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Abstract: This sequel to previous chapters on objective and subjective ex-
pected utility reviews conditions for players in a non-cooperative game to be
Bayesian rational — i.e., to choose a strategy maximizing the expectation of
each von Neumann–Morgenstern utility function in a unique cardinal equiv-
alence class. In classical Nash equilibrium theory, players’ mixed strategies
involve objective probabilities. In the more recent rationalizability approach
pioneered by Bernheim and Pearce, players’ possibly inconsistent beliefs about
other players’ choices are described by unique subjective probabilities. So are
their beliefs about other players’ beliefs, etc. Trembles, together with various
notions of perfection and properness, are seen as motivated by the need to
exclude zero probabilities from players’ decision trees. The work summarized
here, however, leaves several foundational issues unsatisfactorily resolved.

1 Introduction and Outline

1.1 Background

The theory of equilibrium in general non-cooperative games was initially de-
veloped for two-person “zero-sum” games by Borel (1921, 1924), von Neumann
(1928) and von Neumann and Morgenstern (1944).1 It was then extended to
general n-person games with finite strategy sets by Nash (1950, 1951). This
classical theory allows different players to choose stochastically independent
“mixed” strategies in the form of objective probability distributions. In this
connection, Aumann (1987b, p. 466) gives a very clear and concise account of
the role played by objectively expected utility theory in the classical theory of
games with independent mixed strategies. A recent extension of classical non-
cooperative game theory due to Aumann (1974, 1987a) allows different players
to correlate their mixed strategies through some form of correlation device.2

1See Fréchet (1953) and von Neumann (1953) for contrasting views of Borel’s contribution.
For a recent brief discussion of some aspects of the history of game theory, see Arrow (2003).
2In fact, Aumann (1987a) discusses correlation of subjective rather than objective proba-
bilities. However, these subjective probabilities arise from beliefs that are assumed to be
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Von Neumann and Morgenstern also carried out some pioneering work on
the decision theoretic foundations of game theory with objective probabilities.
Since then, almost the only other published work on this topic has been by
Fishburn and Roberts (1978) and by Fishburn (1980, 1982, chs. 7–8). However,
this later work was especially concerned with preferences over the restricted
domain of product lotteries that result when different players in one fixed game
adopt independent mixed strategies.

1.2 Normative Theory and Consequentialism

This survey revisits the decision- and utility-theoretic foundations of non-
cooperative game theory. Indeed, it emphasizes the normative theory of how
players’ in a game should choose their strategies. Most purportedly descriptive
models in economics and social science that use game theory tend to follow
this approach, even though normative theory may describe accurately what
happens only when a game involves “expert” players who are either well-versed
in game theory themselves, or else heed the recommendations of expert con-
sultants who are advising them how to play. Only briefly in Section 6 is there
some discussion of quantal responses, which seem likely to offer a more fruitful
approach to empirical descriptive modelling in many more realistic settings.

The main question addressed in this chapter will be how the consequentialist
theory presented in Chapters 5 and 6 in Volume I of this Handbook applies in
the context of non-cooperative games. That theory, it may be worth recalling,
requires behaviour in each decision tree to generate a consequence choice set
that depends only on the feasible set of all possible consequences which can
emerge from decisions in that tree.3 Partly for this reason, the focus will be
on games in normal or strategic form; recent work on extensive form concepts
will be largely neglected. This will help to prevent the chapter from becoming
excessively long. But more pertinently, the basic issues concerning how to
apply utility theory as a tool in non-cooperative games all arise in normal form
games. Its application to extensive form games is justified in the same way,
and to the same extent, as its application to normal form games.

1.3 Normal Form Invariance and Equilibrium

Following the precedent of von Neumann and Morgenstern (1944, 1953), the
standard definition of a game includes a payoff function for each player. Yet
the existence of such a function ought really to be derived from more primitive
axioms. Though von Neumann and Morgenstern did set out to do precisely

common to all individuals. It is hard to see how such common beliefs could come about
except if they were really objective probabilities.
3Since these chapters were finished, Peter Wakker has kindly pointed out the significance of
work by Burks (1977) — see especially Wakker (1998). In particular, Burks also uses decision
trees to offer somewhat similar justifications for both the independence axiom and the sure-
thing principle. However, the consequentialist approach seems more integrated, especially as
essentially the same hypothesis also justifies the existence of a preference ordering.
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this, nevertheless their definition of a game is not properly founded on what
has since become orthodox single-person decision theory. The fairly obvious
remedy proposed in Section 4 is to replace each player’s payoff function by a
unique cardinal equivalence class of von Neumann–Morgenstern utility func-
tions (NMUFs), each of which is acceptable as a payoff function.

