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Abstract

Node attribute prediction problems arise in a wide range of classification tasks
related to graph mining. Examples include detecting bots or spam accounts in
online networks or inferring user demographics for targeted marketing. In this work,
we evaluate previous research on attribute prediction and discuss the significance
of characterizing prediction as within-network prediction, where attribute labels
are available for nodes in the same network as the unlabeled nodes one is trying
to make predictions for, in contrast with across-network prediction, where the
unlabeled nodes are in a different network than the labeled nodes. We highlight that
while much research has focused on within-network prediction, the across-network
prediction task can be a more challenging problem than previously appreciated.

Introduction. Predicting node attributes on networks is a problem with a rich history in graph
mining. A primary focus for attribute prediction has been on the within-network task [2], which
assumes a single network is the population of interest. Within-network attribute prediction has been
widely studied, and effective methods include relatively simple approaches based on majority vote
algorithms among network neighbors [18], longer-range network aggregation methods based on
collective inference [14, 22], LINK methods [17, 29] that employs rows of the adjacency matrix as
feature vectors, methods for semi-supervised learning on graphs [16, 30, 31], as well as methods based
on embedding-based representations, both supervised (DeepWalk [23], LINE [25], and node2vec [8])
and semi-supervised [28]. These methods for within-network prediction are fundamentally driven
by various structural assumptions about how attributes are distributed within a single network of
study, assuming that either homophily [20] (“you are similar to the company you keep”) or structural
equivalence [3, 1] (“you are similar to the company you’re kept in”) governs some extent of how
individuals relate to each other in the network. As such, these methods all base their predictions on
similarities (of some variety) along edges or paths, and are explicitly not identifying innate structural
features of nodes with given attributes.

In across-network prediction, one or more networks are accompanied by a complete set of node
attribute labels, but the goal is to predict attribute labels for nodes on another network (or set of
networks). Therefore, across-network prediction eliminates the possibility of relating unlabeled
nodes to labeled nodes along paths of any length. The only methods that are admissible for across-
network prediction are ones that learn relationships between attribute labels and innate structural
features of nodes: how many friends they have, their clustering coefficient, or richer representations.
Informally, it requires discovering something about the way the nodes in a labeled training network
G1 are positioned that also holds true in an unlabeled testing network G2. We observe that previous
benchmarks for across-network tasks have been evaluated on easier within-network problems, with
limited evaluations of genuine across-network problems.

In order to appreciate the within-network versus across-network attribute prediction distinction, we
begin by introducing related concepts of label-dependent and label-independent feature representa-
tions [6]. A label-dependent node feature is a feature that depends on the labels or attributes of nodes
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in the graph, whereas a label-independent node feature is a feature that does not. Clear examples of
label-dependent features of a node vi include the number of female friends of vi or the distance from
vi to nearest male node. Clear examples of label-independent features include the degree of vi or
the number of triangles containing vi. But not all features are so easily classified as label-dependent
or independent. For example, consider LINK features [29], where rows of the graph adjacency
matrix are employed as a large sparse feature vector. LINK features coupled with regularized logistic
regression has been found to be highly effective when deployed for various attribute prediction tasks.
These LINK features are label-independent in the sense that they do not depend on any node attributes,
but LINK features do, however, depend on the identity labels 1, . . . , n of the nodes.

In this work we consider a feature to be label-independent if it is invariant to arbitrary re-labelings
of the node set, and label-dependent otherwise. It is clear that label-dependent methods are only
useful for within-network tasks: features such as “number of female friends” or “is friends with
node 1” clearly can’t be translated from a source graph G1 to a target graph G2. But notice that
label-dependent methods are admissible for across-layer tasks (in multi-layer networks [15]) because
the node set is the same. We highlight that across-network studies in social network settings have
in fact been evaluated on across-layer tasks, and find that across-layer tasks overstate the predictive
performance of label-independent features for across-network tasks.

Datasets. We illustrate the distinctions between within-network and across-network tasks in the
context of two main datasets: the Facebook100 (FB100) dataset [26, 27] for gender classification
and the Reality Mining dataset [5] for student status classification. The FB100 dataset consists of the
online friendship networks from the first 100 colleges that accessed the Facebook platform in 2005,
as released by Facebook, and includes gender, class year, and other attributes. The FB100 dataset
lends itself to across-network tasks as we have networks across different college settings, and also
lends itself to within-network tasks where we can treat a specific school as the population of interest.

