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1 Introduction and Outline

The St. Petersburg game was a problem posed in 1713 by Nicholas Bernoulli
to Montfort, another mathematician. The game involves tossing a fair coin
repeatedly until the first time it lands “heads”. If this happens on the kth toss,
the prize is 2k ducats. How much is it worth paying to be allowed to play?
Note that the expected winnings are

∑∞
k=1 2−k.2k = +∞. But, as Gabriel

Cramer (1728) wrote to Daniel Bernoulli, “no reasonable man would be willing
to pay 20 ducats as equivalent”.1 Samuelson (1977, 1983) and Shapley (1977)
offer some cogent reasons for this, including the obvious fact that there is an
upper bound to the real value of what can actually be paid as a prize.

The expected utility (or EU) hypothesis was formulated in Cramer’s (1728)
suggestion for resolving this “St. Petersburg paradox”. The hypothesis is that
one lottery affecting wealth is preferred to another prospect iff its expected
utility of wealth or “moral expectation” is higher. This generalizes the earlier
hypothesis that a lottery is preferred iff expected (monetary) wealth is greater.
For the St. Petersburg game, if a potential player has utility of wealth level w
given by v(w) and starts with initial wealth w0 > 0, then the amount a that
the player is willing to pay to play the game must satisfy

v(w0) =
∑∞

k=1
2−k v(w0 + 2k − a) (1)

Cramer suggested taking v(w) = min{w, 224 } or v(w) =
√

w; Bernoulli (1738)
suggested v′(w) = 1/w, implying that v(w) = lnw +constant. For the last two
of these utility functions, as well as for the first provided that w0 + 2 − a <
224, the right hand side of (1) clearly converges and is strictly decreasing as a
function of a. So the solution is well defined and finite.2

The general EU hypothesis is stated formally in Section 2. Let v(y) be any
utility function defined on the consequence domain Y . Let a, b, c be any three
consequences in Y , no two of which are indifferent. In this case, it is proved

that the ratio
v(a)− v(c)
v(b)− v(c)

of utility differences must equal the marginal rate of

substitution between shifts in probability from consequence c to a and shifts
in probability from c to b. In Section 2, this result is shown to imply that the
familiar result that the utility function is determined up to a unique cardinal
equivalence class.

1See Bernoulli (1954, p. 33)
2For further useful discussion of the St. Petersburg paradox, see Sinn (1983) and Zabell

(1987). Also, some of the ideas of EU theory appear earlier, but less explicitly, in the work
of Blaise Pascal and his contemporaries in Paris during the 1660s. See Hacking (1975) for a
more modern perspective and interpretation.
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Expected utility was little used in economics, and little understood by econo-
mists, before von Neumann and Morgenstern (1944, 1953). Their axiomatic
treatment was intended to ensure that preferences would have an expected
utility representation. This treatment constitutes what they and Savage (1954,
p. 97) regarded as a digression from their main work on game theory. According
to Leonard (1995, p. 753), their axiomatic formulation apparently occupied not
much more than two hours in the first place — see also Morgenstern (1979,
p. 181). Nevertheless, their fundamental contribution soon led to an explosion
of work in economics and related disciplines making use of the EU hypothesis
in order to consider decisions under risk. Since their pioneering work, a utility
function whose expected value is to be maximized has generally come to be
called a von Neumann–Morgenstern utility function (here called an NMUF for
short).

Fairly soon Marschak (1950), Nash (1950), Samuelson (1952), Malinvaud (1952)
and others noticed that actually von Neumann and Morgenstern had left im-
plicit a rather important independence axiom, as has been pointed out by Fish-
burn (1989) and by Fishburn and Wakker (1995) in particular. Also Marschak
(1950), followed by Herstein and Milnor (1953), moved toward a much more
concise system of, in the end, just three axioms. These axioms are, respectively,
ordinality (O), independence (I), and continuity (C). Different versions of these
axioms are introduced in Section 3, and the strongest variants are shown to be
necessary for the EU hypothesis. Weaker variants are then used in Section 4 to
demonstrate expected utility maximization, following standard proofs such as
those to be found in Blackwell and Girshick (1954), Jensen (1967), and Fish-
burn (1970, 1982), as well as in most of the original works that have already
been cited.3

Not much later, expected utility theory, especially the independence axiom,
was criticized by Allais (1953) — see also Allais (1979a, b). Partly in response
to this and many succeeding attacks, but also in order to justify the existence
of a preference ordering, it seemed natural to consider the implications of the
hypothesis that behaviour in decision trees should have consequences that are
independent of the tree structure — see Hammond (1977, 1983, 1988a, b). This
hypothesis plays a prominent role in this chapter, and differentiates it from the
many other surveys of expected utility theory. In fact the “consequentialist
foundations” are taken up in Sections 5 and 6. First, Section 5 concerns the
existence of a preference ordering, and then Section 6 shows how the indepen-

3Marschak (1950) has a rather different proof, based on the fact that indifference surfaces
are parallel hyperplanes.
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dence axiom can be deduced. The third continuity axiom is the subject of
Section 7.

Next, Section 8 turns to Blackwell and Girshick’s extension of EU theory to ac-
commodate countable lotteries. Obviously, no framework excluding these per-
mits consideration of the problem that originally motivated EU theory, namely
the St. Petersburg paradox. Blackwell and Girshick imposed an additional dom-
inance axiom. Following their arguments as well as similar ideas due to Menger
(1934), Arrow (1965, pp. 28–44; 1971, ch. 2; 1972), and Fishburn (1967, 1970),
it is then shown that generalizations of the St. Petersburg paradox can only be
avoided if each possible von Neumann–Morgenstern utility function is bounded
both above and below, as Cramer’s first suggestion v(w) = min{w, 224 } is if
wealth is bounded below. Conversely, it will also be shown that boundedness
implies dominance in the presence of the other conditions (O), (I), and (C).
Finally, it will be shown that a stronger continuous preference condition (CP)
can replace dominance or boundedness as a sufficient condition.

Section 9 is the only part of the chapter that relies on measure theory. It
briefly discusses the extension of EU theory to general probability measures on
the space of consequences, showing that this extension is possible if and only
if all upper and lower preference sets and all singleton sets are measurable.
Section 9 also considers the continuity of expected utility w.r.t. changes in
the probability measure, and shows the sufficiency of a particular continuous
preference axiom, in combination with other standard conditions. Actually,
since the results of Section 8 are subsumed in those of Section 9, the main reason
for discussing countable lotteries separately is to allow the most important
complications caused by unbounded utilities to be discussed without the use of
measure theory.

The brief final Section 10 contains a summary and a few concluding remarks.

2 The Expected Utility Hypothesis

2.1 Simple Lotteries

Let Y denote an arbitrary set of possible consequences. A typical simple lottery
or probability distribution λ is a mapping λ : Y → [0, 1] with the properties
that:
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(i) there is a finite support K ⊂ Y of λ such that λ(y) > 0 for all y ∈ K and
λ(y) = 0 for all y ∈ Y \ K;4

(ii)
∑

y∈K λ(y) =
∑

y∈Y λ(y) = 1.

Let ∆(Y ) denote the set of all such simple lotteries. Given any pair λ, µ ∈ ∆(Y )
and any α ∈ [0, 1], define the convex combination, compound lottery, or mixture
αλ + (1− α)µ by

[αλ + (1− α)µ](y) := αλ(y) + (1− α)µ(y)

for all y ∈ Y . Note then that αλ + (1 − α)µ also belongs to ∆(Y ). Because it
is convex, ∆(Y ) is said to be a mixture space.5

Given any consequence y ∈ Y , let 1y ∈ ∆(Y ) denote the degenerate simple
lottery in which y occurs with probability one. Then each λ ∈ ∆(Y ) can be
expressed in the form

λ =
∑

y∈Y
λ(y) 1y (2)

where, because λ has finite support, the sum on the right-hand side of (2) has
only finitely many non-zero terms.

2.2 Expected Utility Maximization

A standard model of choice is that due to Arrow (1959, 1963), Sen (1970),
Herzberger (1973), etc. In this model, a feasible set F is any set in a domain
D of non-empty subsets of a given underlying set or choice space Z. For each
F ∈ D, the choice set C(F ) is a subset of F , and the mapping F �→ C(F ) on
the domain D is the choice function. It is typically assumed that D includes
all finite non-empty subsets of Z and that C(F ) is non-empty for all such sets.
But, in case Z is an infinite set, D can also include some or even all infinite
subsets of Z. Also, for some of these feasible sets, C(F ) could be empty.

The expected utility (EU) hypothesis applies to the choice space of lotteries
∆(Y ). It requires the existence of a von Neumann–Morgenstern utility function

4Throughout the chapter, ⊂ will denote the weak subset relation, so that P ⊂ Q does not
exclude the possibility that P = Q.

5As discussed by Wakker (1989, pp. 136–7) and especially by Mongin (1996), every convex
set is a mixture space, but not every mixture space is a convex set. For this reason, it would
be more logical in many ways to focus on the convexity of ∆(Y ). But, following Herstein
and Milnor (1953), it has become traditional to regard ∆(Y ) as a mixture space.
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(or NMUF) v : Y → IR such that, given any feasible set F ⊂ ∆(Y ), the choice
set is

C(F ) = arg max
λ

{∑
y∈Y

λ(y)v(y) | λ ∈ F
}

(3)

That is, C(F ) consists of those lotteries λ ∈ F which maximize the expected
utility function (EUF) defined by

U(λ) := IEλ v :=
∑

y∈Y
λ(y)v(y) (4)

Notice how (4) implies that

U(αλ + (1− α)µ) =
∑

y∈Y
[αλ(y) + (1− α)µ(y)]v(y) = αU(λ) + (1− α)U(µ)

So U(·) satisfies the mixture preservation (MP) property

U(αλ + (1− α)µ) = αU(λ) + (1− α)U(µ) (5)

for all λ, µ ∈ ∆(Y ) and all α ∈ [0, 1]. That is, the utility of any mixture of two
lotteries is equal to the corresponding mixture of the utilities of the lotteries.
Conversely, because of (2), for any utility function U satisfying (MP) on the
domain ∆(Y ) it must be true that U(λ) =

∑
y∈Y λ(y)U(1y) for all λ ∈ ∆(Y ).

Then (4) follows if one defines v(y) := U(1y) for all y ∈ Y . Hence U must be
an EUF.

2.3 Ratios of Utility Differences

Suppose that behaviour does satisfy the EU hypothesis, but the NMUF is
unknown. What features of the NMUF can be inferred from behaviour, or
from revealed preferences?
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Figure 1 Two Indifference Maps for Constant Ratios of Utility Differences

In fact, suppose that a, b, c ∈ Y are any three consequences. Consider the
Marschak triangle (Marschak, 1950) in the left-hand part of Figure 1, which
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consists of all simple lotteries attaching probability one to the set { a, b, c }.
Obviously the typical member of this triangle can be expressed as p 1a + q 1b +
(1−p−q) 1c, where p, q ≥ 0 and p+q ≤ 1. Under the EU hypothesis, preferences
within this triangle give rise to an indifference map in which each indifference
curve takes the form

p v(a) + q v(b) + (1− p − q) v(c) = constant

Thus, all indifference curves in the Marschak triangle are parallel straight lines.
Their common constant slope is

−dq

dp
=

v(a)− v(c)
v(b)− v(c)

(6)

provided that this expression is well defined because v(b) �= v(c). In fact,
this ratio of utility differences is the constant marginal rate of substitution
(MRS) between: (i) any increase in the probability p of getting a that is offset
by a compensating decrease in the probability 1 − p − q of getting c, with
q fixed; (ii) any increase in the probability q of getting b that is offset by a
compensating decrease in the probability 1 − p − q of getting c, with p fixed.
For each a, b, c ∈ Y , this common constant ratio can therefore be inferred from
hypothetical behaviour.

Equation (6) involves a three-way ratio of utility differences. But the four-
way ratio [v(a)− v(b)]/[v(c)− v(d)] can also be interpreted as a constant MRS
whenever a, b, c, d ∈ Y are four consequences with v(c) �= v(d). For consider the
square in the right-hand half of Figure 1, which represents the two-dimensional
set

{ 1
2p 1a + 1

2 (1− p) 1b + 1
2q 1c + 1

2 (1− q) 1d | (p, q) ∈ [0, 1]× [0, 1] }

of lotteries in which the sets { a, b } and { c, d } each have fixed probability 1
2 .

Under the EU hypothesis, the indifference curves in this square are parallel
straight lines with

1
2p v(a) + 1

2 (1− p) v(b) + 1
2q v(c) + 1

2 (1− q) v(d) = constant

So their common constant slope is

−dq

dp
=

v(a)− v(b)
v(c)− v(d)

This is the constant MRS between shifts in probability from consequence b to
consequence a and shifts in probability from consequence d to consequence c
among lotteries giving all four consequences positive probability.
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Thus, ratios of utility differences correspond to constant MRSs between appro-
priate shifts in probability. As will be shown next, no other features of the
NMUF can be inferred from expected utility maximizing behaviour alone.

2.4 Cardinally Equivalent Utility Functions

Behaviour satisfying the EU hypothesis does not determine the corresponding
NMUF uniquely. Indeed, let v : Y → IR and ṽ : Y → IR be any pair of NMUFs
which, for some additive constant δ and multiplicative constant ρ > 0, are
related by the identity

ṽ(y) ≡ δ + ρv(y) (7)

which holds throughout Y . Then, given any pair of lotteries λ, µ ∈ ∆(Y ), one
has ∑

y∈Y
[λ(y)− µ(y)]ṽ(y) =

∑
y∈Y

[λ(y)− µ(y)][δ + ρv(y)]

= ρ
∑

y∈Y
[λ(y)− µ(y)]v(y)

because
∑

y∈Y λ(y) =
∑

y∈Y µ(y) = 1. But ρ > 0 and so
∑

y∈Y
λ(y)ṽ(y) ≥

∑
y∈Y

µ(y)ṽ(y) ⇐⇒
∑

y∈Y
λ(y)v(y) ≥

∑
y∈Y

µ(y)v(y)

For this reason, the pair of NMUFs satisfying (7) are said to be cardinally
equivalent. Furthermore, (7) obviously implies that

ṽ(a)− ṽ(c)
ṽ(b)− ṽ(c)

=
v(a)− v(c)
v(b)− v(c)

(8)

and so the MRS given by (6) is also the same for all NMUFs in the same
cardinal equivalence class. Clearly, any four-way ratio of utility differences of
the form [v(a) − v(b)]/[v(c) − v(d)] with v(c) �= v(d) is also preserved by the
transformation (7) from v(y) to ṽ(y).

Conversely, if v and ṽ are NMUFs whose expected values represent the same
preferences, then both must satisfy (6) for the same constant MRS −dq/dp.
Hence (8) is satisfied for all a, b, c ∈ Y . But then

ṽ(a)− ṽ(c)
v(a)− v(c)

=
ṽ(b)− ṽ(c)
v(b)− v(c)

whenever v(a) �= v(c) and v(b) �= v(c). So, for each fixed y′ ∈ Y , there must
exist a constant ρ such that

ṽ(y)− ṽ(y′)
v(y)− v(y′)

= ρ
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for all y ∈ Y with v(y) �= v(y′). Moreover, because the expected values of v and
ṽ represent identical preferences, it follows that v(y) > v(y′) ⇐⇒ ṽ(y) > ṽ(y′)
and so ρ > 0. Therefore

ṽ(y) = ṽ(y′) + ρ [v(y)− v(y′)] = δ + ρv(y)

for all y ∈ Y , where δ := ṽ(y′)−ρ v(y′). This confirms (7) for the case when the
domain Y is rich enough to include at least two non-indifferent consequences.
But (7) is trivially valid when all consequences in Y are indifferent.

3 Necessary Conditions

3.1 The Ordering Condition

The EU hypothesis implies three obvious but important properties. The first
of these concerns the preference relation �∼ defined by

λ �∼ µ ⇐⇒
∑

y∈Y
λ(y)v(y) ≥

∑
y∈Y

µ(y)v(y) (9)

Then, for every finite F ⊂ ∆(Y ), it follows from (3) that the choice set is given
by C(F ) = {λ ∈ F | µ ∈ F =⇒ λ �∼ µ }. In particular, of course, λ �∼ µ iff
λ ∈ C({λ, µ }).

Evidently, then, the EU hypothesis implies the ordering condition (O), requir-
ing the existence of a complete and transitive binary preference ordering �∼ on
∆(Y ) satisfying (9). As usual, we write λ � µ and say that λ is strictly pre-
ferred to µ when λ �∼ µ but not µ �∼ λ; we write λ ∼ µ and say that λ is
indifferent to µ when λ �∼ µ and also µ �∼ λ. Also, λ ≺∼ µ is equivalent to
µ �∼ λ, and λ ≺ µ is equivalent to µ � λ. Because �∼ is complete, λ �∼ µ is
equivalent to λ �≺ µ.

For general consequence spaces, such preference orderings, and their representa-
tion by utility functions, are discussed in the preceding chapter by Mehta. This
chapter concentrates entirely on spaces of consequence lotteries. For preference
orderings that violate the EU hypothesis, some of the possible “non-expected”
utility functions are discussed in other chapters of this Handbook. By con-
trast, this chapter also concentrates on behaviour patterns corresponding to
preference orderings with the special structure that the EU hypothesis entails.
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3.2 Independence Conditions

An important second implication of the EU hypothesis is independence. Indeed,
this is the crucial property that distinguishes preferences satisfying the EU
hypothesis from non-expected utility theories.

As Marschak (1950), Samuelson (1952) and Malinvaud (1952) pointed out, von
Neumann and Morgenstern had originally left one important axiom implicit.
In Samuelson (1983, p. 511), the independence axiom is expressed by means of
the following condition (I′): Whenever λ, µ, ν ∈ ∆(Y ) and 0 < α < 1, then

λ �∼ µ =⇒ αλ + (1− α)ν �∼ αµ + (1− α)ν (10)

Marschak and Malinvaud stated only the weaker condition (I0), requiring that

λ ∼ µ =⇒ αλ + (1− α)ν ∼ αµ + (1− α)ν (11)

under the same hypotheses as for condition (I′). Later Herstein and Milnor
(1953), following Samuelson’s (1952) idea discussed below in connection with
condition (I*), required (11) to be true only when α = 1

2 . This is one of
Herstein and Milnor’s three axioms whose implications are also analysed at
length in Fishburn (1982, pp. 13–17).

This chapter, however, will rely on two quite different versions of the indepen-
dence axiom. Given the other axioms, it will be sufficient to use the following
independence condition (I), apparently due to Jensen (1967). This requires
that, whenever λ, µ, ν ∈ ∆(Y ) and 0 < α < 1, then

λ � µ =⇒ αλ + (1− α)ν � αµ + (1− α)ν

Combining conditions (I) and (I′) into one gives a single condition that, as
shown in Lemma 3.1 below, is equivalent to the finite dominance axiom (FD*).
This states that, whenever λi, µi ∈ ∆∗(Y ) and αi > 0 with λi

�∼ µi (i =
1, 2, . . . m) and

∑m
i=1 αi = 1, then

∑m
i=1 αi λi

�∼
∑m

i=1 αi µi with strict pref-
erence if λk � µk for any k. Condition (FD*) is a simplified version of the
infinite dominance condition (D*) due to Blackwell and Girshick (1954, p. 105,
H1) that is discussed in Section 8.4.

Apparently stronger than conditions (I), (I0) or (I′) is the strong independence
condition (I*), requiring the logical equivalence

λ �∼ µ ⇐⇒ αλ + (1− α)ν �∼ αµ + (1− α)ν (12)

to hold whenever 0 < α < 1. For the case when α = 1
2 , this is equivalent to

Samuelson’s (1952, p. 672) original “strong independence” axiom. Condition
(I*) is not really new, however, because of:
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Lemma 3.1: Provided that condition (O) is satisfied, then condition (FD*),
condition (I) combined with (I′), and condition (I*) are all equivalent.

