
Envelope Condition Method with an Application
to Default Risk Models

Cristina Arellano, Lilia Maliar, Serguei Maliar and Viktor Tsyrennikov¤

May 1, 2015

Abstract

We develop an envelope condition method (ECM) for dynamic program-
ming problems – a tractable alternative to expensive conventional value func-
tion iteration (VFI). ECM has two novel features: First, to reduce the cost
of iteration on Bellman equation, ECM constructs policy functions using en-
velope conditions which are simpler to analyze numerically than …rst-order
conditions. Second, to increase the accuracy of solutions, ECM solves for
derivatives of value function jointly with value function itself. We comple-
ment ECM with other computational techniques that are suitable for high-
dimensional problems, such as simulation-based grids, monomial integration
rules and derivative-free solvers. The resulting value-iterative ECM method
can accurately solve models with at least up to 20 state variables and can suc-
cessfully compete in accuracy and speed with state-of-the-art Euler equation
methods. We …nally use ECM to solve a challenging default risk model with
a kink in value and policy functions.

  : C6, C61, C63, C68
  : Dynamic programming; Value function iteration; Bellman

equation; Endogenous grid; Envelope condition; Curse of dimensionality; Large
scale; Sovereign debt; Default risk

¤We are indebted to Editor Chris Otrok and two very competenet anonymous referees for many
thoughtful comments and suggestions. Also, we bene…ted from comments of Grace Gu, Kenneth L.
Judd, Seung Lee, seminar participants at Stanford University, Boston University, Santa Clara Uni-
versity and University of California at Santa Cruz as well as from participants of the 2014 meeting
of Society of Computational Economics. Errors are ours. Lilia Maliar and Serguei Maliar acknowl-
edge support from the Hoover Institution and Department of Economics at Stanford University,
University of Alicante, Santa Clara University and MECD grant ECO2012-36719. Corresponding
author: Lilia Maliar, O¢ce 249, Department of Economics, Stanford, CA 94305-6072, USA; email:
maliarl@stanford.edu; tel: 6507259069.

1

1 Introduction

We develop an envelope condition method (ECM) for dynamic programming prob-
lems – a tractable alternative to expensive conventional value function iteration
(VFI). ECM has two novel features: First, to reduce the cost of iteration on Bell-
man equation, ECM constructs policy functions using envelope conditions which are
simpler to analyze numerically than …rst-order conditions. Second, to increase the
accuracy of solutions, ECM solves for derivatives of value function jointly with value
function itself. We complement ECM with other computational techniques that are
suitable for high-dimensional problems, such as simulation-based grids, monomial in-
tegration rules and derivative-free solvers. The resulting value-iterative ECMmethod
can accurately solve models with at least up to 20 state variables and can successfully
compete in accuracy and speed with state-of-the-art Euler equation methods. We
…nally use ECM to solve a challenging default risk model with a kink in value and
policy functions.

We present ECM in the context of three applications: a one-agent growth model,
a multi-country model of international trade and a default risk model. In our …rst
application, we consider a stylized optimal growth model with inelastic labor sup-
ply. To solve such a model, conventional VFI constructs policy function by …nding
a maximum of the right side of the Bellman equation. This is done either directly
(by using numerical maximization) or via …rst-order condition (by using a numerical
solver). In contrast, the ECM methods construct policy functions by …nding a solu-
tion to the envelope condition. Because such a solution can be derived in a closed
form, ECM requires only direct calculations and avoids the need of either numerical
optimization or numerical solvers when iterating on the Bellman equation.

We also develop a version of ECM that approximates derivatives of value function
(possibly, jointly with value function) instead of value function itself. This version of
ECM produces more accurate solutions than an otherwise identical ECM that solves
exclusively for value function. This is because solving accurately for value function
does not necessarily leads to su¢ciently accurate approximations of its derivatives.
For example, if value function is approximated with a polynomial of degree , then
its derivatives are e¤ectively approximated with a polynomial of degree  ¡ 1, i.e.,
we "lose" one polynomial degree when di¤erentiating value function. In contrast,
by approximating derivatives of value function directly, we focus on the object that
identi…es policy functions and hence, obtain more accurate solutions.

We then investigate the convergence properties of the constructed class of ECM
methods in the context of the studied optimal growth model. We establish that
ECM has the same …xed point solution as the regular Bellman operator with some

2

additional technical restriction. However, the ECM operator does not possess the
property of contraction mapping like the regular Bellman operator. In this respect,
the ECM class of methods is similar to the Euler equation class of methods for
which global convergence results are generally infeasible. However, the fact that
the convergence theorems cannot be established for some numerical method does
not mean that the method is not useful, in particular, Euler equation methods are
useful in a variety of context. In our numerical experiments, the ECM method has
good convergence properties and produces accurate solutions in a wide range of the
model’s parameters.

In our second application, we construct a version of ECM that is suitable for
high-dimensional applications, including stochastic simulation, non-product mono-
mial integration rules, and derivative-free solvers, to solve a multicountry growth
model with up to 10 countries (20 state variables).1 This model is the one studied in
the February 2011’s special issue of the Journal of Economic Dynamics and Control
(henceforth, JEDC project) which compares the performance of six state-of-the-art
solution methods.2 We show that the ECM methods is tractable and reliable in this
setting and is able to successfully compete with state-of-the-art Euler equation meth-
ods in the high-dimensional applications which were part of the JEDC project. For
our most accurate third-degree polynomial solutions, maximum unit-free residuals
in the model’s equations are always smaller than 0002% on a stochastic simulation
of 10 000 observations.

Finally, our third application is a default risk model of Arellano (2008). De-
fault models are challenging computationally because value and policy functions
have kinks and the price function of debt depends on the level of debt re‡ecting
default probabilities. Nonetheless, at the optimal debt level, the decision functions
are continuously di¤erentiable and satisfy FOCs; see Clausen and Strub (2013) for a
version of the envelope theorem that applies to models with default risk and a survey
of envelope theorems in the literature. We show that the ECM methods are fast in
computing this model. Relative to the expensive VFI method, ECM speeds up the
computation time by more than 50 times. However, the convergence is more di¢-

1Maliar and Maliar (2014) for a survey of these and other numerical techniques that are tractable
in problems with a large number of state variables.

2The objectives of the JEDC project are described in Den Haan, Judd and Juillard (2011);
the methodology of the numerical analysis is outlined in Juillard and Villemot (2011); the results
of the comparison analysis are provided in Kollmann, Maliar, Malin and Pichler (2011). The six
participating methods are …rst- and second-order perturbation methods of Kollmann, Kim and
Kim (2011), stochastic simulation and cluster-grid algorithms of Maliar, Maliar and Judd (2011),
monomial rule Galerkin method of Pichler (2011) and Smolyak’s collocation method of Malin,
Krueger and Kubler (2011).

3

cult to attain in this model. Numerical errors in approximating value function along
iteration may lead to nonmonotone policy functions and result in non-convergence.
Damping and shape preserving restrictions on value function can help to deal with
this problem.

While our analysis is limited to the benchmark default risk model, we think
that ECM can be useful for many other applications with default risk. In fact, a
substantial hurdle for the growing literature on sovereign default is the computational
cost; see, e.g., Aguiar and Gopinath (2006), Chatterjee, Corbae, Nakajima and Ríos-
Rull (2007), Hopenhayn and Werning (2008), Bianchi, Hatchondo and Martinez
(2014), Maliar, Maliar and Pérez-Sebastián (2008), Chatterjee and Eyigundor (2011),
Arellano, Bai, and Kehoe (2013) and Tsyrennikov (2013); Aguiar, Amador, Farhi and
Gopinath (2015); see Aguiar and Amador (2013) for a review of the literature on
sovereign debt. The ECM methods can facilitate the development of this literature
by expanding the types of problems that can be e¢ciently solved.

We next discuss the relation of the ECM method to other numerical methods
in the literature. Dynamic programming methods are introduced in Bellman (1957)
and Howard (1960) in the context of stationary, in…nite-horizon Markovian problems.
There is a large body of literature that focuses on solving DP problems including
methods based on discretization of state space (e.g., Rust (1996, 1997)), stochastic
simulation methods (e.g., Smith (1991, 1993), Maliar and Maliar (2005)), learning
methods (e.g., Bertsekas and Tsitsiklis (1996)), perturbation methods (e.g., Judd
(1998)), policy iteration (e.g., Santos and Rust (2004)), nonexpensive approxima-
tions (Stachurski (2008)), approximate DP methods (e.g., Powell (2011)), polyhe-
dral approximations (e.g., Fukushima and Waki (2011)), random contractions (Pal
and Stachurski (2013)); also see Rust (2008), Judd (1998), Santos (1999), Stachurski
(2009) for literature reviews. From one side, many methods, which are accurate and
reliable in problems with low dimensionality, are intractable in problems with high
dimensionality. This is in particular true for projection-style methods that rely on
tensor product rules in the construction of either grid points or integration nodes.
From the other side, methods that are tractable in high-dimensional problems may
be insu¢ciently accurate. One example is perturbation methods whose accuracy de-
teriorates rapidly away from the steady state. Another example is simulation-based
methods, including approximate DP methods and learning methods, whose accu-
racy is limited by a low (square-root) rate of convergence of Monte Carlo simulation,
see Judd, Maliar and Maliar (2011). In contrast to such methods, ECM relies on
accurate deterministic integration methods and is both tractable and accurate in
problems with high dimensionality.

Endogenous grid method (EGM) of Carroll (2005) reduces the cost of conven-

4

tional VFI; see also Barillas and Fernández-Villaverde (2007), Ishakov, Rust and
Schjerning (2012). In a companion paper, Maliar and Maliar (2013) compare the
ECM and EGM methods in the context of a one-agent model with elastic labor sup-
ply and …nd that the two methods are very similar both in terms of accuracy of
solutions and computational expense. However, in more complex applications, one
method may have advantages over the other. Constructing a grid on future state
variables under EGM is complicated in problems with kinks in future state variables
(due to, e.g., occasionally binding inequality constraints or default) because it is
not known at the stage of initialization whether an inequality constraint binds or
whether a default occurs in a given grid point. This typically requires to nest the
EGM method within another iterative procedure; see, e.g., Villemot (2012), Fella
(2014). In contrasts, ECM methods use the conventional current state variables and
may be easier to implement.

Other papers that solve high-dimensional problems are multicountry models with
20-60 state variables in Judd, Maliar and Maliar (2011, 2012, 2013); medium-scale
newKeynesianmodels in Judd, Maliar andMaliar (2011, 2012), Fernández-Villaverde,
Gordon, Guerrón-Quintana, and Rubio-Ramírez (2012), Aruoba and Schorfheide
(2013), López-Salido (2014), Maliar and Maliar (2015), etc.; and large-scale OLG
models with up to 80 state variables in Hasanhodzic and Kotliko¤ (2013). All the
methods that solve high-dimensional problems, including those participating in the
JEDC project, build on Euler equations, and none of these papers uses value iterative
approaches even when the studied models admit a dynamic programming represen-
tation. However, value iterative approaches that build on ECM can successfully
compete with state-of-the-art Euler equation methods in high-dimensional applica-
tions. In particular, we are able to compute accurate polynomial approximations up
to third degree, while the Euler equation methods participating in the comparison
analysis of Kollmann, Maliar, Malin and Pichler (2011) are limited to less accurate
second-degree polynomials (due to their high computational expense).

The rest of the paper is organized as follows. In Section 2, we illustrate the
ECM methods in the context of the standard one-agent neoclassical growth model.
In Section 3, we apply the ECM methods to solve the multicountry growth models
studied in the JEDC project. In Section 4, we apply the ECM method to solve a
default risk model. In Section 5, we conclude.

2 ECM in the one-agent growth model

We begin by illustrating the envelope condition method (ECM) in the context of the
standard one-agent neoclassical growth model.

5

2.1 The model

We consider a dynamic programming (DP) problem of …nding value function,  ,
that solves the Bellman equation,

 ( ) = max
0

f () +  [ (0 0)]g (1)

s.t. 0 = (1¡ )  +  ()¡  (2)

ln 0 =  ln  + 0 0 » N
¡
0 2

¢
 (3)

where ,  and  are capital, consumption and productivity level, respectively;  2
(0 1);  2 (0 1];  2 (¡1 1);  ¸ 0; the utility and production functions,  and  ,
respectively, are strictly increasing, continuously di¤erentiable and strictly concave.
The primes on variables denote next-period values, and [ (0 0)] is an expectation
conditional on state ( ).

