
i∈U

ψ̄(σi) dν
‡(σ∂U ). (1.11)

(Throughout, ∼= indicates equivalence up to a positive normalizing constant.) The case in which
ν‡ gives probability one to the identically-σ0 spin configuration on ∂U (σ0 ∈ X ) is referred to as
σ0 boundary conditions and denoted ν‡ = νσ0 , while the case in which ν‡ is uniform measure on
X ∂U is referred to as free boundary conditions and denoted ν‡ = νf .

1.2. Application to Ising, Potts, and independent set. Before formally stating our main
theorem for general factor models, we mention its consequences in some models of interest: we verify
the Bethe prediction for the ferromagnetic Ising model at all temperatures, the ferromagnetic Potts
model with field B ≥ 0 in uniqueness regimes, and the independent set model with low fugacity λ.

1.2.1. Ising model. The Ising model is the Potts model (1.3) with q = 2. For convenience we use
the equivalent formulation which takes X = {±1} and defines the probability measure on X V

νβ,BG (σ) =
1

ZG(β,B)
exp

{
β
∑

(ij)∈E

σiσj +B
∑
i∈V

σi

}
. (1.12)

For T ∈ T• let h̄t,+T ≡ h̄t,+,β,BT denote the root marginal for the Ising model of parameters (β,B)
on T t with + boundary conditions (i.e., with σv conditioned to be +1 for all v at level t+ 1), and

similarly define h̄f
T corresponding to free boundary conditions. For ‡ ∈ {f,+} let h̄‡T ≡ h̄‡,β,BT ≡

limt→∞ h̄
t,‡,β,B
T . (Existence of the limits h̄f

T , h̄
+
T for the Ising model is an easy consequence of

Griffiths’s inequality; see Lem. 4.1.) We then define messages h‡ ∈ Hµ by

h‡x→y = h̄‡Tx→y ,

for Tx→y as defined in Rmk. 1.5. For Gn →lwc µ, the Bethe free energy prediction for the Ising

model with β ≥ 0, B > 0 is φ(β,B) = Φµ(β,B, h+). This prediction was verified in [9, Thm. 2.4]
for uniformly sparse graph sequences converging locally weakly to Galton-Watson trees subject to
the second-moment condition Eµ[D2

o ] <∞, which was relaxed in [11] to a (1+ε)-moment condition.
We have the following generalization of this result to an arbitrary limiting law.

Theorem 1.8. For the Ising model (1.12) on Gn →lwc µ,

φ(β,B) = Φµ(β,B, hf) = Φµ(β,B, h+)

for β ≥ 0, B > 0. Also φ(β,B) = φ(β,−B) and φ(β, 0) = limB→0 φ(β,B).
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1.2.2. Potts model. Throughout the remainder let (β0, B0) ≤ (β1, B1), where ≤ means coordinate-
wise less than or equal to. An interpolation path is a piecewise linear path, with each piece parallel
to a coordinate axis, increasing from (β0, B0) to (β1, B1) with respect to the partial order ≤.

We restrict our attention to the Potts model with β,B ≥ 0. In this regime we are able to use
a random-cluster representation to extract important monotonicity properties. For T ∈ T• and

‡ ∈ {f, 1} let h̄t,‡T ≡ h̄t,‡,β,BT denote the root marginal for the Potts model on T t with ‡ boundary

conditions. Let h̄‡T ≡ h̄‡,β,BT ≡ limt→∞ h̄
t,‡,β,B
T (existence of the limits h̄f

T , h̄
1
T for the Potts model

follows from monotonicity properties of the random-cluster representation; see Cor. 4.4). We then

define messages h‡ ∈ Hµ by h‡x→y = h̄‡Tx→y , and let

Rµ ≡ {(β,B) : hf = h1, µ↑-a.s.}.

We also define

R∞ ≡ ({0} × R≥0) ∪ (R≥0 × {∞}) ∪ ({∞} × R>0).

Theorem 1.9. For the Potts model (1.3) with q > 2 and β,B ≥ 0 on Gn →lwc µ, the following
hold (with Φ ≡ Φµ, R ≡ Rµ):

(a) If there exists an interpolation path contained in R joining (β,B) and R∞, then

φ(β,B) = Φ(β,B, hf) = Φ(β,B, h1).

(b) If there exists an interpolation path from (β0, B0) to (β1, B1) along which hf is continuous (in
the interpolation parameter), then

lim inf
n→∞

[φn(β1, B1)− φn(β0, B0)] ≥ Φ(β1, B1, h
f)− Φ(β0, B0, h

f).

If hf is replaced with h1 then we have instead

lim sup
n→∞

[φn(β1, B1)− φn(β0, B0)] ≤ Φ(β1, B1, h
1)− Φ(β0, B0, h

1).

We obtain more explicit results when the limiting tree is the d-regular tree Td.

Theorem 1.10. For the Potts model (1.3) with q > 2 and β,B ≥ 0 on Gn →lwc Td, the following
hold (with Φ ≡ ΦTd, R ≡ RTd, and R 6= ≡ {β,B ≥ 0}\R):

(a) If d = 2, R 6= = ∅. If d > 2 and q = 2, there exists 0 < β− < ∞ such that R6= = {B = 0, β >
β−}. If d > 2 and q > 2, there are smooth curves βf(B) and β+(B) defined on [0, B+] with
βf(B+) = β+(B+) such that

R 6= = {B = 0, β ≥ βf(0)} ∪ {0 < B < B+, β ∈ [βf(B), β+(B)]}.

(b) For (β,B) /∈ R 6=, φ(β,B) = Φ(β,B, hf) = Φ(β,B, h1). If (β,B) ∈ ∂R6= with β = βf(B), then

φ(β,B) = Φ(β,B, hf). If (β,B) ∈ ∂R6= with β ≥ β+(B), then φ(β,B) = Φ(β,B, h1). For
(β,B) in the interior R◦6= of R6=,

max{Φ(β,B, h1),Φ(β,B, hf)} ≤ lim inf
n→∞

φn(β,B)

≤ lim sup
n→∞

φn(β,B) ≤ min{Φ̃f(β,B), Φ̃1(β,B)}

where

Φ̃1(β,B) ≡ Φ(βf(B), B, hf) + [Φ(β,B, h1)− Φ(βf(B), B, h1)],

Φ̃f(β,B) ≡ Φ(β+(B), B, h1)− [Φ(β+(B), B, hf)− Φ(β,B, hf)].
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Figure 1. Potts model with q = 30, d = 10

Fig. 1 illustrates the situation of Thm. 1.10 with q = 30, d = 10. Fig. 1a shows the recursion (1.15)
at β = 0.7, B = 0.2, restricted to those h which are symmetric among the spins 6= 1, parametrized
by the log-likelihood ratio r ≡ log h(1)− log h(2). The fixed point at r = 0 corresponds to hf while
the uppermost fixed point corresponds to h1, and both fixed points are stable. Fig. 1b shows the
region R6= in which this situation occurs.

1.2.3. Independent set model. We consider the independent set model (1.4) in the regime of low

fugacity. For ‡ ∈ {0, 1} let h̄t,‡T ≡ h̄
t,‡,λ
T denote the root marginal on T t with ‡ boundary conditions on

∂T t (i.e. at level t+ 1). Let h̄‡T ≡ limt→∞ h̄
2t−1,‡
T (existence of the limits h̄0

T , h̄
1
T for the independent

set model follows from anti-monotonicity; see §2.4). We then define messages h‡ ∈ Hµ by h‡x→y =

h̄‡Tx→y , and let

λc ≡ λc,µ ≡ inf{λ ≥ 0 : µ↑(h0,λ
x→y = h1,λ

x→y) < 1}
denote the uniqueness threshold. For T ∈ T•, we use brT to denote the branching number of T
(see [28, §2]).

Theorem 1.11. Consider the independent set model (1.4) on Gn →lwc µ, and write λc ≡ λc,µ.

(a) If λ < λc and h has total variation bounded by a deterministic constant on [0, log λ], then

φ(λ) = Φµ(λ, h0) = Φµ(λ, h1), (1.13)

which converges to φ(λc) as λ ↑ λc.
(b) If brTx→y ≤ ∆ − 1 µ↑-a.s. for ∆ a deterministic constant, then (1.13) holds for λ < λc with

λ(∆− 2) < 1.
(c) If µ = δTd, then (1.13) holds for λ ≤ λc.

For the d-regular tree Td, the uniqueness threshold λc(d) is (d−1)d−1/(d−2)d (see [25, §2]), and
[39, Thm. 2.3] shows that Td has the lowest value of λc among trees with maximum degree at most
d. The identity (1.13) has been proved in the case that the Gn are random d-regular graphs [2, 3].
It is also suggested by Weitz’s ptas for ZG(λ) on a finite graph G of maximum degree ∆ and with
λ < λc(∆) [39, Cor. 2.8]. For µ a unimodular measure on T• giving a local tree approximation to G
(in the sense of Defn. 1.1), λc,µ is often an improvement over λc(∆), making it possible to compute
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φ(λ) above λc(∆) provided (H3B) can be verified. However, there is strong evidence that no ptas
exists for all graphs of maximum degree ∆ when λ > λc(∆) [31, 36].

1.3. Results for general factor models. We now state our results for the factor model (1.1).
With the convention log 0 ≡ −∞, let logψ ≡ ξ and log ψ̄ ≡ ξ̄, and impose the regularity condition

(H1) The specification is permissive, that is, ψ̄(σ) > 0 for all σ ∈X , and there exists a “permitted
state” σp ∈X such that minσ ψ(σ, σp) > 0.

For any σ ∈ X , ξ̄B(σ) is continuously differentiable in B. For any σ, σ′ ∈ X , ξβ(σ, σ′)
is either identically −∞ over all β, or finite and continuously differentiable in β.

Recall Defn. 1.4 of the message space H, and consider the belief propagation (BP) recursion defined

by BP ≡ BPβ,B : H → H,

(BPβ,Bh)x→y(σ) ≡ 1

zx→y(β,B)
ψ̄B(σ)

∏
v∈∂x\y

(∑
σv

ψβ(σ, σv)hv→x(σv)
)
, (1.14)

with zx→y(β,B) normalizing constants. For µ a measure on T• and fixed (β,B), let H?µ(β,B)

denote the space of measurable functions h : Te → ∆X , again taken up to µ↑-equivalence, which
are fixed points of the BP recursion: that is, satisfying

h = BPβ,Bh, µ↑-a.s. (1.15)

For h ∈ Hµ we can define h̄ : T• → ∆X up to µ-equivalence by

h̄T (σ) ∼= ψ̄(σ)
∏
j∈∂o

(∑
σj

ψ(σ, σj)hj→o(σj)
)
. (1.16)

In particular, if h ∈ H?µ(β,B) and T ∈ T +
• , then clearly we have

h̄T (σ) ∼=
∑
σj

ψ(σ, σj)ho→j(σ)hj→o(σj) (1.17)

independently of the choice of j ∈ ∂o. From now on, for h ∈ Hµ, we will write h ∈ H? to indicate

that hβ,B ∈ H?µ(β,B) for (β,B) in the range being considered.

Remark 1.12. The elements of H? are consistent with the recursion structure of the tree in the
following precise sense: for T ∈ T• and U a finite connected subgraph of T , consider the factor model
νhU,T on U with boundary conditions σv ∼ hv→p(v) independently for v ∈ ∂U , where p(v) denotes

the (necessarily unique) neighbor of v inside U . Then the marginal of νhT t,T on T t−1 is exactly

the factor model νBPhT t−1,T on T t−1 with boundary conditions σu ∼ (BPh)u→p(u) independently for

u ∈ ∂T t−1, including any u which are leaves of T t. This statement remains valid if ∂T t or even
∂T t−1 is empty, since if ∂T t = ∅ then νhT t,T is simply νT as defined by (1.1). Continuing the

BP recursion up the tree, we see that h ∈ H? implies that the marginal law of σo will be h̄T as
defined by (1.16). From this it is easy to see that the measures νhU,T form a consistent family of
finite-dimensional marginals, so by the Kolmogorov consistency theorem they uniquely determine
a probability measure νT ≡ νhT belonging to GT , the set of Gibbs measures (or Markov random
fields) associated to the specification ψ ≡ (ψ, ψ̄) on T .1 (In fact this mapping is one-to-one, e.g. by
Rmk. 2.3 below.) Each νT belongs to a special class of measures in GT which are called Markov
chains or splitting Gibbs measures in the literature, and the entire collection (νT )T∈T• arising from

1Strictly speaking the term “Gibbs measures” refers to the case ψ > 0, but we will follow common practice and
say Gibbs measures also for the general case. For the general theory of Gibbs measures see e.g. [17].
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h ∈ H?µ has a consistency property which leads us to term them “unimodular Markov chains” (see
§2.3).