Proof: (i) Suppose condition (FD*) is true. Obviously condition (I′) holds
and so therefore does (10). Conversely, if αλ + (1− α)ν �∼ αµ + (1− α)ν and
0 < α < 1, then αµ + (1 − α)ν �� αλ + (1 − α)ν by condition (O). So µ �� λ
by condition (I), from which it follows that λ �∼ µ by condition (O). Therefore
(12) holds and condition (I*) is satisfied.

(ii) Suppose condition (I*) is true. Obviously (12) implies (10), so condition
(I′) is true. Also, if λ � µ, then by condition (O), µ � �∼ λ. Therefore, whenever
0 < α < 1, condition (I*) implies that αµ + (1 − α)ν � �∼ αλ + (1 − α)ν. Then
condition (O) implies that αλ+(1−α)ν � αµ+(1−α)ν, which is condition (I).

(iii) Finally, it is easy to show that conditions (I) and (I′) jointly imply (FD*)
when m = 2. A routine induction proof establishes the same implication for
larger values of m.

Thus, it has been proved that (FD*) =⇒ (I*) =⇒ [(I) and (I′)] =⇒ (FD*).
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Finally, when (9) is true and 0 < α < 1, then

αλ + (1− α)ν �∼ αµ + (1− α)ν

⇐⇒
∑

y∈Y
{[αλ(y) + (1− α)ν(y)]− [αµ(y) + (1− α)ν(y)]}v(y) ≥ 0

⇐⇒
∑

y∈Y
λ(y) v(y) ≥

∑
y∈Y

µ(y) v(y) ⇐⇒ λ �∼ µ

Thus, (9) implies (12). So the strongest independence condition (I*) is an
implication of the EU hypothesis.

3.3 Lexicographic Preferences

Though conditions (O) and (I*) are implied by the EU hypothesis, they do not
characterize it. There are preference orderings which violate the EU hypothesis
even though they satisfy (I*) on a domain ∆(Y ).

As an example, consider the consequence domain Y = { a, b, c }. Furthermore,
suppose that v : Y → IR is an NMUF whose expected value U(λ) = IEλ v
represents a preference ordering �∼ on ∆(Y ) satisfying 1a � 1b � 1c. The
corresponding indifference map must be as shown in the Marschak triangle of
Figure 1 in Section 2.3. Consider the alternative “lexicographic” preference
relation �∼∗ on ∆(Y ) defined by

λ �∼∗ µ ⇐⇒ U(λ) > U(µ) or [U(λ) = U(µ) and λ(a) ≥ µ(a)]

The preference relation �∼∗ is evidently complete and transitive. It also satisfies
condition (I*), as is easily checked. But unlike �∼, the relation �∼∗ is a total
ordering in the sense that either λ �∗ µ or µ �∗ λ whenever λ �= µ. Thus all
indifference sets in the Marschak triangle are isolated single points, which is
incompatible with the existence of any NMUF whose expected value represents
the preference ordering �∼∗. So the EU hypothesis is violated.

3.4 Continuity Conditions

The third and last implication of the EU hypothesis is the requirement that
preferences satisfy the following continuity condition (C), due to Blackwell and
Girshick (1954, p. 106, H2).6 Whenever λ, µ, ν ∈ ∆(Y ) with λ � µ and µ � ν,

6This is sometimes called the Archimedean axiom — see, for instance, Karni and Schmeid-
ler (1991, p. 1769).
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this requires that there exist α′, α′′ ∈ (0, 1) satisfying

α′λ + (1− α′)ν � µ and µ � α′′λ + (1− α′′)ν (13)

Next, define the two preference sets

A := {α ∈ [0, 1] | αλ + (1− α)ν �∼ µ }
B := {α ∈ [0, 1] | µ �∼ αλ + (1− α)ν } (14)

and let α := inf A and α := supB. An alternative mixture continuity condition
(C*) introduced by Herstein and Milnor (1953) requires that, whenever λ, µ, ν ∈
∆(Y ) with λ � µ and µ � ν, both A and B must be closed. Note that, when
combined with condition (O), condition (C*) is a strengthening of (C) because
of part (i) of the following Lemma 3.2.

Note that the stronger continuity condition (C*) is entailed by the EU hypoth-
esis (3) because, for instance, (4), (5) and (9) together imply that

A = {α ∈ [0, 1] | αU(λ) + (1− α)U(ν) ≥ U(µ) }

= {α ∈ [0, 1] | α ≥ U(µ)− U(ν)
U(λ)− U(ν)

}

given that U(λ) > U(ν). Similarly,

B = {α ∈ [0, 1] | α ≤ U(µ)− U(ν)
U(λ)− U(ν)

}

In fact, there must be a unique number α∗ ∈ (0, 1) satisfying the condition that
α∗λ + (1− α∗)ν ∼ µ and also:

αλ + (1− α)ν � µ ⇐⇒ α > α∗; αλ + (1− α)ν ≺ µ ⇐⇒ α < α∗

On the other hand, note that the lexicographic preferences described in Section
3.3 are discontinuous. For suppose that λ, µ, ν ∈ ∆(Y ) with W (λ) > W (µ) >
W (ν). Define α∗ ∈ (0, 1) as the critical value

α∗ :=
W (µ)−W (ν)
W (λ)−W (ν)

Then the two sets defined in (14) take the form

A = {α ∈ [0, 1] | α > α∗ or [α = α∗ and αλ(y1) + (1− α)ν(y1) ≥ µ(y1)] }
B = {α ∈ [0, 1] | α < α∗ or [α = α∗ and αλ(y1) + (1− α)ν(y1) ≤ µ(y1)] }

With lexicographic preferences, the common boundary point α∗ of these two
sets generally belongs to only one of them, and so either A or B is not closed.
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The only exception occurs in the special case when α∗λ(y1) + (1− α∗)ν(y1) =
µ(y1). Then α∗ ∈ A ∩ B, so both A and B are closed. But for almost all
λ, µ, ν ∈ ∆(Y ), such lexicographic preferences exhibit a discontinuity.

The following implication of the preceding definitions plays an important role
in Section 4.

Lemma 3.2: Suppose that condition (O) is satisfied. Then: (i) condition
(C*) implies (C); (ii) on the other hand, condition (C) implies that α ∈ B and
α ∈ A. Also, under the additional hypothesis α = α =: α∗, it follows that
α∗λ + (1− α∗)ν ∼ µ.

Proof: Suppose that λ, µ, ν ∈ ∆(Y ) with λ � µ and µ � ν. The definitions
of A and B and condition (O) together imply that 0 �∈ A, 1 ∈ A, 0 ∈ B, 1 �∈ B.

(i) If condition (C*) is satisfied, then α = minA and α = max B, from which it
follows that α > 0 and α < 1. Choosing any α′, α′′ ∈ (0, 1) to satisfy 1 > α′ > α
and α > α′′ > 0 implies that α′ �∈ B and α′′ �∈ A. Now (13) follows immediately
from definition (14) and condition (O).

(ii) Whenever α ∈ (0, 1] \ B, condition (O) implies that αλ + (1 − α)ν � µ.
Because µ � ν, condition (C) implies the existence of α′ ∈ (0, 1) such that

α′[αλ + (1− α)ν] + (1− α′)ν � µ

So α′α ∈ A. But α > α′α. Because α = inf A, it follows that α > α whenever
α ∈ (0, 1] \ B. Therefore α �∈ (0, 1] \ B and so α ∈ B ∪ {0}. But 0 ∈ B and so
α ∈ B even if α = 0.

Similarly, whenever α ∈ [0, 1)\A, condition (O) implies that µ � αλ+(1−α)ν.
Because λ � µ, condition (C) implies the existence of α′′ ∈ (0, 1) such that

µ � α′′λ + (1− α′′)[αλ + (1− α)ν]

So α′′ + (1 − α′′)α = α + (1 − α)α′′ ∈ B. But α < α + (1 − α)α′′. Because
α = supB, it follows that α < α whenever α ∈ [0, 1)\A. Therefore α �∈ [0, 1)\A
and so α ∈ A ∪ {1}. But 1 ∈ A and so α ∈ A even if α = 1.

Under the additional hypothesis α = α =: α∗, it follows that α∗ ∈ A ∩ B.
Obviously, definition (14) implies that α∗λ + (1− α∗)ν ∼ µ in this case.

The three properties (O), (I), and (C) are important because, as shown by
Jensen (1967), they are not only necessary, but also sufficient conditions for
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the EU hypothesis to hold. This is discussed in the next Section. Here it has
been shown that the stronger properties (I*) and (C*) are also necessary.

4 Sufficient Conditions

Condition (O) requiring that there be a preference ordering �∼ is, of course,
standard in utility theory. The independence condition (I) imposes strong
restrictions on the possible form of �∼. And, in combination with the continuity
condition (C), it implies EU maximization. This section will be devoted to
proving this important result, due to Jensen (1967). Note that, compared to
Herstein and Milnor (1953), Jensen uses the stronger independence condition
(I) instead of only (I0) for α = 1

2 . On the other hand, Jensen uses the weaker
continuity condition (C) instead of (C*).

It is worth noting that the proof given here becomes rather easier if one assumes
conditions (I*) and (C*) instead of (I) and (C). Indeed, there would be no need
to prove Lemmas 4.2 or 4.4, since their only role is to show that (I*) is satisfied.

4.1 Ordinality and Independence

In the following, conditions (O) and (I) will be assumed throughout. Also,
though the succeeding Lemmas 4.1–4.6 are stated only for the space ∆(Y ),
they are actually true in any convex set or mixture space. This important fact
will be used later in Sections 8 and 9, as well as in Chapter 3 on subjectively
expected utility.

Notice first that if λ ∼ µ for all λ, µ ∈ ∆(Y ), then the EU hypothesis is trivially
satisfied: there must exist a constant v ∈ IR such that U(λ) = v = v(y) for all
λ ∈ ∆(Y ) and all y ∈ Y . So, it will be supposed throughout this section that
there exist λ, µ ∈ ∆(Y ) with λ � µ.

Lemma 4.1: For any pair of lotteries λ, µ ∈ ∆(Y ) with λ � µ, one has:

(a) (Strict Betweenness) λ � αλ + (1− α)µ � µ whenever 0 < α < 1.

(b) (Stochastic Monotonicity) λ � αλ + (1 − α)µ � α′λ + (1 − α′)µ � µ
whenever 0 < α′ < α < 1.

(c) (Weak Stochastic Monotonicity) if α, α′ ∈ [0, 1], then

αλ + (1− α)µ �∼ α′λ + (1− α′)µ ⇐⇒ α ≥ α′
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Proof: (a) Whenever 0 < α < 1, condition (I) implies that

λ = αλ + (1− α)λ � αλ + (1− α)µ � αµ + (1− α)µ = µ

(b) If 0 < α′ < α < 1, then there exists δ ∈ (0, 1) such that α′ = δα. So

δ[αλ + (1− α)µ] + (1− δ)µ = δαλ + (1− δα)µ = α′λ + (1− α′)µ

By part (a), λ � αλ + (1− α)µ � µ. Next, applying part (a) a second time to
δ[αλ + (1− α)µ] + (1− δ)µ gives

αλ + (1− α)µ � δ[αλ + (1− α)µ] + (1− δ)µ � δµ + (1− δ)µ = µ

Together these statements clearly imply part (b).

(c) Immediate from part (b), given that �∼ is a complete ordering.

In particular, if λ � µ, then a compound lottery with a higher probability of
λ and a lower probability of µ is preferred to one with a lower probability of λ
and a higher probability of µ.

Lemma 4.2: Suppose that 0 < α < 1 and λ, µ, ν ∈ ∆(Y ). Then:

(a) αλ + (1− α)ν ∼ αµ + (1− α)ν implies λ ∼ µ;

(b) if λ � αλ + (1− α)µ or αλ + (1− α)µ � µ, then λ �∼ αλ + (1− α)µ �∼ µ
and so λ � µ;

(c) (Betweenness) λ ∼ µ implies λ ∼ αλ + (1− α)µ ∼ µ;

(d) λ ∼ µ ∼ ν implies αλ + (1− α)ν ∼ αµ + (1− α)ν.

Proof: (a) By condition (I), if λ �∼ µ, then αλ + (1− α)ν �∼ αµ + (1− α)ν.

(b) If λ � αλ + (1− α)µ then condition (I) implies that

αλ + (1− α)µ � α [αλ + (1− α)µ] + (1− α)µ (15)

But
α [αλ + (1− α)µ] + (1− α) [αλ + (1− α)µ] = αλ + (1− α)µ

Hence, (15) is compatible with condition (I) only if µ �� αλ + (1− α)µ, and so
αλ + (1 − α)µ �∼ µ, by condition (O). Similarly, if αλ + (1 − α)µ � µ then
condition (I) implies that

αλ + (1− α) [αλ + (1− α)µ] � α [αλ + (1− α)µ] + (1− α) [αλ + (1− α)µ]
= αλ + (1− α)µ
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This is compatible with condition (I) only if αλ + (1− α)µ �� α, which implies
that α �∼ αλ+(1−α)µ, because of condition (O). Therefore, if λ � αλ+(1−α)µ
or αλ + (1−α)µ � µ, then λ �∼ αλ + (1−α)µ�∼ µ. In either case, transitivity
of �∼ implies that λ � µ.

(c) If µ �∼ λ, condition (O) and the contrapositive of part (b) together imply
that µ �∼ αλ + (1 − α)µ �∼ λ. Similarly, with λ and µ interchanged, as well
as α and 1− α, it must be true that λ �∼ µ implies λ �∼ αλ + (1− α)µ �∼ µ.
Therefore, λ ∼ µ must imply that λ ∼ αλ + (1− α)µ ∼ µ.

(d) Suppose that λ ∼ µ ∼ ν. Applying part (c) first to the pair λ, ν and then
to the pair µ, ν implies that αλ + (1− α)ν ∼ ν ∼ αµ + (1− α)ν.

4.2 Continuity

Note that both Lemmas 4.1 and 4.2 rely only on conditions (O) and (I). From
now on, assume throughout the rest of this section that the continuity condi-
tion (C) is also satisfied. Then:

Lemma 4.3: Suppose that λ, µ, ν ∈ ∆(Y ) with λ � µ and µ � ν. Then there
exists a unique α∗ ∈ (0, 1) such that α∗λ + (1− α∗)ν ∼ µ.

Proof: Consider the two sets A and B as defined in (14) of Section 3.4.
Define α∗ := inf A. Now whenever α > α∗, there exists α′ ∈ A such that
α > α′ ≥ α∗. From part (b) of Lemma 4.1 and the definition of A, it follows
that

αλ + (1− α)ν � α′λ + (1− α′)ν �∼ µ

By condition (O), α �∈ B. This is true whenever α > α∗. Therefore α ∈ B
implies α ≤ α∗. So α∗ is an upper bound for B, implying that α∗ ≥ supB.
But completeness of the preference ordering �∼ excludes the possibility that
inf A > supB. Hence α∗ = inf A = supB. By Lemma 3.2, condition (C) then
implies that

α∗λ + (1− α∗)ν ∼ µ (16)

Now apply part (b) of Lemma 4.1 to the pair λ, ν. Whenever the inequalities
1 ≥ α′ > α∗ > α′′ ≥ 0 are satisfied, it follows that

α′λ + (1− α′)ν � α∗λ + (1− α∗)ν � α′′λ + (1− α′′)ν (17)

Because of (16) and (17), condition (O) implies that

α′λ + (1− α′)ν � µ � α′′λ + (1− α′′)ν
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This shows that α∗ is the unique member of A ∩B.

Corollary: Suppose that λ, µ, ν ∈ ∆(Y ) with λ � ν and λ �∼ µ �∼ ν. Then
there exists a unique α∗ ∈ [0, 1] such that α∗λ + (1− α∗)ν ∼ µ.

Proof: Lemma 4.3 already treats the case when λ � µ � ν. Alternatively, if
λ ∼ µ, one can take α∗ = 1, whereas if µ ∼ ν, one can take α∗ = 0.

Lemma 4.4: Suppose that 0 < α < 1 and that λ, µ, ν ∈ ∆(Y ). Then:

(a) αλ + (1− α)ν � αµ + (1− α)ν implies λ � µ;

(b) Condition (I*) is satisfied.

Proof: (a) Case 1: λ �∼ ν �∼ µ. Here, unless λ � µ, it must be true that
λ ∼ µ ∼ ν. But then Lemma 4.2(d) would imply αλ+(1−α)ν ∼ αµ+(1−α)ν,
a contradiction.

Case 2: ν � λ. Here, by Lemma 4.1(a), ν � αλ + (1 − α)ν. So, whenever
αλ+(1−α)ν � αµ+(1−α)ν, Lemma 4.3 implies that there exists α∗ ∈ (0, 1)
satisfying

α∗ [αµ + (1− α)ν] + (1− α∗) ν ∼ αλ + (1− α)ν

From this it follows that

α [α∗µ + (1− α∗)ν] + (1− α) ν = α α∗µ + (1− α α∗)ν ∼ αλ + (1− α)ν

Applying Lemma 4.2(a) and condition (I) gives

λ ∼ α∗µ + (1− α∗)ν � α∗µ + (1− α∗)λ

Because �∼ is transitive, Lemma 4.2(b) then yields λ � µ.

Case 3: µ � ν. Here, by Lemma 4.1(a), αµ + (1 − α)ν � ν. So, whenever
αλ+(1−α)ν � αµ+(1−α)ν, Lemma 4.3 implies that there exists α∗ ∈ (0, 1)
satisfying

α∗ [αλ + (1− α)ν] + (1− α∗) ν ∼ αµ + (1− α)ν

From this it follows that

α [α∗λ + (1− α∗)ν] + (1− α) ν = α α∗λ + (1− α α∗)ν ∼ αµ + (1− α)ν

Applying condition (I) and Lemma 4.2(a) gives

α∗λ + (1− α∗)µ � α∗λ + (1− α∗)ν ∼ µ
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Because �∼ is transitive, Lemma 4.2(b) then yields λ � µ.

(b) Because condition (O) implies that �∼ is complete, the contrapositive of
part (a) implies (10) in Section 3.2, which is condition (I′). If condition (I) is
also true, the result follows from Lemma 3.1.

4.3 Construction of a Utility Function

We continue to assume that conditions (O), (I), and (C) are satisfied on ∆(Y ).
Now that Lemma 4.3 and condition (I*) have been established, one can show
how to construct a utility function. In order to do so, first let λ, λ ∈ ∆(Y ) be
any two lotteries with λ � λ. Define the associated order interval

Λ := {λ ∈ ∆(Y ) | λ �∼ λ �∼ λ } (18)

Lemma 4.5: (a) There exists a unique utility function U : Λ → IR which: (i)
represents the preference relation �∼ on Λ; (ii) takes the values U(λ) = 1 and
U(λ) = 0 at λ and λ respectively; and (iii) satisfies the mixture preservation
property (MP) for all λ, µ ∈ Λ and all α ∈ [0, 1].

(b) Suppose V : Λ → IR is any other utility function representing �∼ restricted
to Λ which satisfies (MP). Then there exist real constants ρ > 0 and δ such
that V (λ) = δ + ρ U(λ) for all λ ∈ Λ.

Proof: (a) For each λ ∈ Λ, Lemma 4.3 and its Corollary imply the existence
of a unique U(λ) ∈ [0, 1] such that

U(λ) λ + [1− U(λ)]λ ∼ λ (19)

Furthermore, λ ∼ λ implies U(λ) = 1, and λ ∼ λ implies U(λ) = 0. Also, if
λ, µ ∈ Λ, then (19) and transitivity of �∼, when combined with Lemma 4.1(c),
imply that

λ �∼ µ ⇐⇒ U(λ) λ+[1−U(λ)]λ �∼ U(µ) λ+[1−U(µ)]λ ⇐⇒ U(λ) ≥ U(µ)

So U : Λ → IR represents �∼ on Λ. Furthermore, for all λ, µ ∈ Λ and α ∈ [0, 1],
(19) and condition (I*) imply that

αλ + (1− α)µ ∼ α{U(λ)λ + [1− U(λ)]λ }+ (1− α)µ
∼ α{U(λ)λ + [1− U(λ)]λ }

+(1− α){U(µ) λ + [1− U(µ)]λ }
= [αU(λ) + (1− α)U(µ)]λ + [1− αU(λ)− (1− α)U(µ)]λ
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Therefore, definition (19) implies that

U(λα + (1− α)µ) = αU(λ) + (1− α)U(µ)

This confirms property (MP).