The first part of this chapter concentrates on equilibrium theory. This ex-
plores the implications of assuming that players’ beliefs can be described by
an objective probability distribution over other players’ strategies. In fact,
the chapter develops an integrated approach describing each person’s best re-
sponse behaviour in all single-person decision problems and in all n-person
non-cooperative games. This approach is based on the consequentialist normal
form invariance hypothesis described in Section 2, which adapts a similar hy-
pothesis due to von Neumann and Morgenstern themselves. It also generalizes
the consequentialist hypothesis for single-person decision theory mentioned in
Section 1.2. As in Chapter 5, consequentialist normal form invariance, when
combined with the hypotheses of an unrestricted domain, dynamic consistency
in continuation subgames, and continuity w.r.t. objective probabilities, implies
that each player’s best responses to a given joint probability distribution over
the other players’ strategies are those which maximize the expected value of
each NMUF in a unique cardinal equivalence class.

Thereafter, Section 3 discusses some key properties of best responses. Both
Nash and correlated equilibrium are briefly reviewed in Section 4, along with
Harsanyi’s (1967–8) theory of equilibrium in games of incomplete information.
Equilibrium requires in particular that all players behave as if they had as-
signed mutually consistent probabilities to other players’ strategies, treating
those probabilities as effectively objective, and then choosing expected utility
maximizing responses with probability 1.

1.4 The Zero Probability Problem

Chapter 5 demonstrated how, in single-person decision theory, the consequen-
tialist hypothesis implies that all probabilities must be positive, in order to
avoid the trivial implication that there is universal indifference — i.e., all lot-
teries are indifferent. But equilibrium requires that players’ inferior responses
must be given zero probability. These two requirements are incompatible except
in the trivial case when there are no inferior responses because all strategies
are indifferent. Alternatively, the game must be regarded as equivalent to one
in which all inferior strategies have been deleted from the relevant player’s
strategy set. But then there may be equilibria which depend on some players
using incredible threats to coerce other players into choosing their equilibrium
strategies, even though everybody knows that such threats would never be car-
ried out in practice. More precisely, the criterion of subgame perfection due to
Selten (1965, 1973) becomes entirely irrelevant. One way out of this difficulty
is to use Selten’s (1975) own later notion of trembling-hand perfect equilib-
rium, which Myerson (1978) refined further to proper equilibrium. These two
refinements of Nash equilibria are the subject of Section 5.
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The trembles discussed in Section 5 are rather ad hoc departures from the
standard equilibrium idea that players choose best responses with probability 1.
Section 6 considers an alternative approach, in which all choice is stochastic,
so every possible strategy is chosen with a specified positive probability. Such
random choice is the topic of Fishburn’s Chapter 7 on stochastic utililty. McKel-
vey and Palfrey (1995) in particular have considered stochastic strategy choice
in non-cooperative game theory. However, as shown in Section 6, for stochastic
choice under risk, the consequentialist hypotheses imply the trivial case in which
all possible choices occurring with positive probability are equally likely.

1.5 Subjective Probabilities and Rationalizability

As is briefly discussed in an assessment of equilibrium theory in Section 7, it
seems therefore that, except in trivial cases, having “objective” or generally
agreed probabilities in a non-cooperative game is incompatible with the conse-
quentialist axioms. More recently, following prominent works such as Bernheim
(1984), Pearce (1984), and Tan and Werlang (1988), many game theorists have
used subjective probabilities to describe each player’s beliefs about the other
players’ strategies. These allow for the possibility that different players’ beliefs
may not coincide. As in equilibrium theory, players are assumed to choose
strategies in order to maximize their respective subjectively expected utilities.4

In this game theoretic context, it has often been claimed that the existence of
subjective probabilities and the subjective expected utility (SEU) hypothesis
are justified by Savage’s axioms. One problem with this was discussed in Chap-
ter 6: from the consequentialist perspective, Savage’s axiom system may be
harder to justify than the alternative system due to Anscombe and Aumann
(1963). Much more serious, however, is the concern whether any axiom sys-
tem which was originally intended for single-person decision problems can be
suitably adapted so that it applies in the more general context of strategic
behaviour in non-cooperative games.

More specifically, there could be an important difference in extensive form
games between natural nodes at which nature moves exogenously, as opposed
to players’ information sets where moves are determined endogenously by max-
imizing the relevant player’s expected utility. Recently, this has led Sugden
(1991) and Mariotti (1996) in particular to question whether the SEU model
applies at all to n-person games.5 Nevertheless, Section 8 presents one possible
justification, based on a construction due to Battigalli, for using the SEU model
in this context. The approach is rather different from that of Börgers (1993),
and entirely different from Nau and McCardle (1990, 1991).

Using the SEU framework, Section 9 reviews the concept of rationalizability
due to Bernheim (1984) and Pearce (1984), but extended in the usual way when

4See also Harsanyi (1966, 1967–8, 1977b, 1980, 1982b, 1983), and note that his debate with
Kadane and Larkey (1982) concerned a different issue.
5A somewhat different criticism of the SEU model, especially in games, arises in causal
decision theory, which is the topic of Chapter 13 in Volume I by Gibbard and Joyce.
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there are more than two players, so that each player is allowed to have corre-
lated beliefs regarding other players’ pure strategies. Then Section 10 considers
the related construction of infinite hierarchies of beliefs, which automatically
include players’ beliefs about other players’ hierarchies of beliefs.