The Reality Mining dataset consists of data from a study at MIT in 2004-2005 that tracked the cell
phone usage of 94 subjects comprised of students and faculty. The subjects agreed to have their
interactions and proximity to one another recorded over the course of the study period. One can
conceive of different network attribute prediction tasks such as inferring whether a participant is a
graduate student in the Media Lab or is a business school student [10]. It is possible to view this
dataset through either (a) the lens of across-network prediction by treating interactions occurring in
different months as comprising different networks or (b) the lens of within-network prediction by
treating the full network of 94 subjects and their interactions over time as the network of interest. We
consider the proximity network from the Reality Mining dataset with the goal of inferring subject-
level attributes to be a within-network prediction task as there is only one node set, subjects who
participated in the study. The dataset has historically been sliced across time for the purpose of
creating a plausible across-network task, but this framing leads to a very different across-layer task
compared to settings where the target node population is genuinely from a different network.

Within-network prediction is easy. For the cross-validation set-up in a within-network task, we
vary the percent of nodes initially labeled and evaluate across random sets of nodes that are selected
as training data.2 The set of labeled nodes are selected i.i.d., implementing a missing completely at
random (MCAR) [9] missingness mechanism. Within this cross-validation set-up, one could also
consider varying the type of missingness mechanism generating which node attributes are observed
and which are private, but we do not explore such mechanisms here.

LINK-based models can leverage friend-of-friend information to achieve high predictive performance
in the presence of monophily [1], an analog of homophily that corresponds to structural equivalence.
We observe that LINK achieves high performance, as illustrated in Figure 1, both for predicting
student status (MIT Sloan business school students vs. not) in the Reality Mining dataset (aggregating
interactions across the full observation period), and gender in Amherst College (a representative
sample network from the FB100 dataset). However, as we’ve discussed, LINK is a label-dependent
feature representation that uses identity labels, making it network-specific. As such it cannot be
applied in across-network settings. We therefore investigate how well we can do on this within-
network task using label-independent feature representations, specifically ReFeX [11].

2Neville et al. [21] recommend an alternative sampling approach aimed at maintaining correct Type I error
rates when comparing model performance using paired t-tests, which we do not employ here.
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Figure 1: Within-Network Prediction: We contrast the high predictive performance of inferring
whether a student is a business school student (left) versus the limited predicted performance of
inferring gender in the FB100 dataset on Amherst College (center) using label-independent features
(ReFeX). Meanwhile, on a network instance from a highly homophilous stochastic block model
(SBM), we observe LINK has high predictive performance while recursive features are limited due to
the lack of a structural signal (right).

Using ReFeX features we train a LogForest model, an ensemble of logistic regression models, as used
in the original ReFeX work [7]. We compute ReFeX features several different ways. Specifically, we
vary the recursion depth of the feature generating process, extracting representations based on 1, 2, 3,
and a maximum (up to 100) number of recursive iterations. The “max” recursion representations are
based on only a handful of recursions, far less than 100, because of the feature pruning mechanism
built into the (standard) ReFeX implementation we employed3. For predicting student status, we
observe high performance of the ReFeX features, suggesting that business school student status is
structurally distinct in this network. However, for gender prediction on Amherst College we observe
extremely limited performance based on ReFeX features.

Across-network prediction is deceptively hard. We illustrate that across-network prediction can
be a more difficult problem by comparing the across-time prediction for business school student
status (Reality Mining) versus the across-school prediction for gender (Amherst from FB100). The
across-network predictions of student status are based on viewing the Reality Mining data as a
time-sliced network with each month corresponding to a different slice. From month to month we
are still making predictions on the same node set, and arguably label-dependent features such as
LINK are fully admissible, but we restrict ourselves to label-independent features to understand their
capability in this setting. The across-network gender prediction task in the FB100 networks takes
place across networks with disjoint node sets.