(b) Given λ, λ ∈ ∆(Y ) and the alternative utility function V : Λ → IR repre-
senting �∼, define δ := V (λ) and ρ := V (λ)−V (λ) > 0. If V also satisfies (MP),
then definition (19) implies that

V (λ) = V
(
U(λ)λ + [1− U(λ)]λ

)
= U(λ)V (λ) + [1−U(λ)]V (λ) = δ + ρ U(λ)

for all λ ∈ Λ.

Lemma 4.6: There exists a utility function U : ∆(Y ) → IR which represents
�∼ and satisfies (MP). Also, if V : ∆(Y ) → IR is any other utility function
with the same properties, then there exist real constants ρ > 0 and δ such that
V (λ) = δ + ρ U(λ) for all λ ∈ ∆(Y ).

Proof: The first simple case occurs when λ and λ can be chosen so that, for
all λ ∈ ∆(Y ), one has λ �∼ λ �∼ λ. In this case the order interval Λ defined in
(18) is the whole space ∆(Y ). There is nothing more to prove.7

It remains to prove the lemma even when the lotteries λ, λ ∈ ∆(Y ) cannot be
chosen to satisfy λ �∼ λ �∼ λ for all λ ∈ ∆(Y ). In this case, one can still construct
the order interval Λ as in (18) and the utility function U : Λ → IR to represent
�∼ on Λ while satisfying U(λ) = 1, U(λ) = 0, and (MP). Moreover, consider any
four lotteries µ1, µ2, ν1, ν2 ∈ ∆(Y ) such that µi

�∼ λ̄ and νi
≺∼ λ for i = 1, 2,

and let Λi denote the corresponding order interval {λ ∈ ∆(Y ) | µi
�∼ λ �∼ νi }.

Now, for i = 1, 2, Lemma 4.5(a) implies that there exists a utility function
Ui : Λi → IR which represents �∼ on Λi, while also satisfying Ui(µi) = 1,
Ui(νi) = 0, and (MP).

As discussed in Section 2.4, for i = 1, 2, whenever U∗
i (λ) ≡ δi + ρi Ui(λ) for

some constants ρi > 0 and δi, the alternative utility function U∗
i : Λi → IR

will also represent �∼ on Λi while satisfying (MP). Furthermore, one can make
U∗

i (λ) = 1 and U∗
i (λ) = 0 by choosing ρi and δi to satisfy

δi + ρi Ui(λ) = 1; δi + ρi Ui(λ) = 0

These equations will be satisfied provided that one chooses

ρi = 1/[Ui(λ)− Ui(λ)] > 0; δi = −Ui(λ)/[Ui(λ)− Ui(λ)]
7Of course, many textbooks consider only this easy case.
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Then, for all λ ∈ Λi, one has

U∗
i (λ) =

Ui(λ)− Ui(λ)
Ui(λ)− Ui(λ)

Now, both utility functions U∗
1 and U∗

2 represent the same ordering �∼ and also
satisfy (MP) on Λ1 ∩ Λ2. By Lemma 4.5(b), there must exist constants ρ > 0
and δ such that

U∗
2 (λ) = δ + ρU∗

1 (λ)

for all λ in the set Λ1 ∩ Λ2, which obviously has Λ as a subset. But U∗
1 (λ) =

U∗
2 (λ) = 0, implying that δ = 0. Also U∗

1 (λ) = U∗
2 (λ) = 1, implying that

1 = δ + ρ and so ρ = 1. This proves that U∗
1 ≡ U∗

2 on Λ1 ∩ Λ2.

So, given any λ ∈ ∆(Y ), there is a unique U∗(λ) which can be found by
constructing U0 to represent �∼ and satisfy (MP) on any order interval Λ0

large enough to include all three lotteries λ, λ, and λ, then re-normalizing by
choosing constants ρ > 0 and δ so that the transformed utility function U∗

satisfies U∗(λ) ≡ δ + ρ U0(λ) on Λ0, as well as U∗(λ) = 1, U∗(λ) = 0. Because
U0 satisfies (MP), so does U∗. Evidently λ �∼ µ iff U∗(λ) ≥ U∗(µ) because U∗

represents �∼ on any order interval large enough to include all four lotteries λ,
µ, λ, and λ.

Next, let U be any alternative utility function representing �∼ on the whole
of ∆(Y ). Then U also represents it on any non-trivial order interval Λ0 that
includes Λ. So there exist real constants ρ > 0 and δ such that U(λ) = δ +
ρ U∗(λ) throughout Λ0, including for λ = λ and λ = λ. Because U∗(λ) = 1 and
U∗(λ) = 0, it follows that U(λ) = δ and U(λ) = δ +ρ. Hence ρ = U(λ)−U(λ).
This implies that U(λ) = U(λ) + [U(λ) − U(λ)]U∗(λ) throughout Λ0 and so,
because Λ0 is arbitrarily large, throughout ∆(Y ). So U∗ is unique up to cardinal
transformations.

Finally:

Theorem 4: Suppose that conditions (O), (I), and (C) are satisfied on ∆(Y ).
Then there exists a unique cardinal equivalence class of NMUFs v : Y → IR
such that

λ �∼ µ ⇐⇒
∑

y∈Y
λ(y) v(y) ≥

∑
y∈Y

µ(y) v(y)

Proof: The theorem is a direct implication of Lemma 4.6, provided that v(y) is
defined, for each y ∈ Y , as U(1y). This is because (2) and repeated application
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of (MP) together imply that

U(λ) =
∑

y∈Y
λ(y)U(1y) =

∑
y∈Y

λ(y) v(y)

Also, uniqueness of U up to cardinal transformations obviously implies that v
has the same property.

5 Consequentialist Foundations: Ordinality

5.1 The Consequentialist Principle

There has been frequent criticism of the three axioms (O), (I), and (C) which,
as Sections 3 and 4 showed, characterize EU maximization. It is clear that
(O) and (I) in particular describe actual behaviour rather poorly — see, for
example, the other chapters in this Handbook on non-expected utility and on
experiments. Utility theorists, however, should be no less interested in whether
these axioms are an acceptable basis of normative behaviour. This section
and the next will show that at least (O) and (I) — indeed, even condition
(I*) — can be derived from another, more fundamental, normative principle of
behaviour. This is the “consequentialist principle”, requiring behaviour to be
entirely explicable by its consequences.

As in Section 2, let Y denote a consequence domain, and ∆(Y ) the set of all
simple lotteries on Y . It will be convenient to regard the members of ∆(Y ) as
random consequences, to be distinguished from elementary consequences y ∈ Y .

The consequentialist principle is that, given behaviour β and any non-empty
finite feasible set F ⊂ ∆(Y ), the set of all possible random consequences of
behaviour, or the behaviour set, should be the non-empty “revealed” or implicit
choice set Cβ(F ) ⊂ F that depends only on F . In other words, changes in
the structure of the decision problem should have no bearing on the possible
consequences Cβ(F ) of behaviour β, unless they change the feasible set F . At
first, this restriction seems very weak, putting no restrictions at all on the
consequentialist choice function Cβ mapping feasible sets F into choice subsets
Cβ(F ) ⊂ F .

This consequentialist principle has a long and controversial history, especially
in moral philosophy. Aristotle can be read as suggesting that the moral worth
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of an act depended on its results or consequences. St. Thomas Aquinas explic-
itly attacked this doctrine, suggesting that good acts could remain good even
if they had evil consequences, and that evil acts would remain evil even if they
happened to have good consequences. Later philosophical writers, especially
John Stuart Mill and G.E. Moore, then enunciated clearly a doctrine or prin-
ciple that flew in the face of Aquinas’ assertion, claiming that acts should be
judged by their consequences. This doctrine was given the name “consequen-
tialism” by Elisabeth Anscombe (1958), in a critical article. To this day it
remains controversial in moral philosophy.8

In decision theory, Arrow (1951) stated the principle that acts should be valued
by their consequences. Savage (1954) defined an act as a mapping from states
of the world to consequences, thus espousing consequentialism implicitly.

5.2 Simple Finite Decision Trees

Consequentialism acquires force only in combination with other axioms, or else
when applied in a rather obvious way to decision problems that can be described
by decision trees in a sufficiently unrestricted domain. This is my next topic.

A simple finite decision tree is a list

T = 〈N, N∗, X, n0, N+1(·), γ(·) 〉 (20)

in which:

(i) N is the finite set of nodes;

(ii) N∗ is the finite subset of decision nodes;

(iii) X is the finite subset of terminal nodes;

(iv) n0 is the unique initial node;

(v) N+1(·) : N →→N is the immediate successor correspondence;

(vi) γ : X → ∆(Y ) is the consequence mapping from terminal nodes to their
lottery consequences.9

8In Hammond (1986, 1996) I have discussed the origins of consequentialism at somewhat
greater length, and provided references for the writings cited above, as well as some others.
The same issues also receive attention in the contribution by d’Aspremont and Mongin to
this Handbook.

9One could well argue that, strictly speaking, lotteries can only arise in decision trees
having chance nodes. Thus, in what I am calling a “simple” decision tree, each x ∈ X is not
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Obviously, N is partitioned into the two disjoint sets N∗ and X. The set X
must always have at least one member for every finite decision tree. For non-
trivial decision trees, both N∗ and X are non-empty. But in case n0 ∈ X, then
X = {n0} and N∗ = ∅. Generally, of course, n ∈ X ⇐⇒ N+1(n) = ∅.

In order that N should have a tree structure, there must be a partition of N into
a finite collection of pairwise disjoint non-empty subsets Nk (k = 0, 1, . . . K)
such that each Nk consists of all the nodes that can be reached after exactly k
steps from n0 through the decision tree. Thus

N0 = {n0} and Nk =
⋃

n∈Nk−1

N+1(n) (k = 1, 2, . . . K)

Evidently the last set NK is a subset of X, but X can also include some
members of the sets Nk with k < K.

Similarly, starting with any node n ∈ Nk (k = 1, 2, . . . K), define

Nk(n) := {n} and Nr(n) =
⋃

n′∈Nr−1(n)

N+1(n′) (r = k+1, k+2, . . . , K(n))

where K(n) + 1 is the maximum number of nodes, including the initial node,
on any path in T that passes through n. Then N(n) := ∪K(n)

r=k Nr(n) is the set
of nodes that succeed n in the tree T .

Given the consequence domain Y , let T (Y ) denote the collection of all simple
finite decision trees given by (20).

5.3 Behaviour and Unrestricted Domain

In any simple finite decision tree T ∈ T (Y ), at any decision node n ∈ N∗, the
agent’s behaviour or a possible course of action is described by the set β(T, n)
satisfying

∅ �= β(T, n) ⊂ N+1(n) (21)

Thus, any decision in β(T, n) takes the form of a move to a node n′ ∈ N+1(n)
that immediately succeeds n. When β(T, n) is multi-valued, this captures the

really a terminal node, but a chance node where a lottery determines which terminal node
and which elementary consequence y ∈ Y will result from earlier decisions. However, later
proofs are facilitated by allowing terminal nodes to have random consequences, which is why
I have chosen this formulation.
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idea that there is no good reason to choose one move rather than another among
the different members of β(T, n).

The unrestricted domain assumption is that β(T, n) is defined, and satisfies
(21), whenever T is a simple finite decision tree in T (Y ) with n as one of its
decision nodes. Note that β(T, n) must be defined even at nodes that cannot
be reached given earlier behaviour in T .

5.4 Continuation Subtrees and Dynamic Consistency

Let T be any simple finite decision tree, as in (20), and n ∈ N any node of T .
Then there exists a continuation subtree

T (n) = 〈N(n), N∗(n), X(n), n, N+1(·), γ(·) 〉

with initial node n, and with N(n) consisting of all nodes that succeed n in T .
Moreover, N∗(n) = N(n) ∩ N∗ is the set of decision nodes in T (n), whereas
X(n) = N(n) ∩ X is the set of terminal nodes. Also, N+1(·) and γ(·) in
the subtree T (n) are the restrictions to N(n) and X(n) respectively of the
same correspondence and mapping in the tree T . In fact, if n ∈ Nk(n), then
N(n) = ∪K(n)

k=0 Nk(n) where

N0(n) = {n} = N(n) ∩Nk(n)

and Nk(n) =
⋃

n′∈Nk−1(n)

N+1(n′) = N(n) ∩Nk(n)+k (k = 1 to K(n))

Let n′ ∈ N∗(n) be any decision node in the subtree T (n). In this case
β(T (n), n′) describes behaviour at node n′, but so does β(T, n′). It should
make no difference whether n′ is regarded as belonging to the whole tree T , or
only to the subtree T (n). In fact, because T (n′) is the relevant decision tree at
node n′, behaviour there will ultimately be determined at the very last minute
by β(T (n′), n′). This motivates the dynamic consistency assumption that

β(T, n′) = β(T (n), n′) whenever n′ ∈ N∗(n)

Note that this is a behavioural dynamic consistency condition, requiring con-
sistency between behaviour at the same decision node of a subtree and of the
whole tree. It is quite different from dynamic consistency of planned behaviour,
of preferences, or of choice. It also differs from consistency between planned
and actual behaviour. These differences have been the source of some misun-
derstanding which is further discussed at the end of Section 5.5.
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5.5 Consequentialism in Simple Decision Trees

Applying the consequentialist principle to simple decision trees requires the
feasible set of consequences F (T ) to be determined, for each simple finite de-
cision tree T , as well as the behaviour set Φβ(T ) of possible consequences of
behaviour. Both these sets can be found by backward recursion, starting with
terminal nodes and then proceeding in reverse to the initial node. Thus, we
can calculate successive sets F (T, n) and Φβ(T, n) for all n ∈ N by starting
from each n ∈ X and working backwards, until in the end we are able to define
F (T ) as F (T, n0) and Φβ(T ) as Φβ(T, n0).

Indeed, at any terminal node x ∈ X, there is no alternative to the uniquely
specified consequence γ(x) ∈ ∆(Y ). Because F (T ) and Φβ(T ) will be sets of
consequence lotteries, however, rather than single consequence lotteries, it is
natural to construct

F (T, x) := Φβ(T, x) := {γ(x)} (all x ∈ X) (22)

Consider any decision node n ∈ N∗. Suppose that for all n′ ∈ N+1(n) the two
sets F (T, n′) and Φβ(T, n′) have already been constructed and, as the induction
hypothesis, that they satisfy

∅ �= Φβ(T, n′) ⊂ F (T, n′) (23)

After reaching n, by moving to an appropriate node n′ ∈ N+1(n), any conse-
quence in F (T, n′) can be made feasible. Hence, F (T, n) is the union of all such
sets. But behaviour β allows only moves to nodes n′ ∈ β(T, n). Hence, only
consequences in Φβ(T, n′) for some n′ ∈ β(T, n) can result from behaviour β.
Therefore we construct

F (T, n) :=
⋃

n′∈N+1(n)

F (T, n′); Φβ(T, n) :=
⋃

n′∈β(T,n)

Φβ(T, n′) (24)

This construction is essentially the process which LaValle and Wapman (1986)
call “rolling back” the decision tree. Now, it is obvious from (23) that

∅ �= Φβ(T, n) ⊂ F (T, n) (25)

This confirms that the induction hypothesis also holds at n. So, by backward
induction, (25) holds at any node n ∈ N .

Recalling that F (T ) = F (T, n0) and also Φβ(T ) = Φβ(T, n0) in any simple
decision tree T , (25) implies in particular

∅ �= Φβ(T ) ⊂ F (T ) (26)



26 Chapter 5

The consequentialist axiom then requires the existence of an implicit choice
function Cβ such that, for all simple finite decision trees T , one has

Φβ(T ) = Cβ(F (T )) (27)

In particular, (27) is satisfied if and only if, for any pair of decision trees T, T ′

with F (T ) = F (T ′), it is true that Φβ(T ) = Φβ(T ′). That is, for trees with
identical feasible sets of consequences, there must also be identical behaviour
sets of consequences.

At this stage it may be useful to note the distinction between (general) be-
haviour and consequentialist choice. The former is simply a description of
what moves might be made at each decision node of a decision tree. It need
not involve, even implicitly, any conscious or even unconscious process of choice.
By contrast, consequentialism restricts behaviour to yield the same (random)
consequences as if there were a conscious choice mechanism making selections
from the relevant feasible set.

Now, given any non-empty finite set F , it is easy to construct a decision tree
T such that F (T ) = F . Indeed, it suffices to construct a simple one-stage or
“reduced” decision tree T with components as in (20) specified by

N∗ = {n0}; X = N+1(n0) = {xλ | λ ∈ F ⊂ ∆(Y ) }; γ(xλ) = λ (all λ ∈ F )
(28)

Then, because of (26) and (27), consequentialism implies that

∅ �= Cβ(F ) ⊂ F (29)

At this stage, some interesting criticisms due to Machina (1989), McClennen
(1990) and others should be noted. Recall that dynamic consistency of be-
haviour requires the behaviour sets β(T, n′) and β(T (n), n′) to be the same
at all decision nodes n′ ∈ N∗(n), regardless of whether the subtree T (n) is
regarded as part of the whole tree T or not. Then, an obvious implication of
consequentialism is that the consequences Φβ(T, n) = Φβ(T (n)) of behaviour
in the subtree T (n) must depend only on the set F (T, n) = F (T (n)) of con-
sequences that are feasible in the subtree. Machina and McClennen call this
property “separability.” They dispute the property, however, and claim that it
makes an important difference whether a decision node n′ ∈ N∗(n) is treated
as a part of T or of T (n). Their argument is that consequences that occur in
T but not in T (n) may after all be relevant to behaviour in T (n), in which
case both consequentialism and this separability property are violated.10 But

10Some writers seem to suggest that it is dynamic consistency which is violated. Indeed,
unless this dependence of preferences on consequences in T \ T (n) is foreseen, there is a
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if consequences outside the subtree T (n) are relevant to decisions within the
tree, it seems clear that consequences have not been adequately described, and
that the consequence domain Y needs to be extended. As Munier (1996) in
particular has pointed out, an important issue which then arises is whether
in practice the consequence domain can be enriched in a way that allows all
behaviour to be explained without at the same time making the unrestricted
domain assumption implausible.

5.6 Consequentialism Implies Ordinality

Given behaviour β, define the implicit weak preference relation Rβ on ∆(Y ) by

λ Rβ µ ⇐⇒ λ ∈ Cβ({λ, µ }) (30)

for all pairs λ, µ ∈ ∆(Y ). Impose also the reflexivity condition that λ Rβ λ for
all λ ∈ ∆(Y ). Thus, Rβ is the reflexive binary preference relation revealed by
behaviour in decision trees with only a pair of feasible consequence lotteries.
Let Iβ be the associated indifference relation defined by

λ Iβ µ ⇐⇒ [λ Rβ µ & µ Rβ λ] ⇐⇒ Cβ({λ, µ }) = {λ, µ }

and let Pβ be the associated strict preference relation defined by

λ Pβ µ ⇐⇒ [λ Rβ µ & not µ Rβ λ] ⇐⇒ Cβ({λ, µ }) = {λ}

The following is a striking implication of three axioms set out in Sections 5.3,
5.4 and 5.5 respectively:

Theorem 5 (Consequentialism Implies Ordinality): Let behaviour β be de-
fined for an unrestricted domain of simple finite decision trees, and satisfy both
dynamic consistency and consequentialism. Then the implicit preference rela-
tion Rβ is a (complete and transitive) preference ordering on ∆(Y ). Moreover,
the implicit choice function is ordinal — i.e., for every non-empty finite set
F ⊂ ∆(Y ), one has

Cβ(F ) = {λ ∈ F | µ ∈ F =⇒ λ Rβ µ } (31)

sense in which both preferences and choice may have to be dynamically inconsistent — cf.
Hammond (1976, 1988c). But I prefer to consider dynamic consistency of behaviour, which
is satisfied virtually automatically. So the criticisms apply to the consequentialist hypothesis
and the implied property of separability, rather than to the behavioural dynamic consistency
condition.
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For a general choice space, this result was first proved in Hammond (1977) by
using Arrow’s (1959) characterization of an ordinal choice function. The direct
proof provided here seems preferable. It proceeds by way of four lemmas:

Lemma 5.1: For any finite subset F ⊂ ∆(Y ), if λ ∈ Cβ(F ) and µ ∈ F , then
λ Rβ µ.