In this general setting, the Bethe prediction is the supremum of Φµ(β,B, h) over H?µ(β,B) (cf.
Rmk. 1.6). (It will be shown in Lem. 2.2 that Φµ is uniformly bounded on H?µ(β,B) subject

to Eµ[D2
o ] < ∞; if further ψ > 0 then Φµ is in fact uniformly bounded on H subject only to

Eµ[Do] < ∞.) We define the following integrability condition for unimodular measures µ on T•
(not necessarily arising from a graph sequence):

(H2) The probability measure µ on T• satisfies Eµ[Do] < ∞. If ψ is not everywhere positive,
then furthermore Eµ[ecDo ] <∞ for all c ∈ R.

Note that if Gn →lwc µ and ψ > 0 then (H2) holds trivially by the assumption of uniform sparsity.
We will in fact justify our interpolation scheme under a weaker assumption than (H2); for the exact
condition see (H2β), (H2B) in §2.2.

1.3.1. Bethe interpolation. We will deduce the results of §1.2 from the abstract interpolation
method given by Thm. 1.13 below, which bounds differences of φ(β,B) by differences of Φ(β,B, h)
(h ∈ H?) when the limiting expectation of a certain edge or vertex functional in the finite graph
(capturing respectively ∂βφn or ∂Bφn) is bounded by the expectation of an analogous functional
on the infinite tree.

To be more precise, recall that In denotes a uniformly random vertex of Vn. Let 〈·〉β,Bn denote

expectation with respect to νGn,ψ, conditioned on Gn. For h ∈ H?µ(β,B) and T ∈ T•, let JKh,β,BT

denote expectation with respect to νhT (as defined in Rmk. 1.12), conditioned on T , and define

ae
n(β,B) ≡ 1

2
En
[ ∑
j∈∂In

〈∂βξ(σIn , σj〉
β,B
n

]
, ae(β,B, h) ≡ 1

2
Eµ
[ ∑
j∈∂o

J∂βξ(σo, σj)K
h,β,B
T

]
,

avx
n (β,B) ≡ En[

〈
∂B ξ̄(σIn)

〉β,B
n

], avx(β,B, h) ≡ Eµ
[
J∂B ξ̄(σo)K

h,β,B
T

]
.

The left-hand expressions are the derivatives ∂βφn, ∂Bφn (Lem. 2.1). The right-hand expressions
are the infinite-tree analogues, which we will show in Propn. 2.4 may be thought of as derivatives
in β and B of Φµ.

For interpolation in β on a compact interval [β0, β1] using h ∈ H?, we require the following
regularity condition:

(H3β) On [β0, β1], µ↑-a.s. the functions β 7→ hβj→o(σ) are continuous with total variation bounded
by a deterministic constant depending only on β0, β1.

We define the analogous condition (H3B) for interpolation in B on a compact interval [B0, B1].
The condition of boundedness in total variation is implied for example whenever the functions h
are (anti-)monotone in the interpolation parameter.

Theorem 1.13. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) on Gn →lwc µ such that (H1) and
(H2) are satisfied.

(a) If on [β0, β1] we have h ∈ H? satisfying (H3β), and

lim sup
n→∞

ae
n(β,B) ≤ ae(β,B, h), (1.18)

then lim supn→∞[φn(β1, B)− φn(β0, B)] ≤ Φ(β1, B, h)− Φ(β0, B, h).
(b) If on [B0, B1] we have h ∈ H? satisfying (H3B), and

lim sup
n→∞

avx
n (β,B) ≤ avx(β,B, h), (1.19)
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then lim supn→∞[φn(β,B1)− φn(β,B0)] ≤ Φ(β,B1, h)− Φ(β,B0, h).

The same results hold if all inequalities are reversed, replacing limit superior with inferior.

The conditions (1.18), (1.19) (and their reverses) are automatically verified in the following
special case:

Theorem 1.14. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) on Gn →lwc µ satisfying (H1) and
(H2). We say that uniqueness holds if GT at (β,B) consists of a single measure νT , µ-a.s. In this
case, H?µ(β,B) is a singleton.

(a) If on [β0, β1]× {B} uniqueness holds and the unique element h ∈ H? satisfies (H3β), then

lim
n→∞

[φn(β1, B)− φn(β0, B)] = Φ(β1, B, h)− Φ(β0, B, h).

(b) If on {β} × [B0, B1] uniqueness holds and the unique element h ∈ H? satisfies (H3B), then

lim
n→∞

[φn(β,B1)− φn(β,B0)] = Φ(β,B1, h)− Φ(β,B0, h).

Uniqueness for GT corresponds to the vanishing effect of boundary conditions on ∂T t as t→∞
[17, Ch. 7]. Dobrushin’s uniqueness theorem (see e.g. [35]) gives a sufficient condition for uniqueness
to hold, together with a bound on the rate of convergence of the root marginal in T t to the limit as
t→∞. Note that if the convergence rate is uniform in β,B then the continuity required in (H3β)
and (H3B) immediately follows. We will obtain continuity in uniqueness regimes via a different
route, making use of certain monotonicity properties (see the proof of Thm. 1.8).

1.3.2. Variational principle. We further develop the theory by providing a variational principle for
the Bethe prediction: we express Φµ(β,B) as an optimum of a function Φµ(β,B,h) defined for h in
a larger space Hloc which, unlike H?µ(β,B), is independent of β,B. This alternative characterization
of Φµ is the infinite-tree analogue of the finite-graph optimization problem that is considered in
[41]. Recall from §1.1 that Te denotes the space of trees rooted at a directed edge.

Definition 1.15. The local polytope Hloc ≡ Hloc,µ is the space of measurable functions

h : Te → ∆X 2 , (T, x→ y) 7→ h(T,x→y) ≡ hxy,

taken up to µ↑-equivalence, such that

(i) hxy(σ, σ
′) = hyx(σ′, σ) for all σ, σ′ ∈X , and

(ii) for T ∈ T +
• , the one-point marginal h̄x(σ) ≡ h̄(T,x)(σ) ≡

∑
σy
hxy(σx, σy) is well-defined

independently of the choice of y ∈ ∂x.

If T = T 0, we define h̄T (σ) ∼= ψ̄(σ), in accordance with (1.16). Denote by H◦loc the subset of

h ∈ Hloc for which µ↑-a.s. hxy is strictly positive on X 2.

For fixed (β,B), by symmetry of ψβ and (1.17), the space H?µ(β,B) has a natural mapping into
Hloc given by

h 7→ h, hxy(σ, σ
′) ∼= ψ(σ, σ′)hx→y(σ)hy→x(σ′). (1.20)

With ψ permissive this is in fact an embedding; see Rmk. 2.3. We define the Bethe free energy
functional on Hloc by

Φµ(h) ≡ Eµ
[ 〈
ξ̄(σo)

〉
h̄o
− (Do − 1)H(h̄o)

]
+

1

2
Eµ
[ ∑
j∈∂o

{
〈ξ(σo, σj)〉hoj +H(hoj)

}]
, (1.21)

where H(p) denotes the Shannon entropy −
∑

k pk log pk for p a probability measure on a finite
space. This is an infinite-tree analogue of the definition of [41, (37)-(38)] for finite graphs. With
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the usual conventions log 0 ≡ −∞, 0 log 0 ≡ 0 and 0 log(0/0) ≡ 0, Φµ is bounded above on Hloc

whenever Eµ[Do] <∞, and we show in Lem. 3.1 that for µ unimodular, this Φµ extends the previous
definition (1.9) on H? (under the embedding (1.20)), provided the latter is finite. Furthermore,
writing H(q ‖ p) for the relative entropy

∑
k qk log(qk/pk) between q and p (well-defined for any

non-negative reference measure p), for µ unimodular we can alternatively express

Φµ(h) = −Eµ[H(h̄o ‖ ψ̄)]− 1

2
Eµ
[ ∑
j∈∂o

H(hoj ‖ ψ)
]
− Eµ

[
DoH(h̄o)

]
(1.22)

= −Eµ[H(h̄o ‖ ψ̄)]− 1

2
Eµ
[ ∑
j∈∂o

{
H(hoj ‖ ψ) +H(h̄o) +H(h̄j)

}]
= −Eµ[H(h̄o ‖ ψ̄)]− 1

2
Eµ
[ ∑
j∈∂o

H(hoj ‖ h̄o ×ψ h̄j)
]
, (1.23)

where (h̄o×ψ h̄j)(σo, σj) ≡ h̄o(σo)ψ(σo, σj)h̄j(σj), and unimodularity is used in the second identity.
This extended definition of Φµ provides the following variational principle for the Bethe free

energy:

Theorem 1.16. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) satisfying (H1), and let µ be a uni-
modular measure on T• with Eµ[Do] <∞.

(a) Φ̃µ(β,B) ≡ suph∈Hloc
Φµ(β,B,h) is continuous in (β,B).

(b) If further ψ > 0, then any local maximizer of Φµ(β,B) belongs to H◦loc. Any stationary point of
Φµ(β,B) belonging to H◦loc is the image under (1.20) of an element of H?µ(β,B). In particular,
if Φµ attains its supremum on Hloc, then

Φ̃µ(β,B) = max
h∈H?µ(β,B)

Φµ(β,B, h) ≡ ΦBethe
µ (β,B),

so that the Bethe free energy is also continuous in (β,B).

Although we do not pursue this point, we mention that even in specific models where the abstract
definition of ΦBethe is supplanted by Φ(β,B, h) for some “naturally” distinguished h, an adaptation
of Thm. 1.16 (involving a restricted subspace of Hloc which is independent on (β,B)), may be
relevant.

Remark 1.17. In case Gn →lwc Td the d-regular tree, Hloc is parametrized by a single measure
hxy on X 2 whose one-point marginals are required to agree, and the formula (1.23) simplifies to

− Φµ(h) = H(h̄0 ‖ ψ̄) +
d

2
H(h01 ‖ h̄0 ×ψ h̄1). (1.24)

For σ ∈ X Vn let Lvx
n ≡ n−1

∑
i∈Vn δσi and Le

n ≡ (2|En|)−1
∑

(ij)∈En [δ(σi,σj) + δ(σj ,σi)] denote the

induced empirical and pair empirical measures respectively. If Gn is d-regular, then the one-point
marginals of Le

n coincide with Lvx
n , and

φn = log |X |+ 1

n
En
[

logEūn exp
{
n〈ξ̄〉Lvx

n
+
nd

2
〈ξ〉Le

n

}]
where the law of σ is the uniform measure ūn on X [n] and Eūn denotes expectation with respect
to ūn (with Gn fixed).

If (Gn) is an independent sequence of uniformly random d-regular graphs and σn ∼ ūn, one
might guess that for a.e. (Gn) the induced sequence Le

n satisfies a large deviation principle (ldp)



14 A. DEMBO, A. MONTANARI, AND N. SUN

with good rate function

I(h01) = H(h̄0 ‖ ū) +
d

2
H(h01 ‖ h̄0 × h̄1), (1.25)

where ū ≡ ū1. If this were the case, it would be an immediate consequence of Varadhan’s lemma

(see [10, §4.3.1]) that φn → Φ̃µ(β,B) (as defined in Thm. 1.16) for any factor model satisfying
(H1). However, for many of these models the Bethe prediction is known to fail at low temperature
for d ≥ 3. So, while Thm. 1.16 suggests a potential connection to large deviations theory, such a
connection would be highly non-trivial and applicable only in certain regimes of (β,B).