Section 11 reverts to the zero probability problem discussed in Section 5, this
time in the context of rationalizability. It begins with a very brief summary
of some recent work concerning infinitesimal probabilities. Then it reviews one
concept of perfect rationalizability due to Bernheim (1984, p. 1021), but ex-
tended to allow correlated beliefs when there are more than two players, as
in Section 9. This is followed by a discussion of a more recent concept which
Herings and Vannetelbosch (1999, 2000) call “weakly perfect rationalizability”.
This concept generates the same strategy sets as the “Dekel–Fudenberg pro-
cedure” of first eliminating all weakly dominated strategies, then iteratively
deleting all strictly dominated strategies from those that remain. The section
concludes by considering the stronger concept of proper rationalizability due
to Schuhmacher (1999) — see also Asheim (2002).

1.6 Rationalizable Dominance

Next, following a suggestion due to Farquharson (1969, Appendix II), Section 12
steps back entirely from the expected utility or any other probabilistic frame-
work. Instead, it introduces an apparently novel “rationalizable dominance”
relation over pure strategies. This binary relation depends only on players’
preference orderings over pure strategy profiles and their consequences, im-
plying that players’ “payoffs” or utility functions become ordinal rather than
cardinal.6

Finally, Section 13 provides a brief concluding assessment. This raises the
whole issue of whether non-cooperative game theory can be founded more se-
curely on decision-theoretic concepts, and the extent to which utility theory
will continue to play the significant role in non-cooperative game theory which
it has up to now.

The chapter presumes some basic familiarity with game theory at the level of
a standard microeconomic textbook for graduate students such as Mas-Colell
et al. (1995). Additional reading concerning particular topics in the specialist
texts by Osborne and Rubinstein (1994) and by Fudenberg and Tirole (1991)
will be suggested at appropriate points in the chapter.

6Farquharson’s (1969) notion of iterative deletion of strategies that are weakly dominated by
other pure strategies shares this ordinality property, So does the “pure strategy dominance”
criterion due to Börgers (1993). Neither is based on binary dominance relations, however.
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2 Normal Form Invariance

2.1 Games in Normal Form

A game in normal form is ordinarily defined as a collection

G = 〈I, SI , vI〉 (1)

This list begins with a non-empty finite set I of players.7 Each player i ∈ I has
a non-empty strategy set Si, also assumed to be finite in order to avoid technical
complications. The Cartesian product of strategy profiles is SI :=

∏
i∈I Si. The

last item in the collection is the list vI = 〈vi〉i∈I of players’ payoff functions,
with vi : SI → R for all i ∈ I.

2.2 Consequentialist Game Forms

As explained in the introduction, directly assuming that a payoff function exists
fails to place game theory on secure decision-theoretic foundations. To deal with
this issue, instead of (1), define a consequentialist game form8 as a collection

Γ = 〈I, SI , Y I , ψ〉 (2)

Here the set I of players and the set SI of strategy profiles are exactly the same
as in the definition (1) of a normal form game. But now Y I =

∏
i∈I Yi is the

Cartesian product of individual consequence domains Yi, one for each player
i ∈ I. Each member yI ∈ Y I is a consequence profile. This formulation with
individual consequence domains is chosen to allow independent variations in
the consequences faced by any one player in the game, which will be important
in the construction used in Section 8 below.

Finally, there is an outcome function ψ determining the random consequence
profile ψ(sI) ∈ ∆(Y I), with objective probabilities ψ(yI ; sI) ∈ [0, 1] for each
yI ∈ Y I , as a function of the strategy profile sI ∈ SI . Here, following the
notation of Chapters 5 and 6, ∆(Y I) is used to denote the set of simple lotteries
having finite support on Y I . Once again, finiteness of the support is merely a
simplifying restriction. Then the mapping ψ : SI → ∆(Y I) in (2) replaces the
profile vI = 〈vi〉i∈I of different players’ payoff functions vi : SI → R in (1).

Of course, (2) collapses to (1) if one takes the case when each outcome ψ(sI)
is a degenerate lottery on Y I , then puts Yi = R and defines each vi : SI → R

so that ψ(vI(sI); sI) = 1 for all sI ∈ SI . In this case the consequences become
real numbers or rewards, with each player’s utility equal to their respective
reward.

7Extensions to games with an infinite set of players, and especially to games with a continuum
of players, have appeared prominently in the literature. They raise technical issues of the
kind discussed at length by Khan and Sun (2002). For simplicity, and to retain the main
focus on utility theory, this chapter ignores this important topic.
8The term “game form” is taken deliberately from the literature on implementation and
mechanism design — see especially Gibbard (1973).
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2.3 Games in Extensive Form

So far the discussion has been limited to games in normal or strategic form,
in which each player is regarded as making just one choice of strategy for the
entire game. Yet general multi-person games are in extensive form. In effect,
they are multi-person versions and extensions of the decision trees that were
explored in Chapters 5 and 6.