Lemma 5.2: For any finite subset F ⊂ ∆(Y ), if λ ∈ Cβ(F ) and µ ∈ F with
µ Rβ λ, then µ ∈ Cβ(F ).

Lemma 5.3: Equation (31) is true for any non-empty finite F ⊂ ∆(Y ).

Lemma 5.4: The binary relation defined by (30) is a (complete and transitive)
preference ordering.

n0
✟✟✟✟✟

n1
✟✟✟✟✟

�xλ

❍❍❍❍❍ �xµ❤❤❤❤❤❤❤❤❤❤ �
❍❍❍❍❍❍❍❍❍❍ �

�

✝ xν (ν ∈ F \ {λ, µ })✞

✆

Figure 2 Decision Tree Illustrating Ordinality

Lemmas 5.1 and 5.2 are both proved by considering a particular decision tree
T , as illustrated in Figure 2. The components specified in (20) are given by:

N∗ = {n0, n1}; X = {xν | ν ∈ F };
N+1(n0) = {n1} ∪ {xν | ν ∈ F \ {λ, µ } }; N+1(n1) = {xλ, xµ }; (32)

γ(xν) = ν (all ν ∈ F )

In fact, for any non-empty finite subset F of ∆(Y ) with λ, µ ∈ F , the finite tree
T can be constructed to satisfy (32). By the unrestricted domain hypothesis,
∅ �= β(T, n) ⊂ N+1(n) for n ∈ {n0, n1 }. Also, F (T, xν) = Φβ(T, xν) = {ν} for
all ν ∈ F , by (22). Then the construction (24) gives

F (T (n1)) = F (T, n1) = F (T, xλ) ∪ F (T, xµ) = {λ, µ };
F (T ) = F (T, n0) = F (T, n1) ∪

[
∪ν∈F\{λ,µ }F (T, xν)

]
= {λ, µ } ∪ [F \ {λ, µ }] = F
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Now, λ ∈ Cβ(F ) implies λ ∈ Φβ(T ). But construction (24) implies that

Φβ(T (n1)) = Φβ(T, n1) =
⋃

n′∈β(T,n1)

Φβ(T, n′) = { ν | xν ∈ β(T, n1) };

Φβ(T ) = Φβ(T, n0) =
⋃

n′∈β(T,n0)

Φβ(T, n′) (33)

Because λ �∈ Φβ(T, n′) for all n′ ∈ N+1(n0) \ {n1}, it follows from λ ∈ Cβ(F )
that n1 ∈ β(T, n0) and also that λ ∈ Φβ(T, n1). The latter implies that xλ ∈
β(T, n1).

Proof of Lemma 5.1: Because xλ ∈ β(T, n1), it follows from dynamic consis-
tency that xλ ∈ β(T (n1), n1). But F (T (n1)) = {λ, µ }, whereas Φβ(T (n1)) =
Φβ(T, n1) � λ. From this one has λ ∈ Cβ(F (T (n1))) = Cβ({λ, µ }). So λ Rβ µ,
by definition (30) of Rβ .

Proof of Lemma 5.2: Suppose also that µ Rβ λ. Then µ ∈ Cβ({λ, µ }) =
Φβ(T (n1)) = Φβ(T, n1). Because it has already been proved that n1 ∈ β(T, n0),
one has

Cβ(F ) = Φβ(T ) = Φβ(T, n0) =
⋃

n′∈β(T,n0)

Φβ(T, n′) ⊃ Φβ(T, n1) � µ

as an implication of (33).

Proof of Lemma 5.3: By Lemma 5.1,

Cβ(F ) ⊂ {λ ∈ F | µ ∈ F =⇒ λ Rβ µ } (34)

Conversely, by (29) there must exist ν ∈ Cβ(F ). Suppose now that λ ∈ F and
λ Rβ µ for all µ ∈ F . Then λ Rβ ν in particular. Therefore, by Lemma 5.2
with ν and λ replacing λ and µ respectively, it follows that λ ∈ Cβ(F ). This
proves that

{λ ∈ F | µ ∈ F =⇒ λ Rβ µ } ⊂ Cβ(F )

Together with (34), this confirms (31).

Proof of Lemma 5.4 — Completeness of Rβ : Given any pair λ, µ ∈ ∆(Y ),
the choice set Cβ({λ, µ }) cannot be empty because of (29). Hence, either λ ∈
Cβ({λ, µ }), in which case definition (30) implies that λ Rβ µ, or alternatively
µ ∈ Cβ({λ, µ }), in which case (30) implies µ Rβ λ.

— Transitivity of Rβ : Suppose λ, µ, ν ∈ ∆(Y ) and λ Rβ µ, µ Rβ ν. Let
F := {λ, µ, ν }. By (29), Cβ(F ) is non-empty. This leaves three possible cases
(which need not be mutually exclusive, however):
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(i) If λ ∈ Cβ(F ), then Lemma 5.1 implies that λ Rβ ν.

(ii) If µ ∈ Cβ(F ), then λ Rβ µ and Lemma 5.2 imply that λ ∈ Cβ(F ), so case
(i) applies.

(iii) If ν ∈ Cβ(F ), then µ Rβ ν and Lemma 5.2 imply that µ ∈ Cβ(F ), so case
(ii) applies.

Therefore, case (i) always applies. So λ Rβ ν, as required.

6 Consequentialist Foundations:
Independence

6.1 Finite Decision Trees with Chance Nodes

Section 5 restricted attention to “simple” finite decision trees, whose non-
terminal nodes are all decision nodes. Here the domain of decision trees will
be expanded to include trees with a set N0 of chance nodes. Thus, the set
N can be partitioned into the three pairwise disjoint subsets N∗, N0 and X,
where as before N∗ denotes the set of decision nodes and X the set of ter-
minal nodes. The other new feature will be that (objective) transition proba-
bilities π(n′|n) are specified for every chance node n ∈ N0 and for every im-
mediate successor n′ ∈ N+1(n). In particular, the non-negative real numbers
π(n′|n) (n′ ∈ N+1(n)) should satisfy

∑
n′∈N+1(n) π(n′|n) = 1 and so represent

a (simple) probability distribution in ∆(N+1(n)).

As before, behaviour β will be described by the sets β(T, n) for each finite
decision tree T and each decision node n ∈ N∗ of T . The unrestricted domain
assumption will be that β(T, n) is defined as a non-empty subset of N+1(n)
for all such pairs (T, n). But there will also be reason to invoke the almost
unrestricted domain assumption. This requires β(T, n) to be specified only for
decision trees T in which π(n′|n) > 0 for all n′ ∈ N+1(n) at any chance node
n ∈ N0. To some extent, this assumption can be justified by requiring all
parts of a decision tree that can be reached with only zero probability to be
“pruned” off. Such pruning makes good sense in single-person decision theory.
But, as discussed in Hammond (1994, 1997), it has unacceptable implications
in multi-person game theory.
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6.2 Consequentialism in Finite Decision Trees

In this extended domain of finite decision trees that may include chance nodes,
most of the analysis set out in Section 5 remains valid. However, rules (22) and
(24) in Section 5.5 for calculating the sets F (T, n) and Φβ(T, n) by backward
recursion need supplementing, in order to deal with chance nodes.

First, given subsets Si ⊂ ∆(Y ) and non-negative numbers αi (i = 1, 2, . . . , k)
with

∑k
i=1 αi = 1, define

∑k

i=1
αi Si = {λ ∈ ∆(Y ) | ∃λi ∈ Si (i = 1, 2, . . . , k) : λ =

∑k

i=1
αi λi }

as the corresponding set of convex combinations or probability mixtures. Then,
for all n ∈ N0, construct the two sets

F (T, n) :=
∑

n′∈N+1(n)
π(n′|n)F (T, n′) (35)

Φβ(T, n) :=
∑

n′∈N+1(n)
π(n′|n) Φβ(T, n′) (36)

This construction can be explained as follows. Suppose that λ(n′) ∈ F (T, n′)
(n′ ∈ N+1(n)) is any collection of lotteries each of which will be feasible
after reaching n, provided that chance selects the appropriate node n′. So
the compound lottery in which first n′ is selected with probabilities π(n′|n)
(n′ ∈ N+1(n)) and then a consequence y is selected with probabilities λ(n′)(y)
(y ∈ Y ) must also be feasible. Now we invoke what Luce and Raiffa (1957,
p. 26) call the reduction of compound lotteries assumption, originally due to
von Neumann and Morgenstern (1953, Axiom (3:C:b), p. 26).11 This states
that the above compound lottery reduces to the single lottery λ ∈ ∆(Y ) with
λ =

∑
n′∈N+1(n) π(n′|n)λ(n′). Then (35) says that this λ belongs to the feasible

set F (T, n) at node n. Conversely, (35) requires that, whenever λ ∈ F (T, n),
this can only be because there exists a collection of lotteries λ(n′) ∈ F (T, n′)
(n′ ∈ N+1(n)) such that λ =

∑
n′∈N+1(n) π(n′|n)λ(n′). Similarly for Φβ(T, n),

the set of possible consequences of behaviour. See (37) below for a specific
example.

11Actually, von Neumann and Morgenstern (p. 28) link this axiom to the absence of “utility
for gambling”, and write (p. 632) that the “axiom expresses the combination rule for multiple
chance alternatives, and it is plausible, that a specific utility or disutility for gambling can
only exist if this simple combination rule is abandoned.” Luce and Raiffa (p. 26) concur with
this interpretation, and also write of there being no “pleasure of suspense”. Consequentialism
requires that, if it is normatively appropriate for feelings of suspense or the excitement of
gambling to affect decision-making, then such psychological variables should be included as
part of each possible consequence.
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Consider the restricted domain of simple decision trees without any chance
nodes. Arguing as in Section 5, there must exist an implicit preference order-
ing Rβ on the domain ∆(Y ) of consequence lotteries such that, for all simple
decision trees T , one has

Cβ(F (T )) = {λ ∈ F (T ) | µ ∈ F (T ) =⇒ λ Rβ µ }

6.3 Consequentialism Implies Independence

Once chance nodes are allowed into decision trees, however, ordinality is not
the only implication of the three axioms set out in Sections 5.3, 5.4 and 5.5
respectively. The strong independence condition (I*) is as well. To see this,
consider the particular decision tree T illustrated in Figure 3, with:

N0 = { n0}; N∗ = {n1}; X = {xλ, xµ, xν};
N+1(n0) = {n1, xν }; N+1(n1) = {xλ, xµ };
π(n1|n0) = α; π(xν |n0) = 1− α;

γ(xλ) = λ; γ(xµ) = µ; γ(xν) = ν

❡
n0

✘✘✘✘✘✘α
n1

✘✘✘✘✘✘�xλ

�xµ
1− α

�xν

Figure 3 Decision Tree Illustrating Independence

Constructions (22), (24), (35) and (36) imply that:

F (T, xρ) = Φβ(T, xρ) = {ρ} (ρ ∈ {λ, µ, ν }); F (T, n1) = {λ, µ }

and also that

F (T ) = F (T, n0) = αF (T, n1) + (1− α)F (T, xν)
= α{λ, µ } + (1− α){ν}
= {αλ + (1− α)ν, αµ + (1− α)ν }; (37)

Φβ(T ) = Φβ(T, n0) = αΦβ(T, n1) + (1− α)Φβ(T, xν)
= αΦβ(T, n1) + (1− α){ν}
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Therefore

λ Rβ µ ⇐⇒ λ ∈ Cβ({λ, µ }) = Cβ(F (T, n1)) = Φβ(T, n1)
⇐⇒ αλ + (1− α)ν ∈ αΦβ(T, n1) + (1− α){ν} = Φβ(T, n0)
⇐⇒ αλ + (1− α)ν ∈ Cβ(F (T, n0)) (38)
⇐⇒ αλ + (1− α)ν Rβ αµ + (1− α)ν

This is the strong independence condition (I*), but with the crucial difference
that (38) is valid even when α = 0.

Indeed, if α = 0 really were allowed in the decision tree T illustrated in Figure 3,
then (38) would imply that

λ Rβ µ ⇐⇒ ν Rβ ν

But Theorem 5 says that Rβ is a preference ordering, so ν Rβ ν is always true
because Rβ is reflexive. From this it follows that λ Rβ µ (and also µ Rβ λ)
for all λ, µ ∈ ∆(Y ). The implication is that all lotteries in ∆(Y ) must be
indifferent, and that Φβ(T ) = F (T ) in any finite decision tree T . Behaviour
must be entirely insensitive.

This explains why it seems natural to invoke only the assumption of an almost
unrestricted domain, and so to exclude decision trees having any zero transition
probability at a chance node. Then (38) applies only when 0 < α < 1, or
trivially when α = 1, and so (38) becomes exactly the same as the strong
independence condition (I*).

Finally, it should be noted that essentially the same argument for the indepen-
dence axiom was advanced by LaValle and Wapman (1986). A related argument
can also be found in Samuelson (1988). But all these authors postulate the ex-
istence of a preference ordering, whereas the consequentialist axioms presented
here imply both the existence of a preference ordering and the independence
axiom.

6.4 Ordinality and Strong Independence

Characterize Consequentialism

So far, it has been shown that consequentialist and dynamically consistent
behaviour on an almost unrestricted domain of finite decision trees must max-
imize an implicit preference ordering satisfying the strong independence condi-
tion (I*). A converse of this result is also true. Given any preference ordering
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�∼ on ∆(Y ) satisfying condition (I*), there exists consequentialist and dynami-
cally consistent behaviour β on an almost unrestricted domain of finite decision
trees such that the implicit preference ordering Rβ is identical to the given or-
dering �∼.

To show this, for any given finite decision tree T , first construct the feasible
sets F (T, n) by backward recursion as in (22), (24) and (35). Second, for each
n ∈ N , construct the set of preference maximizing lotteries

Ψ(T, n) := {λ ∈ F (T, n) | µ ∈ F (T, n) =⇒ λ �∼ µ } (39)

This set is non-empty because F (T, n) is finite and �∼ is an ordering. Next,
for any decision node n ∈ N∗, let β(T, n) be any subset of N+1(n) with the
property that ⋃

n′∈β(T,n)

Ψ(T, n′) = Ψ(T, n) (40)

Such a set always exists, because one can obviously put

β(T, n) = β∗(T, n) := {n′ ∈ N+1(n) | ∃λ ∈ F (T, n′) : λ ∈ Ψ(T, n) } (41)

In fact, β∗(T, n) is the largest set satisfying (40). But β(T, n) can be any non-
empty set such that ∪n′∈β(T,n) Ψ(T, n′) = ∪n′∈β∗(T,n) Ψ(T, n′). However, in
order for n′ ∈ β∗(T, n) \ β(T, n) to be possible, it must be true that Ψ(T, n′) ⊂
∪ñ∈β∗(T,n)\{n′}Ψ(T, ñ). Thus, some consequences as good as those in Ψ(T, n′)
must still be available even if the decision-maker refuses to move to n′.

Now, constructing the behaviour sets Φβ(T, n) by backward recursion as in
(22), (24) and (36) yields the following:

Lemma 6.1: At any decision node n ∈ N of any finite decision tree T , one
has Φβ(T, n) = Ψ(T, n), so that β is consequentialist and Rβ = �∼.

Proof: The proof will proceed by backward induction. First, at any terminal
node x ∈ X, (22) implies that Ψ(T, x) = Φβ(T, x) = F (T, x) = {γ(x)}.

Consider any non-terminal node n ∈ N \ X. As the induction hypothesis,
suppose that Φβ(T, n′) = Ψ(T, n′) is true at all nodes n′ ∈ N+1(n). Then two
different cases must be considered:

Case 1: n ∈ N∗. Here n is a decision node. Because of (24) and the induction
hypothesis, it follows from (40) that

Φβ(T, n) =
⋃

n′∈β(T,n)

Φβ(T, n′) =
⋃

n′∈β(T,n)

Ψ(T, n′) = Ψ(T, n)
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Case 2: n ∈ N0. Here n is a chance node. So, by (36) and the induction
hypothesis,

Φβ(T, n) =
∑

n′∈N+1(n)
π(n′|n) Φβ(T, n′) =

∑
n′∈N+1(n)

π(n′|n) Ψ(T, n′)

(42)
Now suppose that λ ∈ Φβ(T, n). Consider any µ ∈ F (T, n). Then, for all
n′ ∈ N+1(n), (35) and (36) imply that there exist λ(n′) ∈ Φβ(T, n′) and µ(n′) ∈
F (T, n′) satisfying

λ =
∑

n′∈N+1(n)
π(n′|n) λ(n′), µ =

∑
n′∈N+1(n)

π(n′|n)µ(n′) (43)

By the induction hypothesis, for all n′ ∈ N+1(n) one has λ(n′) ∈ Ψ(T, n′),
so λ(n′) �∼ µ(n′). Because of the hypothesis that �∼ satisfies conditions (O)
and (I*), Lemma 3.1 implies that it satisfies (FD*) as well. Therefore, because
λ(n′) �∼ µ(n′) for all n′ ∈ N+1(n), it follows that λ �∼ µ. Because this is true
for all µ ∈ F (T, n), one must have λ ∈ Ψ(T, n).

Conversely, suppose that λ ∈ Ψ(T, n). Because λ ∈ F (T, n), for all n′ ∈ N+1(n)
there exists λ(n′) ∈ F (T, n′) such that λ =

∑
n′∈N+1(n) π(n′|n) λ(n′). Because

λ ∈ Ψ(T, n), for any n′ ∈ N+1(n) and any µ(n′) ∈ F (T, n′) it must be true that

λ = π(n′|n)λ(n′) +
∑

n′′∈N+1(n)\{n′}
π(n′′|n) λ(n′′)

�∼ π(n′|n)µ(n′) +
∑

n′′∈N+1(n)\{n′}
π(n′′|n) λ(n′′)

Because π(n′|n) > 0, condition (I*) then implies that λ(n′) �∼ µ(n′). This is true
for all µ(n′) ∈ F (T, n′), so λ(n′) ∈ Ψ(T, n′). This is true for all n′ ∈ N+1(n).
Then (42) implies that λ ∈ Φβ(T, n).

In each of these two cases, it has been proved that Φβ(T, n) = Ψ(T, n). This
completes the backward induction argument.

6.5 Summary

The results of this section can be summarized in:
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Theorem 6:
(1) Suppose behaviour β is consequentialist and dynamically consistent for the
almost unrestricted domain of finite decision trees with only positive probabil-
ities at all chance nodes. Then β reveals a preference ordering Rβ on ∆(Y )
satisfying the strong independence condition (I*).

(2) Conversely, given any ordering �∼ on ∆(Y ) satisfying the strong indepen-
dence condition (I*), there exists consequentialist behaviour β which is dy-
namically consistent on the almost unrestricted domain of finite decision trees
with only positive probabilities such that the implicit preference ordering Rβ

on ∆(Y ) is identical to �∼.