2.2 First order condition (FOC) versus envelope condition
(EC)

Under our assumptions, a solution to Bellman equation (1)–(3) exists, is interior
and is unique; and optimal value function  is di¤erentiable, strictly increasing
and strictly concave; see Stokey and Lucas with Prescott (1989), Santos (1999) and
Stachurski (2010) for a discussion. We compute the derivative of  in the left side
of (1) to obtain

1 ( ) = 0 ( ( ))1 ( ) +  [1 ( ( )  
0)]1 ( )  (4)

where  =  ( ) and 0 =  ( ) are the optimal policy functions. (Here and
further in the paper,  (  ) denotes a …rst-order partial derivative of function
 (  ) with respect to th variable ).

According to (2), we have 1 ( ) = 1¡ +  ()¡1 ( ). Substituting the
latter result into (4) yields

1 ( )¡ 0 ( ( )) [1¡  +  0 ()]
| {z }

EC

= f [1 (
0 0)]¡ 0 ( ( ))g

| {z }
FOC

1 ( )  (5)

The left side of (5) is the envelope condition (EC) and the right side corresponds to
…rst order condition (FOC) of the maximization problem (1)–(3).

6

Conventional value function iteration (VFI) and policy iteration (PI) constructs
policy functions such as consumption function by setting the FOC equal to zero (we
denote such a function by  ( )):

0 ( ( )) =  [1 (
0 0)]  (6)

In contrast, the class of methods advocated in the present paper solves for con-
sumption function by setting the EC equal to zero (we denote such a function by
 ( )):

1 ( ) = 0 ( ( )) [1¡  +  0 ()]  (7)

We refer to this new class of methods as envelope condition methods (ECM), following
Maliar and Maliar (2013).

In the true solution, both ways of constructing the consumption function, de…ned
by (6) and (7), must lead to the same consumption function since the solution must
satisfy both the FOC and EC, i.e.,  =  . However, operationally, the con-
struction of  from (7) is simple, (namely,  can be derived in a closed form),
whereas the construction of  from (6) is more complicated (it generally involves
using a numerical solver). Replacing FOC with EC leads to a dramatic reduction
in cost of value iteration, as the policy functions must be constructed a large num-
ber of times along iteration; see Maliar and Maliar (2013) for numerical examples.
However, it turned out that the new way of constructing policy functions a¤ects also
the convergence properties of VFI and PI methods. In the remainder of the paper,
we formulate several di¤erent variants of ECM methods, explore their convergence
properties, discuss their relation to the literature and illustrate their applications
with examples.

2.3 Value function iteration

We now describe a variant of ECM that …nds a solution to Bellman equation by
iterating on value function and we compare it to two related methods in the literature,
conventional value function iteration and endogenous grid method of Carroll (2005).

2.3.1 ECM-VF

ECM-VF …nds consumption from envelope condition (7). It constructs value function
 satisfying (1)–(3) by the following iteration procedure:

7

Algorithm 1. ECM-VF

Given  , for each point ( ), de…ne the following recursion:

i). Find  = 0¡1
h

1()
1¡+ 0()

i
.

ii). Find 0 = (1¡ ) +  ()¡ .

iii). Find b ( ) =  () +  [ (0 0)].

Iterate on i)-iii) until convergence b =  .

The formulas in i) and ii) are envelope condition (7) and budget constraint (2),
respectively, and the formula in iii) is Bellman equation (1), evaluated under op-
timal policy functions (which eliminates the maximization sign). We observe that
under ECM-VF, neither numerical maximization nor numerical solver is necessary
for iteration on the Bellman equation but just direct calculations.

2.3.2 Conventional VFI and EGM

Two related methods in the literature are conventional VFI and endogenous grid
method (EGM) of Carroll (2005). Both methods perform time iteration on FOC (6),
namely, they guess value function at +1 and use the Bellman equation to compute
value function at . FOC (6), combined with budget constraint (2), becomes

0 () =  [1 ((1¡ )  +  ()¡  0)]  (8)

Conventional VFI …nds consumption from FOC (8).

Algorithm 2. Conventional VFI

Given  , for each point ( ), de…ne the following recursion:
i). Solve for  satisfying 0 () =  [1 ((1¡ ) +  ()¡  0)].
ii). Find 0 = (1¡ ) +  ()¡ .

iii). Find b ( ) =  () +  [ (0 0)].

Iterate on i)-iii) until convergence b =  .

Conventional VFI is expensive because Step i) requires us to numerically …nd a root
to (8) for each ( ) by interpolating 1 to new values (0 0) and by approximating
conditional expectation – this all must be done inside an iterative cycle; see Aruoba,
Fernández-Villaverde and Rubio-Ramírez (2006) for an example of cost assessment
of conventional VFI. (Alternatively, we can …nd 0 by maximizing the right side of
Bellman equation (1) directly without using FOCs, however, this is also expensive).

Carroll (2005) proposes a way to reduce the cost of conventional VFI. The EGM
method of Carroll (2005) exploits the fact that it is easier to solve (8) with respect

8

to  given (0 ) than to solve it with respect to  given ( ). EGM constructs a
grid on (0 ) by …xing the future endogenous state variable 0 and by treating the
current endogenous state variable  as unknown. Since 0 is …xed, EGM computes
 [1 (

0 0)] up-front and thus can avoid costly interpolation and approximation of
expectation in a root…nding procedure.

Algorithm 3. EGM of Carroll (2005)

Given  , for each point (0 ), de…ne the following recursion:
i). Find  = 0¡1 f [1 (

0 0)]g.
ii). Solve for  satisfying 0 = (1¡ ) +  ()¡ .

iii). Find b ( ) =  () +  [ (0 0)].

Iterate on i)-iii) until convergence b =  .

In Step ii) of EGM, we still need to …nd  numerically. However, for the studied
model, Carroll (2005) shows a change of variables that makes it possible to avoid
…nding  numerically on each iteration (except of the very last iteration).

As we have seen, ECM-VF avoids the root…nding completely in the studied model
(even without a change of variables). Thus, it attains the same outcome as the
EGM of Carroll (2005) via a di¤erent mechanism. In more complicated models,
for example, an optimal growth model with elastic labor supply, neither EGM nor
ECM avoid the root…nding completely but still simplify it considerably compared
to conventional VFI; see Barillas and Fernández-Villaverde (2007) for an extension
of EGM to a model with elastic labor supply. In a companion paper, Maliar and
Maliar (2013) show that ECM-VF and EGM perform very similarly in terms of their
accuracy and speed in the context of a model with elastic labor supply.

However, EGM of Carroll (2005) is non-trivial to implement for models in which
future state variables have kinks, for example, for models with occasionally binding
inequality constraints or with a risk of default. Since EGM needs to construct a grid
on future state variables, we must specify whether an inequality constraint binds or
whether a default occurs in each grid point. This is generally not possible to do
before the model is solved. To deal with this complication, the literature nests EGM
within another iterative procedure; see, e.g., Villemot (2012), Fella (2014). The
proposed ECM methods may have advantages over EGM for this kind of problems
as they construct grids on present state variables whose values are naturally known.
In Section 4, we apply an ECM method to solve a default risk model.

9

2.4 Policy iteration

We now describe a variant of ECM that solves Bellman equation by iterating on
policy function and we compare it to conventional PI methods, e.g., Santos and Rust
(2004); see Santos and Rust (2004), Rust (2008) and Stachurski (2009) for a general
discussion of policy iteration methods.

2.4.1 ECM-PI

We call by ECM-PI the variant of ECM that performs PI instead of VFI.

Algorithm 4. ECM-PI

Given , for each point ( ), de…ne the following recursion:
i). Find  ( ) = (1¡ ) +  ()¡ ( ).
ii). Solve for  satisfying  ( ) =  ( ( )) +  [ ( ( )  0)].

iii). Find b ( ) = 0¡1
h

1()
1¡+ 0()

i
.

Iterate on i)-iii) until convergence b = .

That is, ECM-PI method guesses policy functions for consumption  =  ( ), …nds
the corresponding policy function for capital  =  ( ), computes the correspond-
ing  by iteration on the Bellman equation until convergence holding the policy
functions …xed and recompute the policy function b ( ), iterating until conver-
gence. An example of ECM iterating on policy function is shown in Section 4.2.1.

2.4.2 Conventional policy iteration

Conventional policy iteration methods constructs consumption function using FOC
(6) instead of envelope condition (7).

Algorithm 5. Conventional PI

Given , for each point ( ), de…ne the following recursion:
i). Find  ( ) = (1¡ ) +  ()¡  ( ).
ii). Solve for  satisfying  ( ) =  ( ( )) +  [ ( ( )  0)].

iii). Find b satisfying 0
³
b ( )

´
= 

h
1

³
(1¡ ) +  ()¡ b ( )  0

´i
.

Iterate on i)-iii) until convergence b = .

The di¤erence between ECM-PI and conventional PI consists in step iii). in which
the policy function for next iteration is constructed.

10

2.5 Iteration on derivatives of value function

The ECM methods described up to now solve for value function (either directly or
via PI). We now describe versions of ECM that solve for derivative of value function
instead of value function itself. We argue that the derivative-based version of ECM
has similarity to the Euler-equation class of methods.

2.5.1 ECM-DVF

The studied ECM method suggests a useful recursion for the derivative of value
function. We …rst construct consumption function  ( ) satisfying FOC (6) under
the current value function  [1 (

0 0)] = 0 ( ( )), and we then use (4) to
obtain the derivative of value function for next iteration:

1 ( ) =  [1¡  +  0 ()] [1 (
0 0)]  (9)

This leads to a solution method that we call ECM-DVF.

Algorithm 6. ECM-DVF

Given 1 for each point ( ), de…ne the following recursion:

i). Find  = 0¡1
h

1()
1¡+ 0()

i
.

ii). Find 0 = (1¡ ) +  ()¡ .

iii). Find b1 ( ) =  [1¡  +  0 ()] [1 (0 0)].

Iterate on i)-iii) until convergence b1 = 1.
Given the converged policy functions, …nd  satisfying  ( ) =  () +  [ (0 0)] 

The di¤erence of ECM-DVF from the previously studied ECM-VF consists in that
we iterate on 1 without computing  on each iteration. We only compute  at the
very end, when both 1 and the optimal policy functions are constructed. Again,
neither numerical maximization nor a numerical solver is necessary under ECM-DVF
but only direct calculations.

In our numerical experiments, a version of ECM-DVF that solves for a derivative
of value function produces more accurate solutions than an otherwise identical ECM-
VF that solves exclusively for value function. This is because solving accurately for
value function does not lead to su¢ciently accurate approximations of its derivatives.
For example, assume that value function is approximated with polynomial of degree
. Then, its derivatives are e¤ectively approximated with a polynomial of degree
 ¡ 1 since we "lose" one polynomial degree when di¤erentiating value function.
In contrast, when approximating derivatives of value function directly, we focus on

11

the object that identi…es policy functions and as a result, we obtain more accurate
solutions.

Maliar and Maliar (2013) also show how to construct a version of EGM-DVF
of Carroll (2005) that iterates on the derivatives of value function instead of the
value function itself in a way that is parallel to ECM-DVF. This paper …nds that
the performance of ECM-DVF and EGM-DVF is very similar in terms of their ac-
curacy and speed in the context of a model with elastic labor supply. Finally, it is
straightforward to formulate the variants of ECM-DVF and ECM-DVF that perform
PI instead of VFI but we omit this extension to save on space.

2.5.2 Euler equation methods

ECM-DVF has similarity to Euler equation methods; see Judd (1998), Santos (1999)
for a general discussion of such methods. The standard Euler equation follows from
optimality conditions (6), (7): we update (7) to obtain 1 (

0 0) and we substitute
the result into (6) to eliminate the unknown derivative of the value function,

0 () =  [0 (0) (1¡  + 0 0 (0))]  (10)

Euler equation methods approximate policy functions for consumption  =  ( ),
capital 0 =  ( ) (or other policy functions) to satisfy (2), (3) and (10). Below,
we provide an example of Euler equation method (other recursions for such methods
are possible).