Apart from terminal nodes x ∈ X and chance nodes belonging to N0, the
set of all remaining nodes N \ (X ∪ N0) in the extensive form game tree is
partitioned into pairwise disjoint sets N i, one for each player i ∈ I. The set
N i is defined as consisting of exactly those nodes at which player i is required
to make a move in the game. No player other than i is able to move at any
node belonging to an information set n ∈ N i.9 For some players, N i could be
empty because there are no circumstances in which player i is required to make
a move.

Player i, however, may not be able to distinguish between all the different
nodes of N i. Thus, we assume that each player i’s set N i is partitioned into a
family Hi of pairwise disjoint information sets H ⊂ N i.

For any H ∈ Hi, player i must face the same set of moves at each node of H.
Otherwise player i would be able to distinguish between some of the different
nodes of H because the set of moves is different, contradicting the definition of
an information set. For a more formal discussion, see Osborne and Rubinstein
(1994, ch. 11). Given any i ∈ I and any H ∈ Hi, let Mi(H) denote the (non-
empty) set of moves available to player i at H. For each m ∈ Mi(H) and each
node n ∈ H, there must be a unique node n+1(n, m) which is reached by the
move m.

2.4 Perfect Recall

In the tree describing the extensive form of a game, consider any two paths
denoted by p = (n0, n1, n2, . . . , nk) and by p′ = (n′0, n

′
1, n
′
2, . . . , n′k′), where

n0 = n′0 is the common initial node, and nk, n′k′ denote the two terminal nodes.
Suppose that the particular node nq of path p belongs to an information set H
of player i, but path p′ does not intersect H at all. At node nq, or indeed any
other node of H, player i knows that p is still possible, but that p′ is impossible.
Thus, player i can distinguish between the paths p and p′ at node nr — and
indeed at any other node of H, where the information must be the same as at nq.
For player i to have perfect recall, it is required that whenever p intersects any
other information set H∗ of player i at some node nr that succeeds nq because
r > q, then p′ cannot intersect H∗. The reason is that player i should be able
to remember that p′ is impossible after reaching information set H. This is one
requirement of perfect recall — being able to distinguish at later information

9This requirement is without loss of generality in finite player games, in which one can add
information sets for different players as necessary to make it true. But it does lose generality
in games with a continuum of players — see especially Dubey and Kaneko (1984, 1985).
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sets whatever pairs of paths could be distinguished at earlier information sets.
An important implication is that no path through the tree can intersect any
information set more than once. Otherwise, if a path p were to intersect some
player i’s information set H ∈ Hi at node nq but then also at a subsequent
node nr, it can only be because player i at node nr has forgotten about having
already encountered this information set.

In addition, all players should be able to recall the moves that they them-
selves made earlier in the game. Indeed, suppose that m1, m2 ∈ Mi(H) are
two different moves available to player i at information set H ∈ Hi. Let P (m1)
and P (m2) denote the resulting sets of paths that pass through H and then
are still possible after i has made the respective moves m1 and m2. Suppose
that node n∗ of the extensive game tree belongs to a different information set
H∗ ∈ Hi for player i, as well as to some path p ∈ P (m1). Suppose too that p,
which must intersect H, does so at a node n which precedes n∗. Then perfect
recall requires that the information set H∗ must be disjoint from P (m2). This
is because, whenever any path p ∈ P (m1) intersects one of player i’s later in-
formation sets such as H∗, player i must realize that the earlier move m1 at
information set H makes any path in P (m2) impossible.

2.5 The Agent Normal Form

For some purposes, especially in connection with subgame perfection and trem-
bling hand perfection as considered in Section 5, it is important to restrict at-
tention to extensive form games in which each player has only one information
set. In fact, this can be made true for any game in extensive form, simply by
replacing each player i ∈ I with a team of new players or “agents” labelled
H ∈ Hi, one for each of i’s information sets. So each player H ∈ H := ∪i∈IHi

in the modified game has exactly one information set, by construction. Some
players i ∈ I may not have any agents at all, if they happen not to have any
information sets in the original game.

This procedure of including one player for each information set transforms
the consequentialist game form Γ of (2) into the agent normal form

Γ̃ = 〈H, S̃H, Ỹ H, ψ̃〉

Here each agent H ∈ Hi of player i has strategy set S̃H := Mi(H) and conse-
quence domain ỸH := Yi. Then S̃H :=

∏
H∈H S̃H is the new set of strategy

profiles. The new consequence mapping ψ̃ : S̃H → ∆(Ỹ H) is defined by

ψ̃(ỹH; s̃H) =

{
ψ(yI ; sI) if ỹH = yi for all H ∈ Hi and all i ∈ I;
0 otherwise.

where sI ∈ SI is the unique strategy profile in the original game satisfying
si = 〈s̃H〉H∈Hi

for all i ∈ I.
Many games with imperfect recall can be converted into games with perfect

recall by means of this powerful device. Provided that each path through the
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game tree meets each information set at most once, no agent ever has earlier
information or an earlier move to remember. Indeed, this condition is clearly
necessary and sufficient for there to be perfect recall in the agent normal form.