7 Continuous Behaviour and Expected Utility

7.1 Continuous Behaviour

As shown in Section 3.3, the ordering and strong independence conditions (O)
and (I*) by themselves do not imply EU maximization. So, to arrive at the
EU hypothesis, the consequentialist axioms of Sections 5 and 6 need to be
supplemented by a continuity condition. To state this condition, consider any
infinite sequence of decision trees Tm (m = 1, 2, . . .) which are all identical
except for the positive probabilities πm(n′|n) at each chance node n ∈ N0. In
fact, suppose that at any chance node n ∈ N0, as m →∞ one has πm(n′|n) →
π̄(n′|n) for all n′ ∈ N+1(n). Let T̄ denote the “limit tree” with the probabilities
π̄(n′|n) at each chance node.

It would be usual to assume behaviour has the closed graph property requiring
that, at any decision node n∗ belonging to each of the trees Tm (m = 1, 2, . . .),
whenever it is true that n ∈ β(Tm, n∗) for all large m, then n ∈ β(T̄ , n∗) in
the limit tree. Because each set N+1(n) is finite, implying that ∆(N+1(n)) is
compact at every chance node n, this is equivalent to upper hemi-continuity
of the correspondence from probabilities to behaviour in each decision tree —
the condition that is fundamental in, for instance, proving existence of Nash
equilibrium in an n-person game where mixed strategies are allowed. However,
there is a difficulty here because, if π̄(n′|n) = 0 for some n′ ∈ N+1(n), then
the node n′ and all its successors in the set N(n′) should be excluded from the
tree T̄ .
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Thus, the closed graph property should be weakened as follows. The limit tree
T̄ should have exactly the same structure and consequence mapping as each
tree Tm in the sequence, except that any subtree following a node n′ for which
π̄(n′|n) = 0 should be “pruned off” from the limit tree T̄ . Let N̄∗ denote the
set of decision nodes in T̄ that remain after any necessary pruning. Now, the
continuous behaviour condition (CB) requires that the closed graph property
should hold at each remaining decision node n∗ ∈ N̄∗ when the limit tree T̄ is
constructed in this special way. This condition has the important implication
that implicit preferences must be continuous:

Lemma 7.1: The continuous behaviour condition (CB) implies condition (C*).

Proof: Suppose that λ, µ, ν ∈ ∆(Y ) with λ Pβ µ and µ Pβ ν. Recall that
the stochastic monotonicity Lemma 4.1(b) is true under conditions (O) and (I)
alone. So it applies to the ordering Rβ and to the pair λ, ν ∈ ∆(Y ) satisfying
λ Pβ ν. In particular, it implies that

α′λ + (1− α′)ν Pβ αλ + (1− α)ν ⇐⇒ α′ > α (44)

Consider next the two sets

A := {α ∈ [0, 1] | αλ + (1− α)ν Rβ µ }
A := {α ∈ [0, 1] | µ Rβ αλ + (1− α)ν }

Because of (44) and because Rβ is transitive, there must exist a unique common
boundary point α∗ := supA = inf A such that α ∈ A whenever 0 ≤ α < α∗,
whereas α′ ∈ A whenever α∗ < α′ ≤ 1. Now, 0 �∈ A and 1 �∈ A, so 0 < α∗ < 1.
Furthermore:

α ∈ [0, α∗) =⇒ µ Pβ αλ+(1−α)ν; α ∈ (α∗, 1] =⇒ αλ+(1−α)ν Pβ µ (45)

Consider any two convergent sequences αm, αm (m = 1, 2, . . .) of probabilities
which have the common limit α∗, while also satisfying 0 < αm < α∗ < αm < 1
for all m. Let Tm, Tm (m = 1, 2, . . .) be the two corresponding sequences of
decision trees of the form illustrated in Figure 4, where α = αm in each tree
Tm, but α = αm in each tree Tm.

The constant tree structure and consequence mapping for each of these trees
are given by:

N∗ = {n0}; N0 = {n1}; X = {xλ, xµ, xν };
N+1(n0) = {n1, xµ }; N+1(n1) = {xλ, xν };

γ(xλ) = λ; γ(xµ) = µ; γ(xν) = ν
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n0
✘✘✘✘✘✘ ❡

n1✘✘✘✘✘✘α �xλ

1− α �xµ �xν

Figure 4 Decision Tree Illustrating Continuity

For each α in the set

A∗ := {αm | m = 1, 2, . . . } ∪ {αm | m = 1, 2, . . . }

the transition probabilities at the chance node n1 are given by:

πα(xλ|n1) = α; πα(xν |n1) = 1− α

Because A∗ ⊂ (0, 1), the common tree structure is valid for all α ∈ A∗, without
any need to prune off either of the terminal nodes xλ or xν . Note that for each
tree T in the set

{Tm | m = 1, 2, . . . } ∪ {Tm | m = 1, 2, . . . }

one has F (T, xρ) = {ρ} for all ρ ∈ {λ, µ, ν }. It follows that

F (T, n1) = α{λ}+ (1− α){ν} = {αλ + (1− α)ν }
F (T ) = F (T, n0) = F (T, n1) ∪ {µ} = {αλ + (1− α)ν, µ }

Together with (45), the construction of the two sequences αm, αm obviously
implies that

β(Tm, n0) = {xµ}; β(Tm, n0) = {n1}
Evidently, applying condition (CB) to the particular tree T ∗ with limiting
probability α∗ ∈ (0, 1) gives β(T ∗, n0) = {xµ, n1 }. Therefore α∗ ∈ A ∩ A. It
follows that A = [0, α∗] and that A = [α∗, 1]. In particular, the two sets A and
A are both closed, as condition (C*) requires.

7.2 Dynamic Programming and Continuous Behaviour

Let v : Y → IR be any NMUF. For each λ ∈ ∆(Y ), let U(λ) :=
∑

y∈Y λ(y) v(y)
denote the expected value of v. Let T be any finite decision tree. Then the
node valuation function w(T, ·) : N → IR is calculated by backward recursion,
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starting with terminal nodes x ∈ X where w(T, x) := U(γ(x)). When n ∈ N∗

is a decision node, define

w(T, n) := max
n′

{w(T, n′) | n′ ∈ N+1(n) }

and when n ∈ N0 is a chance node, define

w(T, n) :=
∑

n′∈N+1(n)
π(n′|n) w(T, n′)

Evidently, given the continuation subtree T (n) with initial node n ∈ N , the
construction by backward recursion ensures that w(T (n), n′) = w(T, n′) when-
ever n′ is a node of T (n).

An obvious implication of the constructions (41) and of Lemma 6.1 is that, if
β is behaviour which maximizes expected utility U(λ), then

∅ �= β(T, n) ⊂ arg max
n′

{w(T, n′) | n′ ∈ N+1(n) } (46)

at any decision node n ∈ N∗. Also, at any node n ∈ N , one has

Φβ(T, n) = arg
w(T, n) =

}
max

λ
{U(λ) | λ ∈ F (T, n) } (47)

Both these statements can easily be verified by backward induction.

Note that (46) and (47) together constitute the principle of optimality in dy-
namic programming, stating that an optimal policy at each decision node is to
choose an immediately succeeding node in order to maximize the node valua-
tion function. The only difference from the standard theory is that the word
“node” has replaced “state”.

Now one can prove:

Lemma 7.2: Suppose that v : Y → IR is any NMUF. Then there exists
behaviour β that maximizes the expected value of v in each finite decision tree
T of the almost unrestricted domain T (Y ), and also satisfies condition (CB).

Proof: Let Tm (m = 1, 2, . . .) be any infinite sequence of finite decision trees
in T (Y ) that are all identical except for the positive probabilities πm(n′|n) at
each chance node n ∈ N0. Suppose that πm(n′|n) → π̄(n′|n) as m → ∞ for
all n′ ∈ N+1(n) at any chance node n ∈ N0. Let T̄ denote the limit tree, as
defined in Section 7.1, with set of nodes N̄ after eliminating those that can be
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reached only with zero probability. Also, let T̄ (n) denote the corresponding
limit of the subtrees Tm(n), rather than the continuation subtree of T̄ that
starts from initial node n. The difference is that the limit T̄ (n) is well defined
even at those nodes n ∈ N \ N̄ that can only be reached with zero probability
in T̄ . When n ∈ N0 is any chance node, note that

N̄+1(n) = {n′ ∈ N+1(n) | π̄(n′|n) > 0 }

First it will be confirmed by backward induction that:

Induction Hypothesis (H): At all nodes n ∈ N of each tree Tm, one has:

(a) (Upper Hemi-continuity) Every sequence satisfying λm ∈ F (Tm, n) (m =
1, 2, . . .) has a convergent subsequence, and the limit λ of any convergent
subsequence satisfies λ ∈ F (T̄ (n), n).

(b) (Lower Hemi-continuity) Any λ ∈ F (T̄ (n), n) is the limit of a sequence
satisfying λm ∈ F (Tm, n) (m = 1, 2, . . .).

These two properties are analogous to those required for the “maximum theo-
rem” of Berge (1963, p. 116) or Hildenbrand (1974, p. 29). Note first that (H)
is trivially true at any terminal node x ∈ X, where F (Tm, x) = F (T̄ (x), x) =
{γ(x)}. At any n ∈ N \X, assume that (H) is true at all n′ ∈ N+1(n).

Proof when n ∈ N∗ is a decision node: (a) Suppose that λm ∈ F (Tm, n)
(m = 1, 2, . . .). Then there must exist a corresponding sequence of nodes nm ∈
N+1(n) such that λm ∈ F (Tm, nm) (m = 1, 2, . . .). Because N+1(n) is a finite
set, there must exist a subsequence nmk and a limit point ñ ∈ N+1(n) such that
nmk = ñ for all large k. But then λmk ∈ F (Tmk , ñ) for all large k. Because (H)
holds at ñ ∈ N+1(n), the sequence λmk must have a convergent subsequence
λm′

k , which is the required convergent subsequence of λm.

It follows that if λm converges to λ, then λ is the limit of a subsequence which,
for some ñ ∈ N+1(n), satisfies λmk ∈ F (Tmk , ñ) (k = 1, 2, . . .). Because (H)
holds at ñ ∈ N+1(n), the limit λ ∈ F (T̄ (ñ), ñ). Because n is a decision node, ñ
is included in T̄ (n), implying that F (T̄ (ñ), ñ) = F (T̄ (n), ñ) ⊂ F (T̄ (n), n). So
λ ∈ F (T̄ (n), n).

(b) Suppose that λ ∈ F (T̄ (n), n). There must exist n′ ∈ N+1(n) such that
λ ∈ F (T̄ (n), n′) = F (T̄ (n′), n′). By the induction hypothesis, there exists a
sequence λm ∈ F (Tm(n′), n′) = F (Tm, n′) ⊂ F (Tm, n) (m = 1, 2, . . .) such
that λm → λ as m →∞, as required.
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Proof when n ∈ N0 is a chance node: (a) Suppose that λm ∈ F (Tm, n)
(m = 1, 2, . . .). Then

λm =
∑

n′∈N+1(n)
πm(n′|n) λm(n′)

where λm(n′) ∈ F (Tm, n′) for each n′ ∈ N+1(n). Because (H) holds at each
n′ ∈ N+1(n), the finite list of sequences 〈λm(n′)〉n′∈N+1(n) has a convergent
subsequence 〈λmk(n′)〉n′∈N+1(n) (k = 1, 2, . . .). But then the corresponding
subsequence

λmk =
∑

n′∈N+1(n)
πmk(n′|n)λmk(n′) (k = 1, 2, . . .) (48)

also converges. Denote the limit of 〈λmk(n′)〉n′∈N+1(n) by 〈λ(n′)〉n′∈N+1(n).
Because (H) holds at each n′ ∈ N+1(n), each limit λ(n′) ∈ F (T̄ (n′), n′). Now,
if λm converges to λ, of course λmk → λ as k → ∞. Then, taking the limit of
(48) as k →∞ gives

λ =
∑

n′∈N+1(n)
π̄(n′|n) λ(n′)

Furthermore, whenever π̄(n′|n) > 0, then n′ is included in T̄ (n), implying that
n′ ∈ N̄+1(n). Hence,

λ =
∑

n′∈N̄+1(n)
π̄(n′|n) λ(n′)

which confirms that λ ∈ F (T̄ (n), n).

(b) Suppose that λ ∈ F (T̄ (n), n). Then

λ =
∑

n′∈N̄+1(n)
π̄(n′|n) λ(n′)

where λ(n′) ∈ F (T̄ (n), n′) for each n′ ∈ N̄+1(n). Because (H) holds at each
n′ ∈ N̄+1(n), there exists a sequence λm(n′) ∈ F (Tm(n′), n′) (m = 1, 2, . . .)
such that λm → λ as m → ∞. For each n′ ∈ N+1(n) \ N̄+1(n), choose
λm(n′) ∈ F (Tm(n′), n′) arbitrarily. Then

λm =
∑

n′∈N+1(n)
πm(n′|n)λm(n′) ∈ F (Tm, n) (m = 1, 2, . . .)

Also, because π̄(n′|n) = 0 for all n′ ∈ N+1(n) \ N̄+1(n), one has

λm →
∑

n′∈N+1(n)
π̄(n′|n)λ(n′) =

∑
n′∈N̄+1(n)

π̄(n′|n) λ(n′) = λ as m →∞

This completes the proof of (H) by induction.
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Next, consider the behaviour β∗ defined by (41) for all finite decision trees
T ∈ T (Y ) and all decision nodes n ∈ N∗. This behaviour is evidently conse-
quentialist and dynamically consistent. Suppose that n is a decision node of T̄ ,
and also that nm ∈ β∗(Tm, n) (m = 1, 2, . . .). Because N+1(n) is finite, there
exists a subsequence nmk ∈ β∗(Tmk , n) and ñ ∈ N+1(n) such that nmk = ñ
(k = 1, 2, . . .). By definition (41), there exists a corresponding sequence satisfy-
ing λk ∈ F (Tmk , n) ∩Ψ(Tmk , n), where Ψ(Tmk , n) is defined by (39). Because
(H) is true at ñ, there is a convergent subsequence λkr (r = 1, 2, . . .) with limit
λ ∈ F (T̄ (n), ñ). Let µ be any other lottery in F (T̄ (n), ñ). Because (H) is true
at ñ, there is a sequence µm ∈ F (Tm, n) (m = 1, 2, . . .) such that µm → µ
as m → ∞. Then λm ∈ Φβ(Tm, n) implies that U(λm) ≥ U(µm). Because
U(λ) is a continuous function of the probabilities λ(y) (y ∈ Y ), taking limits
as m → ∞ gives U(λ) ≥ U(µ). Because µ is any lottery in F (T̄ (n), n), it
follows that λ ∈ Ψ(T̄ (n), ñ). So λ ∈ F (T̄ (n), ñ) ∩ Ψ(T̄ (n), ñ), implying that
ñ ∈ β∗(T̄ (n), n). This verifies that β∗ satisfies condition (CB), and so completes
the proof of Lemma 7.2.

7.3 Main Theorem

Gathering together the results of Sections 3 and 4 with Theorem 6 and Lemmas
7.1–7.2 gives the following theorem, which constitutes the main result of this
chapter for the case of finite lotteries generated by finite decision trees.

Theorem 7:

(1) Let β be consequentialist behaviour satisfying dynamic consistency and
continuity condition (CB) for the almost unrestricted domain T (Y ) of finite
decision trees with only positive probabilities at all chance nodes. Then there
exists a unique cardinal equivalence class of NMUFs v : Y → IR such that β
maximizes expected utility.

(2) Conversely, let v : Y → IR be any NMUF. Then there exists consequentialist
behaviour β satisfying dynamic consistency and condition (CB) on the domain
T (Y ) with the property that the implicit preference ordering Rβ is represented
by the expected value of v.
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8 Discrete Lotteries, Boundedness,
and Dominance

8.1 Discrete Lotteries

Previous sections have considered only the space ∆(Y ) of simple lotteries on
the set Y of possible consequences. Such lotteries have a finite support of
consequences having positive probability. On the other hand, a countable lottery
on Y is a mapping λ : Y → [0, 1] with the properties that:

(i) there is a countably infinite support K = { y1, y2, y3, . . . } ⊂ Y of λ such
that λ(y) > 0 for all y ∈ K and λ(y) = 0 for all y ∈ Y \K;

(ii)
∑

y∈K λ(y) =
∑

y∈Y λ(y) = 1.

A discrete lottery or probability distribution on Y is either simple or countable;
in other words, it satisfies (i) and (ii) above for a support K which is either finite
or countably infinite. Let ∆∗(Y ) denote the set of all such discrete lotteries.
Like ∆(Y ), it is convex and so a mixture space. Of course, if Y is a finite set,
then ∆(Y ) = ∆∗(Y ); to avoid this uninteresting case, the rest of this chapter
will assume that Y is infinite.

Many of the earlier results for the space ∆(Y ) of simple lotteries extend in
a straightforward way to the space ∆∗(Y ) of discrete lotteries. This section
therefore concentrates on the differences between the results for the two spaces.

8.2 Unbounded Utility

Let v : Y → IR be any NMUF defined on sure consequences. Unless v is
bounded, its expected value may not even be defined for some possible lotteries
in ∆∗(Y ). Indeed, suppose that v happens to be unbounded both above and
below. Then there exists an infinite sequence of consequences yk (k = 1, 2, . . .)
such that:

v(y2k−1) < −42k−1 −
∑2k−2

r=1
22k−1−r |v(yr)|;

v(y2k) > 42k +
∑2k−1

r=1
22k−r |v(yr)|

Consider now the countable lottery λ =
∑∞

r=1 2−r 1yr ∈ ∆∗(Y ). Its expected
value, if it existed, would be the infinite sum

∑∞
r=1 2−r v(yr). But for k =
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1, 2, . . . the above pair of inequalities imply that:
∑2k−1

r=1
2−r v(yr) ≤

∑2k−2

r=1
2−r |v(yr)|+ 21−2k v(y2k−1) < −22k−1;

∑2k

r=1
2−r v(yr) ≥

∑2k−1

r=1
2−r |v(yr)|+ 2−2k v(y2k) > 22k

It follows that limn→∞
∑n

r=1 2−r v(yr) is undefined, and so therefore is the
expected value of v w.r.t. λ.

Even if v is bounded below, but unbounded above, there is still a problem
in applying the EU hypothesis to the whole of ∆∗(Y ). This is the point of
Menger’s (1934) generalization of the St. Petersburg paradox which was briefly
reviewed in Section 1. Indeed, there will be an infinite sequence of consequences
y′
1, y

′
2, y

′
3, . . . such that v(y′

k) > 4k for k = 1, 2, . . .. In this case, the expected
utility of the lottery λ′ =

∑∞
r=1 2−r y′

r ∈ ∆∗(Y ) is +∞. Moreover, for k large
enough, one certainly has v(y′

k) > v(y′
1). Now, if the independence axiom (I)

were satisfied, then

λ′′ = 1
2y′

k +
∑∞

r=2
2−r y′

r � λ′ = 1
2y′

1 +
∑∞

r=2
2−r y′

r

Yet the expected utility of λ′′ is also +∞, of course. So the EU criterion fails to
distinguish lotteries which, according to condition (I), should not be regarded
as indifferent. Similarly if v is bounded above but unbounded below.

Consider next the upper preference set

A := {α ∈ [0, 1] | α λ′ + (1− α)y′
1
�∼ y′

k }
If the EU hypothesis is satisfied, this set must be the half-open interval (0, 1],
because the expected utility of α λ′ + (1 − α)y′

1 is +∞ unless α = 0. This
contradicts the continuity condition (C) because, even though λ′ � y′

k � y′
1,

there is no α′′ ∈ (0, 1) such that y′
k � α′′ λ′+(1−α′′)y′

1. A similar contradiction
arises if v is bounded above but unbounded below.

In order to avoid such difficulties in applying the EU hypothesis to ∆∗(Y ), it
seems natural to assume that v : Y → IR is bounded both above and below —
i.e., that there exist v and v such that v ≤ v(y) ≤ v for all y ∈ Y . Call this
the boundedness condition (B). Amongst other implications, this will rule out
the St. Petersburg paradox — either as originally stated, or in the generalized
form due to Menger (1934). Of course, if any one NMUF is bounded, so is any
cardinally equivalent NMUF.