One special case in which everything trivializes is the (rooted) infinite line T2, the local weak
limit of the simple path Gn on n vertices. In this case ūn may be viewed as the law of a stationary
reversible Markov chain on X with transitions q(σ, σ′) = ū(σ′) and reversing measure ū, and it
is well-known (see e.g. [10, Thm. 3.1.13]) that the associated pair empirical measure Le

n satisfies
an ldp with good rate function I(h01) = H(h01(σ, σ′) ‖ h̄0(σ)q(σ, σ′)) which matches (1.25). The
implication of Varadhan’s lemma is also easy to see: a factor model on the simple path Gn with
general positive specification ψ corresponds in the limit n→∞ to a reversible Markov chain with
transition kernel p and positive reversing measure π given by

p(σ, σ′) =
1

ρ
ψ̃(σ, σ′)

m(σ′)

m(σ)
, π(σ) = m(σ)2,

where ρ and m are the Perron-Frobenius eigenvalue and eigenvector of the symmetric positive

|X |-dimensional matrix with entries ψ̃(σ, σ′) ≡ ψ(σ, σ′)ψ̄(σ)1/2ψ̄(σ′)1/2. The Bethe free energy

functional (1.24) is then maximized at h01(σ, σ′) = ψ̃(σ, σ′)m(σ)m(σ′)/ρ, where it takes the value
Φµ(h) = log ρ which coincides with φ by the Perron-Frobenius theorem (see e.g. [10, Thm. 3.1.1]).

Outline of the paper.

• In §2 we prove the abstract interpolation results. §2.1 presents some preliminary lemmas
which will be useful in our proofs. Our main result for abstract factor models, Thm. 1.13,
is proved in §2.2. §2.3 contains the specialization of this theorem to the uniqueness case
(Thm. 1.14) and also contains discussion on unimodular Markov chains. §2.4 shows how to
deduce our result for independent set (Thm. 1.11) from Thm. 1.13.
• In §3 we prove the variational characterization for the Bethe prediction (Thm. 1.16).
• §4 contains applications of our abstract results to the Ising and Potts models. In §4.1 we

prove Thm. 1.8, generalizing the results of [9, 11]. In §4.2 we prove Thm. 1.9 by appealing
to a random-cluster representation. Finally §4.3 analyzes the d-regular case and proves
Thm. 1.10.

Acknowledgments. We thank Allan Sly and Ofer Zeitouni for many helpful conversations. A.D.
and N.S. thank the Microsoft Research Theory Group for supporting a visit during which part of
this work was completed.

2. Bethe interpolation for general factor models

2.1. Preliminaries. We begin with some straightforward observations on the boundedness of the
free energy φn and the Bethe free energy Φµ as defined on H, and we prove that the mapping (1.20)
of H? into Hloc is in fact an embedding for permissive specifications.

Lemma 2.1. For the factor model (1.1) satisfying (H1) on Gn →lwc µ, the functions φn(β,B) are
uniformly bounded and equicontinuous on compact regions of (β,B), with

∂βφn(β,B) =
1

n
En[∂β logZn(β,B)], ∂Bφn(β,B) =

1

n
En[∂B logZn(β,B)]. (2.1)
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Further
1

n
∂β logZn(β,B) =

1

2

∑
j∈∂In

〈∂βξ(σIn , σj)〉
β,B
n ,

1

n
∂B logZn(β,B) =

〈
∂B ξ̄(σIn)

〉β,B
n

,

with the convention ∂βξ(σ, σ
′) ≡ 0 in case ξ(σ, σ′) ≡ −∞.

Proof. The expressions for n−1∂β logZn(β,B) and n−1∂B logZn(β,B) are obtained by a straight-
forward computation. Now note that if Gn →lwc µ then the uniform sparsity assumption gives

1

n
En[|En|] =

1

2
En[DIn ]→ 1

2
Eµ[Do] <∞. (2.2)

Let (β,B) vary within a given compact region. By (H1) we have ξ, ξ̄ ≤ ξmax as well as ξ(σp, ·), ξ̄ ≥
ξmin. Therefore

(1 + |En|/n)ξmin ≤ n−1 logZn(β,B) ≤ log |X |+ (1 + |En|/n)ξmax

so φn = n−1En[logZn(β,B)] is uniformly bounded by uniform sparsity. The exchange of differentia-
tion and integration in (2.1) is justified by Vitali’s convergence theorem, in view of the boundedness
of ∂βξ, ∂B ξ̄ and the uniform integrability of |En|/n. It follows furthermore that ∂βφn(β,B) and
∂Bφn(β,B) are bounded uniformly in n, from which equicontinuity follows. �

Lemma 2.2. Let ψ ≡ (ψ, ψ̄) specify a factor model (1.1) satisfying (H1), and let µ be a unimodular
measure on T•. For any compact region of (β,B) there exists a deterministic constant C <∞ such
that

(a) |ΦT (β,B, h)| ≤ C(D2
o + 1) for any h ∈ H?, and

(b) if further ψ > 0, then |ΦT (β,B, h)| ≤ C(Do + 1) for any h ∈ H.

Hence, on any compact region of (β,B), Φµ is uniformly bounded on H?µ provided Eµ[D2
o ] < ∞,

and, if ψ > 0, uniformly bounded on Hµ subject only to Eµ[Do] <∞.

Proof. Let ξmin, ξmax be as in the proof of Lem. 2.1. Then, for any h ∈ H,

log |X |+ (Do + 1)ξmax ≥ Φvx
T (h) ≥ (Do + 1)ξmin.

If ψ > 0 then we also have

Doξmax ≥ 2Φe
T (h) ≥ Doξmin,

so |ΦT (β,B, h)| ≤ C(Do+1) on H, which proves (b). For general permissive ψ, the preceding lower
bound on Φe

T (h) may fail, but (1.15) implies that for h ∈ H?,
log ho→j(σ

p) ≥ Do(ξmin − ξmax)− log |X |, ∀j ∈ ∂o. (2.3)

Therefore,

Doξmax ≥ 2Φe
T (h) ≥

∑
j∈∂o

(
ξmin + log ho→j(σ

p)
)
≥ Do(ξmin − log |X |) +D2

o(ξmin − ξmax),

which proves (a). �

Remark 2.3. It is now easy to see that the mapping (1.20) of H?µ(β,B) into Hloc is injective: if
h, h′ ∈ H give rise to the same h, then

hx→y(σ)hy→x(σp) = zx,yh
′
x→y(σ)h′y→x(σp) ∀σ ∈X ,

for zx,y a positive scaling factor. If h, h′ ∈ H?µ(β,B), then (2.3) implies that µ↑-a.s. both hy→x and

h′y→x give positive measure to σp. Therefore, µ↑-a.s. the |X |-dimensional vectors hx→y and h′x→y
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are equivalent up to scaling, and since both are probability measures on X , we must have h = h′

µ↑-a.s. as claimed.

2.2. Bethe interpolation. We now prove Thm. 1.13(a). The result is for fixed B so we suppress
it from the notation. The proof of Thm. 1.13(b) is very similar and will be given in brief at the
end of this section.

Our interpolation procedure relies on the proposition below which expresses Φµ as the integral
of its partial derivative with respect to β only, ignoring the dependence on β through the function
h. Recall that although it is suppressed from the notation, ψ and h depend on β, and are taken
to be evaluated at β in expressions such as ΦT (β,B). We will prove our result under the following
integrability condition, which by (2.3) is a relaxation of (H2):

(H2β) The probability measure µ on T• satisfies Eµ[Do] < ∞. If ψ is not everywhere positive,
then furthermore

Eµ
[ ∑
j∈∂o

sup
β∈[β0,β1]

1

hβj→o(σ
p)

]
<∞.

We define the analogous condition (H2B) on an interval [B0, B1].

Proposition 2.4. Let ψ ≡ (ψ, ψ̄) be a specification satisfying (H1), and µ a unimodular measure

on T•. If on [β0, β1] we have h ∈ H? satisfying (H2β) and (H3β), then

Φ(β1, h)− Φ(β0, h) =

ˆ β1

β0

ae(β, h) dβ.

Proof. For fixed T ∈ T• we shall regard ΦT simply as a function of a vector (β, hx→y)x→y∈T 1 in
(1 + 2|X |Do)-dimensional euclidean space (with h depending on β). We begin by computing the

partial derivatives of this function with respect to β and h. We abbreviate ĥβo→j(σ) ≡ (BPβh)o→j(σ)

for the belief propagation mapping of (1.14), which for fixed T and each j ∈ ∂o is a well-defined
function on the same euclidean space as ΦT . Making use of (H1) we find

∂Φvx
T

∂β
(β, h) =

∑
j∈∂o

∑
σ,σj

∂βξ(σ, σj)ψ(σ, σj)hj→o(σj)ĥ
β
o→j(σ)∑

σ,σj
ψ(σ, σj)hj→o(σj)ĥ

β
o→j(σ)

, (2.4)

∂Φ
(oj)
T

∂β
(β, h) =

∑
σ,σj

∂βξ(σ, σj)ψ(σ, σj)hj→o(σj)ho→j(σ)∑
σ,σj

ψ(σ, σj)hj→o(σj)ho→j(σ)
. (2.5)

If h ∈ H? then ĥβ = h, therefore (recalling the notation JKh,βT from §1.3.1) we re-express the above
as

∂Φvx
T

∂β
(β, h) =

∑
j∈∂o

J∂βξ(σo, σj)K
h,β
T ,

∂Φ
(oj)
T

∂β
(β, h) = J∂βξ(σo, σj)K

h,β
T ,

and combining gives

∂ΦT

∂β
(β, h) =

1

2

∑
j∈∂o

J∂βξ(σo, σj)K
h,β
T ≡ ae

T (β, h). (2.6)
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Likewise we compute that for T ∈ T +
• ,

∂Φvx
T (β, h)

∂ho→j(σ)
= 0,

∂Φvx
T (β, h)

∂hj→o(σj)
= ĝβσj (j → o;h) ≡

∑
σ ψ(σ, σj)ĥ

β
o→j(σ)∑

σ′,σ′j
ψ(σ′, σ′j)hj→o(σ

′
j)ĥ

β
o→j(σ

′)
,

∂Φe
T (β, h)

∂hj→o(σj)
=

1

2
gβσj (j → o;h),

∂Φe
T (β, h)

∂ho→j(σ)
=

1

2
gβσ(o→ j;h)

where gβσ is the same as ĝβσ but with h in place of ĥ. Note that for permissive ψ and any σ ∈X ,

ĝβσ(x→ y;h) ≤
∑

σ′ ψ(σ′, σ)ĥβy→x(σ′)∑
σ′ ψ(σ′, σp)hx→y(σp)ĥβy→x(σ′)

≤ ψβmax

ψβminhx→y(σ
p)
. (2.7)

If further ψ > 0 everywhere, then ĝβσ(x→ y;h) ≤ ψβmax/ψ
β
min is uniformly bounded on [β0, β1].

Consider now a small sub-interval [β, β+ δ] of [β0, β1]. Writing ∆β,δh ≡ hβ+δ − hβ and applying
the mean value theorem to the differentiable function t 7→ ΦT (β+ tδ, h+ t∆β,δh) for t ∈ [0, 1] gives

ΦT (β + δ, h)− ΦT (β, h) =
∂ΦT

∂β
(β + tδ, hβ + t∆β,δh)δ + ΓT (β, δ) + ET (β, δ) (2.8)

for some t ≡ tβ,δ ∈ [0, 1], where

ΓT (β, δ) ≡
∑
σ

∑
j∈∂o

{ ∂ΦT

∂hj→o(σ)
(β, h)∆β,δhj→o(σ) +

∂ΦT

∂ho→j(σ)
(β, h)∆β,δho→j(σ)

}
,

ET (β, δ) ≡
∑
σ

∑
x→y

∗{ ∂ΦT

∂hx→y(σ)
(β + tδ, hβ + t∆β,δh)− ∂ΦT

∂hx→y(σ)
(β, h)

}
∆β,δhx→y(σ),

and
∑∗

x→y indicates the sum over the 2Do directed edges x→ y within T 1.