Algorithm 7. Euler equation algorithms

Given  ( ), for each point ( ), de…ne the following recursion:
i). Find  ( ) = (1¡ ) +  ()¡ ( ).
ii). Find 0 =  ( ( )  0).

iii). Find b ( ) = 0¡1 f [0 (0) (1¡  + 0 0 (0))]g.

Iterate on i)-iii) until convergence b = .

Similarly to ECM, Euler equation methods do not solve for value function but only for
decision (policy) functions. One possible decision functions is a derivative of value
function. Thus, the ECM recursion (9) can be also viewed as an Euler equation
written in terms of the derivative of value function.

2.6 Convergence properties of the ECM methods

We now study the convergence of the ECM methods. For the expositional conve-
nience, our analysis is limited to the optimal growth model (1)–(3), however, it can

12

be readily extended to other models that satisfy the standard assumptions such as
compactness and convexity of the budget set, smoothness and strong concavity of
the utility function and the interiority of solutions; see Stokey and Lucas (1989),
Santos (1999, 2000), Stachurski (2009) and Krueger (2012) for a discussion of these
assumptions.

2.6.1 ECM-VF

We study the convergence of the ECM method iterating on value function, described
in Section 2.2.1; see "Algorithm 1. ECM-VF". Our analysis relies on the comparison
of ECM to the conventional VFI iteration; see "Algorithm 2. FOC-VFI". We de…ne
the regular Bellman operator  for the model (1)–(3) as

 ( ) ´  ( ( )) +  [ ( ()¡  ( )  
0)]  (11)

 ( ) : 
0 () =  [1 ( ()¡  0)]  (12)

where  ( ) is the consumption function de…ned implicitly by FOC (6). (To
simplify the notation, we assume  = 1 in this section).

We next introduce an operator  that corresponds to the ECM-VF recursion

 ( ) ´  ( ( )) +  [ ( ()¡ ( )  
0)]  (13)

 ( ) : 1 ( ) = 0 ()  0 ()  (14)

where  ( ) is the consumption function de…ned implicitly by envelope condition
(7).

Does ECM-VF have the same …xed point as conventional VFI? The op-
erators  and  are di¤erent but any …xed point of  is also a …xed point of 
and vice versa (with an additional technical restriction). Speci…cally, we have the
following result.

Proposition 1. Let  ¤ be a …xed point of  such that 1 6= 0. Than,  ¤ =  ¤

i¤  ¤ =  ¤.
Proof. The proof follows by formula (5) that shows that imposing FOC enforces

the envelope condition and vice versa.
i) To see that  ¤ =  ¤ implies  ¤ =  ¤, note that if  ¤ is a …xed point of

 , than assuming interiority,  must satisfy FOC (12). Hence, according to (5),
 must also satisfy envelope condition (14). Hence,  =  and hence,
 ¤ =  ¤.

13

ii) In the opposite direction, note that if  ¤ is a …xed point of , then 

satis…es envelope condition (14). According to (5),  must either satisfy FOC
(12) or it must be the case that 1 = 0. Since the latter possibility is ruled out by
assumption, we conclude that  =  . Hence,  ¤ =  ¤ implies  ¤ =  ¤.
k

The restriction 1 6= 0 is important and allows us to rule out degenerate functions
that satisfy envelope condition but not FOC and hence, that are not solutions to the
Bellman equation. We illustrate this point by way of example.

Example 1. Assume  (0) =  (0) = 0 and consider  ( ) =  ( ()). According
to (14), we have

 ( ) = 0¡1
·
1 ( )

 0 ()

¸

= 0¡1
·
0 ( ())  0 ()

 0 ()

¸

=  () .

Inserting this result in the right side hand side of (13), we have

 ( ) =  ( ( )) +  [ ( ()¡  ( )  
0)]

 ( ()) +  [ ( ()¡  ()  0)]

=  ( ()) +  [ (0 0)] =  ( ())

Hence,  ( ) =  ( ()) is a …xed point of  which is not …xed point of  . This
is a degenerate …xed point that has capital function  = 0 that does not satisfy the
restriction 1 = 0. k

Does ECM-VF have the contraction mapping property as conventional
VFI? Our goal is to analyze the convergence properties of ECM-VF. In order to
do this, it is useful to recall the convergence results for the regular Bellman operator
 . It is well-known that the Bellman operator is a contraction mapping and thus, it
guarantees a convergence to a …xed point  ¤ starting from an arbitrary initial guess
 , in the space of continuous bounded functions, i.e.,   !  ¤ as  ! 1. The
proof of this fact is as follows:

14

Let  and  be two continuous bounded functions. Then, we have

j ( )¡  ( )j =
¯
¯
¯max


f () +  [ ( ()¡  0)]g

¡max

f () +  [ ( ()¡  0)]g

¯
¯
¯ 

Using the property of a maximum operator, we obtain

j ( )¡  ( )j ·

max

jf () +  [ ( ()¡  0)]g

¡f () +  [ ( ()¡  0)]gj 

Taking the supremum on the left-hand side shows that  is a contraction mapping
with a modulus ,

k ¡ k ·  k ¡k  (15)

where here and further in the text k¢k is used to denote the supremum 1 norm.

We next ask: Is the ECM-VF operator  a contraction mapping like ? In other
words, does  guarantee a convergence to a …xed point  !  ¤ as  ! 1 in
the space of continuous bounded functions? Example 1 suggests a negative answer
to this question. Indeed, if we use  ( ) =  ( ()) for initializing ECM-VF
(such a guess is frequently used for initializing conventional VFI in applications),
ECM-VF will get stuck in a wrong …xed point with  = 0. Clearly, ECM-VF does
not guarantee a convergence from any initial guess.

To further explore the convergence properties of ECM-VF, let us repeat the same
steps for this method as we did for the regular Bellman operator. We have

j ( )¡ ( )j =

j ( ( )) +  [ ( ()¡  ( )  
0)]

¡ ( ( ))¡  [ ( ()¡  ( )  
0)]j  (16)

where  ( ) and  ( ) are consumption functions generated by the envelope
conditions of  and  , respectively,

 ( ) : 1 ( ) = 0 ()  0 () 

 ( ) : 1 ( ) = 0 ()  0 ()  (17)

15

By using a triangular inequality and by taking a supremum of (16), we arrive at

k ¡k · k ()¡  ()k+  k ¡k  (18)

Formula (18) for the ECM operator  has a new term k ()¡  ()k compared
to a similar formula (15) for the regular Bellman operator  . This term can be
potentially large if the derivatives of  and  are very di¤erent, and hence, the
ECM operator  is not necessarily a contraction mapping.

To investigate the convergence properties of the term k ()¡  ()k, we study
the recursion that ECM implies for the derivative 1. On iteration , we …rst con-
struct consumption function  ( ) satisfying envelope condition (7) under the
current value function  

1 ( ) = 0 ( ( )) [1¡  +  0 ()], and we then use (5)
to obtain following recursion for the derivative of value function for iteration + 1:

 +1
1 ( ) =  

1 ( ) +

½

 [ 
1 (

0 0)]¡
 
1 ( )

1¡  +  0 ()

¾


1 ( )  (19)

With the result (19), we obtain the following equation that describes the evolution
of  ( ) along iteration for the ECM-VF method:

0
¡
+1 ( )

¢
= 0 ( ( ))

+ f [0 ( (0 0)) 0 0 (0)]¡ 0 ( ( ))g

1 ( )

 0 ()
 (20)

E¤ectively, the recursion (20) attempts to solve an Euler equation

0 ( ( )) =  [0 ( (0 0)) 0 0 (0)] (21)

using …xed point iteration. However, the convergence of …xed point iteration on Euler
equation is not generally guaranteed; see Maliar and Maliar (2014) for a discussion.
The absence of strong convergence results is an important shortcoming of the class
of Euler equation methods relative to the class of conventional value-iterative ap-
proaches.

Why do the Bellman and ECM operators have di¤erent convergence properties?
Note that a solution to EC (7) does not maximize the right side of the Bellman equa-
tion for any  that occurs in iteration (it only does for a limiting …xed-point solution
 ¤). Similarly, the regular Bellman operator, enforces FOC (6) in each iteration but
does not enforces envelope condition (7); it only enforces such a condition in the
limiting …xed point  ¤. Since ECM does not produce a maximum of the Bellman
equation in each iteration, it is not possible to cancel out k ()¡  ()k, as is
possible to do under the regular Bellman operator. This fact prevents us from having
the property of contraction mapping.

16

2.6.2 ECM-PI

Global convergence for policy iteration is established for a space of concave value
functions in Santos and Rust (2004). Thus, the convergence of policy iteration meth-
ods requires more stringent conditions than the convergence of the regular Bellman
operator that is established for a more general class of continuous bounded functions.

Unfortunately, the restriction of concavity of value function is still not su¢cient to
insure the convergence of ECM-PI. This is because ECM-PI is subject to the same
shortcomings as ECM-VF. Namely, the conventional PI method computes policy
functions to exactly satisfy FOC (21) exactly on each iteration while the ECM-PI
method again applies …xed-point iteration (20) to solve FOC only in the limit. This
fact can be seen by comparing Algorithm 4 and 5 which have identical steps 1 and
2 but di¤er in step 3.

2.6.3 ECM-DVF

We next turn to ECM-DVF methods described in Section 2.2.2, speci…cally, we
consider the recursion ECM-DVF (9) that is used in Algorithm 7. We introduce an
operator  that corresponds to the ECM-DVF recursion as follows:

1 ( ) ´  0 ()  [1 ( ()¡  ( )  
0)] (22)

 ( ) : 1 ( ) = 0 ()  0 ()  (23)

We investigate the convergence properties of the ECM-DVF operator as we did for
ECM-VF. Let 1 and 1 be two bounded continuous functions. Then, we have

j1( )¡1( )j =

 0 () j1 [( ()¡  ( )  
0)]¡ 1 [( ()¡  ( )  

0)]j

By taking a supremum, we obtain

k1 ¡1k ·  0 ()  k1 ¡1k  (24)

To have a contraction mapping, we need the term  0() in (24) to be smaller than
1 for all ( ). However, this is not the case: this term is equal to 1 in the steady
state, and it is either smaller or larger than 1 depending on a speci…c state ( )
considered.

Another possible way to prove that a mapping is contraction is to show that it
satis…es Blackwell’s (1965) su¢ciency conditions; see Santos (1999) and Stachurski
(2009) for a discussion of these conditions. It is easy to check that the operator

17

ECM-DVF possesses the property of monotonicity but not discounting which agrees
with the result (24). (Curiously, for the previously considered operator ECM-VF
(13), (14), we …nd exactly the opposite, namely, it possesses the property of dis-
counting but may fail to satisfy monotonicity). Hence, our theoretical analysis does
not provide a basis to a¢rm that ECM-DVF (22) is a contraction mapping.

2.6.4 Discussion

Conventional VFI and PI are classi…ed as DP methods. An important advantage of
the DP class of methods is that under the appropriate assumptions, their properties
can be characterized analytically including their convergence rates, error bounds, nu-
merical stability and computational complexity; see Stokey and Lucas with Prescott
(1989), Santos (1999) and Stachurski (2009) for reviews of formal results for such
methods.

In turn, the ECM method solves for value and/or policy functions jointly and
e¤ectively includes iteration on Euler equation. For Euler equation class of methods,
formal results are harder to obtain and even their convergence is in general not
guaranteed. E¤ectively, we need to …nd a numerical solution to a system of non-linear
equations. There are three approaches in the literature that are used to solve non-
linear systems of equations, namely, …xed point iteration, time iteration, and Newton-
style solvers; see Maliar and Maliar (2014) for a discussion. Time iteration is a special
kind of …xed point iteration that mimics the Bellman operator: given a guess about
decision functions for future variables, it …nds the values of the current variables to
update the guess, iterating until convergence. Time iteration is more numerically
stable than other …xed point iteration schemes, however, it is also more expensive;
see Judd (1998, Ch. 16) for a discussion. Moreira and Maldonado (2003) show
a variant of time-iteration method for deterministic problems that is a contraction
mapping. The idea is to construct a sequence of subiterations on the Euler equation
by exploiting a local saddle-path stability of the system. Another paper that shows
convergence results for their Euler equation method is Feng, Miao, Peralta-Alva and
Santos (2014).