This conversion from a general game with imperfect recall to an agent nor-
mal form with perfect recall seems entirely natural, especially in normative
game theory, After all, one could take the view that any player forced to have
imperfect recall should really be replaced by a “team” of players with shared
objectives, each one of whom has perfect recall, even if they are not always
allowed to know what other members of their team knew or how they acted
earlier in the game. For example, bridge is a popular and prominent card game
between two pairs of players — North and South versus East and West. Ideally
all four players should have perfect recall of the bidding and play. Neverthe-
less, to fit it into their framework of two-person zero-sum games, von Neumann
and Morgenstern (p. 53) suggested that the two partnerships North–South and
East–West should be viewed as two players. Each member of a partnership is
then required to “forget” having seen partner’s hand whenever the rules require
that player to make a bid or play a card.

One advantage of considering the agent normal form in bridge is to allow for
the possibility that one or more of the four human players may be forgetful.

2.6 The Absent-Minded Driver

Suppose there is at least one path through the game tree which intersects some
information set more than once. Then the game does not have perfect recall
even in its agent normal form. The “absent-minded driver” example of Piccione
and Rubinstein (1997) illustrates this — see Figure 1 for a simplified version.
Here the game tree may represent possible routes that the driver can choose.
There are two decision nodes n0 and n1, both of which belong to the same
information set, as indicated by the loop surrounding these two nodes in the
figure. Each node presents the driver with a choice between the two strategies
labelled a and d. Driving to the desired destination requires choosing a at n0

followed by d at n1, thus achieving a payoff of 1. However, being absent-minded,
at n1 the driver cannot remember having already chosen a at n0. That is why
n0 and n1 are indistinguishable.

✞
✝
�
✆

� � �

� �

❄ ❄

✲ ✲

0 1

0
d d

n0 n1a a

Figure 1 The Absent-Minded Driver

Note that the only pure strategies available are either choosing a at both
decision nodes, or d at both decision nodes. Neither pure strategy reaches the
desired destination, so each results in a payoff of 0. Yet the highest possible
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expected payoff is 1/4. This can be achieved by a mixed strategy attaching
equal probabilities to a and d at both nodes n0 and n1.

Apart from being an example of an agent normal form game with imperfect
recall, this example shows how mixed strategies may be optimal for such games.
This contrasts with usual decision trees such as in Chapters 5 and 6, in which
a mixed strategy is never any better than the best of the pure strategies which
occur with positive probability. Indeed, it will turn out that the same is true
of best responses in general normal form games with perfect recall.

Agent normal form games with imperfect recall, however, would seem to
have limited interest in any normative theory. After all, the absent-minded
driver would be well advised to create a simple mnemonic device which enables
n1 to be distinguished from n0. Even counting with whole hands rather than
on one’s fingers will work in this simple example!

2.7 Consequentialist Normal Form Invariance

A major assertion by von Neumann and Morgenstern (1953, pp. 79–85) was
that no harm is done by normalizing or “simplifying” the extensive form of the
game. This normalization involves considering only the corresponding normal
or strategic form in which each player i ∈ I is represented as making just one
choice of strategy specifying what i will do at each possible information set
H ∈ Hi. In other words, each Si is the Cartesian product set

∏
H∈Hi

Mi(H),
which is equivalent to the set of mappings mi with domain Hi that satisfy the
requirement that mi(H) ∈ Mi(H) (all H ∈ Hi).

So, following von Neumann and Morgenstern, the hypothesis of consequen-
tialist normal form invariance requires the normal form (2) to be a sufficient
description of the game in the following sense: The set of consequences of be-
haviour by all the players in the game should be invariant to changes in the
extensive form of the game which leave this normal form unaffected. Obviously,
this is similar to the consequentialist axiom considered in the previous chapters
(5 and 6) on expected utility theory.

This concept of invariance is really still too weak, however, because some
changes in the consequentialist normal form should leave the set of consequences
of behaviour in the game unaffected. After all, in a single-person decision tree
or “game against nature” the usual consequentialist axiom requires the set of
consequences of behaviour to be determined only by the feasible set of conse-
quences. So decision trees with identical feasible sets are regarded as effectively
equivalent. With this analogy in mind, consider the two consequentialist game
forms

Γ = 〈I, SI , Y I , ψ〉 and Γ̃ = 〈I, S̃I , Y I , ψ̃〉

with identical sets of players I and identical consequence domains Y I . These
two are said to be equivalent iff for each i ∈ I there exist mappings ξi : Si → S̃i

and ξ̃i : S̃i → Si that are both onto and, for all sI ∈ SI and s̃I ∈ S̃I , the
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associated products ξI : SI → S̃I and ξ̃I : S̃I → SI satisfy10

ψ(sI) = ψ̃(ξI(sI)) and ψ̃(s̃I) = ψ(ξ̃I(s̃I)) (3)

That is, every strategy profile sI ∈ SI must have at least one counterpart
strategy profile s̃I = ξ̃I(s̃I) ∈ S̃I yielding an identical profile of random conse-
quences, and vice versa. Of course, the equivalence is rather obvious when all
the mappings ξi : Si → S̃i and ξ̃i : S̃i → Si are one-to-one as well as onto, in
which case each ξ̃i may as well be the inverse of the corresponding ξi. But the
definition does not require these mappings to be one-to-one. This is because
duplicating one or more players’ strategies and their respective consequences
does not produce a fundamentally different consequentialist game form, just as
it does not in a single-person decision tree.