Setting δ ≡ δm ≡ (β1 − β0)/m, we now sum Φ(β + δm, h)− Φ(β, h) over β ∈ Πm ≡ {β0 + kδm :
0 ≤ k < m} and analyze separately the contribution of each term on the right-hand side of (2.8):

(a) First we show that Eµ[ΓT (β, δ)] = 0 for any [β, β + δ] ⊆ [β0, β1]. Indeed, since h ∈ H? we have

ĥβ = hβ and ĝβ = gβ. Therefore,

ΓT (β, δ) =
1

2

∑
σ

∑
j∈∂o

{
gβσ(j → o;h)∆β,δhj→o(σ)− gβσ(o→ j;h)∆β,δho→j(σ)

}
.

The result then follows from unimodularity of µ, subject to µ-integrability of∑
σ

∑
j∈∂o
|gβσ(j → o;h)∆β,δhj→o(σ)|.

Clearly |∆β,δhx→y(σ)| ≤ 2 so integrability certainly holds when ψ > 0, since Eµ[Do] < ∞
and gβσ is deterministically uniformly bounded on [β0, β1] as noted above. More generally, for
permissive ψ the required µ-integrability follows from (2.7) and (H2β).

(b) The total contribution of the first term on the right-hand side of (2.8) is

Am ≡ δEµ
[ ∑
β∈Πm

∂ΦT

∂β
(β + tβ,δδ, h

β + tβ,δ∆β,δh)
]
.

Observe that Am =
´
Ym d(λ× µ) where λ is Lebesgue measure on [β0, β1] and

Ym(β′, T ) ≡
∑
β∈Πm

1{β ≤ β′ < β + δ}∂ΦT

∂β
(β + tβ,δδ, h

β + tβ,δ∆β,δh).
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For (λ × µ)-a.e. (β′, T ), this sum has at most one non-zero term, in which the argument of

∂βΦT converges by (H3β) to (β′, hβ
′
) as m → ∞. From (H1), (1.14), and the computation of

∂βΦT in (2.4)-(2.5), we see that ∂βΦT (β, h) is continuous in (β, h). Therefore, Ym(β′, T ) →
ae
T (β′, h), (λ × µ)-a.e. Furthermore, (H1) implies that |∂βξ| ≤ C uniformly on [β0, β1] for

some deterministic constant C, so |Ym| ≤ 2CDo for all m, (λ × µ)-a.e. (see (2.4) and (2.5)).
Dominated convergence then gives

lim
m→∞

Am =

ˆ
ae
T (β′, h) d(λ× µ) =

ˆ β1

β0

ae(β′, h) dβ′.

(c) The contribution of the final term in (2.8) is Eµ[ET,m] where

ET,m ≡
∑
β∈Πm

ET (β, δ),

and we conclude the proof by showing that limm→∞ Eµ[ET,m] = 0.
Indeed, it is not hard to see that limm→∞ET,m = 0 µ-a.s.: by the uniform bound on total

variation assumed in (H3β), there exists deterministic C such that

|ET,m| ≤ C
∑
x→y

∗
max
σ

sup
β∈[β0,β1]

sup
t∈[0,1]

∣∣∣∣ ∂ΦT

∂hx→y(σ)
(β + tδm, h

β + t∆β,δmh)− ∂ΦT

∂hx→y(σ)
(β, h)

∣∣∣∣
µ-a.s., uniformly in m. It also follows from (H3β) that µ-a.e. hβ is uniformly continuous on
[β0, β1]. Using (H1), the partials ∂hΦT computed above are uniformly continuous in (β, h) for

β ∈ [β0, β1] and hβj→o(σ
p) uniformly bounded away from zero. By (2.3) there exists deterministic

c such that
inf

β∈[β0,β1]
hβj→o(σ

p) ≥ e−c(Dj+1) ∀j ∈ ∂o, µ-a.s..

Combining these observations gives limm→∞ET,m = 0 µ-a.s.
To take the limit in µ-expectation, we argue similarly as in part (a): by (2.7) and (H1) there

exists deterministic C ′ such that∣∣∣∣ ∂ΦT

∂hx→y(σ)
(β + tδ, hβ + t∆β,δh)

∣∣∣∣ ≤ C ′

hβx→y(σp) + t∆β,δhx→y(σp)
≤ sup

β′∈[β0,β1]

C ′

hβ
′
x→y(σp)

for all β ∈ [β0, β1 − δ], x→ y ∈ T 1, σ ∈X and t ∈ [0, 1], hence

|ET,m| ≤ CC ′
∑
x→y

∗
sup

β∈[β0,β1]

1

hβx→y(σp)
.

This is integrable by (H2β) and unimodularity of µ, so dominated convergence implies that
limm→∞ Eµ[ET,m] = 0 as claimed.

Combining (a)-(c) gives the result of the proposition. �

Proof of Thm. 1.13(a). Recalling Lem. 2.1,

lim sup
n→∞

[φn(β1)− φn(β0)] = lim sup
n→∞

ˆ β1

β0

ae
n(β,B) dβ ≤

ˆ β1

β0

lim sup
n→∞

ae
n(β,B) dβ ≤

ˆ β1

β0

ae(β, h) dβ,

where the first inequality follows by (the reversed) Fatou’s lemma and the second one by the
hypothesis (1.18). By Propn. 2.4 the right-most expression equals to Φ(β1, h) − Φ(β0, h), so the
theorem is proved. �

The justification for interpolation in B is entirely similar:
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Proof of Thm. 1.13(b). Now β is fixed so we suppress it from the notation. For h ∈ H and T ∈ T +
•

then

∂ΦT (B, h)

∂B
=
∂Φvx

T (B, h)

∂B
=

∑
σ,σj

∂B ξ̄(σ)ψ(σ, σj)hj→o(σj)ĥo→j(σ)∑
σ,σj

ψ(σ, σj)hj→o(σj)ĥo→j(σ)
∀j ∈ ∂o,

while if T = T 0 then ∂BΦT =
∑

σ ∂B ξ̄(σ)ψ̄(σ)/
∑

σ ψ̄(σ). If h ∈ H? then ĥB = hB, so

Eµ[∂BΦT (B, h)] = Eµ[J∂B ξ̄(σo)K
h,B
T ] ≡ avx(B, h).

The result now follows by adapting the proofs of Propn. 2.4 and Thm. 1.13(a). �

2.3. Discussion and first consequences. We now prove Thm. 1.14 by considering an extended
notion of local weak convergence. As discussed in [1], a graph G = (V,E) together with a spin
configuration σ ∈ X V on the graph can be regarded as a graph with marks in X . Let GX

• and
GX
•• denote the spaces of marked isomorphism classes of connected, rooted and bi-rooted graphs,

respectively, with marks in X . These spaces are metrizable by the obvious generalizations of the
metrics on G•,G•• defined in §2.1, giving rise to the notion of local weak convergence for pairs
(Gn, σn) of graphs with spin configurations. Defn. 1.2 generalizes naturally to this setting, and we
show next that if σn is a random configuration on Gn with law νGn,ψ (as defined in (1.1)), then a

local weak limit of (Gn, σn), if it exists, must be unimodular.

Lemma 2.5. If Gn →lwc µ and σn ∼ νGn,ψ then the laws of (Gn, σn) have subsequential local weak

limits belonging to the space U of unimodular measures on GX
• .

Proof. For each fixed t, the laws of Bt(In) are weakly convergent, hence by Prohorov’s theorem
form a uniformly tight sequence. Consequently, for each ε > 0 there exists Kε ⊆ G• compact with
supn Pn(Bt(In) /∈ Kε) ≤ ε. Further, Kε may be taken to contain only graphs of depth at most
t, whereby the minimal distance between any two graphs in Kε is uniformly bounded below (by
1/(1 + t)), hence the compactness of Kε implies that it must be a finite set. The collection of all
marked graphs in GX

• whose underlying graph is in Kε must therefore be finite, hence compact as
well. Thus, by yet another application of Prohorov’s theorem, the joint laws of (Bt(In), σBt(In)) are

uniformly tight in GX
• and consequently have subsequential weak limits. By extracting successive

subsequences for increasing t and taking the diagonal subsequence it follows that the sequence
(Gn, σn) admits subsequential local weak limits µ̂ ∈ U . �

For µ̂ ∈ U , the marginal µ of µ̂ is a unimodular measure on G•. If it is supported on a single
tree T as in the d-regular case, then clearly µ̂ may be represented as δT × ν where ν ∈ GT , the
space of Gibbs measures on T corresponding to specification ψ. To make such a statement in the
general setting, note that there is a continuous mapping π from G• to the space N• of graphs on Z≥0

rooted at 0, taking an isomorphism class to its canonical representative [1, p. 1461]. Thus µ̂ may be
regarded as a measure on the product space N•×X Z≥0 , and consequently µ̂ has a representation as
the measure µ⊗ ν on pairs (T, σ) where T has law µ and σ given T has law νT ∈ GT . In particular,
if |GT | = 1 µ-a.s., then µ⊗ ν is uniquely determined.

Let µ be a unimodular measure on T•. It was noted in Rmk. 1.12 that there is a mapping from
H?µ(β,B) to collections (νT ∈ GT )T∈T• . For such ν, µ⊗ν belongs to U : if f is a non-negative Borel

function on GX
•• , it follows from the Te-measurability of elements of Hloc that

Eµ⊗ν
[ ∑
j∈∂o

f((T, σ), o, j)
]

= Eµ
[ ∑
j∈∂o

f̄(T, o, j)
]
,
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where f̄ is a non-negative Borel function on G••. The unimodularity of the underlying measure µ
then gives

Eµ⊗ν
[ ∑
j∈∂o

f((T, σ), o, j)
]

= Eµ⊗ν
[ ∑
j∈∂o

f((T, σ), j, o)
]
,

and therefore µ⊗ ν ∈ U .

Remark 2.6. An element ν ∈ GT is called a Markov chain (or splitting Gibbs measure) if for any
finite connected subgraph U ⊆ T , the marginal of ν on U is a Markov random field ([42], see also

[17, Ch. 12] and [38]). A collection ΛT ≡ (λji )(ij)∈ET of probability measures on X is called an

entrance law (or boundary law) for the specification ψ ≡ (ψ, ψ̄) on T if it satisfies the consistency
requirement ([42, (3.4)])

λji (σi) =
∏

k∈∂i\j

(∑
σk

φik(σi, σk)λ
i
k(σk)

)
,

where φij(σi, σj) ≡ ψ̄(σ)1/Diψ(σ, σ′)ψ̄(σ′)1/Dj , the pairwise interaction potential corresponding to
ψ. It is shown in [42, Thm. 3.2] that there is a one-to-one correspondence between Markov chains
ν and entrance laws ΛT , given by

ν(σU ) ∼=
∏

(ij)∈EU

φij(σi, σj)
∏
i∈∂U

(∑
σi

φip(i)(σi, σp(i))λ
p(i)
i (σi)

)
for U any finite connected subgraph of T , with p(i) denoting the unique neighbor of i inside U for
i ∈ ∂U . In particular, we see that the Gibbs measure νT arising from h ∈ H?µ(β,B) is precisely the

Markov chain with entrance law λij(σ) ∼= hj→i(σ)ψ̄(σ)−1/Dj . Extremal elements of GT are Markov

chains [42, Thm. 2.1] but the converse is false; for example, the free-boundary Ising Gibbs measure
is non-extremal at low temperature (see [13, 23]). The measures µ ⊗ ν arising from elements of
H?µ(β,B) might naturally be termed “unimodular Markov chains” in the sense that the entrance
laws for the entire collection (νT )T∈T• are specified by a single measurable function h : Te → ∆X . In
the case µ = δTd these correspond precisely to the completely homogeneous Markov chains studied
in [42, §4].

Proof of Thm. 1.14. Suppose uniqueness holds at (β,B), i.e. GT = {νT } µ-a.s. Then H?µ(β,B)
has size at most one by Rmk. 2.3. For µ-a.e. T , the measure νT is extremal, and so specifies a
Markov chain on T with entrance law ΛT (see Rmk. 2.6). If we define hx→y(σ) ≡ h(T,x→y)(σ) ∼=
λyx(σ)ψ̄(σ)1/Dx , then h ∈ H?µ(β,B), which proves that H?µ(β,B) is a singleton.