However, unlike the three earlier implications of the EU hypothesis — namely
conditions (O), (I), (C) and their variants — condition (B) has not been directly
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expressed in terms of preferences. Yet it can be. Indeed, in combination with
conditions (O), (I), and (C), condition (B) is evidently satisfied iff, for all fixed
consequences b, c ∈ Y with b � c, the constant MRS defined in (6) in Section
2.3 and given by the ratio [v(a) − v(c)]/[v(b) − v(c)] of utility differences is
bounded both above and below as a function of a ∈ Y . This is the bounded
preferences condition. In the following, however, condition (B) will be assumed
directly.

Now recall how Section 3 showed that, applied to the space ∆(Y ), the EU
hypothesis implies the three conditions (O), (I*) and (C*). Of course, the
same three properties should be implications of the EU hypothesis applied to
∆∗(Y ). But, as has just been shown, there are some difficulties with these
properties unless utility is bounded (or unless the EU hypothesis is restricted
to lotteries in ∆∗(Y ) whose expected utility is finite). It will turn out too that
boundedness entails an additional dominance condition. In this sense, the EU
hypothesis can have other implications when applied to the whole of ∆∗(Y ).

Conversely, Section 4 showed that the three conditions (O), (I) and (C) imply
the EU hypothesis for the whole of ∆(Y ). But for ∆∗(Y ), even the stronger
conditions (O), (I*) and (C*), without any extra assumptions, imply only a
weakened version of the EU hypothesis. One possibility is that the preference
ordering �∼ is represented by a utility function U defined on the whole of ∆∗(Y ).
But then any λ ∈ ∆∗(Y )\∆(Y ) is an infinite probability mixture, so the (MP)
property cannot be applied to the infinite sum λ =

∑
y∈Y λ(y) 1y in order to

argue that U(λ) =
∑

y∈Y λ(y) v(y). In other words, the EU hypothesis may
not extend to the whole of ∆∗(Y ). A rather complicated example to show
this possibility, relying on Zorn’s lemma or the equivalent axiom of choice, is
provided by Fishburn (1970, pp. 141–2); it seems that no simple example exists.

Alternatively, a second possibility is that only on a convex subset of ∆∗(Y )
which includes ∆(Y ) can �∼ be represented by a utility function U satisfying
the mixture preservation property (MP). But then U may not be defined on
the whole of ∆∗(Y ). For example, if the NMUF v : Y → IR is unbounded,
one could restrict the definition of U to lotteries in ∆∗(Y ) whose expectation
is finite. This excludes some lotteries in ∆∗(Y ) \ ∆(Y ). For an exploration of
what is then possible, see especially Wakker (1993).12

Instead of these two possibilities with an unbounded NMUF, I shall follow the
standard literature and concentrate on the third case. This occurs when �∼ is

12See also Wakker (1989, ch. V) for more on unbounded expected utility when there are
uncertain states of the world.
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represented on the whole of ∆∗(Y ) by an expected utility function satisfying
U(λ) =

∑
y∈Y λ(y) v(y) for all λ =

∑
y∈Y λ(y) 1y in ∆∗(Y ), where v(y) =

U(1y) for all y ∈ Y . Moreover, assume that condition (I) is satisfied throughout
∆∗(Y ). Then the arguments above establish that the NMUF v : Y → IR must
be bounded.

8.3 Bounded Expected Utility

The utility function U : ∆∗(Y ) → IR is said to satisfy the countable mixture
preservation property (MP*) if, whenever λi ∈ ∆∗(Y ) and αi ≥ 0 (i = 1, 2, . . .)
with

∑∞
i=1 αi = 1, then

U
(∑∞

i=1
αi λi

)
=

∑∞

i=1
αi U(λi) (49)

Lemma 8.1: Suppose that the function v : Y → IR is bounded. Let U :
∆∗(Y ) → IR be the utility function satisfying (MP) whose value at any λ ∈
∆(Y ) is the expectation U(λ) :=

∑
y∈Y λ(y) v(y) of v w.r.t. λ. Then U is well

defined and bounded on the whole of ∆∗(Y ), and (MP*) is also satisfied.

Proof: Suppose that v and v are respectively upper and lower bounds for
v on Y . Now, given any λ =

∑∞
r=1 λ(yr) 1yr

∈ ∆∗(Y ), it must be true that∑∞
r=k λ(yr) → 0 as k →∞. Evidently∑∞

r=k
λ(yr) v ≤

∑∞

r=k
λ(yr) v(yr) ≤

∑∞

r=k
λ(yr) v

and so
∑∞

r=k λ(yr) v(yr) → 0 as k → ∞. From this it follows that the utility
function

U(λ) :=
∑∞

r=1
λ(yr) v(yr) =

∑
y∈Y

λ(y) v(y)

is also well defined for any λ ∈ ∆∗(Y ). Of course, it must also satisfy the
inequalities v ≤ U(λ) ≤ v for all λ ∈ ∆∗(Y ).

Next, suppose that λi ∈ ∆∗(Y ) and αi ≥ 0 (i = 1, 2, . . .) with
∑∞

i=1 αi = 1.
For every finite k, one can write∑∞

i=1
αi λi =

∑k

i=1
αi λi +

(∑∞

i=k+1
αi

)
µk

where µk :=
∑∞

i=k+1 δi λi and δi := αi/
∑∞

j=k+1 αj (i = k+1, k+2, . . .). Then

U
(∑∞

i=1
αi λi

)
=

∑k

i=1
αi U(λi) +

∑∞

i=k+1
αi U(µk)

But
∑∞

i=1 αi = 1 implies
∑∞

i=k+1 αi → 0 as k → ∞. Because U is bounded
on ∆∗(Y ), one has

∑∞
i=k+1 αi U(µk) → 0, and so (49) follows.
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Now, by repeating the arguments of Section 3, it is easy to show that when
condition (B) is satisfied, then the EU hypothesis really does imply conditions
(O), (I*), and (C*) on the whole of ∆∗(Y ).

8.4 Dominance

Another important implication of the EU hypothesis, applied to the whole of
∆∗(Y ), is the following dominance condition (D). This states that, whenever
λi, µi ∈ ∆∗(Y ) and αi > 0 with λi

�∼ µi (i = 1, 2, . . .) and
∑∞

i=1 αi = 1, then∑∞
i=1 αi λi

�∼
∑∞

i=1 αi µi. The stronger condition (D*) requires strict prefer-
ence if in addition λi � µi for some i. Condition (D*) was originally formulated
by Blackwell and Girshick (1954, p. 105, H1). It is a natural extension of the
finite dominance condition (FD*) discussed in Section 3.2. The following result
shows when (D*) is a necessary condition.

Lemma 8.2: Suppose that the EU hypothesis is satisfied on ∆∗(Y ), and that
any NMUF v : Y → IR is bounded. Then the dominance condition (D*) is
satisfied.

Proof: Because of Lemma 8.1, the hypotheses imply that (MP*) is satisfied.
So if U(λi) ≥ U(µi) and αi > 0 for i = 1, 2, . . ., then

U
(∑∞

i=1
αi λi

)
− U

(∑∞

i=1
αi µi

)
=

∑∞

i=1
αi [U(λi)− U(µi)] ≥ 0

with strict inequality if U(λi) > U(µi) for some i.

Condition (D) evidently implies the following property. Suppose that λ, µ ∈
∆∗(Y ) satisfy µ({ y ∈ Y | 1y

�∼ λ }) = 1. Then µ =
∑∞

i=1 µ(yi) 1yi
where

the support of the distribution µ is the set { y1, y2, . . .}, and where 1yi
�∼ λ

for i = 1, 2, . . .. Because λ =
∑∞

i=1 µ(yi) λ, condition (D) implies that µ �∼ λ.
Similarly, if µ({ y ∈ Y | 1y

≺∼ λ }) = 1, then µ ≺∼ λ. A related property for
probability measures is the probability dominance condition (PD) that will be
used in Section 9.2.

8.5 Sufficient Conditions for the EU Hypothesis

It can now be proved that conditions (O), (I), (C) and (D) are sufficient for the
EU hypothesis to hold on ∆∗(Y ). In fact, it will turn out that conditions (B)
and (D) are logically equivalent in the presence of the other three. As remarked
in Section 8.1, however, the EU hypothesis on the whole of ∆∗(Y ) does not
follow from conditions (O), (I) and (C) alone.
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Lemma 8.3: Suppose that conditions (O), (I), and (C) apply to the whole
of the mixture space ∆∗(Y ). Then there exists a unique cardinal equivalence
class of utility functions U : ∆∗(Y ) → IR which represent �∼ and satisfy (MP).

Proof: Note that Lemma 4.6 is true of the space ∆∗(Y ).

Lemma 8.4: Conditions (O), (I), (C), and (B) together imply the EU hy-
pothesis on the whole of ∆∗(Y ).

Proof: Apply Lemma 8.3 and let U : ∆∗(Y ) → IR be any utility function
which represents �∼ and satisfies (MP) on ∆∗(Y ). Define v : Y → IR by
v(y) := U(1y) for all y ∈ Y . The EU hypothesis is then satisfied on ∆(Y ) and
by condition (B), the function v is bounded. So by Lemma 8.1, the function U
satisfies (MP*). Hence, U(λ) =

∑
y∈Y λ(y)v(y) for all λ ∈ ∆∗(Y ).

Lemma 8.5: Conditions (O), (I), (C), and (D) together imply condition (B).

Proof: By Lemma 8.3, there exists a utility function U : ∆∗(Y ) → IR which
represents �∼ and satisfies (MP).

Suppose that U were unbounded above. Then there would exist a sequence of
lotteries 〈λi〉∞i=0 in ∆∗(Y ) satisfying

U(λ0) ≥ 1 and U(λi) ≥ max{U(λi−1), 2i } (i = 1, 2, . . .)

Now define πk :=
∑∞

i=1 2−iλk+i ∈ ∆∗(Y ) (k = 0, 1, 2, . . .). Then, because
U(λk+i) ≥ U(λk) and so λk+i

�∼ λk for i = 1, 2, . . ., condition (D) implies
that πk

�∼ λk. Therefore U(πk) ≥ U(λk) ≥ 2k (k = 0, 1, 2, . . .). But π0 =∑k
i=1 2−iλi + 2−kπk and so U(π0) =

∑k
i=1 2−iU(λi) + 2−kU(πk) because of

(MP). Hence

U(π0) ≥
∑k

i=1
2−i 2i + 2−k 2k = k + 1

Since this is true for every integer k, this contradicts the requirement that U
should be real-valued on the whole of ∆∗(Y ).

The proof that U is bounded below is similar.
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8.6 Continuity

In order to state a continuity condition for preferences on ∆∗(Y ), this space
must first be given a topology. To do so, define the metric d on ∆∗(Y ) by

d(λ, µ) :=
∑

y∈Y
|λ(y)− µ(y)|

Note that, for all λ, µ ∈ ∆∗(Y ), one has

d(λ, µ) ≤
∑

y∈Y
[|λ(y)|+ |µ(y)|] =

∑
y∈Y

[λ(y) + µ(y)] = 2

and that d(λ, µ) = 2 iff λ(y) µ(y) = 0 for all y ∈ Y . Furthermore,

d(λ, µ) = max
f

{ |IEλf − IEµf | | ∀y ∈ Y : |f(y)| ≤ 1 }

because the maximum is attained by choosing f(y) = sign (λ(y) − µ(y)) for
all y ∈ Y . It follows that the infinite sequence 〈λn〉∞n=1 in ∆∗(Y ) converges
to λ iff IEλnf =

∑
y λn(y) f(y) converges to IEλf for every bounded function

f : Y → IR. This implies that the expectation IEλ f of any bounded function f
is continuous w.r.t. λ on ∆∗(Y ). Hence, if the EU hypothesis is satisfied and
the NMUF v is bounded, then the following continuous preference condition
(CP) is satisfied: for all λ̄ ∈ ∆∗(Y ), the two preference sets

{λ ∈ ∆∗(Y ) | λ �∼ λ̄ } and {λ ∈ ∆∗(Y ) | λ ≺∼ λ̄ }

must both be closed. In particular, because of Lemma 8.5, the four conditions
(O), (I), (C) and (D) together imply (CP).

A converse result includes (CP) among the set of sufficient conditions for the
EU hypothesis to be satisfied.

Lemma 8.6: Condition (CP) implies condition (C*).

Proof: Consider any pair λ, µ ∈ ∆∗(Y ). Define the convex hull

co{λ, µ } = { ν ∈ ∆∗(Y ) | ∃α ∈ [0, 1] : ν = α λ + (1− α)µ }

which is evidently a closed set. Hence, the two sets defined in (14) of Section
3.3 must be closed, because each is the intersection of a closed preference set
in ∆∗(Y ) with co{λ, µ }. This verifies condition (C*).

Lemma 8.7: Conditions (O), (I*) and (CP) jointly imply conditions (D) and
(D*).
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Proof: Suppose that λ∗ =
∑∞

i=1 αi λi and µ∗ =
∑∞

i=1 αi µi, where λi, µi ∈
∆∗(Y ) and αi > 0 with λi

�∼ µi (i = 1, 2, . . .) and
∑∞

i=1 αi = 1. Define the
two sequences

λk :=
∑k

i=1
αi λi +

∑∞

i=k+1
αi µi ∈ ∆∗(Y )

νk := (1− αk)−1

(∑k−1

i=1
αi λi +

∑∞

i=k+1
αi µi

)
∈ ∆∗(Y )

for k = 1, 2, . . ., with λ0 := µ∗. Note that λk = αk λk + (1 − αk) νk whereas
λk−1 = αk µk + (1 − αk) νk. Hence, condition (I*) implies that λk �∼ λk−1

(k = 1, 2, . . .) and so in particular λk �∼ µ∗ because �∼ is transitive and λ0 := µ∗.

Note too that λk → λ∗ as k →∞ because d(µi, λ
∗) ≤ 2 and

∑∞
i=1 αi = 1, so

∑
y∈Y

|λk(y)− λ∗(y)| =
∑

y∈Y

∣∣∣∑∞

i=k+1
αi [µi(y)− λ∗(y)]

∣∣∣
≤

∑∞

i=k+1
αi

∑
y∈Y

|µi(y)− λ∗(y)|

=
∑∞

i=k+1
αi d(µi, λ

∗) ≤ 2
∑∞

i=k+1
αi → 0

Therefore condition (CP) implies that λ∗ �∼ µ∗. A similar proof can be used
to verify condition (D*).

The following summarizes the previous results in this section:

Theorem 8:

(1) All six conditions (O), (I*), (C*), (B), (D*) and (CP) are necessary if the
EU hypothesis is to hold on the whole of ∆∗(Y ), without any violations of
either condition (I) or (C).

(2) The four conditions (O), (I), (C) and (D) are sufficient for the EU hypothesis
to hold on all of ∆∗(Y ), with a bounded NMUF and a utility function that is
continuous. Condition (D) can be replaced by (B) in this list of sufficient
conditions. Also, provided that (I) is strengthened to (I*), condition (CP) can
replace both (C) and (D).

8.7 Consequentialist Motivation for Dominance

Like its close relatives the strong independence axiom (I*) and the finite dom-
inance axiom (FD*) of Section 3.2, the important dominance condition (D)
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can also be given a consequentialist justification. Indeed, suppose that λi, µi ∈
∆∗(Y ) and αi > 0 with λi

�∼ µi (i = 1, 2, . . .) and
∑∞

i=1 αi = 1. Consider
the (countably infinite) decision tree T with initial chance node n0 at which
N+1(n0) = {ni | i = 1, 2, . . . }. Moreover, each transition probability at n0

should satisfy π(ni|n0) = αi. Then each node ni is a decision node at which
the agent chooses between two terminal nodes xiλ and xiµ. The ensuing lottery
consequences in ∆∗(Y ) are given by γ(xiλ) = λi and γ(xiµ) = µi (i = 1, 2, . . .)
respectively. A typical branch of this tree is represented in Figure 5.

❡
n0 αi ni

✘✘✘✘✘✘✘✘✘✘ �xiλ

 �xiµ

Figure 5 One Typical Tree Branch

Because λi
�∼ µi, it must be true that λi ∈ Φβ(T, ni) and so xiλ ∈ β(T, ni) at

each decision node ni (i = 1, 2, . . .) of the tree T . But then

λ :=
∑∞

i=1
αi λi ∈ Φβ(T ) = Φβ(T, n0) =

∑∞

i=1
αi Φβ(T, ni)

Let N denote the set of natural numbers { 1, 2, . . . }. Given any subset J ⊂ N ,
define the lottery

νJ :=
∑∞

i∈J
αi λi +

∑∞

i∈N\J
αi µi ∈ ∆∗(Y )

Note then that

F (T ) = F (T, n0) =
∑∞

i=1
αi F (T, ni) =

∑∞

i=1
αi {λi, µi } = { νJ | J ⊂ N }

Consider also an alternative decision tree T ′ with initial decision node n′
0 at

which the set N+1(n′
0) consists of a second decision node n′

1 together with
terminal nodes x′

J for every proper subset J ⊂ N — i.e., for every non-empty
subset J which is not equal to N . Suppose that γ(x′

J) = νJ for all such J .
Suppose too that N+1(n′

1) = {x′
λ, x′

µ } where γ(x′
λ) = λ and γ(x′

µ) = µ. This
tree is represented in Figure 6.

Clearly F (T ′) = F (T ), so extending the consequentialist axiom in an obvious
way to the countably infinite decision trees T and T ′ entails Φβ(T ′) = Φβ(T );
in particular, because λ ∈ Φβ(T ) it must be true that λ ∈ Φβ(T ′). But this
is only possible if x′

λ ∈ β(T ′, n′
1). Dynamic consistency then implies that
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n′
0✟✟✟✟✟

n′
1✟✟✟✟✟

�x′
λ

❍❍❍❍❍ �x′
µ

❤❤❤❤❤❤❤❤❤❤ �
❍❍❍❍❍❍❍❍❍❍ �

�

✝ x′
J (J ⊂ N ; ∅ �= J �= N)✞

✆

Figure 6 Decision Tree Illustrating Dominance

x′
λ ∈ β(T ′(n′

1), n
′
1), and so λ ∈ Φβ(T ′(n′

1), n
′
1). But F (T ′(n′

1), n
′
1) = {λ, µ }.

Hence, the implicit preference relation must satisfy λ �∼ µ. So condition (D)
has been given a consequentialist justification, as promised.

Finally, it is evident that when combined with condition (I*), which also has
a consequentialist justification, condition (D) implies condition (D*). So (D*)
has a consequentialist justification as well.

9 Probability Measures

9.1 Probability Measures and Expectations

This introductory subsection is designed to remind the reader of a few essential
but unavoidably technical concepts from the theory of measure and probability
that are needed in order to discuss lotteries in which the range of possible
outcomes is uncountable. The presentation is not intended as a substitute for
a more thorough treatment of the topic such as Halmos (1950), Royden (1988),
Billingsley (1995) or — perhaps more suitable for economists — Kirman (1981).

To avoid trivialities, the consequence domain Y should be an infinite set. Then
a σ-field on Y is a family F ⊂ 2Y of subsets of Y such that: (i) Y ∈ F ; (ii)
B ∈ F implies Y \B ∈ F ; (iii) if Bi (i = 1, 2, . . .) is a countable collection in F ,
then ∪∞

i=1Bi ∈ F .13 The pair (Y,F) constitutes a measurable space. Obviously,
(i) and (ii) imply that ∅ ∈ F .

13Royden does not impose the restriction that Y ∈ F , but this is useful in probability
theory. Also, note that the term σ-algebra is often used insted of σ-field. Halmos (1950)
distinguishes between a σ-ring, which need not satisfy Y ∈ F , and a σ-algebra, which must
satisfy this condition.
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A probability measure on (Y,F) is a mapping π : F → [0, 1] satisfying π(∅) = 0,
π(Y ) = 1, and also the σ-additivity property that π(∪∞

i=1Bi) =
∑∞

i=1 π(Bi)
whenever Bi (i = 1, 2, . . .) is a countable collection of pairwise disjoint sets
in F .