Indeed, as an illustration, consider the special case when there are two play-
ers I = { 1, 2 }. Then a consequentialist game form can be represented by
a matrix in which the rows correspond to player 1’s strategies s1 ∈ S1, the
columns correspond to player 2’s strategies s2 ∈ S2, and all the entries are
consequence lotteries ψ(s1, s2) ∈ ∆(Y1 × Y2). In this case, two consequential-
ist game forms are equivalent if and only if one form can be derived from the
other by combining the operations of permuting or duplicating either rows or
columns, or of eliminating redundancies among any duplicated rows or columns.

For a general n-person game, given any player i ∈ I, any strategy profile
sI ∈ SI can be written in the form (si, s−i) where si ∈ Si and s−i ∈ S−i :=∏

j∈I\{i} Sj . Then, because each mapping ξi : Si → S̃i (i ∈ I) must be onto,
(3) requires that for all i ∈ I, s−i ∈ S−i, and s̃−i ∈ S̃−i the range sets must
satisfy

ψ(Si × {s−i}) = ψ̃(S̃i × {ξ−i(s−i)}); ψ̃(S̃i × {s̃−i}) = ψ(Si × {ξ̃−i(s̃−i)})

where

ξ−i(s−i) = 〈ξh(sh)〉h∈I\{i} and ξ̃−i(s̃−i) = 〈ξ̃h(s̃h)〉h∈I\{i}

10Defined this way, normal form invariance corresponds to the strategic equivalence concept
for extensive form games studied by Elmes and Reny (1994). Unlike earlier concepts due
to Thompson (1952) and Dalkey (1953), this limits the domain of allowable extensive form
games to those in which all players have perfect recall.

A stronger form of invariance due to Kohlberg and Mertens (1986, p. 1009–10) extends
the earlier ideas of Thompson (1952) and Dalkey (1953) in a natural way to allow moves by
chance. In addition, their extension would require two games Γ and Γ̃ to be equivalent even
if (3) is not satisfied for some sI ∈ SI and s̃I ∈ S̃I , but if instead there exists i ∈ I such that
ψ̃(ξI(sI)) is a probability mixture of the finite collection of lotteries ψ(s′i, s−i) (s′i ∈ Si) in

∆(Y S). One reason for using the weaker version here is that Kohlberg and Mertens (1986,
Ssection 2.8) show how consequentialist reduced normal form invariance, in their stronger
sense, is not satisfied by the sequential equilibrium solution set.

For other work on normal form invariance, see Myerson (1986), as well as Mailath, Samuel-
son and Swinkels (1993).
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Hence, corresponding strategy choices by the other players leave each player i
facing exactly the same range of possible consequence lotteries as i’s strategy
si varies over Si.

For most of this chapter, consequentialist normal form invariance will only
be invoked in single-person decision trees, as in Chapters 5 and 6. However, the
reversal of order axiom (RO) in the latter chapter was given a consequentialist
justification based on a three-person game involving both chance and nature,
in addition to the decision-maker. This axiom, and the eventual implication
that decisions should maximize subjectively expected utility, will be important
later on in Section 8.

3 Objective Probabilities and Best Responses

3.1 Expected Utility and Best Responses

For non-cooperative games, it is usual to assume that an equilibrium takes
the form of an appropriate commonly known objective probability distribution
π ∈ ∆(SI) over the space of strategy profiles. In the original case of Nash
equilibrium, this distribution takes the form of a product of probability distri-
butions — i.e., π(sI) =

∏
i∈I µi(si) for each sI ∈ SI , as if the players were all

playing independent mixed strategies µi ∈ ∆(Si). The more general case allows
for correlated equilibrium, as discussed by Aumann (1974, 1987a) — see also
Section 4.4 below.

From the point of view of each player i ∈ I, however, the choice of si ∈ Si

is not determined by an objective probability distribution like µi; rather, it
is a “free will” choice of whatever pure strategy si ∈ Si or mixed strategy
µi ∈ ∆(Si) seems best for i — see Gilboa (1999). Thus, what player i takes
as given in Nash equilibrium is the relevant marginal distribution πi ∈ ∆(S−i)
defined by πi(s−i) = π(Si×{s−i} =

∏
h∈E\{i} µh(sh) for each s−i ∈ S−i. These

represent player i’s expectations in the form of an appropriate and commonly
known objective probability distribution πi ∈ ∆(S−i) over the set S−i of all
possible profiles s−i of the other players’ strategies. From player i’s point of
view, this replaces other players’ moves in the game by chance moves. The case
of correlated equilibrium is somewhat more complicated — see Section 4.4.