Now consider interpolation in β or B. All the conditions of Thm. 1.13 are satisfied by assumption
except (1.18) and (1.19). If uniqueness holds at (β,B), it follows from the preceding discussion that
there is a unique µ ⊗ ν ∈ U corresponding to the specification (ψβ, ψ̄B). Any local weak limit of
(Gn, σn) must be such a measure, so (Gn, σn)→lwc µ⊗ ν; likewise, any element of H?µ(β,B) gives
rise to µ⊗ ν. Therefore,

lim
n→∞

ae
n(β,B) =

1

2
Eµ⊗ν

[ ∑
j∈∂o

∂βξ(σo, σj)
]

= ae(β,B, h),

where the limit in expectation is justified by the boundedness of ∂βξ on compacts and uniform
sparsity (as in the proof of Lem. 2.1). This verifies (1.18), and the verification of (1.19) is entirely
similar. The result therefore follows from Thm. 1.13. �

Remark 2.7. If uniqueness of Gibbs measures does not hold, one may consider extremal decompo-
sition of the subsequential local weak limits µ̂ of (Gn, σn), either in the spaces GT (possibly losing
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unimodularity in the decomposition) or in the space U . Extremal decomposition in U is discussed
in [1, §4] but it is unclear whether extremal elements would be unimodular Markov chains in the
sense described here. A decomposition of µ̂ = µ⊗ ν into unimodular Markov chains µ⊗ ν ′ would
obviously yield a substantial generalization of Thm. 1.14.

2.4. Application to independent set. We now prove Thm. 1.11, our result for the independent
set model (1.4), by verifying the conditions of Thm. 1.14 for the interpolation parameter B ≡ log λ.
In this setting a convenient parametrization for the messages h ∈ H is u ≡ h(0), so that the BP
mapping (1.14) becomes

(BPλu)x→y =
1

1 + λ
∏
v∈∂x\y uv→x

. (2.9)

A single BP iteration is anti-monotone in the messages uv→x, so a double iteration is monotone.
Since the root marginal for an independent set model in T 2t−1 is obtained by an even number of
BP iterations starting from level 2t (see Rmk. 1.12), it is monotone in the boundary conditions.

Recalling from §1.2.3 the definition of h̄t,‡T ≡ h̄t,‡,λT for ‡ ∈ {0, 1} and writing ūt,‡T ≡ h̄t,‡T (0), the
above implies that for 1 ≤ s ≤ t,

ū2s−1,0
T ≥ ū2t−1,0

T ≥ ū2t−1,1
T ≥ ū2s−1,1

T ≥ ū1,1
T =

1

1 + λ
.

Thus the t → ∞ limits h̄0
T , h̄

1
T are well-defined with h̄0

T (1) ≥ h̄1
T (1) ≥ 1/(1 + λ), and using these

we define messages h‡ ∈ H, h‡x→y = h̄‡Tx→y . The next lemma gives the boundary values for the

interpolation.

Lemma 2.8. For the independent set model on Gn →lwc µ,

lim
λ↓0

lim sup
n→∞

|φn(λ)| = 0 = lim
λ↓0

Φ(λ, h‡), ‡ ∈ {0, 1}.

Proof. The left limit follows from the trivial bounds 1 ≤ Zn ≤ (1 + λ)n. Next, for any h ∈ H,

Φvx
T (λ, h) = log

{
1 + λ

∏
j∈∂o

hj→o(0)
}
,

so Φvx
T (λ, h) → 0 both µ-a.s. and in µ-expectation as λ ↓ 0, by bounded convergence. The same

holds for Φe
T (λ, h‡), ‡ ∈ {0, 1}, using the bound h‡x→y(0) ≥ 1/(1 + λ). �

Proof of Thm. 1.11. The independent set model (1.4) is of form (1.1) with X = {0, 1}, ψ(σ, σ′) =
1{σσ′ 6= 1}, and ψ̄(σ) = λσ ≡ eBσ, so (H1) is clearly satisfied with σp = 0 the permitted state. By
definition of λc, if λ < λc then h0 = h1 ≡ h in H, and it then follows from the recursive structure

of the tree that h ∈ H?µ(λ). Since h‡x→y(0) ≥ 1/(1 + λ) as noted above, (H2B) is satisfied on any
compact interval of λ.

For T ∈ T•, as noted above the root occupation probability on T s for s ≥ 2t − 1 with any

boundary conditions is sandwiched between h̄2t−1,0
T (1) and h̄2t−1,1

T (1), with the former increasing

to h̄0
T (1) and the latter decreasing to h̄1

T (1). Since the h̄t,‡T are clearly continuous in λ, it follows
that h̄0

T (1) and h̄1
T (1) are respectively lower and upper semi-continuous in λ, so if they coincide

then their common value h̄T (1) is continuous in λ. Applying this with T = Tx→y gives the µ↑-a.s.

continuity of h‡x→y on (0, λc).

For T ∈ T•, h̄‡T for ‡ ∈ {0, 1} is a function of (h1−‡
j→o)j∈∂o, so for λ < λc we have that h̄0

T = h̄1
T ,

µ-a.s. It then follows from the preceding observations and Rmk. 1.12 that the boundary effect
vanishes and |GT | = 1 µ-a.s. Thus, we are in the setting of Thm. 1.14(b), and it remains only to
complete the verification of (H3B), i.e. the boundedness in total variation of the messages hx→y:
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(a) No verification is needed since boundedness in total variation is simply assumed.

(b) For T ∈ T•, ūt,‡T ≡ h̄
t,‡
T (0) satisfies

log ū2t+1,‡
T = − log

(
1 + λ

∏
j∈∂o

1

1 + λ
∏
k∈∂j\o ū

2t−1,‡
Tk→j

)
.

Differentiating with respect to λ, we find that rt,‡T ≡ (1 + λ)∂λ log ūt,‡T satisfies

|r2t+1,‡
T | ≤ 1 +

λ

1 + λ
Do +

( λ

1 + λ

)2 ∑
j∈∂o

∑
k∈∂j\o

|r2t−1,‡
Tk→j

|. (2.10)

Since ū1,1
T = 1/(1 + λ) for any T ∈ T•, we find that

sup
t≥0
|r2t−1,1
T | ≤ 1 +

∑
`≥1

( λ

1 + λ

)`
|∂T `−1|.

If λ1/(1 + λ1) < 1/ brT then this is finite and uniformly bounded on [λ0, λ1] (see [28, §2]), and

consequently ū1
T ≡ limt→∞ ū

2t−1,1
T has deterministically bounded total variation on [λ0, λ1]. If

λ1 < λc,µ then h2t−1,1
x→y → hx→y on [λ0, λ1], so if brTx→y ≤ ∆ − 1 µ↑-a.s. and λ1/(1 + λ1) <

1/(∆− 1) (i.e. λ1(∆− 2) < 1), then h has deterministically bounded total variation on [λ0, λ1].
(c) Since the limiting measure is supported on Td, only h ≡ h(Td,x→y) is of relevance, and (2.9)

reduces to BPλu = (1 + λud−1)−1. For λ ≤ λc = λc(d) there is a unique fixed point (see [25,
§2]), which is then easily seen to be monotone in λ.

Thus (H3B) is verified in parts (a)-(c). Also, φ(λc) = limλ↑λc φ(λ) as an immediate consequence of
Lem. 2.1. The rest of the theorem follows by applying Thm. 1.14 and then taking B0 = log λ0 →
−∞, relying on the boundary value given by Lem. 2.8. �

3. Bethe prediction as optimization over local polytope

Throughout this section we assume that ψ ≡ (ψ, ψ̄) satisfying (H1) specifies a factor model of the
form (1.1), with µ a unimodular measure on T• with Eµ[Do] <∞. We study the Bethe prediction
as the optimization of the Bethe free energy functional Φµ on Hloc as defined by (1.21). We first
verify that this agrees with the previous definition (1.9) of Φµ on H?µ(β,B), which we always regard
as being embedded into Hloc via (1.20). Recall from Defn. 1.15 that for h ∈ Hloc, the one-point
marginals of hxy are denoted h̄x and h̄y, and are measurable functions T• → ∆X .

Lemma 3.1. The functional Φµ on Hloc given by (1.23) agrees with the previous definition (1.9)
on H?µ(β,B), subject to finiteness of Eµ[Φe

T ].

Proof. If h corresponds to h ∈ H?µ(β,B), then (1.20) and (1.15) imply that

hxy(σ, σ
′) exp{Φ(xy)

T (h)} = ψ(σ, σ′)hx→y(σ)hy→x(σ′),

h̄o(σ) exp{Φvx
T (h)} = ψ̄(σ)

∏
j∈∂o

(∑
σj

ψ(σ, σj)hj→o(σj)
)
.
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Letting Φi(h) (1 ≤ i ≤ 3) denote the three terms on the right-hand side of (1.22), it follows from
the above that

Φ1(h) = Eµ[Φvx
T (h)]− Eµ

[ ∑
j∈∂o

∑
σ

h̄o(σ) log
(∑
σj

ψ(σ, σj)hj→o(σj)
)]
,

Φ2(h) = Eµ[Φe
T (h)]− 1

2
Eµ
[ ∑
j∈∂o

∑
σ,σj

hoj(σ, σj) log(ho→j(σ)hj→o(σj))
]

= Eµ[Φe
T (h)]− Eµ

[ ∑
j∈∂o

∑
σ

h̄o(σ) log ho→j(σ)
]
,

Φ3(h) = Eµ
[ ∑
j∈∂o

∑
σ

h̄o(σ) log

(∑
σj

ψ(σ, σj)ho→j(σ)hj→o(σj)

)]
− 2Eµ[Φe

T (h)],

where unimodularity was used in the simplification of Φ2. Adding these three identities gives
Φµ(h) = Eµ[Φvx

T (h)− Φe
T (h)] as claimed. �

As mentioned in §1.3.2, our definition Φµ of the Bethe free energy functional on Hloc is an
infinite-tree analogue of the definition of [41] for finite graphs. It is proved in [41, Propn. 6] that
when ψ > 0, all local maxima of the Bethe free energy lie in the interior of the local polytope. The
following is the analogue of this result for infinite unimodular trees.

Proposition 3.2. If ψ > 0 and h is a local maximizer of Φµ over Hloc, then

Ωh ≡ {hxy(σ, σ′) = 0 for some σ, σ′ ∈X }

has zero µ↑-measure.

Proof. If u ∈ H◦loc and we set δ ≡ u− h, then it follows by convexity of Hloc that hη ≡ h+ ηδ =
(1− η)h+ ηu belongs to H◦loc for any η ∈ (0, 1]. Letting

Rη(δ) ≡ 2

η
[Φµ(hη)− Φµ(h)], R̂η(δ) ≡ Rη(δ)

log(1/η)
,

our claim will follow upon showing that if µ↑(Ωh) > 0, then there exists u ∈ Hloc for which

lim
η↓0

R̂η(δ) = R̂0(δ) > 0.

To this end, note that by an easy computation [H(hη)−H(h)]/η = −〈loghη〉δ−〈fη(δ/h)〉h, where

fη(r) ≡ η−1 log(1 + ηr) and δ/h is defined by coordinate-wise division in RX 2
. Thus from (1.21)

we obtain

Rη(δ) = Eµ
[
2〈ξ̄〉δ̄o + 2(Do − 1)〈log h̄ηo〉δ̄o + 2(Do − 1)〈fη(δ̄o/h̄o)〉h̄o

]
+ Eµ

[ ∑
j∈∂o

{
〈ξ〉δoj − 〈loghηoj〉δoj − 〈fη(δoj/hoj)〉hoj

}]
(3.1)

Since limη↓0 fη(r) = r and
∑

σ,σ′ δ(σ, σ′) is identically zero, the two terms above involving fη vanish

in the limit η ↓ 0. Upon scaling by log(1/η), the terms involving ψ̄, ψ also tend to zero. It follows
that

R̂0(δ) = Eµ
[
(2− 2Do)ūo({σ : h̄o(σ) = 0}) +

∑
j∈∂o

uoj({σ, σ′ : hoj(σ, σ′) = 0})
]
, (3.2)
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using ψ > 0 and dominated convergence. Let Ao ≡ A(T,o) ≡ {σ ∈ X : h̄o(σ) = 0} and suppose
uxy(σ, σ

′) = ūx(σ)ūy(σ
′): then, since hxy(σ, σ

′) = 0 whenever either σ ∈ Ax or σ′ ∈ Ay, inclusion-
exclusion and the unimodularity of µ give

R̂0(δ) ≥ Eµ
[
(2− 2Do)ūo(Ao) +

∑
j∈∂o

{
ūo(Ao) + ūj(Aj)− ūo(Ao)ūj(Aj)

}]
= Eµ

[
2ūo(Ao)−

∑
j∈∂o

ūo(Ao)ūj(Aj)
]

= Eµ
[ ∑
j∈∂o

R̂o→j

]
,

where R̂o→j ≡ 1{Do > 0}[D−1
o ūo(Ao) +D−1

j ūj(Aj)− ūo(Ao)ūj(Aj)] (note that necessarily Ao = ∅
when Do = 0).