The ECM class of methods is not related to a speci…c iterative procedure for
…nding a …xed point and is compatible with all the procedures discussed above.
In our numerical experiments, we use …xed point iteration with damping because
it is simple, inexpensive and reliable. Instead, we could have used time iteration
or Newton-style solvers. For a version of the ECM-DVF method based on time
iteration, we can possibly show (local) convergence by using a construction similar
to the one in Moreira and Maldonado (2003). However, the latter paper is limited to

18

deterministic settings. Generalizing their analysis to a stochastic case is a non-trivial
task and it goes beyond the scope of the present paper. We leave this extension for
further research.

Finally, we shall emphasize that the absence of convergence results for Euler
equation methods does not mean that such methods diverge and are not useful. Euler
equation methods successfully converge in many applications under an appropriate
implementation although we cannot prove it analytically. Moreover, even if iteration
on Euler equation becomes explosive, it can often be stabilized by damping; see
Maliar, Maliar and Judd (2011) for a graphical illustration. The same is true for the
ECM class of methods advocated in the present paper.

2.7 Numerical analysis

We now present the results of numerical experiments for the one-agent model.

2.7.1 Computational choices

We parameterize the model (1)–(3) using the Constant Relative Risk Aversion (CRRA)
utility function,  () = 1¡¡1

1¡
, and the Cobb-Douglas production function,  () =

, and we calibrate the parameters to the standard values:  = 13,  = 099,
 = 0025,  = 095 and  = 001. We consider two values of risk-aversion coe¢cient
 = 13 and  = 3. As a solution domain, we use a rectangular, uniformly spaced
grid of 10£ 10 points for capital and productivity within an ergodic range (to deter-
mine such a range we solve and simulate the model several times). We use a 10-node
Gauss-Hermite quadrature rule for approximating integrals. We parameterize value
function (ECM-VF) or a derivative of value function (ECM-DVF) with complete
ordinary polynomials of degrees up to 5. As an initial guess, we use a linear approx-
imation to the capital policy function. To solve for the polynomial coe¢cients, we
use …xed point iteration. We use MATLAB software, version 7.6.0.324 (R2012a) and
a desktop computer ASUS with Intel(R) Core(TM)2 Quad CPU Q9400 (2.66 GHz),
RAM 4MB. A detailed description of the algorithms is provided in Appendix A.

2.7.2 Results

In Table 1, we show the results for the ECM-VF As a measure of accuracy, we re-
port the average and maximum absolute unit-free residuals in Euler equation (10).
Furthermore, in Table 2, we report the results for the ECM-DVF under the same pa-
rameterizations. The main …nding is that both ECM-VF and ECM-DVF deliver high
accuracy levels. The accuracy increases with a degree of approximating polynomial.

Table 1: Accuracy and speed of ECM-VF in the one-country model.

 = 03  = 3
Polynomial Euler equation Value function CPU Euler equation Value function CPU

degree L1 L1 L1 L1 L1 L1 L1 L1

1st - - - - - - - - - -
2nd -3.20 -2.67 -4.79 -4.40 0.94 -3.83 -3.50 -2.61 -2.60 0.32
3rd -4.12 -3.29 -5.97 -5.45 0.59 -5.17 -4.61 -3.35 -3.34 0.22
4th -5.06 -4.12 -7.07 -6.35 0.42 -5.27 -5.81 -3.88 -3.87 0.15
5th -6.04 -4.92 -8.08 -7.23 0.33 -7.51 -6.91 -4.33 -4.32 0.13

 Notes: L1 and L1 are, repectively, the average and maximum of absolute residuals across opti-
mality condition and test points (in log10 units) on a stochastic simulation of 10,000 observations;
CPU is the time necessary for computing a solution (in seconds).

Table 2: Accuracy and speed of ECM-DVF in the one-country model.

 = 03  = 3
Polynomial Euler equation Value function CPU Euler equation Value function CPU

degree L1 L1 L1 L1 L1 L1 L1 L1

1st -2.98 -2.68 -3.77 -3.60 8.86 -3.59 -3.37 -4.53 -4.45 3.32
2nd -3.91 -3.53 -4.91 -4.56 1.08 -5.00 -4.49 -5.65 -5.40 0.46
3rd -4.81 -4.31 -5.98 -5.35 0.88 -5.98 -5.54 -5.86 -5.71 0.31
4th -5.79 -5.07 -6.48 -6.13 0.69 -7.24 -6.69 -5.87 -5.72 0.28
5th -6.63 -5.85 -6.49 -6.19 0.50 -8.44 -7.89 -5.87 -5.73 0.16

 Notes: L1 and L1 are, repectively, the average and maximum of absolute residuals across opti-
mality condition and test points (in log10 units) on a stochastic simulation of 10,000 observations;
CPU is the time necessary for computing a solution (in seconds).

20

ECM-VF is less accurate than ECM-DVF given the same degree of approximating
polynomial. This is because if we approximate  with a polynomial of some degree,
we e¤ectively approximate 1 with a polynomial of one degree less, i.e., we "lose"
one polynomial degree. When  increases (decreases), the accuracy of solutions de-
creases (increases); these cases are not reported. Namely, under  = 3 ( = 13), the
residuals for ECM-VF vary with the polynomial degree from ¡32 to ¡604 (from
¡383 to ¡751). For ECM-DVF, the corresponding residuals vary from ¡298 to
¡663 (¡359 to ¡844).

Finally, as we see from the table, the convergence of ECM-VF is faster than
that of ECM-DVF. The observed di¤erence in costs represents the di¤erence in the
number of iterations necessary for convergence. ECM-DVF needed more iterations
to converge because it was less numerically stable than ECM-VF, and we stabilize it
using damping with an updating rate of 10% per iteration (we borrow this technique
from the Euler equation class of methods). In contrast, ECM-VF was stable without
damping with an updating rate of 100% per iteration.

3 ECM in the multicountry model

We consider the model studied in the February 2011’s Journal of Economic Dy-
namics and Control special issue (henceforth, JEDC project) on a comparison of
solution methods. This is a stylized stochastic growth model with  heterogeneous
agents (interpreted as countries). Each country is characterized by a capital stock
and productivity level, so that there are 2 state variables. In addition to a poten-
tially large number of state variables, the model features an endogenous labor-leisure
choice, heterogeneity in fundamentals and adjustment costs for capital.

We view this model as a convenient framework for testing the performance of
solution methods in problems with high dimensionality. Namely, by varying  , we
can expand the size of the problem and assess how the running time and accuracy
are a¤ected by the number of state variables. Also, this model was solved by various
computational methods which provides a useful benchmark for comparison.

3.1 The model

Each country  = 1   is populated by one (representative) consumer. A social
planner maximizes a weighted sum of expected lifetime utilities of the consumers by

21

solving the following problem

 (kz) = max

()

0
=1

(
X

=1


¡
 

¢
+  [ (k0 z0)]

)

(25)

s.t.
X

=1

 =
X

=1

2

4
¡
 

¢
¡


2


Ã¡


¢0


¡ 1

!2

+  ¡
¡


¢0

3

5  (26)

ln
¡


¢0
=  ln  + 

¡


¢0
 (27)

where  is the operator of conditional expectation; , , , , ,  and 

are consumption, labor, capital, productivity level, utility function, production func-
tion and welfare weight of a country  2 f1  g, respectively; , ,

¡


¢0
¸ 0;

 2 [0 1) is the discount factor;  is the adjustment-cost parameter. In the process
for productivity (27),  2 (¡1 1) is the autocorrelation coe¢cient of the produc-
tivity level;   0 determines the standard deviation of the productivity level; and
³
(1)

0
 

¡


¢0
´>
» N (0 §) is a vector of productivity shocks with 0 2 R

 be-

ing a vector of zero means and § 2 R£ being a variance-covariance matrix. Thus,
we allow for the case when productivity shocks of di¤erent countries are correlated.
Initial condition, k ´

¡
1  

¢
and z ´

¡
1  

¢
, is given, and a prime on

variables means their future values.
Again, we assume that the solution to DP problem (25)–(27) is interior and that

value function  is di¤erentiable. Hence, the planner’s choices satisfy the FOCs and
envelope condition, given, respectively, by

 [ (k
0 z0)] = 

"

1 +  ¢

Ã¡


¢0


¡ 1

!#

 (28)

1
¡
 

¢
=  (29)

2
¡
 

¢
 = ¡1

¡
 

¢
 (30)

 (kz) = 

2

41 + 1
¡
 

¢
+


2

0

@

Ã¡


¢0



!2

¡ 1

1

A

3

5  (31)

where  is the Lagrange multiplier, associated with the economy’s resource con-
straint.

22

3.2 Envelope condition method

In the multicountry case, we implement versions of the ECM methods that perform
policy function iteration instead of value function iteration. This is because, opera-
tionally, it is easier to solve for value function given policy function than to solve for
policy functions given value function.

We …rst eliminate  by combining FOC (28) and envelope condition (31) ,

1 =
 [ (k

0 z0)]

 (k z)

£
 + 1

¡
 

¢¤


 (32)

where  and  are given by

 ´ 1 + 

Ã¡


¢0


¡ 1

!

and  = 1 +


2

0

@

Ã¡


¢0



!2

¡ 1

1

A 

Condition (32) relates today’s and tomorrow’s derivatives of the value function. We
next use (32) to parameterize capital policy functions, namely, we premultiply both
sides of (32) with

¡


¢0
to obtain

¡


¢0
=
 [ (k

0 z0)]

 (kz)

£
 + 

1

¡
 

¢¤


¡


¢0
 (33)

The optimal capital policy functions,
¡


¢0
=  (k; z),  = 1   , must satisfy

a …xed point property: if we substitute such functions in the right side of (33), we
must obtain the same functions in the left side. Conditions (33) for  = 1  
provide us with a way to implement …xed point iteration on capital policy functions.
Namely, we guess some policy functions  (k; z),  = 1   , substitute them in
the right side of (33), recompute

¡


¢0
in the left side and iterate on these steps until

convergence.
Parameterization (33) is analogous to the one used in Maliar, Maliar and Judd

(2011) to reparameterize the Euler equations in model (25)–(27),

¡


¢0
= 

8
<

:

1

³¡


¢0

¡


¢0
´

1 (
 )

h¡


¢0
+

¡


¢0

1

³¡


¢0

¡


¢0
´i



9
=

;

¡


¢0
 (34)

This kind of representation of Euler equations was originally used in the context of
Monte Carlo based solution methods in which parameterizing expectation functions

23

in canonical Euler equations do not identify all model’s variables: see Den Haan
(1990) and Marcet and Lorenzoni (1999) for related examples. The identi…cation of
variables is not an issue for solution methods like ECM that builds on deterministic
integration techniques. However, solving nonlinear systems of equations (32) can be a
non-trivial and costly task, especially, when the dimensionality is large. In contrast,
…xed point iteration schemes like (33) and (34) are straightforward to implement;
again, only direct calculations are needed.

3.2.1 ECM-VF

The …xed-point problem for the ECM-VF method in the multicountry model is sim-
ilar to that in the one-country case, except that we use policy function iteration
instead of value function iteration.

Algorithm 8. ECM-VF

Given  (k; z),  = 1  for each (k; z):

i). Compute
¡


¢0
=  (k; z),  = 1  .

ii). Find (c `) satisfying (26), (29) and (30) for each given
¡
k zk0

¢
.

iii). Find  satisfying  (kz) =
P

=1 


¡
 

¢
+ 

£


¡
k0z0

¢¤
.

iv). Use  to …nd  (kz) and to infer future values 
¡
k0z0

¢
,  = 1   .

v). Compute
³
b

´0
= [()]

()

[+1 ()]


¡


¢0
,  = 1  .

The optimal policy functions satisfy
³
b

´0
=

¡


¢0
,  = 1  .

In step ii), we need to compute (c `) satisfying (26), (29) and (30) given (k zk0).
This requires us to solve a system of 2 +1 equations with 2 +1 unknowns (c `)
and . This system can be solved with a standard Newton-style numerical solver
but the cost of such a solver may become prohibitive when the dimensionality of the
problem increases. Maliar, Maliar and Judd (2011) show a derivative-free iteration-
on-allocation solver that can be used in this context and that can be vectorized for
speed.

3.2.2 ECM-DVF

The …xed-point problem of the ECM-DVF method for the multicountry case also
relies on policy function iteration.