In games with perfect recall, player i’s decision problem is accordingly re-
duced to choosing from the finite feasible set of consequence lotteries generated
by each of the pure strategies available to that player. This is a classical single-
person decision problem, with uncertainly described by objective probabilities.
The usual consequentialist hypotheses of rationality, as discussed in Chapter 5,
imply that the player should choose a strategy to maximize objectively expected
utility.

There is one important qualification, however. This is the need to exclude
zero probability chance moves from decision trees, otherwise Chapter 5 explains
how consequentialism would imply universal indifference. So other players’
moves which occur with zero probability in equilibrium have to be excluded
from the extensive form game. This issue will resurface in Section 5.
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For each player i ∈ I, given the expectations πi ∈ ∆(S−i) and any utility
function vi : SI → R in the unique cardinal equivalence class of NMUFs, there
is a unique cardinal equivalence class of (objectively) expected utility functions

Vi(si, πi) := Eπi
vi(si, s−i) =

∑
s−i∈S−i

πi(s−i) vi(si, s−i) (4)

Then rationality requires player i to choose an expected utility maximizing
strategy si in the best response set defined by

Bi(πi) := arg max
si∈Si

Vi(si, πi) := { s∗i ∈ Si | si ∈ Si =⇒ Vi(s∗i , πi) ≥ Vi(si, πi) }

(5)

Player i’s best response correspondence Bi : ∆(S−i)→→Si is the multi-valued
mapping defined by πi �→→Bi(πi). This correspondence features prominently
throughout the rest of the chapter because it underlies many later equilibrium
concepts and different forms of rationalizability, etc.

Strategy si ∈ Si is said to be a best response for player i if there exists
πi ∈ ∆(S−i) such that si ∈ Bi(πi). Otherwise si is never a best response.

Given any finite set Ω of possible states, let ∆0(Ω) denote the subset of ∆(Ω)
which consists of interior probability distributions P satisfying P (ω) > 0 for
all ω ∈ Ω. Because zero probabilities cause problems, we shall be especially
interested in what Pearce (1984) suggests should be called cautious best re-
sponses. These are defined as strategies such that si ∈ Bi(πi) for some interior
probability distribution πi ∈ ∆0(S−i). The idea is that it would be incautious
to choose a strategy which is a best response only to beliefs that are extreme
points of ∆(S−i) satisfying πi(s−i) = 0 for some s−i ∈ S−i.

Best responses in games without perfect recall are more complicated. If all
players in the agent normal form discussed in Section 2.5 have perfect recall,
then every player becomes replaced by a team of agents, each of whom faces
a single-person decision problem. In games like the example in Section 2.6 of
the absent-minded driver, however, there is imperfect recall even in the agent
normal form. Then some mixed strategies may be strictly superior to any pure
strategy — a phenomenon that can never arise in one-person decision trees.
Nevertheless, one could argue as in Section 2.5 that such absent-mindedness
should play no role in a normative theory, because if necessary players should
be encouraged to use recording devices in order to facilitate recall.

3.2 Dominance by Pure Strategies

Say that i’s strategy si ∈ Si is strictly dominated by the alternative s′i ∈ Si iff

vi(s′i, s−i) > vi(si, s−i)

for all other players’ strategy profiles s−i ∈ S−i.
Similarly, say that i’s strategy si ∈ Si is weakly dominated by the alternative

s′i ∈ Si iff

vi(s′i, s−i) ≥ vi(si, s−i)
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for all other players’ strategy profiles s−i ∈ S−i, with strict inequality for at
least one such profile.

It is obvious that any strategy that is strictly dominated by another pure
strategy is always inferior, so can never be a best response. On the other
hand, a strategy si ∈ Si that is only weakly dominated by an alternative
s′i ∈ Si might still be a best response. For si to be a best response to some
πi ∈ ∆(S−i), however, it is necessary that πi(s−i) = 0 for every other players’
strategy profile s−i ∈ S−i such that vi(s′i, s−i) > vi(si, s−i).

P2

b1 b2 b3

a1 4 1 0
P1 a2 0 1 4

Table 1 Example of Dominance Only by Mixed Strategies

(Only Player P2’s Payoffs Are Listed)

A strategy that is not dominated by any alternative may still not be a best
response to any πi ∈ ∆(S−i). Table 1 illustrates an example of this. No pure
strategy for player P2 dominates b2. Yet b2 is never a best response for player
P2’s because the best response correspondence B2(·) satisfies

b1 ∈ B2(π2) ⇐⇒ π2(a1) ≥ 1
2 and b3 ∈ B2(π2) ⇐⇒ π2(a2) ≥ 1

2

3.3 Dominance by Mixed Strategies

The following stronger definition of dominance guarantees that any undom-
inated strategy is a best response for some probability beliefs πi ∈ ∆(S−i).
Since a mixed strategy µ̄i ∈ ∆(Si) is a best response only if every pure strat-
egy si ∈ Si with µ̄i(si) > 0 is a best response, it is enough to consider when
pure strategies are undominated.