Now consider the measurable function ū : T +
• → ∆X defined (up to µ-equivalence) as follows:

if Ao = ∅ then ūo ≡ ū(T,o) is uniform measure on X ; otherwise, ūo assigns positive mass 1/(2Do)
uniformly over Ao and the remaining mass uniformly over Aco. Then, uxy(σ, σ

′) ≡ ūx(σ)ūy(σ
′)

belongs to H◦loc. With this choice of u, if both Ao, Aj are non-empty then R̂o→j = (D−2
o +D−2

j −
D−1
o D−1

j /2)/2, which is positive. Also, R̂o→j is clearly positive when exactly one of Ao, Aj is non-

empty, and zero when both are empty. Thus R̂0(δ) ≥ 0, with strict inequality if µ(Ao 6= ∅) > 0. If
µ(Ao = ∅) = 1, then u is uniform measure on X 2 independently of T , so we have by (3.2) that

R̂0(δ) = |X |−2Eµ
[ ∑
j∈∂o

∑
σ,σ′

1{hoj(σ, σ′) = 0}
]
.

If µ↑(Ωh) > 0 then this is positive, completing the proof of our claim. �

Our main result in this section is the following infinite-tree analogue of [41, Thm. 2], character-
izing the interior stationary points of Φµ on Hloc as fixed points of the BP recursion.

Proposition 3.3. If ψ > 0, then any stationary point of Φµ inside H◦loc belongs to H?.

Proof. Let H±loc denote the space of measurable functions δ : Te → RX 2
(defined up to µ↑-

equivalence), satisfying the symmetry relation δxy(σ, σ
′) = δyx(σ′, σ), with one-point marginals

δ̄x(σ) ≡
∑

σ′ δxy(σ, σ
′) not depending on the choice of y ∈ ∂x, and with

∑
σ δ̄(σ) =

∑
σ,σ′ δ(σ, σ′) ≡

0. Note that if h ∈ H◦loc and δ ∈ H±loc with |δ| < h in RX 2
µ↑-a.s., then hη ≡ h+ ηδ ∈ H◦loc for all

|η| ≤ 1. If h is an interior stationary point, then taking η → 0 in (3.1) gives

0 = R0(δ) ≡ Eµ
[
2
∑
σ

δ̄o(σ)κ̄′o(σ) +
∑
j∈∂o

∑
σ,σ′

δoj(σ, σ
′)κ′oj(σ, σ

′)
]
,

where κ̄′x ≡ ξ̄ + (Dx − 1) log h̄x and κ′xy ≡ ξ − loghxy.

Consider now δ with one-point marginals δ̄ ≡ 0, so that the value of κ̄′ becomes irrelevant. In
this case the value of R0(δ) is unchanged if we replace κ′ by

κoj(σ, σ
′) ≡ κ′oj(σ, σ′)−

1

|X |
∑
σ

κ′oj(σ, σ
′)− 1

|X |
∑
σ′

κ′oj(σ, σ
′) +

1

|X |2
∑
σ,σ′

κ′oj(σ, σ
′).

By construction, κ ∈ H±loc with one-point marginals κ̄ ≡ 0 µ-a.s. We claim that κ ≡ 0 µ↑-a.s.

Indeed, δ = cκ belongs to H±loc for any measurable c : Te → R>0, (T, x → y) 7→ cxy = cyx, and we

can choose c small enough so that |δ| < |h| µ↑-a.s. With this choice, 0 = R0(δ) is the µ-expectation
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of a (weighted) sum of squares, so κ ≡ 0, as claimed. By the definition of κ we find that there
exists measurable λ : Te → RX such that

κ′oj(σ, σ
′) = ξ(σ, σ′)− loghoj(σ, σ

′) = −λo→j(σ)− λj→o(σ′),

so the preceding expression for R0(δ) (where δ ∈ H±loc with |δ| < h), simplifies to

R0(δ) = Eµ
[
2
∑
σ

δ̄o(σ)κ̄′o(σ)−
∑
j∈∂o

(
δ̄o(σ)λo→j(σ) + δ̄j(σ

′)λj→o(σ
′)
) ]

= 2Eµ
[∑

σ

δ̄o(σ)
(
κ̄′o(σ)−

∑
j∈∂o

λo→j(σ)
)]
,

using unimodularity of µ for the second identity. Now take δ̄ : T• → RX measurable with
∑

σ δ̄(σ) ≡
0 µ-a.s., and note that δxy(σ, σ

′) ≡ δ̄x(σ)δ̄y(σ
′) is then in H±loc. Considering all such δ with |δ| < h

and reasoning in the same way as before, we see that

κ̄′o(σ)−
∑
j∈∂o

λo→j(σ) =
1

|X |
∑
σ′

(
κ̄′o(σ

′)−
∑
j∈∂o

λo→j(σ
′)
)
, µ↑-a.e.

Rearranging, we find that h satisfies µ↑-a.e.

hoj(σ, σ
′) = ψ(σ, σ′) exp{λo→j(σ) + λj→o(σ

′)}, (3.3)

h̄o(σ) ∼= exp
{∑

j∈∂o λo→j(σ)− ξ̄(σ)

Do − 1

}
. (3.4)

If we then reparametrize

λo→j ≡ ξ̄ +
∑

k∈∂o\j

log m̂k→o µ↑-a.s. (3.5)

(well-defined, for each T and σ ∈ X , by invertibility of the Do-dimensional matrix 11t − I), then
the formula (3.4) for h̄o becomes

h̄o(σ) ∼= ψ̄(σ)
∏
k∈∂o

m̂k→o(σ).

On the other hand, h̄o is the first marginal of hoj , and setting the above equal to the sum of (3.3)
over σ′ gives (making use of (3.5))

m̂j→o(σ) ∼=
∑
σ′

ψ(σ, σ′)eλj→o(σ
′), µ↑-a.s.

Thus, if we define m : Te → ∆X , mx→y(σ) ∼= eλx→y(σ), then (3.5) can be written in terms of m as

mo→j(σ) ∼= ψ̄(σ)
∏

k∈∂o\j

(∑
σk

ψ(σ, σk)mj→o(σk)
)
, µ↑-a.s.,

— that is, m ∈ H?. Then, (3.3) is precisely the statement that m maps to h via (1.20), which
concludes the proof. �

Proof of Thm. 1.16. By (H1) the set Hfin
loc of h ∈ Hloc for which Φ(β,B,h) > −∞ is non-empty

and does not depend on (β,B), so without loss we will restrict to h ∈ Hfin
loc.

Again by (H1), the functions (β,B) 7→ Φµ(β,B,h) indexed by h ∈ Hfin
loc are uniformly equicon-

tinuous on compact regions of (β,B): for any ε > 0 there exists δ > 0 sufficiently small so that if
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(β,B) and (β′, B′) are within distance δ then |Φµ(β,B,h)−Φµ(β′, B′,h)| < ε for all h ∈ Hfin
loc. Let

h ∈ Hfin
loc such that Φµ(β,B,h) ≥ Φ̃µ(β,B)− ε. Then,

Φ̃µ(β′, B′) ≥ Φµ(β′, B′,h) ≥ Φ̃µ(β,B)− 2ε

for all (β′, B′) within distance δ of (β,B). Reversing the roles of (β,B) and (β′, B′) completes the
proof of part (a). The statement of part (b) is a summary of the results of Lem. 3.1, Propn. 3.2
and 3.3. �

4. Application to Ising and Potts models

In this section we apply Thm. 1.13 to prove our results for the ferromagnetic Ising and Potts
models, Thms. 1.8–1.10. Although both models have regimes of multiple fixed points, monotonicity
arguments allow us to restrict the space of fixed points. In the Ising model we can restrict to a
unique fixed point and give a complete verification of the Bethe free energy prediction; in the Potts
model with q > 2 there remain regimes of non-uniqueness where we can only provide bounds.

4.1. Ising model. We first prove Thm. 1.8. Recall the definition (1.12) for the Ising measure νβ,BG
for a finite graph G = (V,E), and more generally (from Defn. 1.7) the Ising measures νf,β,B

U,G and

ν+,β,B
U,G for a finite sub-graph U of a (possibly infinite) graph G with free and + boundary conditions.

We will make use of the following direct consequence of the classical Griffiths’s inequality (see e.g.
[27, Thm. IV.1.21]).

Lemma 4.1. For the Ising model with parameters β,B ≥ 0 on U a finite sub-graph of a graph G

with boundary conditions ‡ ∈ {f,+}, the magnetization 〈σv〉‡,β,BU,G at vertex v ∈ U is non-negative,
non-decreasing in β,B, non-decreasing in U for ‡ = f, and non-increasing in U for ‡ = +.

Recall from §1.2.1 the definitions of h̄t,‡T for ‡ ∈ {f,+}; the measure h̄t,‡T is parametrized by the

corresponding magnetization m̄t,‡
T ≡ h̄t,‡T (+) − h̄t,‡T (−). By Lem. 4.1, m̄t,f

T is non-decreasing in t

while m̄t,+
T is non-increasing, so there exist well-defined limits m̄‡T (β,B) ≡ limt→∞ m̄

t,‡
T (β,B). The

following result from [11], an extension of [9, Lem. 4.3], shows that these limits agree on any T ∈ T•.

Lemma 4.2 ([11, Lem. 3.1]). For the Ising model (1.12) on an infinite tree T with β,B > 0, there
exists a constant C ≡ C(β,B) such that

m̄t,+
T − m̄

t,f
T ≤ C/t ∀t ≥ 1.

By this result we can define h ∈ H by hx→y = h̄f
Tx→y

= h̄+
Tx→y

, and we now proceed to verify the

Bethe prediction φ(β,B) = Φµ(β,B, h).

Proof of Thm. 1.8. The Ising model (1.12) is of form (1.1) with X = {±1}, ξ(σ, σ′) = βσσ′, and
ξ̄(σ) = Bσ, so (H1) and (H2) are clearly satisfied (with no additional moment conditions on Do,
since ψ > 0). It follows directly from the recursive structure of the tree that h ∈ H?. It will be
shown in Lem. 4.5 that for β ≥ 0 fixed,

lim
B→∞

lim sup
n→∞

|φn(β,B)− Φµ(β,B, h)| = 0,

so to prove the theorem we will interpolate from (β,B) to (β,B1), then take B1 →∞.
It follows from Lem. 4.1 and Lem. 4.2 that for T ∈ T•, m̄f

T (β,B) = m̄+
T (β,B) ≡ mT (β,B) is the

increasing limit of m̄t,f
T (β,B) and the decreasing limit of m̄t,+

T (β,B). The m̄t,‡(β,B) are continuous
and non-decreasing in β,B, so m inherits these properties by the same argument as in the proof
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of Thm. 1.11, and so (since it takes values in [−1, 1]) is of uniformly bounded total variation. This
verifies both (H3β) and (H3B) (though we will use only the latter).

We conclude by showing (cf. (1.19)), that

lim
n→∞

En[
〈
∂ξ̄(σIn)

〉β,B
n

] = avx(β,B) ≡ Eµ[J∂B ξ̄(σo)K
h,β,B
T ].

Here ∂B ξ̄(σ) = σ, and it follows from Lem. 4.1, our assumption of Gn →lwc µ and Fatou’s lemma
that

Eµ[JσoK
hf ,β,B
T ] ≤ lim inf

t→∞
Eµ[〈σo〉f,β,BT t,T ] ≤ lim inf

n→∞
En[〈σIn〉

β,B
n ]

≤ lim sup
n→∞

En[〈σIn〉
β,B
n ] ≤ lim sup

t→∞
Eµ[〈σo〉+,β,BT t,T ] ≤ Eµ[JσoK

h+,β,B
T ].