A function v : Y → IR is said to be F-measurable if, given any interval J ⊂ IR,
the set v−1(J) := { y ∈ Y | v(y) ∈ J } belongs to F .

An F-measurable step function v : Y → IR has the property that, for some
finite partition ∪k

i=1Yi of Y into pairwise disjoint sets Yi ∈ F , and some corre-
sponding collection of real constants vi ∈ IR (i = 1, 2, . . . , k), one has v(y) ≡ vi

throughout each Yi. It follows that v =
∑k

i=1 vi χYi , in effect, where χYi is the
particular characteristic step function defined by

χYi
(y) =

{
1 if y ∈ Yi

0 otherwise

Let V0 denote the set of all such step functions. The expectation IEπv of the
F-measurable step function v =

∑k
i=1 vi χYi w.r.t. any probability measure π

on (Y,F) is defined as the integral

IEπv :=
∫

Y

v(y)π(dy) =
∑k

i=1
vi π(Yi)

A fundamental result in the theory of Lebesgue integration is that the expec-
tation IEπv can also be well defined for any bounded measurable v : Y → IR,
not just for step functions. In fact, given such a general measurable function,
define the “greater” and “lesser” sets of step functions as

V +
0 (v) := { v0 ∈ V0 | ∀y ∈ Y : v0(y) ≥ v(y) }

V −
0 (v) := { v0 ∈ V0 | ∀y ∈ Y : v0(y) ≤ v(y) }

Then one can define

IEπv :=
∫

Y

v(y)π(dy) := inf
v0

{ IEπv0 | v0 ∈ V +
0 (v) } = sup

v0

{ IEπv0 | v0 ∈ V −
0 (v) }

(50)
For a bounded function v, this definition is unambiguous if and only if there
is a measurable function v̂ : Y → IR such that π({ y ∈ Y | v(y) = v̂(y) }) = 1.
See Royden (1988, Ch. 4, Prop. 3 and proof) while recalling that Royden uses
a more inclusive definition of measurability.
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9.2 Necessary Conditions for EU Maximization

As in Sections 3 and 8, I shall begin by considering some key implications of
the EU hypothesis. Indeed, suppose that there is a domain D of probability
distributions over Y and a preference ordering �∼ on D that can be represented
by the expected value of some NMUF defined on Y . What properties must the
space D and the ordering �∼ have for such a representation to be possible?

The answer to this question hinges on the definition of “expected value”. For
simple probability distributions π ∈ ∆(Y ) and discrete probability distributions
π ∈ ∆∗(Y ), the answer was unambiguous — in fact, IEπv =

∑
y∈Y π(y) v(y) for

any utility function v : Y → IR. More generally, it is natural to assume that, for
some σ-field F on Y , the domain D is the set ∆(Y,F) of F-measurable prob-
ability distributions on Y , and that IEπv =

∫
Y

v(y) π(dy) for all π ∈ ∆(Y,F).
For this integral to be defined, however, the function v has to be approximable
by F-measurable step functions, which requires v itself to be F-measurable.

In considering sufficient conditions for such a representation, however, one
should not simply assume that v is F-measurable, because v itself represents
preferences. For this reason, it is better to adopt a slightly different approach.
Conditions for an ordering �∼∗ on ∆∗(Y ) to have an EU representation have
already been given. So the most pertinent question is this: When can �∼∗ on
∆∗(Y ) be extended to an ordering �∼ that also has an EU representation on
some domain D of probability measures on Y ?

For this extension to be possible, it has already been seen that D should be the
set of probability measures on a σ-field F with respect to which v is measurable.
But for the NMUF v : Y → IR to be F-measurable, the set v−1(I) must be
measurable for every interval I of the real line. This last condition evidently
implies that the sets v−1((−∞, α)) and v−1((α,∞)) should be measurable for
every real α. In particular, this must be true whenever α = IEπv for some
discrete probability distribution π ∈ ∆∗(Y ).

What this implies is that the σ-field F has to include all upper and lower
preference sets of the ordering �∼∗ on ∆∗(Y ). In other words, it must satisfy
the preference measurability condition (PM) stating that, for every π̄ ∈ ∆∗(Y ),
the two preference sets

{ y ∈ Y | 1y
�∼ π̄ }, { y ∈ Y | π̄ �∼ 1y } (51)

are both members of F .
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Another desirable property of the σ-field F will be that ∆∗(Y ) ⊂ ∆(Y,F).
Moreover, given any lottery λ ∈ ∆∗(Y ), the probabilities λ(y) are well-defined.
So, given any π ∈ ∆(Y,F), it is desirable that the probabilities π({y}) should
be well-defined. Accordingly, the stronger measurability condition (M) will be
imposed, requiring not only condition (PM), but also that {y} ∈ F for all
y ∈ Y . Because F is a σ-field, this implies that K ∈ F for every finite or
countably infinite set K ⊂ Y . So, it will be true that ∆∗(Y ) ⊂ ∆(Y,F). The
implication of condition (M) is that F contains the smallest σ-field generated by
both the singleton sets {y} (all y ∈ Y ) and the preference sets defined by (51).

Because ∆(Y,F) extends ∆∗(Y ), the arguments of Section 8.2 apply a fortiori,
so it will be assumed that condition (B) holds, otherwise the EU hypothesis is
inconsistent with condition (I) and with condition (C).

Finally, another obvious necessary condition for �∼ to have an EU representation
is the following probability dominance condition (PD). This states that for every
π ∈ ∆(Y,F) and λ ∈ ∆(Y ), one has

π({ y ∈ Y | 1y
�∼ λ }) = 1 =⇒ π �∼ λ

π({ y ∈ Y | 1y
≺∼ λ }) = 1 =⇒ π ≺∼ λ

Section 8.4 discusses the relationship between condition (PD) applied to ∆∗(Y )
and dominance condition (D).

9.3 Sufficient Conditions for the EU Hypothesis

The main result of this Section is:

Theorem 9: The six conditions (O), (I), (C), (M), (D) and (PD) are sufficient
for the EU hypothesis to apply to the whole of ∆(Y,F).

Proof: Because ∆(Y,F) is a convex mixture space and conditions (O), (I),
and (C) are all satisfied, Lemma 4.6 is applicable. So there exists a utility
function U : ∆(Y,F) → IR which represents �∼ and satisfies (MP). Because of
(M), the set {y} is measurable for all y ∈ Y , so 1y ∈ ∆(Y,F). Hence, one can
define the NMUF v : Y → IR so that v(y) := U(1y) for all y ∈ Y . Because
of condition (D), Theorem 8 implies that the EU hypothesis is satisfied on
∆∗(Y ), and also that condition (B) is satisfied. So the function v is bounded
both above and below. Also, Lemma 8.1 implies that U satisfies the extended
mixture preservation property (MP*).
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Consider next the two sets { y ∈ Y | v(y) ≤ r } and { y ∈ Y | v(y) ≥ r } for any
real r. It will be shown that these two sets are F-measurable. First, there are
the two trivial cases where: either (a) v(y) > r for all y ∈ Y ; or (b) v(y) < r for
all y ∈ Y . Then { y ∈ Y | v(y) ≤ r } and { y ∈ Y | v(y) ≥ r } are respectively
the empty set and the whole of Y in case (a), and vice versa in case (b). In
either case, both are certainly measurable.

Alternatively, there exist y1, y2 ∈ Y such that v(y1) ≥ r ≥ v(y2). Then, because
of (MP), there exists a mixture α1y1 + (1−α)1y2 ∈ ∆(Y ) with 0 ≤ α ≤ 1 such
that

U(α1y1 + (1− α)1y2) = αv(y1) + (1− α)v(y2) = r

This implies that

{ y ∈ Y | v(y) ≤ r } = { y ∈ Y | y ≺∼ α1y1 + (1− α)1y2 }
and { y ∈ Y | v(y) ≥ r } = { y ∈ Y | y �∼ α1y1 + (1− α)1y2 }

By condition (M), both these sets are measurable. Therefore the function
v : Y → IR is F-measurable. It follows that the integral IEπv is well defined for
every π ∈ ∆(Y,F). So it remains only to show that U(π) ≡ IEπv on ∆(Y,F).

As in Section 9.1, let V0 be the set of all F-measurable step functions — i.e.,
functions that can be expressed in the form v0 ≡

∑k
i=1 vi χYi for some finite

partition ∪k
i=1Yi of Y into pairwise disjoint sets Yi ∈ F , and some corresponding

collection of real constants vi ∈ IR (i = 1, 2, . . . , k). Also, let V +
0 (v) and

V −
0 (v) be the set of all F-measurable step functions v0 satisfying respectively

v0(y) ≥ v(y) and v0(y) ≤ v(y) for all y ∈ Y .

Suppose that v0 ≡
∑k

i=1 vi χYi ∈ V +
0 (v) is any step function which, for i = 1

to k, satisfies v0(y) = vi ≥ v(y) for all y ∈ Yi, where ∪k
i=1Yi is a partition of Y .

Let yj (j = 1, 2, . . .) be any infinite sequence of consequences such that v(yj)
increases strictly with j, and v(yj) → v̄ := sup { v(y) | y ∈ Y } as j → ∞.
Define the sequence of measurable sets

Z1 := { y ∈ Y | v(y) ≤ v(y1) }
and Zj := { y ∈ Y | v(yj−1) < v(y) ≤ v(yj) } (j = 2, 3, . . .)

Then the function defined by v+ :=
∑∞

j=1 v(yj)χZj
satisfies v+(y) ≥ v(y) for all

y ∈ Y . So the function defined by v∗ := min{ v0, v
+ } also satisfies v∗(y) ≥ v(y)

for all y ∈ Y . Moreover,

v∗ ≡
∑k

i=1

∑∞

j=1
v∗ij χWij

where v∗ij := min{ vi, v(yj) }

and Wij := Yi ∩ Zj (i = 1, 2, . . . , k; j = 1, 2, . . .) (52)
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Of course, whenever Wij = ∅, it is understood that χYi∩Zj
(y) = χ∅(y) = 0 for

all y ∈ Y . Now, either v∗ij = v(yj) or else v(y) ≤ v∗ij = vi < v(yj) for all y ∈ Yi.
In either case, there exist yij ∈ Y and αij ∈ [0, 1] such that v∗ij = αijv(yij) +
(1 − αij)v(yj). Then v∗ij = U(λij) where λij = αij1yij

+ (1 − αij)1yj
∈ ∆(Y ).

Therefore, for i = 1 to k and for j = 1, 2, . . ., one has

v∗ij = U(λij) ≥ v(y) for all y ∈ Wij (53)

Now, for each variable probability measure π ∈ ∆(Y,F), as well as some arbi-
trary fixed measure π̄ ∈ ∆(Y,F), define the associated conditional probability
measures πij = π(·|Wij) ∈ ∆(Y,F) (i = 1 to k and j = 1, 2, . . .) by

πij(S) :=
{

π(S ∩Wij)/π(Wij) if π(Wij) > 0
π̄(S) if π(Wij) = 0 (54)

for every measurable set S ∈ F . Because ∪k
i=1 ∪∞

j=1 Wij is a partition of Y , it
follows that ∪k

i=1 ∪∞
j=1 (S ∩Wij) is a partition of S. Therefore σ-additivity of

π implies that

π(S) =
∑k

i=1

∑∞

j=1
π(S ∩Wij) =

∑k

i=1

∑∞

j=1
π(Wij) πij(S) (55)

Next, because of (53) and (54), for each pair i and j such that π(Wij) > 0, it
follows that πij({ y ∈ Y | y ≺∼ λij }) = πij(Wij) = 1. Therefore the probability
dominance condition (PD) implies that, whenever π(Wij) > 0, then πij

≺∼ λij ,
and so, because of (53), that

U(πij) ≤ U(λij) = v∗ij (56)

Also, ∪∞
j=1 Wij is a partition of Yi (i = 1, 2, . . . , k), implying that

π(Yi) =
∑∞

j=1
π(Wij) (57)

Because (55) implies that π is the countable mixture
∑k

i=1

∑∞
j=1 π(Wij) πij

of the measures πij , and because U satisfies (MP*), it follows from (56), (52),
and (57) that

U(π) =
∑k

i=1

∑∞

j=1
π(Wij)U(πij) ≤

∑k

i=1

∑∞

j=1
π(Wij) v∗ij

≤
∑k

i=1

∑∞

j=1
π(Wij) vi =

∑k

i=1
π(Yi) vi = IEπv0

by definition of v0. This is true even when π(Wij) = 0 for some i and j.
Moreover U(π) ≤ IEπv0 holds for all v0 ∈ V +

0 (v), so definition (50) of the
Lebesgue integral implies that IEπv ≥ U(π).
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Similarly, replacing U by −U and v by −v throughout this demonstration
shows that IEπ(−v) ≥ −U(π) or IEπv ≤ U(π). This completes the proof that
U(π) = IEπv.

9.4 Continuity of Expected Utility

Here, conditions for an NMUF v : Y → IR to be continuous will be investigated.
So that continuity of v can have meaning, suppose that the consequence domain
Y is a metric space. That is, there must be a metric d : Y ×Y → IR+ satisfying
the three conditions that

(i) d(x, y) = 0 ⇐⇒ x = y; (ii) d(x, y) = d(y, x); (iii) d(x, y)+d(y, z) ≤ d(x, z)

for all x, y, z ∈ Y . Moreover, assume that Y is separable in the sense that
there exists a countable dense subset S = { y1, y2, . . . } whose closure in the
metric topology is the whole space Y . That is, for any y ∈ Y , there must
exist a sequence 〈xk〉∞k=1 of points in S such that d(xk, y) → 0 as k → ∞.
As will explained further below, the separability of Y plays an important role
in ensuring that any probability measure π ∈ ∆(Y,F) can be approximated
arbitrarily closely by a simple probability measure in ∆(Y ).

Let B denote the Borel σ-field — i.e., the smallest σ-field that includes all the
open sets of Y . Then B also includes all closed subsets of Y , and many but not
all subsets that are neither open nor closed. Condition (M) of Section 9.2 will
now be strengthened to condition (M*), requiring that the σ-field F is equal
to B. In particular, the preference sets specified by (14) in Section 3.4 must
belong to the Borel σ-field. Of course, when they are closed sets, this condition
is automatically satisfied.

In Section 8.6, for discrete lotteries in the space ∆∗(Y ), it was shown that the
continuity condition (C) and dominance condition (D) could be replaced by the
single continuous preference condition (CP). Here, for the space of probability
measures ∆(Y,F), it will be shown that (C), (D) and the probability dominance
condition (PD) can all be replaced by a single continuous preference condition
(CP*) which strengthens (CP).

To discuss continuity of expected utility, the space ∆(Y,F) must also be given a
topology. Following Grandmont (1972) and Hildenbrand (1974), it is customary
to use the topology of weak convergence of measures. This extends the similar
topology on ∆∗(Y ) that was used in Section 8.6. Specifically, say that the
sequence πn ∈ ∆(Y,F) (n = 1, 2, . . .) converges weakly to π ∈ ∆(Y,F) iff, for
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every bounded continuous function f : Y → IR, one has IEπn f → IEπ f . In this
case, write πn w→π. Unlike for the corresponding topology on ∆∗(Y ), here the
function f : Y → IR is required to be continuous. Properties of this topology are
fully discussed in Billingsley (1968) — see also Parthasarathy (1967), Billingsley
(1971), Huber (1981, ch. 2) and Kirman (1981, pp. 196–8). It turns out that
πn w→π iff πn(E) → π(E) for every set E ∈ F whose boundary bd E satisfies
π( bd E) = 0. Also, that d(yn, y) → 0 in Y iff 1yn

w→ 1y in the weak topology
on ∆(Y,F). This implies in turn that the set { 1y ∈ ∆(Y,F) | y ∈ Y } of
degenerate lotteries is closed in the weak topology.

Suppose that the EU hypothesis is satisfied on ∆(Y,F) for an NMUF v : Y → IR
which is both bounded and continuous. Then it is true by definition that the
utility function U(π) = IEπ v is continuous when ∆(Y,F) is given the topology
of weak convergence. In particular, the induced preference ordering �∼ satisfies
the continuous preference condition (CP*) requiring that both preference sets

{π ∈ ∆(Y,F) | π �∼ π̄ } and {π ∈ ∆(Y,F) | π ≺∼ π̄ }

must be closed, for all π̄ ∈ ∆(Y,F).

More interesting is the converse, which includes (CP*) among a set of sufficient
conditions for the EU hypothesis to be true with a continuous NMUF.

Lemma 9.1: Condition (CP*) implies the corresponding condition (CP) for
preferences restricted to ∆∗(Y ).

Proof: Suppose that λn ∈ ∆∗(Y ) (n = 1, 2, . . .) and that, as n → ∞,
so λn → λ in the topology of ∆∗(Y ). Then IEλn f → IEλ f for all bounded
functions, and so for all bounded continuous functions f : Y → IR. Therefore
λn w→λ as n → ∞. So, if λn �∼ λ̄ (n = 1, 2, . . .), then condition (CP*) implies
that λ �∼ λ̄. Similarly, if λn ≺∼ λ̄ (n = 1, 2, . . .), then λ ≺∼ λ̄. This confirms
condition (CP).

Lemma 9.2: Conditions (O), (I*) and (CP*) together imply conditions (C*),
(D) and (D*).

Proof: Immediate from Lemmas 9.1, 8.6 and 8.7.

Lemma 9.3: Conditions (O), (I*), (M*) and (CP*) together imply condition
(PD).
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Proof: Given any λ ∈ ∆(Y ), define the two sets

Y +(λ) := { y ∈ Y | 1y
�∼ λ } and Y −(λ) := { y ∈ Y | 1y

≺∼ λ }

By condition (CP*), the upper weak preference set U := {µ ∈ ∆(Y,F) | µ �∼ λ }
is closed. So therefore is Y +(λ), as the intersection of U with the closed set
{ 1y ∈ ∆(Y,F) | y ∈ Y }. A similar argument shows that Y −(λ) is also closed.

Let ∆(Y +(λ),F) denote the set of probability measures in ∆(Y,F) satisfying
π(Y +(λ)) = 1, and let ∆(Y +(λ)) be the subset of simple probability distribu-
tions in ∆(Y ).

Suppose that π ∈ ∆(Y +(λ),F). By Parthasarathy (1967, Theorem 6.3, p. 44),
the set ∆(Y +(λ)) is dense in ∆(Y +(λ),F) when ∆(Y,F) is given the topology
of weak convergence. So π is the weak limit of a sequence of simple distributions
πn ∈ ∆(Y +(λ)) (n = 1, 2, . . .).14 By Lemma 3.1, condition (I*) implies (FD*),
so πn �∼ λ for n = 1, 2, . . .. Therefore condition (CP*) implies that π �∼ λ.

A similar proof shows that, if π(Y −(λ)) = 1, then π ≺∼ λ. Hence, condition
(PD) is satisfied.

Lemma 9.4: Conditions (O), (I*), (M*) and (CP*) together imply the EU
hypothesis, with a bounded continuous NMUF.

Proof: By Theorem 9 together with Lemmas 9.2 and 9.3, the four conditions
(O), (I*), (M) and (CP*) together imply that there exists a utility function
U(π) on ∆(Y,F) which represents �∼ while also satisfying (MP). Suppose that
πn ∈ ∆(Y,F) (n = 1, 2, . . .) and that πn w→ π̄ ∈ ∆(Y,F) as n →∞.

Suppose first that there exists π+ ∈ ∆(Y,F) for which π+ � π̄. Then for every
ε > 0 the set

{π ∈ ∆(Y,F) | ε π+ + (1− ε) π̄ � π � π̄ }
= {π ∈ ∆(Y,F) | 0 < U(π)− U(π̄) < ε [U(π+)− U(π̄)] }

is open. So there exists an integer n+(ε) for which, if U(πn) > U(π̄) for any
n > n+(ε), then U(πn)− U(π̄) < ε [U(π+)− U(π̄)].