24

Algorithm 9. ECM-DVF

Given  (k; z),  = 1  for each (k; z):

i). Compute
¡


¢0
=  (k; z),  = 1  .

ii). Find (c `) satisfying (26), (29) and (30) for each given
¡
k zk0

¢
.

iii). Find  (kz) = 1
¡
 

¢ £
 + 1

¡
 

¢¤
,  = 1  .

iv). Use  to infer future values 
¡
k0z0

¢
,  = 1   .

v). Compute
³
b

´0
= [()]

()

[+1 ()]


¡


¢0
,  = 1  .

The optimal policy functions satisfy
³
b

´0
=

¡


¢0
,  = 1  .

Again, in step iii), we need to solve the same system of equations as under ECM-VF,
i.e., to compute (c `) satisfying (26), (29) and (30) given (k zk0).

3.2.3 Making ECM tractable in high-dimensional problems

The ECM approaches focus on one speci…c issue, namely, on how to reduce the com-
putational cost of solving for value function and its derivatives using the optimality
conditions. However, to build a solution method, we need to specify other computa-
tional choices such as a grid for …nding a solution, a function for approximations, an
integration method, a …tting method, etc. Recent literature distinguished techniques
that are tractable in high-dimensional applications in the context of Euler equation
methods; these are non-product grids, low-cost accurate monomial integration rules,
derivative-free solvers; see Krueger and Kubler (2004), Malin, Krueger and Kubler
(2011), Pichler (2011), Maliar, Maliar and Judd (2011), Judd, Maliar and Maliar
(2011, 2012), Maliar and Maliar (2015); see also Maliar and Maliar (2014) for a
review. The ECM methods are fully compatible with all these techniques.

We choose to implement ECM-VF and ECM-DVF following the design of gener-
alized stochastic simulation algorithm (GSSA) method of Judd et. al. (2011). GSSA
uses a set of points produced by stochastic simulation as a grid for …nding a solution.
In this sense, it is similar to simulation-based Euler equation and value function
iteration methods introduced in Marcet (1988) and Maliar and Maliar (2005), re-
spectively.3 However, GSSA di¤ers from the latter methods in two respects: …rst,
to insure numerical stability, it uses …tting methods that are suitable for dealing
with ill-conditioned problems and second, to attain high accuracy of solutions, it
uses non-stochastic (monomial and quadrature) integration rules. As a result, GSSA
delivers accuracy levels that are comparable to the best accuracy attained in the
related literature and that are infeasible for pure simulation methods; see Judd et

3Marcet’s (1988) method is developed in Den Haan and Marcet (1990) and Marcet and Lorenzoni
(1999).

25

al. (2011) for a discussion and numerical examples.

3.3 Numerical analysis

We now present the results of numerical experiments for the multicountry model.

3.3.1 Computational choices

We apply the ECM methods to solve Model II with an asymmetric speci…cation; see
the comparison analysis of Kollmann, Maliar, Malin and Pichler (2011). We chose
this model among others because it represents all challenges posed in the comparison
analysis, namely, a large number of state variables, elastic labor supply, heterogeneity
in fundamentals and the absence of closed-form expressions for next-period state and
control variables.4 The utility and production functions are given by


¡
  




¢
=

¡


¢1¡1

1¡ 1
¡

¡


¢1+1

1 + 1
, 

¡
  




¢
= 

¡


¢ ¡


¢1¡
¡,

(35)
where

©
 

ª
are the utility-function parameters;  is the capital share in pro-

duction;  is the normalizing constant in output;  2 (0 1] is the depreciation rate.
We calibrate the model as in Kollmann, Maliar, Malin and Pichler (2011). We use
the following values of common-for-all-countries parameters:  = 036,  = 099,
 = 0025,  = 001,  = 095,  = 05, and we assume that the country-speci…c
utility-function parameters  and  are uniformly distributed in the intervals
[025 1] and [01 1] across countries  = 1   , respectively. The steady state
level of productivity is normalized to one,  = 1. We also normalize the steady

state levels of capital and labor to one, 

= 1, 


= 1, which implies  = ,  = 1

and leads to  = 1¡


,  =  ( 1) and  = (1¡ )1¡1

. We consider  = 2,

4, 6 and 8.
We parameterize value function (ECM-VF) and the derivative of value function

(ECM-DVF) with complete ordinary polynomials of degrees 2, 3 and 1, 2, 3, respec-
tively. As an initial guess, we use a linear approximation of capital policy function.
To solve for the polynomial coe¢cients, we use …xed point iteration. To solve for con-
sumption and labor satisfying (26), (29) and (30), we use an iteration-on-allocation

4Model I has a degenerate labor-leisure choice, and Models III and IV are identical to Model
II up to speci…c assumptions about preferences and technologies. Juillard and Villemot (2011)
provide a description of all models studied in the comparison analysis of Kollmann, Maliar, Malin
and Pichler (2011).

26

solver developed in Maliar et al. (2011). To approximate integrals, we use a mono-
mial integration rule 1 with 2 nodes, and to …t the value and policy functions
to simulated data, we use a least-squares truncated QR factorization method; see
Judd, Maliar and Maliar (2011) for a description of these techniques. We use the
same software and hardware as that used to solve the one-country model. We provide
a detailed description of the studied ECM methods in Appendix B.

3.3.2 Results

In Table 3, we present the results produced by two versions of the ECM method,
ECM-VF that solves for value function and ECM-DVF that solves for derivative
of value function. We report two accuracy measures: One measure is the size of
absolute unit-free residuals across 1,000 draws of state variables located on spheres
in the state space (centered at steady state) with radii 0.01, 0.10, and 0.30. Roughly
speaking, this measure shows how accurate is our solution when we deviate from the
steady state by 1%, 10% and 30%, respectively. The other measure is the size of the
residuals on a stochastic simulation of 10,000 observations; this measure shows how
accurate our solution in the high-probability area of the state space – the ergodic
set. These two accuracy measures are used in the JEDC comparison analysis of
Kollmann, Maliar, Malin and Pichler (2011); also see Juillard and Villemot (2011)
for more details.

Our main …nding is that the ECM methods are tractable in the context of the
given multidimensional problem. Moreover, the ECM methods are able to produce
not only the second-degree but also far more expensive third-degree polynomial ap-
proximations. All Euler equation methods studied in Kollmann, Maliar, Malin and
Pichler (2011) are limited to second-degree polynomial approximation. The ECM
methods have an advantage over Euler equation methods in that they solve for con-
trol variables only at present and do not need to …nd such variables in all integration
nodes. This advantage can be especially important in high-dimensional problems as
the number of integration nodes grows rapidly with dimensionality.

As far as the accuracy is concerned, ECM-VF is considerably less accurate than
ECM-DVF. Our results suggest that in high-dimensional problems, approximating
value function with a polynomial on a grid does not produce accurate approxima-
tions for derivatives of the value function. This is the same e¤ect that we observed
in Section 2.4.2 for the one-agent model, namely, if we approximate  with a poly-
nomial, we e¤ectively approximate 1 with a polynomial of one degree less, i.e., we
"lose" one polynomial degree.

In turn, the ECM-DVF method is very accurate. It reaches the accuracy frontier

Table 3: Accuracy and speed of ECM-VF in the multicountry model.

Number of Polyn. CPU r=0.01 r=0.1 r=0.3 Simulation
countries degree L1 L1 L1 L1 L1 L1 L1 L1

ECM-VF method

N=2 2 29 -4.95 -3.66 -4.12 -2.69 -3.62 -2.13 -3.97 -2.51
3 34 -5.09 -3.71 -4.14 -2.72 -3.65 -2.18 -4.01 -2.51

N=4 2 155 -4.90 -3.66 -3.96 -2.70 -3.48 -2.13 -3.86 -2.48
3 1402 -4.92 -3.68 -3.99 -2.74 -3.50 -2.20 -3.90 -2.50

N=6 2 629 -4.86 -3.64 -3.91 -2.68 -3.43 -2.08 -3.84 -2.47
3 21809 -4.88 -3.66 -3.95 -2.69 -3.47 -2.16 -3.88 -2.51

N=8 2 2888 -4.84 -3.62 -3.88 -2.65 -3.40 -2.04 -3.83 -2.48
3 89872 -4.92 -3.68 -3.94 -2.66 -3.41 -1.94 -3.90 -2.48

ECM-DVF method

N=2 1 173 -5.14 -4.24 -4.78 -3.14 -4.00 -2.25 -4.82 -3.01
2 1189 -6.58 -5.73 -6.22 -4.49 -5.22 -3.14 -6.06 -4.21
3 1734 -7.84 -6.95 -7.37 -5.56 -6.00 -4.08 -7.10 -4.93

N=4 1 531 -5.12 -4.32 -4.65 -3.37 -3.84 -2.48 -4.82 -3.19
2 2039 -6.35 -5.61 -6.22 -4.61 -5.14 -3.53 -6.01 -4.32
3 8092 -7.47 -6.52 -6.95 -5.51 -5.65 -3.98 -6.87 -4.89

N=6 1 635 -5.10 -4.30 -4.60 -3.36 -3.79 -2.56 -4.83 -3.26
2 2723 -6.71 -5.71 -5.94 -4.48 -4.97 -3.44 -5.88 -4.27
3 38698 -7.28 -6.37 -6.66 -5.12 -5.25 -3.74 -6.61 -4.76

N=8 1 1071 -5.11 -4.29 -4.58 -3.42 -3.76 -2.62 -4.84 -3.34
2 4541 -6.55 -5.65 -5.69 -4.34 -4.74 -3.31 -5.72 -4.16
3 165911 -7.35 -6.46 -6.42 -4.82 -5.00 -3.40 -6.46 -4.71

Notes: Columns "r=0.01", "r=0.1", "r=0.3" contain the results of accuracy evaluation across 1,000

draws of state variables located on spheres in the state space (centered at steady state) with radii

0.01, 0.10, and 0.30, respectively, and column "Simulation" contains the results of accuracy evalu-

ation on a stochastic simulation of 10,000 observations. The statistics L1 and L1 are, respectively,

average and maximum absolute unit-free residuals (in log10 units) across all equilibrium conditions.

CPU is the running time (in seconds).

28

attained in the comparison analysis of Kollmann, Maliar, Malin and Pichler (2011).
In particular, in an accuracy check on a stochastic simulation, our third-degree poly-
nomial solutions are more accurate than second-degree polynomial solutions reported
in Kollmann, Maliar, Malin and Pichler (2011) although our second-degree polyno-
mial solutions are somewhat less accurate than their most-accurate solutions. For
example, for a model with  = 8 countries, the second- and third-degree ECM-DVF
polynomial solutions have maximum residuals across the optimality conditions of
orders 10¡416 and 10¡471, respectively. For comparison, the most accurate second-
degree method in Kollmann, Maliar, Malin and Pichler (2011) produces maximum
residual of order 10¡450. Thus, we conclude that ECM value iteration methods can
successfully compete with the state-of-the-art Euler equation methods.5

4 ECM for default risk models

Default risk models focus on borrowing-lending arrangements in which debt is un-
secured and a borrower can default on debt. Examples of situations with default
include sovereign default (e.g, Greek default of 2012, Argentinian default of 2001),
consumer bankruptcy (defaults on loans and mortgages), …rm bankruptcy (defaults
on …nancial or contractual obligations), local government defaults (e.g., Detroit in
2013), etc.

The recent …nancial and sovereign debt crises worldwide has sparked a growing
literature on quantitative models of defaultable debt. Arellano (2008) studied quan-
titatively the implications of the seminal paper of Eaton and Gersovitz (1983) and
showed that it was useful for understanding sovereign default in emerging markets.
Aguiar and Gopinath (2006) showed the importance of shocks to trend for output in
emerging economies in the context of a sovereign default model. Chatterjee, Corbae,
Nakajima and Ríos-Rull (2007) provided a framework to study consumer bankruptcy
in the United States. Their model can rationalize the cross section distribution of
bankruptcies across households of di¤erent characteristics. Maliar, Maliar and Pérez-
Sebastián (2008) construct a default risk model of FDI and capital controls; they
argue that scarce capital ‡ow from rich to poor nations can be explained by a risk of
expropriation. Hopenhayn and Werning (2008) analyzed the optimal …nancing of an
investment project subject to the risk of default and show that the optimal contract

5The only method (apart from ECM) that has produced third-degree polynomial solutions to a
similar model is a perturbation-based hybrid Euler equation method of Maliar, Maliar and Villemot
(2011). This method computes some policy functions locally (using perturbation) and computes
the remaining policy functions globally (using analytical formulas and numerical solvers). In the
given model with  = 8 countries, this method delivers maximum residuals of order 10¡469.