The left-most and right-most expressions coincide by Lem. 4.2 so equality holds throughout.
By Thm. 1.13(b), φ(β,B) = Φ(β,B, h+) = Φ(β,B, hf) for β ≥ 0, B > 0. Since φn is symmetric

in B and continuous at B = 0 (uniformly in n), we have φ(β,B) = φ(β,−B) and φ(β, 0) =
limB→0 φ(β,B). �

4.2. Potts model. We now apply Thm. 1.13 to deduce our result Thm. 1.9 for the Potts model
(1.3) with β,B ≥ 0. From now on we let X ≡ [q] with q ≥ 2. It will be convenient to generalize
(1.3) to the inhomogeneous Potts model

ν
β,B

G (σ) ∼= exp
{ ∑

(ij)∈E

βijδσi,σj +
∑
i∈V

Biδσi,1

}
, σ ∈X V .

We now introduce the coupling of the Potts model with a random-cluster model which we use
to obtain monotonicity properties. The following representation is as in [20] (see also [6]). If
G = (V,E) is a finite graph, let G? be the graph formed by adding an edge from every v ∈ V to a
“ghost vertex” v?, that is, G? = (V ?, E?) where V ? = V ∪ {v?} and E? = E ∪ {(v, v?) : v ∈ V }.
Writing σ for elements of X V ? and η for elements of {0, 1}E? (bond configurations), consider the
probability measure on pairs (σ, η) defined by

$
β,B

G (σ, η) ∼= δσv? ,1
∏
ηij=1

(eβij − 1)δσi,σj
∏
ηi=1

(eBi − 1)δσi,σv? . (4.1)

The marginal on σV is the inhomogeneous Potts measure ν
β,B

G , while the marginal on η is the
(inhomogeneous) random-cluster measure

π
β,B

G (η) ∼=
∏
e∈E?

pηee (1− pe)1−ηe
∏
C∈η

Θ(C), (4.2)

where pij ≡ 1 − e−βij for (i, j) ∈ E and piv? ≡ 1 − e−Bi for i ∈ V , and the last product is taken
over connected components C of η, with Θ(C) = q unless v? ∈ C in which case Θ(C) = 1. Given

a configuration η, a realization of the conditional law $β,B
G (σ = ·|η) is obtained by choosing a

constant spin on each connected component C of η independently and uniformly over [q], except
for C containing v? which is given spin 1.

For a detailed account the random-cluster model see [19]; we will use only the following basic
properties:

Proposition 4.3. The random-cluster measure π
β,B

G is FKG. It is also increasing, in the sense of
stochastic domination, in (β,B).
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Proof. The FKG property follows by a straightforward modification of the proof of [6, Thm. III.1(i)].
Monotonicity in (β,B) follows by modifying the proof of [19, Thm. 3.21]. �

Recalling Defn. 1.7, for U a finite sub-graph of a graph G and ‡ ∈ {f} ∪ [q] (with f = free), let

ν‡,β,BU,G denote the Potts model on U with ‡ boundary conditions.

Corollary 4.4. For the Potts model with parameters β,B ≥ 0 on U a finite sub-graph of a graph
G with boundary conditions ‡ ∈ {f, 1}, and for any vertices v, w ∈ U , the quantities

ν‡,β,BU,G (σv = 1), ν‡,β,BU,G (σv = σw)

are non-decreasing in β and B, non-increasing in U for ‡ = 1, and non-decreasing in U for ‡ = f.

Proof. Note that νf,β,B
U,G is the marginal on σU of the measure $

β,B

G with

Bi = B ∀i ∈ V, βe = β1{e ∈ EU}.

Similarly, ν1,β,B
U,G is the marginal on σU of the measure $

β′,B′

G with

β′e = β ∀e ∈ E, B′i = B1{i ∈ VU}+∞1{i /∈ VU}.

Clearly, (β,B) is non-decreasing in U while (β′, B′) is non-increasing, and both are non-decreasing
in β,B. The result therefore follows from Propn. 4.3 by showing that for any (β,B), the conditional

probabilities $
β,B

G (σv = 1|η) and $
β,B

G (σv = σw|η) are monotone functions of η. Indeed, letting

$ ≡ $β,B

G and writing v! w to indicate that v, w belong to the same connected component of η,
we have

$(σv = 1|η) = 1{v! v?}+
1− 1{v! v?}

q
,

$(σv = σv|η) = 1{v! w}+
1− 1{v! w}

q
.

These are increasing functions of η so the proof is complete. �

Under the measures with ‡ ∈ {f, 1}, any one-vertex marginal must be uniform on the spins 6= 1,
and so is characterized by the probability given to spin 1. In particular, recall from §1.2.2 the

definitions of h̄t,‡T for ‡ ∈ {f, 1}; existence of the t → ∞ limits h̄‡T is now justified by Cor. 4.4, so

we can define h‡ ∈ H by h‡x→y = h̄‡Tx→y . The following lemma gives the boundary values for the

interpolation in (β,B) using h‡:

Lemma 4.5. For the Potts model on Gn →lwc µ, let

Φ̃µ(β,B) ≡ B + βEµ[Do]/2 + Eµ[ϕ̄(|T |)], ϕ̄(n) ≡ ϕ̄B(n) ≡ n−1 log(1 + (q − 1)e−Bn).

(a) For all B ∈ R and any h ∈ H, φ(0, B) = log(eB + q − 1) = Φµ(0, B, h).
(b) For β ≥ 0 and h ∈ H?,

lim
B→∞

lim sup
n→∞

|φn(β,B)− Φ̃µ(β,B)| = 0 = lim
B→∞

|Φµ(β,B, h)− Φ̃µ(β,B)|

(c) For B ≥ 0, limβ→∞ lim supn→∞ |φn(β,B)− Φ̃µ(β,B)| = 0.

(d) For B > 0 and ‡ ∈ {f, 1}, limβ→∞ |Φµ(β,B, h‡)− Φ̃µ(β,B)| = 0.
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Proof. (a) At β = 0, ψ ≡ 1 so the spins are independent. Thus, for all n ≥ 1, h ∈ H, and T ∈ T•,

φn(0, B) = log(eB + q − 1) = Φvx
T (0, B, h) = ΦT (0, B, h),

since Φ
(oj)
T ≡ 0 for all j ∈ ∂o.

(b) The value of Zn(β,B) is bounded below by considering only the ground state σ ≡ 1, and
bounded above by decomposing X V according to the subset of k vertices where the spin is not 1.
For β ≥ 0 this gives

1 ≤ Zn(β,B)e−Bn−β|En| ≤
n∑
k=0

(
n

k

)
(q − 1)ke−Bk = (1 + (q − 1)e−B)n,

so if we define φ̄n(β,B) ≡ φn(β,B) − B − βEn[|En|]/n, then limB→∞ lim supn→∞ |φ̄n(β,B)| = 0.
Recalling (2.2), this proves the left identity in (b).

We next define

Φ̄vx
T ≡ Φvx

T −B − βDo, Φ̄e
T ≡ Φe

T − βDo/2, Φ̄T ≡ Φ̄vx
T − Φ̄e

T , Φ̄µ ≡ EµΦ̄T ,

so that to prove the right identity in (b) it suffices to show limB→∞ Φ̄µ(β,B, h) = 0 for any

h ∈ H?. Indeed, (1.15) gives that µ-a.s., limB→∞ h
β,B
o→j(σ) = δσ,1 for all j ∈ ∂o, hence also

limB→∞ h
β,B
j→o(σ) = δσ,1 for all j ∈ ∂o by equivalence of µ↑ and µ↓. Thus

lim
B→∞

Φ̄vx
T (β,B, h) = 0 = lim

B→∞
Φ̄e
T (β,B, h), µ-a.s.

It is easily verified that

− βDo ≤ Φ̄vx
T (β,B, h) ≤ log q, −βDo/2 ≤ Φ̄e

T (β,B, h) ≤ 0, (4.3)

so Φ̄µ(β,B, h)→ 0 by dominated convergence.

(c) Suppose first that Gn is connected. Then Zn(β,B) is bounded below by considering only the q
constant-spin configurations, and bounded above by decomposing X V according to the subset of `
edges across which the spins disagree. Since Gn is connected, removing ` edges leaves at most `+ 1
connected components, of sizes k0, . . . , k` summing to n. Therefore, with ϕ(n) ≡ ϕB(n) ≡ nϕ̄B(n),
we have

eϕ(n) ≤ Zn(β,B)e−Bn−β|En| ≤
|En|∑
`=0

(
|En|
`

)
e−β` max

k0,...,k`

{
exp

{∑̀
r=0

ϕ(kr)
}}

,

where the maximum is taken over k0, . . . , k` ∈ Z≥0 summing to n. By convexity of ϕ this maximum
is achieved with kr = n for some r, so

ϕ(n) ≤ nφ̄n(β,B) ≤ ϕ(n) + En
[

log
{ |En|∑
`=0

(
|En|
`

)
e−β`q`

}]
= ϕ(n) + En[|En|] log(1 + qe−β). (4.4)

If Gn has connected components Cj = (V j , Ej), j ≥ 1, with |V j | = nj , then clearly Zn(β,B) =∏
j ZCj (β,B), so

0 ≤ φ̄n(β,B)− 1

n
En
[∑

j

ϕ(nj)
]
≤ 1

n
En[|En|] log(1 + qe−β). (4.5)
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With j(i) denoting the index of the connected component of Gn containing vertex i, we have

n−1En[
∑

j ϕ(nj)] = En[ϕ̄(nj(In))]. Then, since ϕ̄′(n) ≤ 0,

En[ϕ̄(|Bt(In)|)1{Bt(In) = Cj(In)}] ≤ En[ϕ̄(nj(In))] ≤ En[ϕ̄(|Bt(In)|)].

Since Gn →lwc µ, letting n→∞ followed by t→∞ in the above inequalities gives En[ϕ̄(nj(In))]→
Eµ[ϕ̄(|T |)], and so (c) follows from (4.5) by taking first n→∞ and then β →∞.

(d) Clearly hf
T = h1

T for any finite T ∈ T• (as ∂T t = ∅ for large enough t). In the β → ∞ limit
only the constant-spin configurations contribute, so

lim
β→∞

h‡,β,BT (σ) = e−ϕ(|T |)−B|T |(1−δσ,1), ‡ ∈ {f, 1}. (4.6)

For T infinite, recall from Cor. 4.4 that hf
T t(1) ≤ hf

T (1) ≤ h1
T (1), so if B > 0 then

1 = lim
t→∞

lim
β→∞

ht,f,β,B(1) ≤ lim
β→∞

hf,β,B(1) ≤ lim
β→∞

h1,β,B(1),

so that (4.6) again holds for T infinite. We then compute

lim
β→∞

Φ̄vx
T (β,B, h‡) = −

∑
j∈∂o

ϕ(|Tj→o|) + ϕ(|T |),

lim
β→∞

Φ̄e
T (β,B, h‡) = −1

2

∑
j∈∂o

ϕ(|Tj→o|)−
1

2

∑
j∈∂o

ϕ(|To→j |) +
Do

2
ϕ(|T |),

µ-a.s., where the first identity uses |T | = 1+
∑

j∈∂o |Tj→o| and the second uses |T | = |To→j |+|Tj→o|.
Convergence also holds in µ-expectation, using the upper bounds in (4.3) together with

Φ̄vx
T (β,B, h‡) ≥

∑
j∈∂o

log hf,β,B
j→o (1), Φ̄e

T (β,B, h‡) ≥ 1

2

∑
j∈∂o

log hf,β,B
j→o (1) +

1

2

∑
j∈∂o

log hf,β,B
o→j (1),

and the fact that hf,β,B
x→y (1) ≥ 1/q for β,B ≥ 0 (by Cor. 4.4). Thus, using unimodularity of µ, we

have

lim
β→∞

Φ̄µ(β,B, h‡) = Eµ[(1−Do/2)ϕ(|T |)],

and we conclude by showing that this coincides with Eµ[ϕ̄(|T |)]. The case |T | = ∞ is trivial;
otherwise, another application of unimodularity gives

1

2
Eµ[Doϕ(|T |)] =

1

2
Eµ
[
Do

∑
x∈T

ϕ̄(|T |)
]

=
1

2
Eµ
[∑
x∈T

Dxϕ̄(|T |)
]

= Eµ[ϕ̄(|T |)|ET |] = Eµ[ϕ(|T |)]− Eµ[ϕ̄(|T |)].