14In fact, by a trivial application of the Glivenko–Cantelli Theorem (Parthasarathy, 1967,
Theorem 7.1, p. 53), for any infinite sequence 〈yk〉∞k=1 of independently and identically dis-
tributed random draws from the probability distribution π on Y , one can approximate π
by the associated sequence πn = n−1

∑n

k=1
1yk ∈ ∆(Y +(λ)) (n = 1, 2, . . .) of empirical

distributions.
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Alternatively, suppose that there exists π− ∈ ∆(Y,F) for which π− ≺ π̄. In
this case, reversing the preferences and inequalities in the argument of the
previous paragraph shows that there must exist an integer n−(ε) for which, if
U(πn) < U(π̄) for any n > n−(ε), then U(πn)− U(π̄) > ε [U(π−)− U(π̄)].

The last two paragraphs together imply that U(πn) → U(π̄) as n → ∞.
Therefore U is continuous when ∆(Y,F) is given the topology of weak con-
vergence. Also, yn → y as n → ∞ implies that 1yn

w→ 1y. It follows that
v(yn) = U(1yn

) → U(1y) = v(y). This shows that the NMUF v : Y → IR is
continuous.

Thus, provided that conditions (I) and (M) are strengthened to (I*) and (M*)
respectively, the one condition (CP*) can replace all three conditions (C), (D)
and (PD) in the set of sufficient conditions listed in Theorem 9. Moreover,
the resulting four sufficient conditions (O), (I*), (M*) and (CP*) imply the
stronger conclusion that not only is the EU hypothesis satisfied for a bounded
NMUF, but in fact any possible NMUF is continuous.

9.5 Consequentialism and Probability Dominance

The probability dominance condition (PD) can be given a consequentialist
justification, just as condition (D) was in Section 8.7. Indeed, suppose that
π, π̄ ∈ ∆(Y,F). Let H ⊂ Y be any set large enough to satisfy π(H) = 1;
when Y is a topological space and F coincides with its Borel σ-algebra, it is
natural to take H as the support of π — i.e., the smallest closed set satisfying
π(H) = 1.

Consider the infinite decision tree T with initial chance node n0 whose imme-
diate successors constitute the set N+1(n0) = {ny | y ∈ H }. Corresponding to
the σ-field F on Y and the set H ⊂ Y , define the collection

FN (H) := {KN ⊂ N+1(n0) | ∃KY ∈ F : KY ⊂ H, KN = {ny | y ∈ KY } }

It is easy to verify that FN (H) is a σ-field on N+1(n0). Moreover, suppose that
the transition probabilities at n0 satisfy

π(KN |n0) = π({ y ∈ Y | ny ∈ KN })

for every KN ∈ FN (H). Also, for each y ∈ Y , suppose that ny is a decision
node with N+1(ny) = {xy, x̄y }, where xy and x̄y are terminal nodes whose
lottery consequences are 1y and π̄ respectively. This tree is very similar to the
one whose typical branch was illustrated in Figure 5 of Section 8.7.
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Consider also a second decision tree T ′ with initial decision node n′
0 at which

the set N ′
+1(n

′
0) consists of a second decision node n′

1, together with a unique
terminal node x′

K corresponding to each measurable set K ∈ F with K ⊂ H
and 0 < π(K) < 1. Let N ′

+1(n
′
1) consist of the two terminal nodes x′

π and x′
π̄

whose lottery consequences are γ′(x′
π) = π and γ′(x′

π̄) = π̄ respectively. Thus
F (T ′, n′

1) = {π, π̄ }. Suppose too that, for each K ∈ F which satisfies both
K ⊂ H and 0 < π(K) < 1, the lottery consequence γ′(x′

K) at the corresponding
terminal node x′

K is π(K) π|K +[1−π(K)] π̄, where π|K denotes the conditional
probability measure that is derived from π given the event K. This tree is very
similar to the one represented in Figure 6 of Section 8.7.

Following the reasoning behind equation (35) of Section 6.2, the obvious fea-
sible set F (T ) consists of all possible integrals of integrable selections from
the correspondence y �→→F (T, ny) = { 1y, π̄ }, defined on the domain H as in
Hildenbrand (1974, p. 53). That is

F (T ) =
∫

H

F (T, ny)π(dy) =
∫

H

{ 1y, π̄ }π(dy)

Evidently both F (T ) and F (T ′) are equal to the set

{π, π̄ } ∪ {π(K)π|K + [1− π(K)] π̄ | K ∈ F , K ⊂ H, 0 < π(K) < 1 } (58)

Suppose that π({ y ∈ Y | y �∼ π̄ }) = 1. Then π({ y ∈ H | xy ∈ β(T, ny) }) = 1,
and so π =

∫
H

1y π(dy) ∈ Φβ(T ). From this and (58), an obvious extension
of the consequentialist hypothesis to the “measurable” trees T and T ′ implies
that π ∈ Φβ(T ′). But, unless π̄ = π, this is only possible if π ∈ Φβ(T ′, n′

1).
Because π̄ ∈ F (T ′, n′

1), it follows that the implicit preference ordering must
satisfy π �∼ π̄.

On the other hand, if π({ y ∈ Y | y ≺∼ π̄ }) = 1, then one has π({ y ∈ H | x̄y ∈
β(T, ny) }) = 1, and so π̄ =

∫
H

π̄ π(dy) ∈ Φβ(T ). The rest of the proof is as in
the previous paragraph, but with π and π̄ interchanged.

In both cases, condition (PD) is satisfied. As promised, it has been given a
consequentialist justification.

10 Summary and Concluding Remarks

In Section 2, the EU hypothesis was stated and ratios of utility differences were
interpreted as marginal rates of substitution between corresponding probability
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shifts. Utility is then determined only up to a unique cardinal equivalence class.
Thereafter, the chapter has concentrated on necessary and sufficient conditions
for the EU hypothesis to be valid for lotteries on a given consequence domain
Y , as well as the “consequentialist” axioms that can be used to justify some of
these conditions.

For the space ∆(Y ) of simple lotteries with finite support, Sections 3 and 4
showed that necessary and sufficient conditions are ordinality (O), indepen-
dence (I), and continuity (C). Actually, stronger versions (I*) and (C*) of con-
ditions (I) and (C) were shown to be necessary. These classical results are well
known.

The space ∆∗(Y ) of discrete lotteries that can have countably infinite sup-
port was considered in Section 8. For this space, a somewhat less well known
dominance condition (D) due to Blackwell and Girshick (1954) enters the set
of necessary and sufficient conditions. Furthermore, utility must be bounded.
Provided that (I*) is satisfied, a continuous preference condition (CP) can re-
place both conditions (C) and (D).

Finally, Section 9 considered the space ∆(Y,F) of probability measures on the
σ-field F of measurable sets generated by the singleton and preference subsets
of Y . Here two extra conditions enter the list — the obvious measurability
condition (M), and a probability dominance condition (PD) that is different
from condition (D). When the consequence domain Y is a separable metric
space, then provided that conditions (I) and (M) are strengthened somewhat
to (I*) and (M*), it is possible to replace conditions (C), (D) and (PD) with
a single continuous preference condition (CP*). Moreover, then each utility
function in the unique cardinal equivalence class must be continuous.

The heart of the chapter (Sections 5, 6 and 7) considered the implications of
assuming that behaviour in an (almost) unrestricted domain of decision trees
could be explained by its consequences while satisfying dynamic consistency
in subtrees. This assumption was expressed through three “consequentialist”
axioms. These three axioms were shown to imply conditions (O) and (I). By
allowing a richer domain of trees, conditions (D) and (PD) could also be given
a consequentialist justification. Conditions (C) (or (CB)) and (M), however,
remain as supplementary hypotheses, without a consequentialist justification.
All six conditions play an important role in the succeeding separate chapter on
subjectively expected utility. So do the three consequentialist axioms.

The three consequentialist axioms appear natural when applied to decision
trees. Nevertheless, McLennen (1990) and Cubitt (1996) have both offered
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interesting decompositions of these axioms into a larger set of individually
weaker axioms. Moreover, these decompositions invoke the notion of a plan
which could differ from actual behaviour.

At least one open problem remains. Theorem 7 of Section 7.3 offered a complete
characterization of consequentialist behaviour satisfying dynamic consistency
and continuity condition (CB) for an almost unrestricted domain of finite deci-
sion trees. Still lacking is a similar result for a richer domain of infinite decision
trees giving rise to random consequences in the space ∆∗(Y ) or ∆(Y,F). In-
deed, beyond some results in classical decision analysis due to LaValle (1978),
there appears to have been little systematic analysis of general infinite decision
trees.

Acknowledgements

Work on this chapter was begun with the support of a research award from the
Alexander von Humboldt Foundation. This financed a visit to Germany, especially the
University of Kiel, during the academic year 1993–4. The chapter has also benefited
from the extensive comments of Philippe Mongin, and the opportunity he kindly
arranged to give some lectures at C.O.R.E. in February 1994. Also very helpful were
the reports of two unusually careful, conscientious, and constructively critical referees,
as well as from helpful discussion with Peter Wakker during the visit to C.O.R.E., and
insightful comments by Mamoru Kaneko, Mark Machina and Ulrich Schmidt. Finally,
Roderick Duncan’s exceptional alertness during a lecture back at Stanford has saved
me from at least one embarrassing error. My thanks to these while absolving them
of all responsibility for remaining errors and inadequacies.

References

[1] Allais, M. (1953) “Le comportement de l’homme rationnel devant le risque: cri-
tique des postulats et des axiomes de l’école américaine,” Econometrica, 21,
503–546; summary version of paper whose translation appeared as Allais (1979a).

[2] Allais, M. (1979a) “The Foundations of a Positive Theory of Choice Involving
Risk and a Criticism of the Postulates and Axioms of the American School,” in
Allais and Hagen (1979), pp. 27–145.

[3] Allais, M. (1979b) “The So-called Allais Paradox and Rational Decisions under
Uncertainty,” in Allais and Hagen (1979), pp. 437–681.

[4] Allais, M. (1987) “Allais Paradox,” in Eatwell et al. (1987); reprinted in Eatwell
et al. (1990), pp. 3–9.



Objectively Expected Utility 65

[5] Allais, M. and O. Hagen (eds.) (1979) The Expected Utility Hypothesis and the
Allais Paradox (Dordrecht: D. Reidel).

[6] Anscombe, G.E.M. (1958) “Modern Moral Philosophy,” Philosophy, 33, 1–19.

[7] Arrow, K.J. (1951) “Alternative Approaches to the Theory of Decision in Risk-
Taking Situations,” Econometrica, 19, 404–437; reprinted in Arrow (1971), ch. 1
and in Arrow (1984), ch. 2.

[8] Arrow, K.J. (1959) “Rational Choice Functions and Orderings,” Economica, 26,
121–127; reprinted in Arrow (1984), ch. 6.

[9] Arrow, K.J. (1963) Social Choice and Individual Values (2nd. edn.) (New Haven:
Yale University Press).

[10] Arrow, K.J. (1965) Aspects of the Theory of Risk-Bearing (Amsterdam: North-
Holland).

[11] Arrow, K.J. (1971) Essays in the Theory of Risk-Bearing (Chicago: Markham;
Amsterdam: North-Holland).

[12] Arrow, K.J. (1972) “Exposition of the Theory of Choice under Uncertainty,” in
C.B. McGuire and R. Radner (eds.) Decision and Organization (Amsterdam:
North-Holland), ch. 2, pp. 19–55; reprinted in Arrow (1984), ch. 10.

[13] Arrow, K.J. (1984) Collected Papers of Kenneth J. Arrow, Vol. 3: Individual
Choice under Certainty and Uncertainty (Cambridge, Mass.: Belknap Press of
Harvard University Press).

[14] Berge, C. (1959, 1963) Espaces Topologiques, fonctions multivoques (Paris:
Dunod); translated as Topological Spaces (Edinburgh: Oliver & Boyd).

[15] Bernoulli, D. (1738) “Specimen theoriae novae de mensura sortis” in Commen-
tarii Academiae Scientiarum Imperialis Petropolitanae; translated by L. Sommer,
1954) as “Exposition of a New Theory on the Measurement of Risk,” Economet-
rica, 22: 23–36.

[16] Billingsley, P. (1968) Convergence of Probability Measures (New York: John
Wiley).

[17] Billingsley, P. (1971) Weak Convergence of Measures: Applications to Probability
(Philadelphia: Society for Industrial and Applied Mathematics).

[18] Billingsley, P. (1995) Probability and Measure (3rd. edn.) (New York: John Wi-
ley).

[19] Blackwell, D. and M.A. Girshick (1954) Theory of Games and Statistical Deci-
sions (New York: John Wiley).

[20] Cramer, G. (1728) Letter to Nicholas Bernoulli; extracts printed in Bernoulli
(1738).

[21] Cubitt, R. (1996) “Rational Dynamic Choice and Expected Utility Theory,”
Oxford Economic Papers, 48, 1–19.

[22] Eatwell, J., Milgate, M. and P. Newman (eds.) (1987) The New Palgrave: A
Dictionary of Economics (London: Macmillan).



66 Chapter 5

[23] Eatwell, J., Milgate, M. and P. Newman (eds.) (1990) The New Palgrave: Utility
and Probability (London: Macmillan).

[24] Fishburn, P.C. (1967) “Bounded Expected Utility,” The Annals of Mathematical
Statistics, 38, 1054–1060.

[25] Fishburn, P.C. (1970) Utility Theory for Decision Making (New York: John Wi-
ley).

[26] Fishburn, P.C. (1982) The Foundations of Expected Utility (Dordrecht: D. Rei-
del).

[27] Fishburn, P.C. (1989) “Retrospective on the Utility Theory of von Neumann and
Morgenstern,” Journal of Risk and Uncertainty, 2, 127–157.

[28] Fishburn, P.C. and P. Wakker (1995) “The Invention of the Independence Con-
dition for Preferences,” Management Science, 41, 1130–1144.

[29] Grandmont, J.-M. (1972) “Continuity Properties of a von Neumann–
Morgenstern Utility,” Journal of Economic Theory, 4, 45–57.

[30] Hacking, I. (1975) The Emergence of Probability (Cambridge: Cambridge Uni-
versity Press).

[31] Halmos, P.R. (1950) Measure Theory (New York: Van Nostrand Reinhold).

[32] Hammond (1976) “Changing Tastes and Coherent Dynamic Choice,” Review of
Economic Studies, 43, 159–173.

[33] Hammond, P.J. (1977) “Dynamic Restrictions on Metastatic Choice,” Econom-
ica, 44, 337–350.

[34] Hammond, P.J. (1983) “Ex-Post Optimality as a Dynamically Consistent Objec-
tive for Collective Choice Under Uncertainty,” in P.K. Pattanaik and M. Salles
(eds.) Social Choice and Welfare (Amsterdam: North-Holland, 1983), ch. 10,
pp. 175–205.

[35] Hammond, P.J. (1986) “Consequentialist Social Norms for Public Decisions,”
in W.P. Heller, R.M. Starr and D.A. Starrett (eds.), Social Choice and Public
Decision Making: Essays in Honor of Kenneth J. Arrow, Vol. I (Cambridge:
Cambridge University Press), ch. 1, pp. 3–27.

[36] Hammond, P.J. (1988a) “Consequentialist Foundations for Expected Utility,”
Theory and Decision, 25, 25–78.

[37] Hammond, P.J. (1988b) “Consequentialism and the Independence Axiom,” in
B.R. Munier (ed.) Risk, Decision and Rationality (Proceedings of the 3rd Inter-
national Conference on the Foundations and Applications of Utility, Risk and
Decision Theories) (Dordrecht: D. Reidel), pp. 503–516.

[38] Hammond (1988c) “Orderly Decision Theory: A Comment on Professor Seiden-
feld,” Economics and Philosophy , 4, 292–297.

[39] Hammond, P.J. (1994) “Elementary Non-Archimedean Representations of Prob-
ability for Decision Theory and Games,” in P. Humphreys (ed.) Patrick Suppes:
Scientific Philosopher, Vol. I (Kluwer Academic Publishers), ch. 2, pp. 25–59.



Objectively Expected Utility 67

[40] Hammond, P.J. (1996) “Consequentialist Decision Theory and Utilitarian
Ethics,” in F. Farina, F. Hahn, and S. Vannucci (eds.) Ethics, Rationality, and
Economic Behaviour (Oxford: Clarendon Press, 1996), pp. 92–118.

[41] Hammond, P.J. (1997) “Consequentialism, Non-Archimedean Probabilities, and
Lexicographic Expected Utility,” to appear in C. Bicchieri, R. Jeffrey and B.
Skyrms (eds.) The Logic of Strategy (Oxford: Oxford University Press).

[42] Harsanyi, J.C. (1977) Rational Behavior and Bargaining Equilibrium in Games
and Social Situations (Cambridge: Cambridge University Press).

[43] Herstein, I.N. and J. Milnor (1953) “An Axiomatic Approach to Measurable
Utility,” Econometrica, 21, 291–297; reprinted in Newman (1968), pp. 264–270.

[44] Herzberger, H.G. (1973) “Ordinal Preference and Rational Choice,” Economet-
rica, 41, 187–237.

[45] Hildenbrand, W. (1974) Core and Equilibria of a Large Economy (Princeton:
Princeton University Press).

[46] Huber, P.J. (1981) Robust Statistics (New York: John Wiley).

[47] Jensen, N.E. (1967) “An Introduction to Bernoullian Utility Theory, I: Utility
Functions,” Swedish Journal of Economics, 69, 163–183.

[48] Karni, E., and D. Schmeidler (1991) “Utility Theory with Uncertainty,” in
W. Hildenbrand and H. Sonnenschein (eds.), Handbook of Mathematical Eco-
nomics, Vol. IV (Amsterdam: North-Holland), ch. 33, pp. 1763–1831.

[49] Kirman, A.P. (1981) “Measure Theory with Applications to Economics,” in
K.J. Arrow and M.D. Intriligator (eds.) Handbook of Mathematical Economics,
Vol. I (Amsterdam: North-Holland), ch. 5, pp. 159–209.

[50] LaValle, I. (1978) Foundations of Decision Analysis (New York: Holt, Rinehart
and Winston).

[51] LaValle, I. and K. Wapman (1986) “Rolling Back Decision Trees Requires the
Independence Axiom!” Management Science, 32, 382–385.

[52] Leonard, R.J. (1995) “From Parlor Games to Social Science: von Neumann, Mor-
genstern, and the Creation of Game Theory 1928–1944,” Journal of Economic
Literature, 33, 730–761.

[53] Luce, R.D. and H. Raiffa (1957) Games and Decisions: Introduction and Critical
Survey (New York: John Wiley).

[54] Machina, M.J. (1989) “Dynamic Consistency and Non-Expected Utility Models
of Choice Under Uncertainty,” Journal of Economic Literature, 28, 1622–1668.

[55] Malinvaud, E. (1952) “Note on von Neumann–Morgenstern’s Strong Indepen-
dence Axiom,” Econometrica, 20, 679; reprinted in Newman (1968), p. 271.

[56] Marschak, J.A. (1950) “Rational Behavior, Uncertain Prospects, and Measurable
Utility,” Econometrica, 18, 111–141.

[57] McClennen, E.F. (1990) Rationality and Dynamic Choice: Foundational Explo-
rations (Cambridge: Cambridge University Press).



68 Chapter 5

[58] Menger, K. (1934) “Das Unsicherheitsmoment in der Wertlehre, Betrachtun-
gen im Anschluss an das sogenannte Petersburger Spiel,” Zeitschrift für Na-
tionalökonomie, 5, 459–485; translated under the title “The Role of Uncertainty
in Economics” in M. Shubik (ed.) (1967) Essays in Mathematical Economics in
Honor of Oskar Morgenstern (Princeton: Princeton University Press), ch. 16, pp.
211–231.

[59] Mongin, P. (1996) “A Note on Mixture Sets in Decision Theory,” preprint,
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