29

may allow default along the equilibrium path. Arellano, Bai, and Kehoe (2013) stud-
ied the implications of …rm default for business cycles and for the Great Recession
in the United States. Tsyrennikov (2013) analyzed optimal …scal and default policy
in default risk models. Bianchi, Hatchondo and Martinez (2014) used a default risk
model for investigating the optimal accumulation of international reserves as a hedge
against roll over risk. Aguiar, Amador, Farhi and Gopinath (2013) studied …scal and
monetary policy in a monetary union with the potential for rollover crises in sov-
ereign debt markets. See Aguiar and Amador (2013) for a review of the literature on
sovereign debt. The main challenge for this literature, however, is the computational
burden of models with default. Computational limitations constitute a substantial
obstacle to analyze richer models. We argue that the ECM methods can signi…cantly
reduce the computational expense of default risk models.

4.1 A default risk model

We study a variant of the default risk model of Arellano (2008). A country borrower
may decide to default when the debt is getting too large and or when facing large
negative shock.

A borrower’s problem. A country-borrower is populated by a representative
household with preferences 0

P1
=0 

 () where  is strictly increasing, contin-
uously di¤erentiable and concave and  2 (0 1). The borrower receives exogenous
stochastic income  which follows an AR1 process

log() =  log(¡1) +  (36)

with  » N (0 
2),  2 (¡1 1), and  ¸ 0.

The borrower trades one period bonds with international lenders and can default
on the bonds. When the borrower has bonds  income  and does not default, it
can choose new bond +1 at price (+1 ) Consumption in this case is

 =  +  ¡ (+1 )+1

A negative value of  means that the country issues bonds to borrow; (+1 )
is the price that a borrower will pay for a unit bond depending on the quantity of
bonds issued by the country +1 and its current state . These variables determine
the probability of default in the next period. The borrower takes as given the bond
price function.

30

Default decision. The borrower can default at any time on the debt  it owes and
pay 0. If a borrower defaults, he goes to autarky and gets punished with output loss
 ·  in every period spent in autarky. In the future, the borrower re-incorporates
in the world economy with exogenously given probability .

Lenders’ problem and bond-price function. Lenders are risk neutral and per-
fectly competitive. Their problem is

max
+1

½

+1 ¡
1¡ 
1 + 

+1

¾

 (37)

where  is a risk-free interest rate, and  is a probability of a borrower to default. A
zero-pro…t condition implies that  =

1¡
1+

. If  = 0 (i.e., a borrower never defaults),

then  =
1
1+

(risk-free interest rate), and if  = 1 (i.e., a borrower always defaults),
then  = 0 (bonds are worthless). If a borrower defaults with some probability
 2 (0 1), then we have  2

¡
0 1

1+

¢
.

A recursive formulation of Arellano’s (2008) model. To formulate a Bellman
equation for the consumer’s problem, we introduce two value functions   () and
 ( ) that correspond to default and no-default states. To decide whether to default
or not, an agent compares these two possibilities and chooses the one that implies
higher welfare,

 ( ) ´ max
©
 ( )   ()

ª
 (38)

However, by assumption the borrower chooses default if  ( )   (  ()) ´
  (). If a borrower does not default, his value function  satis…es

 ( ) = max
0

½

() + 

Z

max [ (0 0)  (0  (0))]  (0)

¾

s.t.  =  + ¡  (0 ) 0 (39)

where  is a distribution function of 0 and  (0 ) is the bond-price function that

is related to the probability of default  (0 ) as  (0 ) = 1¡(0)
1+

. If a borrower

defaults, his value function   is given by

  () = 
¡


¢
+ 

£
 (0 0) + (1¡ )  (0)

¤
 (40)

where  is the probability of re-incorporating in the world economy after default, and
 ·  is a direct output cost from defaulting. By changing  and , we can a¤ect
  () and hence, the borrower’s incentives to default.

31

A version of the default risk model with an exogenous default rule. We
will also consider a version of default risk model with exogenous default risk rule.
Namely, we assume that the borrower’s default decision is represented by an exoge-
nous function  () such that an agent with the debt  will default whenever the
random income  falls below the threshold level    (). By using (36), we can
compute the probability of default  (+1 ) at + 1

 (+1 ) = ( exp ()| {z }
+1

  (+1)) = 

·

ln

µ
 (+1)



¶¸

 (41)

where  is a cumulative distribution function on a normal distribution. Using (41),
we can represent the price function  (+1 ) by

 (+1 ) =
1

1 + 

µ

1¡ 

·

ln

µ
 (+1)



¶¸¶

 (42)

The probability of default  (+1 ) increases with the amount of debt +1, and it
decreases with income .

Endogenous versus exogenous default rule. There is a relation between Arel-
lano’s (2008) model and the default risk model with exogenous default rule. In the
model of Arellano (2008), a condition for default is de…ned implicitly by (38): a
borrower defaults for those  for which  ( )    () given . For the case of
i.i.d. shocks and when the cost of default is limited to exclusion from the borrowing
market, Arellano (2008) showed that the default decision is a cuto¤ rule of type  ().
In quantitative simulations for more general shock processes and default costs, that
paper also contains default decisions that are cuto¤ rules. Hence, the cuto¤ rule for
default  () induces the corresponding value function condition  ( )    () and
vice versa. In particular, if we take the cuto¤ rule  () that is implied by Arellano’s
(2008) analysis, we will get the same solution in the models with endogenous and
exogenous default rules.

Thus, the model with exogenous default rule is useful for three reasons: First, the
ECM analysis requires us to solve such a model as a part of the solution procedure
of Arellano’s (2008) model with endogenous default rule. Second, the model with
exogenous default rule is a convenient setup for testing the performance of the pro-
posed numerical solution methods. Finally, the model with exogenous default rule
has interest of its own and can be used as a simpler alternative to the conventional
model with endogenous default rule in some applications.

32

4.2 Envelope condition method

Assuming di¤erentiability of the price and value functions, in those states in which
default does not occur  ¸  (), the quantity of issued bonds 0 satis…es the following
FOC

0()[1(
0 )0 + (0 )] =  [ 

1 (
0 0)]  (43)

The envelope condition, 1( ) = 0(), in turn implies the following ECM-DVF
recursion

1( ) =
 [ 

1 (
0 0)]

1(0 )0 + (0 )
=

R
1(

0 0)1(0   (0)) (0)

1(0 )0 + (0 )
 (44)

where 1() is an indicator of the event , and  is a distribution function of 0.
The term corresponding to the indicator function 1(0 ·  (0)) does not appears in

(44) because for 0 ·  (0), we have  
1 (

0 0) =  (0)
0

= 0. Although value function
has a kink in the default point, it is never optimal for the agent to reach that point
(this fact follows by the generalize envelope theorem of Clausen and Strub (2013)).
As a result, the optimal choice satis…es (43) and (44).

4.2.1 ECM-VF for the model with an exogenous default rule

We …rst show ECM-VF for the default risk model with exogenous default rule (39),
(40) and (42).

Algorithm 10. ECM-VF

Fix  () and choose a set of points ( ) such that    ().
Precompute (0 ) using (42).
De…ne L(0 ) ´ (0 ) and precompute its inverse L¡1.
Given  ( ), for each point ( ), compute:
i).  = 0¡1 [1( )].
ii). 0 = L¡1(+  ¡ ).

iii). b ( ) =  () +  [maxf (0 0)  (0  (0))g].

Iterate on i)-iii) until convergence b =  .

While we can solve for 0 satisfying (39) for each point ( ) within the main iterative
cycle, doing so would be costly because we need to use a nonlinear solver a large
number of times. Precomputation – constructing a part of a numerical solution
outside the main iterative cycle – can speed up computation greatly; see Maliar and
Maliar (2014) for review of precomputation techniques for dynamic economic models.

33

4.2.2 ECM-DVF for the model with an exogenous default rule

We now show ECM-DVF for the default risk model with an exogenous default rule
(39), (40) and (42).

Algorithm 11. ECM-DVF

Fix  () and choose a set of points ( ) such that    ().
Precompute (0 ) using (42).
De…ne L() ´ () and precompute its inverse L¡1.
Given 1( ), for each point ( ), de…ne:
i).  = 0¡1 [1( )].
ii). 0 = L¡1(+  ¡ ).

iii). b1( ) =
[ 

1 (
00)]

1(0)0+(0)
=



1(00)1(0(0)) (0)

1(0)0+(0)
.

The optimal value function satis…es b1 = 1.

Given a converged b1, …nd b satisfying b ( ) =  () + 
h
max

n
b (0 0) b (0  (0))

oi
.

When implementing ECM-DVF, one needs to be careful not to include grid points
for which 1(

0 )0 + (0 )  0. As was shown in Arellano (2008), the amount
of resources that a country can borrow follows a La¤er curve. Initially, the loan
L() ´ () increases with , then it reaches its maximum and …nally, it decreases
to zero because an increased risk of default quickly drives the bond price () to zero
which dominates the product (); see Figure 1 for an example of the La¤er curve.
A borrower can never be on a negatively sloped portion of that La¤er curve.

4.2.3 ECM for the model with an endogenous default rule

An algorithm for solving the version of the model (38)-(40) with endogenous default
risk is identical to the one used in Arellano (2008) except that the conventional VFI
iteration cycle is replaced by ECM-VF and ECM-DVF methods.

To be more speci…c, given  ( ) and   (), we …rst …nd the cut-o¤ rule  ()
satisfying  ( ) =   () (according to (38), the agent will default whenever  
 ()). Next, for given exogenous default rule    (), we solve for the new value

function b using either algorithm Algorithms 10 or Algorithm 11, and we update
the autarky value function   according to (40). If  and   converged, we end
iteration; otherwise, we proceed to next iteration.

34

4.3 Numerical analysis

We now construct numerical solutions for the default risk model. We …rst report
the results for the test model with an exogenous default rule, and we then study
Arellano’s (2008) model with an endogenous default rule.

4.3.1 The model with an exogenous default rule

As an example, we consider a simple default rule  6 ¹() ´  ¡ , where  is an
exogenous lower bound on the borrower’s net worth. The borrower with the mean
income level  = 1 would default when its debt rises above 1 ¡ . We consider
three values of  = f065 075 095g that imply that the borrower’s debt rises above
035, 025 and 005 of an average period’s income, respectively. We assume that the
income in (36) is i.i.d,  » N (0 005). Then, the probability of default (41) is given
by

 (+1 ) = (+1 6 ¹(+1)) =  (¡ +1)

where  is a distribution function of a Normal distribution. We choose the remaining
parameters in line with Arellano (2008), namely, we parameterize the utility function
by  () = 1¡¡1

1¡
with  = 2, and we …x  = 094.

We solve the model on  2 [¡018 040]. For each realization of output  we
approximate the unknown value function and its derivative using a cubic spline with
21 nodes. Grid points are Chebyshev extrema scaled so that 1 = ¡018, 100 = 040.
(As an alternative, we tried to use grid points that are uniformly spaced and we
…nd that it leads to comparable and slightly lower accuracy measures). To perform
integration with respect to 0, we use a Gauss-Hermite quadrature rule with 11
nodes. We implemented three algorithms: ECM-VF, ECM-DVF and conventional
VFI which construct policy functions using FOC. We …nd that ECM-VF is less stable
numerically in the default risk model and requires a su¢ciently accurate initial guess
for convergence, while ECM-DVF is more robust to the choice of an initial guess. For
all the three algorithms, we use an identical convergence criterion that the (maximum
across nodes) change in the value function was smaller than 10¡4. All calculations are
performed in MATLAB 2013b on a laptop with an 2.9GHz Intel i7-3520M processor.
We provide a detailed description of the studied computational methods in Appendix
C.

In Table 4, we report the running time and accuracy measures on a stochastic
simulation produced by ECM-VF and ECM-DVF, and we compare the results with
those produced by a conventional VFI. The standard VFI takes about 282.2 seconds
to converge, while the ECM-VF and ECM-DVF methods take both about 5.5 sec-
onds; hence, we observe about 50x speedups or higher. As in all previous numerical

Table 4: Accuracy and speed of ECM-VF and ECM-DVF in the one-country model.