Cross-validation for across-network tasks have different considerations than for within-network tasks.
First, the type of node attribute missingness mechanism is not a concern at the node-level since we
observe all labels for a graph. However, a different missingness concern is this setting is which graphs
do we observe? For generating ReFeX features, we note that the node representations are trained
during separate ReFeX iterations, which can result in features being (a) binned differently and (b)
have different feature sets selected by the pruning mechanism. To address the first challenge, we
normalize all features to be in [0, 1]. To address the second challenge, we employ a “double pass”
routine to find all the features selected by the pruning mechanism across all networks in the collection
in a first pass, and then repeat the feature extraction while manually requiring ReFeX to return the
union of all these features as the representation.

We again consider ReFeX feature sets generated by 1, 2, 3, and a maximum number of recursive
iterations, allowing us to identify at which recursion step performance gains occur. For predicting
student status in the Reality Mining dataset, we follow earlier work by using consecutive months
in a paired train/test set-up [10]. For predicting gender in the FB100 dataset, we use Amherst
College as the train school and compare performance when using different schools for testing.
Different training schools give comparable results. As illustrated in Figure 2, we observe slight
performance improvement at higher recursions when predicting business student status, though the
main performance improvement (over the baseline) comes from the ReFeX base representation
(“ReFeX 1x”), before any aggregation functions have been applied. For gender prediction we observe

3https://github.com/LLNL/refex-rolx
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Figure 2: Across-Network Prediction: We demonstrate on both predicting business student status
across time in the Reality Mining data (top) and gender across schools in the FB100 dataset (bottom)
see only modest predictive performance gain at deeper levels of recursion.

stable, low predictive performance across all recursive depths. Put simply, there is little gain in
increasing the number of iterations when creating ReFeX features.

These simple examples demonstrate instances when within-network prediction can be high (e.g.,
LINK in Amherst College) but where across-network prediction performance is much more limited.
That is, high predictive performance for within-network tasks using label-dependent features do not
imply high performance for the across-network task using label-independent features. We notice in the
earlier Figure 1 that the ReFeX feature set had very limited performance for within-network prediction
on Amherst. Therefore, it’s not surprising that there’s limited performance from label-independent
features in the across-network setting as well.

A challenge with interpreting the limited across-network performance on Amherst College is revealed
when considering attribute prediction on graphs generated from a stochastic block model (SBM) [13].
Consider a strongly homophilous SBM with two blocks of equal size (n=2000 nodes in total, average
degree of 84, and with homophily index [4] of approximately 0.60). We evaluate the within-network
performance of LINK and ReFeX features on such a network in Figure 1 (right) and observe a story
similar to the within-network prediction on Amherst College: LINK performs very well, able to
leverage the similarity among individuals that serve as useful features. Meanwhile ReFeX is not able
to leverage any structural signal because, from the perspective of ReFeX, nodes in the two blocks are
identical. We see that ReFeX and related label-independent features are blind to simple, strong, but
symmetric structures that do not translate easily to label-independent node features.

For the research community to make progress on addressing across-network problems for node
attribute prediction, especially in settings when node sets may be completely disjoint, we must
first agree on what task a proposed node attribute method is being tested on, benchmark datasets
for evaluation, and how to measure performance. The challenges identified in this work suggest
productive avenues for future research on node attribute prediction. We believe it is a synergistic
opportunity to critically examine other social science disciplines that have been wrestling with
similar across-network type problems. For example, the ideal points literature in American politics
pursues a structural approach to rank judges across time based on their voting behavior [24, 19].
The ideal points estimation literature has already thought critically about issues such as temporal
extrapolation [12], and there is likely potential to learn from and adapt some of these approaches.

Despite the impressive performance of LINK for the within-network problem, it is important to
note that relational inference requires training a model specific to the network in question. The high
performance of LINK is potentially suggestive of overlooked novel label-independent features. As an
open question, our analysis provides no theoretical basis for limiting the predictive performance of
models based on ReFeX features (or any other label-independent features) relative to performance
with LINK, and it is possible that the “right” label-independent features enable across-network
predictions with performance on par with the within-network predictions based on LINK features.
How should we reconsider how we think about across-network tasks? What does the transferability
of a model between pairs of networks say about those networks in a larger population? A first step
forward is to define a clear consistent set of across-network tasks, with many challenges to follow.
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