Therefore, limβ→∞ Φ̄µ(β,B, h) = Eµ[ϕ̄(|T |)] which concludes the proof. �

Proof of Thm. 1.9. The Potts model (1.3) is of form (1.1) with X = [q], ξ(σ, σ′) = βδσ,σ′ , and
ξ̄(σ) = Bδσ,1, so (H1) and (H2) are clearly satisfied. It follows from the recursive structure of the

tree that h‡ ∈ H? for ‡ ∈ {f, 1}. For part (a), along any interpolation path contained in Rµ, both

(H3β) and (H3B) are satisfied by Cor. 4.4 and the same argument used in the proof of Thm. 1.11.
For part (b), (H3β) and (H3B) are satisfied by the additional hypothesis of continuity.
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The inequalities in part (b) then follow from Theorem 1.13 once we verify (cf. (1.18), (1.19))

avx(β,B, hf) ≤ lim inf
n→∞

avx
n (β,B) ≤ lim sup

n→∞
avx
n (β,B) ≤ avx(β,B, h1),

ae(β,B, hf) ≤ lim inf
n→∞

ae
n(β,B) ≤ lim sup

n→∞
ae
n(β,B) ≤ ae(β,B, h1),

where avx
n (β,B) = En[

〈
δσIn ,1

〉β,B
n

] and ae
n(β,B) = 1

2En
[∑

j∈∂In
〈
δσIn ,σj

〉β,B
n

]
. Indeed, by Vitali’s

convergence theorem, the assumption Gn →lwc µ and Cor. 4.4 (with U = Bt(In) ⊆ Gn), we have

ae(β,B, hf) = lim inf
t→∞

1

2
Eµ
[ ∑
j∈∂o
〈δσo,σj 〉

f,β,B
T t,T

]
≤ lim inf

n→∞
ae
n(β,B),

and the other inequalities are proved similarly. Together these inequalities imply that

lim
n→∞

[φn(β′, B′)− φn(β,B)] = Φ(β′, B′, h‡)− Φ(β,B, h‡)

for any (β,B) and (β′, B′) joined by an interpolation path contained in Rµ. The result of part (a)
then follows by letting (β′, B′) approach R∞ and applying Lem. 4.5. �

4.3. Potts model with d-regular limiting tree. In this section we prove Thm. 1.10, which
amounts to determining the shape ofR 6= and establishing continuity of hf and h1 in certain regimes.

Since the limiting measure is supported on Td, only h ≡ h(Td,x→y) is of relevance. Further, h‡ is

symmetric among the spins 6= 1 for ‡ ∈ {f, 1}, so determination of h‡ reduces to solving a univariate
recursion for h‡(1),

h 7→ eB[eβh+ (1− h)]d−1

eB[eβh+ (1− h)]d−1 + (q − 1)
[
h+ 1−h

q−1 (eβ + q − 2)
]d−1

.

Our result follows from analysis of the fixed points of this mapping (similar computations have
appeared e.g. in [38, 42] so some overlap among the analyses may occur).

A convenient parametrization is given by the log likelihood ratio r ≡ log h− log[(1−h)/(q− 1)],
in terms of which the recursion becomes

r 7→ f(r) ≡ f(r;β,B) = B + (d− 1) log
( eβ+r + q − 1

er + eβ + q − 2

)
.

With f (t) the t-fold iteration of f , let rf denote the increasing limit of f (t)(0) and r1 the decreasing

limit of f (t)(∞), as t→∞. The region R6= corresponds to those β,B ≥ 0 for which rf 6= r1.

Lemma 4.6. There exists β− > 0 such that for β ≤ β− the map f has exactly one fixed point for
any B ∈ R. For β > β− there exist real-valued B−(β) < B+(β) (smooth in β) such that f has one,
two, or three fixed points depending on whether B is in [B−, B+]c, {B−, B+}, or (B−, B+). The
curves extend continuously to B−(β−) = B+(β−).

Proof. We have

f ′(r) =
(d− 1)er

(
eβ − 1

) (
q + eβ − 1

)
(q + er + eβ − 2) (q + er+β − 1)

(4.7)

so f is increasing in r with f ′(r) → 0 as r → ±∞. Since f(r;β,B) = f(β; r,B), it easily follows
from (4.7) that ∂βf(r) has the same sign as r while ∂β[f ′(r)] > 0. Further

f ′′(r) = −
(d− 1)er+β

(
eβ − 1

) (
q + eβ − 1

) (
e2r − α

)
(q + er + eβ − 2)

2
(q + er+β − 1)

2 , α ≡ (q − 1)(1 + (q − 2)e−β),
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with α > 0 since q > 1. Notice that f ′′(r) > 0 for r sufficiently negative and f ′′(r) < 0 for r
sufficiently positive, with a single sign change occurring at (logα)/2 which is zero for q = 2 and
strictly positive for q > 2. This proves that f has between one and three fixed points. When B = 0,
one fixed point is always given by rf(β, 0) = 0. Further f(r; 0, 0) ≡ 0, so (by monotonicity of f ′ in
β) there exists ∞ ≥ β− ≥ 0 such that f ′ ≤ 1 everywhere for β ≤ β− and f ′ exceeds 1 somewhere
for β > β−.

Solving the equation f ′(r) = 1 in terms of t ≡ er yields solutions

t±(β) = −γ ±
√
γ2 − α, γ ≡ eβ + q − 2− d

2
(1− e−β)(eβ + q − 1).

Since α > 0, t±(β) are not positive if γ > −
√
α, equal to

√
α > 0 if γ = −

√
α, and positive but not

equal if γ < −
√
α. If d ≥ 2, it is easy to check that both α and γ decrease smoothly in β, starting

at γ|β=0 = q− 1 and α|β=0 = (q− 1)2, so there is a unique value β = β− > 0 at which γ = −
√
α: if

d = 2 then β− =∞, and if d > 2 then β− is the logarithm of the unique finite positive root b− of

(d− 2)2b2 + (d− 2)2(q − 2)b− d2(q − 1) = 0. (4.8)

Hence, the equation f ′(r) = 1 has no solutions for β < β−, and it has solutions ρ±(β) ≡ log t±(β)
for β ≥ β−, with ρ−(β−) = ρ+(β−) and ρ−(β) < ρ+(β) for β > β−. The values of B−(β), B+(β)
are then given explicitly by

B±(β) = ρ∓(β)− f(ρ∓(β);β, 0), (4.9)

which clearly meet at β = β− and are smooth for β > β−. �

Considering hereafter only d > 2 (so that β− < ∞), suppose β > β−, so that the functions ρ±
are defined. Since ∂β[f ′(r)] > 0, ρ− and ρ+ must be, respectively, decreasing and increasing in β.
Further, since f has a unique inflection point at (logα)/2, we must have ρ−(β) ≤ (logα)/2 ≤ ρ+(β),
with strict inequalities unless ρ−(β) = ρ+(β). For q = 2 (Ising), this implies ρ− ≤ 0 ≤ ρ+ from
which it is easy to see that whenever B > 0 we have rf(β,B) = r1(β,B), which is then continuous
in (β,B) by the same argument as in the proof of Thm. 1.11. When B = 0, rf(β, 0) is zero for all
β, while r1(β,B) is zero for β ≤ β− and strictly positive for β > β−.

For q > 2 (Potts), this implies that ρ+(β,B) > 0 while ρ−(β,B) ≥ 0 if and only if f ′(0;β,B) ≤ 1.
From the calculations above, f ′(0) is zero at β = 0 and increases in β. We therefore define

βf ≡ inf{β ≥ 0 : f(r;β, 0) = r for some r > 0},

β+ ≡ inf{β ≥ 0 : ρ−(β) ≤ 0} = inf{β ≥ 0 : f ′(0;β, 0) ≥ 1} = log
(

1 +
q

d− 2

)
(4.10)

(where the formula for β+ comes from (4.7)). Clearly β− ≤ βf ≤ β+, and in fact these inequalities
are strict: at βf , f

′ must exceed one between zero and the positive fixed point, so β− < βf .
2

Likewise, if f ′(0) ≥ 1 at β = βf , the concavity of f(r) at r = 0 would imply the existence of a
positive fixed point at some β below βf which is a contradiction, so βf < β+.

We refer again to Fig. 1 which illustrates this for q = 30, d = 10. Fig. 1a shows the map
f(r; 0.7, 0.2) with three positive fixed points. Fig. 1b shows the region of (β,B) ≥ (0, 0) delineated
by the curves B±(β).

Proof of Thm. 1.10. (a) We found above that R6= = ∅ for d = 2 and R6= = (β−,∞) for q = 2, so

suppose d, q > 2. If B > 0, rf = r1 holds for all β ≥ 0 with β /∈ (β−, β+). For β ∈ (β−, β+) there is
a closed interval [B−(β) ∨ 0, B+(β)] of B values for which rf < r1: this interval is strictly positive

2Note that r1(βf , 0) > 0, i.e., the 1-biased fixed point “arises discontinuously.”
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for β < βf and includes zero for β ≥ βf . If B = 0, rf = r1 for 0 ≤ β < βf and rf < r1 for β ≥ βf .
Recalling (4.9),

∂βB±(β) = ∂β[ρ∓(β)− f(ρ∓(β))] = [1− f ′(ρ∓(β))]∂βρ∓(β)− (∂βf)(ρ∓(β)) = −(∂βf)(ρ∓(β)).

This has the same sign as −ρ∓(β), which are both negative for 0 ≤ β < β+, so the curves B±(β)
are decreasing. Inverting them gives the curves βf(B), β+(B) which delineate the region R6= as
described in the theorem statement, with βf(0) = βf and β+(0) = β+.

(b) Away from the boundary of R6=, hf and h1 correspond to isolated zeroes of a smooth func-
tion, and so are continuous by the implicit function theorem. From part (a), any point of R is
connected to R∞ by an interpolation path contained in R, so applying Thm. 1.9(a) verifies the
Bethe prediction for (β,B) 6∈ R6=.

Since changing B only translates f(r;β,B), it is not difficult to see that when β ∈ (β−, β+),
the function hf(β,B) is continuous in B for B ∈ [0, B+(β)] while h1(β,B) is continuous for B ∈
[B−(β)∨0,∞). It follows by Lem. 2.1 that for (β,B) ∈ ∂R 6= with β = βf(B), φ(β,B) = Φ(β,B, hf),
while for (β,B) ∈ ∂R 6= with β ≥ β+(B), φ(β,B) = Φ(β,B, h1).

Recall our convention that β0 ≤ β1, B0 ≤ B1: by Thm. 1.9(b) we may interpolate in B from
(β,B0) ∈ R◦6= to (β,B1) ∈ R using the message h1, yielding lim infn→∞ φn(β,B) ≥ Φ(β,B, h1)

for (β,B) ∈ R◦6=. Likewise, we may interpolate in B from (β,B0) ∈ R to (β,B1) ∈ R6= using hf

(and once inside R 6= we may also interpolate in β using hf), which gives lim infn→∞ φn(β,B) ≥
Φ(β,B, hf) for (β,B) ∈ R◦6=.

Next, since hf(β,B) and h1(β,B) are lower and upper semi-continuous respectively in β, and
both are non-decreasing in β, for 0 < B < B+ we have that hf(β,B) ↑ hf(β+(B), B) as β ↑ β+(B)
and h1(β,B) ↓ h1(βf(B), B) as β ↓ βf(B). Again by Thm. 1.9(b), we may interpolate in β from
(β0, B) = (βf(B), B) ∈ ∂R6= to (β1, B) ∈ R◦6= using h1, and from (β0, B) ∈ R◦6= to (β1, B) =

(β+(B), B) ∈ ∂R6= using hf , giving

lim sup
n→∞

φn(β,B) ≤ min{Φ̃f(β,B), Φ̃1(β,B)}, (β,B) ∈ R◦6=,

which completes the proof. �
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