Default rule ECM-VF ECM-DVF VFI
L1 L1 CPU L1 L1 CPU L1 L1 CPU

¹() = 065¡  -3.85 -3.32 5.41 -3.00 -2.92 5.32 -3.85 -2.83 412.24
¹() = 075¡  -3.86 -3.34 5.48 -3.00 -2.92 5.34 -3.86 -3.34 282.24
¹() = 095¡  -3.85 -3.40 5.39 -2.99 -2.93 5.29 -3.48 -3.00 295.13

 Notes: L1 and L1 are, repectively, the average and maximum of unit-free absolute residuals in
Bellman equation across test points (in log10 units) on a stochastic simulation of 10,000 observa-
tions; CPU is the time necessary for computing a solution (in seconds).

experiments, the accuracy of ECM-VF is somewhat lower than that of ECM-DVF
as was in all the previous experiments.

4.3.2 The model with endogenous default rule

We next apply ECM for solving Arellano’s (2008) model with an endogenous default
rule. In such a model, the convergence of ECM was more di¢cult to attain. Specif-
ically, a simultaneous iteration on both value functions and endogenous bond price
function led to numerical errors that accumulate along iterations, resulting in non-
monotone policy functions. Signi…cant damping was needed to stabilize explosive
iteration.

We …nd that the best use of the ECM method in the context of the given problem
is to re…ne a low accuracy solution produced by a version of VFI based on discretiza-
tion. To be speci…c, we discretize the domain for bonds into 1000 equally spaced
grid points 1  1000, where 1 = ¡018 and 1000 = 040, and we solve for value
function by …nding maximum of the right side of Bellman equation (39) across a
…nite number of discretized bond holdings. The running time was low, 22 seconds,
but the accuracy of the solution was also low.

We show the constructed value function, policy functions and prices produced by

36

the conventional VFI discretization method in Figure 1.

-0.2 -0.1 0 0.1 0.2 0.3 0.4
-10.4

-10.2

-10

-9.8

-9.6

Value function, max(V, V
d
)

-0.2 0 0.2 0.4
0.4

0.6

0.8

1

1.2

Consumption function

-0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

0

0.2

0.4
Debt function

-0.2 0 0.2 0.4
-0.2

0

0.2

0.4
Bond function

-0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.5

1
Bond price

-0.2 0 0.2 0.4

0

0.2

0.4
Bond value - Laffer curve

Remarks: The domain for assets is discretized into 1000 uniformly spaced grid points. The domain for
income is discretized into 11 Gauss Hermite quadrature states shown in the upper 4 panels.

Figure 1. Discretization method: value function, policy functions and prices.

As is seen from Figure 1, the constructed value and decision functions have the
form of step functions. This indicates that the discretization method produces con-
siderable approximation errors. Indeed, the average and maximum unit-free residuals
in the Bellman equation on a solution domain (39) are ¡184 and¡084, respectively,
indicating that the approximation errors can be as large as 15% for the VFI method
based on discretization.

We next re…ne the VFI solution using ECM-VF implemented on the same 1000
grid points. The running time for the ECM method was approximately 8 seconds.
In Figure 2, we plot the constructed value function, policy functions and prices of

37

the ECM solution.

-0.2 -0.1 0 0.1 0.2 0.3 0.4
-10.4

-10.2

-10

-9.8

-9.6

Value function, max(V, V
d
)

-0.2 -0.1 0 0.1 0.2 0.3 0.4
0.4

0.6

0.8

1

1.2

Consumption function

-0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

0

0.2

0.4
Debt function

-0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

0

0.2

0.4
Bond function

-0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.5

1
Bond price

-0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.1

0

0.1

0.2

0.3

Bond value - Laffer curve

Remarks: The domain for assets is discretized into 1000 uniformly spaced grid points. The domain for
income is discretized into 11 Gauss Hermite quadrature states shown in the upper 4 panels.

Figure 2. Envelope condition method: value function, policy functions and prices.

The step functions are not appreciated for the ECM solution. This is because the
constricted policy and value functions are accurately interpolated o¤ the grid points
using cubic splines. The average and maximum unit-free residuals in the Bellman
equation on a solution domain (39) are ¡485 and ¡309 after the re…nement, respec-
tively. This indicates that the residuals are of order 01% , which is about 100 times
smaller than those produced by the VFI discretization method. It would be possible
to attain higher accuracy levels under conventional VFI if a …ner grid is used, for
example, 100,000 points instead of 1,000 points but memory of our computer was
insu¢cient to run such experiments. In contrast, ECM was feasible and required
just few seconds to produce highly accurate solution.

5 Conclusion

In the paper, we focus on a broad and empirically relevant class of DP problems
characterized by a large, …nite number of continuous state variables and a di¤eren-
tiable value function. There are three main challenges that such problems represent
to numerical solution methods. First, the number of arguments in value and policy
functions increases with the dimensionality of the problem and such functions be-
come costly to approximate numerically. Second, the cost of integration increases as
the number of exogenous random variables increases. Finally, larger problems are

38

normally characterized by larger and more complex systems of equations which are
more expensive to solve. Moreover, some applications require solving a sequence of
similar economic models a large number of times, for example, nested …xed point
methods for econometric estimation as in Fernández-Villaverde and Rubio-Ramírez
(2007) and extended function path (EFP) framework of Maliar, Maliar, Taylor, and
Tsener (2015) for analyzing nonstationary and unbalanced growth models.

We develop ECM methods for DP problems that aim to address these challenges.
Concerning the …rst two challenges, we build ECM on non-product approximation,
integration and interpolation techniques that are designed for dealing with high-
dimensional problems; see Maliar and Maliar (2014) for a review of such techniques.
The last challenge is the main focus of our analysis, namely, we replace conventional
expensive VFI based on FOCs or direct maximization with a cheap forward-style
ECM iteration based on the envelope condition. We show that the computational
expense of high-dimensional applications can be reduced even further by combining
value and policy function iteration.

We …nd that solving for value function does not accurately identify the derivatives
of value function. The accuracy of ECM can be signi…cantly increased by solving for
the derivatives of value function instead of the value function itself, or, alternatively,
by solving jointly for value function and its derivatives. In the context of large-
scale models studied in the JEDC project, the version of the ECM method that
approximates derivatives of value function can successfully compete with the state-
of-the-art Euler equation methods. Moreover, the ECM methods produce accurate
solutions to challenging default risk models with a kink in value and policy functions
and is faster by orders of magnitude than the conventional VFI in our examples with
exogenous default rules. These are promising results given a high computational
expense of default risk models. However, the convergence of ECM methods was hard
to achieve in a default risk model with endogenous default rules. Further research is
needed to enhance the convergence properties of the ECM methods in this class of
models.

39

References

[1] Aguiar, M. and G. Gopinath (2006). Defaultable debt, interest rates and the
current account. Journal of International Economics, 69(1), 64-83.

[2] Aguiar, M. and M. Amador, (2013). Sovereign debt: a review. NBER Working
Papers 19388.

[3] Aguiar, M., M. Amador, E. Farhi and G. Gopinath, (2015). Coordination and
crisis in monetary unions. Manuscript.

[4] Arellano, C. (2008). Default risk and income ‡uctuations in emerging economies.
American Economic Review, 98(3), 690–712.

[5] Arellano, C. and A. Ramanarayanan, (2012). Dafault and the maturity structure
in sovereign bonds. Journal of Political Economy 120/2, 187-232.

[6] Arellano, C., Y. Bai, and P. Kehoe (2013). Financial frictions and ‡uctuations
in volatility. Federal Reserve Bank of Minneapolis Sta¤ Report 466.

[7] Aruoba, S. and F. Schorfheide, (2013). Macroeconomic dynamics near ZLB: a
tale of two equilibria. NBER working paper 19248.

[8] Aruoba, S., J. Fernández-Villaverde and J. Rubio-Ramírez, (2006). Compar-
ing solution methods for dynamic equilibrium economies. Journal of Economic
Dynamics and Control 30, 2477-2508.

[9] Barillas, F. and J. Fernandez-Villaverde, (2007). A generalization of the endoge-
nous grid method. Journal of Economic Dynamics and Control 31, 2698-2712.

[10] Bellman, R, (1957), Dynamic Programming. Princeton University Press, Prince-
ton, N.J.

[11] Bianchi, J., J.C.Hatchondo and L. Martinez, (2009), International Reserves and
Rollover Risk. Manuscript.

[12] Blackwell, D. (1965). Discounted dynamic programming. The Annals of Math-
ematical Statistics 36, 226-235.

[13] Carroll, K. (2005). The method of endogenous grid points for solving dynamic
stochastic optimal problems, Economic letters 91, 312-320.

40

[14] Chatterjee, S. and B. Eyigundor, (2011). A quantitative analysis of the U.S.
housing and mortgage markets and the foreclosure crisis. Working Papers 11-
26, Federal Reserve Bank of Philadelphia.

[15] Chatterjee, S., D. Corbae, M. Nakajima, and J. V. Ríos-Rull, (2007). A Quanti-
tative Theory of Unsecured Consumer Credit with Risk of Default. Econometrica
75 (November): 1525-1589.

[16] Clausen, A. and C. Strub, (2013). A general and intuitive envelope theorem.
Manuscript.

[17] Den Haan, W. (1990). The optimal in‡ation path in a Sidrauski-type model
with uncertainty. Journal of Monetary Economics 25, 389-409.

[18] Den Haan, W. and A. Marcet, (1990). Solving the stochastic growth model
by parameterized expectations. Journal of Business and Economic Statistics 8,
31-34.

[19] Den Haan W., K. L. Judd and M. Juillard, (2011). Computational suite of
models with heterogeneous agents II: Milticountry real business cycle models.
Journal of Economic Dynamics and Control 35, 175–177.

[20] Eaton, J., and M. Gersovitz (1981). Debt with potential repudiation: theoretical
and empirical analysis. Review of Economic Studies, 48(2): 289–309.

[21] Fella, G., (2014). A generalized endogenous grid method for non-smooth and
non-concave problems, The Review of Economic Dynamics, 17/2, 329-344.

[22] Feng, Z., J. Miao, A. Peralta-Alva, and M. Santos, (2009). Numerical simulation
of nonoptimal dynamic equilibrium models. Working papers Federal Reserve
Bank of St. Louis 018.

[23] Fernández-Villaverde, J. and J. Rubio-Ramírez, (2007). Estimating macroeco-
nomic models: A likelihood approach. Review of Economic Studies 74, 1059-
1087.

[24] Fernández-Villaverde, J., G. Gordon, P. Guerrón-Quintana, and J. Rubio-
Ramírez, (2012). Nonlinear adventures at the zero lower bound. NBER working
paper 18058.

[25] Fukushima, K. and Y. Waki, (2011). A polyhedral approximation approach to
concave numerical dynamic programming. Manuscript.

41

[26] Gust, C., D. Lopez-Salido and M. E. Smith, (2012). The empirical implications
of the interest-rate lower bound. Manuscript, Federal Reserve Board.

[27] Hasanhodzic, J. and L. Kotliko¤, (2013). Generational risk – is it a big deal?:
simulating an 80-period OLG model with aggregate shocks. NBER Working
Paper 19179.

[28] Hopenhayn and Werning (2008), Equilibrium default. Manuscript.

[29] Howard, R. (1960), Dynamic programming and Markov processes. Cambridge,
MA: MIT Press.

[30] Ishakov, F., J. Rust and B. Schjerning, (2012). Extending endogenous grid
method for solving discrete continuous sequential decision problems. Manu-
script.

[31] Judd, K., (1998). Numerical Methods in Economics. Cambridge, MA: MIT
Press.

[32] Judd, K., L. Maliar and S. Maliar, (2011). Numerically stable and accurate sto-
chastic simulation approaches for solving dynamic models. Quantitative Eco-
nomics 2, 173-210.

[33] Judd, K., L. Maliar and S. Maliar, (2012). Merging simulation and projection
approaches to solve high-dimensional problems. NBER working paper 18501.

[34] Judd, K., L. Maliar, S. Maliar and R.Valero (2014). Smolyak Method for Solv-
ing Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and
Adaptive Domain. Journal of Economic Dynamic and Control 44(C), 92-123.

[35] Juillard, M. and S. Villemot, (2011). Multi-country real business cycle models:
accuracy tests and testing bench. Journal of Economic Dynamics and Control
35, 178–185.

[36] Kollmann, R., S. Kim and J. Kim, (2011a). Solving the multi-country real busi-
ness cycle model using a perturbation method. Journal of Economic Dynamics
and Control 35, 203-206.

[37] Kollmann, R., S. Maliar, B. Malin and P. Pichler, (2011b). Comparison of so-
lutions to the multi-country real business cycle model. Journal of Economic
Dynamics and Control 35, 186-202.

42

[38] Krueger, D. and F. Kubler, (2004). Computing equilibrium in OLG models with
production. Journal of Economic Dynamics and Control 28, 1411-1436.

[39] Krueger, D. (2012). Macroeconomic theory. Manuscript.

[40] Maliar, L. and S. Maliar, (2005). Solving nonlinear stochastic growth models:
iterating on value function by simulations. Economics Letters 87, 135-140.

[41] Maliar, L. and S. Maliar, (2013). Envelope condition method versus endogenous
grid method for solving dynamic programming problems, manuscript.

[42] Maliar, L. and S. Maliar, (2014). Numerical methods for large scale dynamic
economic models. In: Schmedders, K., Judd, K. (Eds.), Handbook of Compu-
tational Economics, vol. 3. , Elsevier Science, Amsterdam.

[43] Maliar, L. and S. Maliar, (2015). Merging Simulation and Projection Approaches
to Solve High-Dimensional Problems with an Application to a New Keynesian
model, Quantitative Economics 6, 1-47.

[44] Maliar, L., S. Maliar and F. Pérez-Sebastián (2008). Sovereign Risk, FDI
Spillovers, and Economic Growth. Review of International Economics 16/3, 463-
477.

[45] Maliar, S., L. Maliar and K. Judd, (2011). Solving the multi-country real busi-
ness cycle model using ergodic set methods. Journal of Economic Dynamic and
Control 35, 207–228.

[46] Maliar, L., Maliar, S. and S. Villemot, (2013). Taking perturbation to the accu-
racy frontier: a hybrid of local and global solutions. Computational Economics,
42/3, 307-325.

[47] Maliar, L., S. Maliar, J.B. Taylor and I. Tsener, (2015). A tractable framework
for analyzing a class of nonstationary markov models. Manuscript.

[48] Malin, B., D. Krueger and F. Kubler, (2011). Solving the multi-country real
business cycle model using a Smolyak-collocation method. Journal of Economic
Dynamics and Control 35, 229-239.

[49] Marcet, A., and G. Lorenzoni (1999). The parameterized expectation approach:
some practical issues. In: R. Marimon and A. Scott (Eds.) Computational Meth-
ods for Study of Dynamic Economies. Oxford University Press, New York, pp.
143-171.

43

[50] Moreira, H. and W. Maldonado (2003). A contractive method for computing
the stationary solution to the Euler equation. Economics Bulletin 3, 1-14.

[51] Pal, J. and J. Stachurski, (2013). Fitted value function iteration with probability
one contractions. Journal of Economic Dynamics and Control 37, 251-264.

[52] Pichler, P., (2011). Solving the multi-country real business cycle model using a
monomial rule Galerkin method. Journal of Economic Dynamics and Control
35, 240-251.

[53] Powell, W., (2011). Approximate Dynamic Programming. Wiley: Hoboken, New
Jersey.

[54] Rust, J., (2008). Dynamic programming. In The New Palgrave Dictionary of
Economics (S. Durlauf and L. Blume eds.), Palgrave Macmillan.

[55] Santos, M., (1999). Numerical solution of dynamic economic models, in: J.
Taylor and M. Woodford (Eds.), Handbook of Macroeconomics, Amsterdam:
Elsevier Science, pp. 312-382.

[56] Santos, M., (2000). Accuracy of numerical solutions using the Euler equation
residuals. Econometrica 68, 1377-1402.

[57] Santos, M. and J. Rust, (2008). Convergence properties of policy iteration. SIAM
Journal on Control and Optimization 42/6, 2094-2115.

[58] Stachurski, J., (2008). Continuous state dynamic programming via nonexpansive
approximation. Computational Economics 31, 141-160.

[59] Stachurski, J., (2009). Economic Dynamics: Theory and Computation. Cam-
bridge: MIT Press.

[60] Stokey, N. L. and R. E. Lucas Jr. with E. Prescott, (1989). Recursive Methods
in Economic Dynamics. Cambridge, MA: Harvard University Press.

[61] Tsyrennikov (2013). Fiscal policy, sovereign debt and default with model mis-
speci…cation, Cornell University, Manuscript.

[62] Villemot, S., (2012). Accelerating the resolution of sovereign debt
models using an endogenous grid method. Dynare working paper 17,
http://www.dynare.org/wp.

44

Appendices

In Appendix A, we provide a description of ECM-VF and ECM-DVF for the one-
country model. In Appendix B, we describe how to implement these methods for
the multicountry model. Finally, in Appendix C, we show numerical methods used
to solve a default risk model.

Appendix A: ECM for the one-agent model

We …rst describe the ECM-VF method that solves for value function in one-agent
model (1)–(3).

Algorithm 1. ECM-VF (with implementation details)

Initialization.

i). Choose an approximating function  (¢;) ¼  .
ii). Choose integration nodes,  , and weights, ,  = 1   .
iii). Construct a grid f g=1 .

iv). Make an initial guess on (1).

Iterative cycle. At iteration , given (), perform the following steps.

Step 1. For  = 1  , compute:

i).  =

·
1(;())
1¡+¡1

¸¡1
.

ii). 0 = (1¡ ) + 

 ¡ .

iii).  =

1¡
 ¡1
1¡ + 

P
=1 

¡
0 


 exp () ;

()
¢
.

Step 2. Computation of  that …ts the values  on the grid.

Run a regression to …nd b = argmin


P
=1 k ¡  ( ;)k.

Step 3. Convergence check and …xed-point iteration.

Stop if 1


X

=1

¯
¯
¯
(0)

(+1)¡(0)
()

(0)
()

¯
¯
¯  10¡10, where  = 01 is a damping parameter.

Otherwise, use damping to compute (+1) = (1¡ )() + b and go to Step 1.

45

We next describe ECM-DVF that solves for the derivatives of value function in
the one-country model (the steps that are identical to those in ECM-VF are omitted).

Algorithm 6. ECM-DVF (with implementation details)

Initialization.

i). Choose an approximating function 1 (¢; ) ¼ 1.
...

Iterative cycle. At iteration , given (), perform the following steps.

Step 1. For  = 1  , compute
...

iii).  = 
£
1¡  + ¡1

¤P
=1 1

¡
0 


 exp () ;

()
¢
.

Step 2. Computation of  that …ts the values  on the grid.

Run a regression to …nd b = argmin


P
=1 k ¡ 1 ( ;)k.

...

46

5.1 Appendix B: ECM for multicountry model

We now describe the ECM-VF method that solves for value function in multicountry
model (25)–(27).

Algorithm 8. ECM-VF (with implementation details)

Initialization.

i). Choose approximating functions 
¡
¢; 

¢
¼ ,  = 1  and  (¢;) ¼  .

ii). Choose integration nodes, " =
³
1   




´
, and weights, ,  = 1  .

iii). Fix the simulations length  and the initial condition (k0z0).
iv). Draw and …x a sequence of productivity levels fzg=1 using (27).

v). Construct integration nodes, z+1 =
³
+1   


+1

´
with +1 =

¡


¢
exp

³


´
.

vi). Make an initial guess on
¡
1

¢(1)
 

¡


¢(1)
.

Iterative cycle. At iteration , given
¡
1

¢()
 

¡


¢()
, perform the following steps.

Step 1. For  = 1   ,

i). Use +1 =
b

³
k; z;

¡


¢()
´
,  = 1   , to recursively calculate fk+1g=0 .

ii). Compute fc `g=0 satisfying (26), (29) and (30) given fkzk+1g=0 .

iii). Find b satisfying  (kz; b) =
P

=1 


¡
  




¢
+ 

P
=1 

¡
k+1; z+1 ; b

¢
.

iv). Use  (¢; b) to …nd  (k; z; b) and to infer 
¡
k+1; z+1 ; b

¢
for  = 1  .

v). Compute b+1 ´
P

=1 
(+1+1 ;)

(;)

[+ 1 ( )]


+1,  = 1   .

Step 2. Computation of  that …ts the values b+1 on the grid.

Run regressions to …nd b ´ argmin


P
=1

°
°
°b+1 ¡

¡
kz;


¢°°
° 

Step 3. Convergence check and …xed-point iteration..

Stop if 1


X

=1

X

=1

¯
¯
¯
¯
(+1)

(+1)
¡(+1)

()

(+1)
()

¯
¯
¯
¯  10

¡7, where  = 005 is damping parameter.

Otherwise, use damping to compute
¡


¢(+1)
= (1¡ )

¡


¢()
+ b and go to Step 1.

47

We next describe ECM-DVF that solves for the derivatives of value function in the
multicountry model (the steps that are identical to those in ECM-VF are omitted).

Algorithm 9. ECM-DVF (with implementation details)

Initialization.

i). Choose approximating functions 
¡
¢; 

¢
¼  and 

¡
¢;

¢
¼ ,  = 1   .

...

Iterative cycle. At iteration , given
¡
1

¢()
 

¡


¢()
, perform the following steps.

Step 1. For  = 1   ,
...
iii). Find  ´ 1

¡
  




¢ £
 +  


1

¡
  




¢¤
and

…nd b ´ argmin


°
° ¡ 

¡
k; z;


¢°
°,  = 1  ;

iv). Use 

³
¢; b

´
to …nd 

³
k; z; b


´
and

to infer 

³
k+1; z+1 ; b


´
for  = 1  ;

...

5.2 Appendix C: ECM for default risk model

We show the ECM-VF method that solves for value function in default risk model
(38)-(39).

48

Algorithm 10. ECM-VF (with implementation details)

Initialization.

i). Choose an approximating function  (¢;) ¼  .
ii). Choose integration nodes,  , and weights, ,  = 1   .
iii). Construct a grid f g=1 covering the area    ().

iv). Compute (0 ) using (42).
v). De…ne L() ´ () and precompute its inverse L¡1.

vi). Make an initial guess on (1).

Iterative cycle. At iteration , given (), perform the following steps.

Step 1. For  = 1  , compute:

i).  = 1
¡
 ;

()
¢¡1

.
ii). 0 = L

¡1( +  ¡ ).

iii).  =
1¡ ¡1
1¡ + 

P
=1  max

©


¡
0 


 exp() ;

()
¢


¡
0  () ;

()
¢ª

Step 2. Computation of  that …ts the values  on the grid.

Run a regression to …nd b = argmin


P
=1 k ¡  ( ;)k.

Step 3. Convergence check and …xed-point iteration.

Stop if max
¯
¯
¯
(+1)
 ¡ 

()


¯
¯
¯  10¡4, where  = 01 is a damping parameter.

Otherwise, use damping to compute (+1) = (1¡ )() + b and go to Step 1.

49

We next describe ECM-DVF that solves for the derivatives of value function in
default risk model (38)-(39) (the steps that are identical to those in ECM-VF are
omitted).

Algorithm 11. ECM-DVF (with implementation details)

Initialization.

i). Choose an approximating function 1 (¢; ) ¼ 1.
...

Iterative cycle. At iteration , given (), perform the following steps.

Step 1. For  = 1  , compute
...

iii).  =


=1 1(0 exp();

())1( exp()(0))

1(0)0+(
0
)

.

...
Step 2. Computation of  that …ts the values  on the grid.

Run a regression to …nd b = argmin


P
=1 k ¡ 1 ( ;)k.

...

We next describe conventional VFI that solves for value function in default risk model
(38)-(39) (the steps that are identical to those in ECM-VF are omitted).

Algorithm 12. FOC-VFI (with implementation details)

...
Step 1. For  = 1  , use a numerical solver to …nd

i). max
0

n

1¡
 ¡1
1¡ + 

P
=1  max

£


¡
0 


 exp () ; 

()
¢
 

¡
0  () ; 

()
¢¤o

,

where  =  +  ¡ 0(
0
 ).

...

50