Say that i’s strategy si ∈ Si is strictly dominated if there exists a mixed
strategy µi ∈ ∆(Si) such that

∑
s′i∈Si

µi(s′i) vi(s′i, s−i) > vi(si, s−i)

for all other players’ strategy profiles s−i ∈ S−i.
In Table 1, note that player P2’s strategy b2 is strictly dominated by µ2 ∈

∆(S2) provided that 4µ2(b1) > 1 and 4µ2(b3) > 1 — or equivalently, provided
that min{µ2(b1), µ2(b3) } > 1/4. Obviously, these inequalities are satisfied in
the particular case when µ2(b1) = µ2(b3) = 1

2 .
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Similarly, say that i’s strategy si ∈ Si is weakly dominated if there exists a
mixed strategy µi ∈ ∆(Si) such that

∑
s′i∈Si

µi(s′i) vi(s′i, s−i) ≥ vi(si, s−i)

for all other players’ strategy profiles s−i ∈ S−i, with strict inequality for at
least one such profile.

3.4 Strategies not Strictly Dominated must be Best Responses

It is obvious that si ∈ Si is a best response to some expectations πi ∈ ∆(S−i)
only if si is not strictly dominated.

It is also fairly easy to show the converse — see, for example, Osborne
and Rubinstein (1994, ch. 4). Alternatively, here is a proof by means of the
separating hyperplane theorem.

First, given any i ∈ I and any s̄i ∈ Si, define the two sets

Ui := { 〈ui(s−i)〉s−i∈S−i
∈ RS−i | ∃µi ∈ ∆(Si) :

ui(s−i) =
∑

s′i∈Si

µi(s′i) vi(s′i, s−i) (all s−i ∈ S−i) }

Wi := { 〈wi(s−i)〉s−i∈S−i
∈ RS−i | wi(s−i) > vi(s̄i, s−i) (all s−i ∈ S−i) }

These are two non-empty convex sets. If s̄i is not strictly dominated, then the
two sets must be disjoint. Moreover, the vector ūi ∈ RS−i whose components
satisfy ūi(s−i) = vi(s̄i, s−i) for all s−i ∈ S−i must be a point in the set Ui, as
well as a boundary point of Wi. Hence the sets Vi and Wi can be separated by
a hyperplane in RS−i passing through ūi. That is, there exist real constants
α(s−i) (s−i ∈ S−i), not all zero, such that

∑
s−i∈S−i

α(s−i)ui(s−i) ≤
∑

s−i∈S−i

α(s−i) ūi(s−i) ≤
∑

s−i∈S−i

α(s−i)wi(s−i) (6)

whenever 〈ui(s−i)〉s−i∈S−i ∈ Ui and 〈wi(s−i)〉s−i∈S−i ∈ Wi. Then the second
inequality in (6) implies that each constant α(s−i) (s−i ∈ S−i) must be non-
negative. Because not all the constants α(s−i) are zero, we can divide by their
positive sum in order to normalize and so obtain non-negative probabilities
πi(s−i) (s−i ∈ S−i) that sum to one. Then the first inequality in (6) implies
that ∑

s−i∈S−i

πi(s−i) vi(s̄i, s−i) ≥
∑

s−i∈S−i

πi(s−i)ui(s−i)

So the undominated strategy s̄i is indeed a best response, given the beliefs
πi ∈ ∆(S−i). This confirms that a strategy s̄i for any player i ∈ I is not
strictly dominated iff it is a best response, given suitable beliefs πi ∈ ∆(S−i).
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3.5 Strategies not Weakly Dominated must be Cautious Best Responses

The results in Section 3.4 for strategies that are not strictly dominated have
interesting counterparts for strategies that are not weakly dominated. In the
first place, obviously, si ∈ Si is a (cautious) best response to some interior
expectations πi ∈ ∆0(S−i) only if si is not weakly dominated.

The converse result is really a special case of an important theorem due to
Arrow, Barankin and Blackwell (1953) — see also Pearce (1984), van Damme
(1987), and Osborne and Rubinstein (1994, p. 64). In the case when the
strategy s̄i ∈ Si is not weakly dominated, the set Ui defined in Section 3.4
must be disjoint from the modified set W̃i whose members consist of vectors
〈wi(s−i)〉s−i∈S−i

in RS−i satisfying wi(s−i) ≥ vi(s̄i, s−i) for all s−i ∈ S−i, with
strict inequality for at least s−i ∈ S−i. Obviously, Ui and W̃i are both convex
non-empty subsets of the finite-dimensional space RS−i . The Arrow–Barankin–
Blackwell result then guarantees the existence of a separating hyperplane∑

s−i∈S−i

α(s−i) ui(s−i) =
∑

s−i∈S−i

α(s−i) ūi(s−i)

in RS−i passing through the point v̄i with the crucial additional property that
α(s−i) > 0 for all s−i ∈ S−i.

Once again, divide all the constants α(s−i) by their sum in order to normalize
and so obtain positive probabilities πi(s−i) (s−i ∈ S−i) that sum to one. The
implication is that s̄i must be a (cautious) best response to πi ∈ ∆0(S−i).

4 Objective Probabilities and Equilibrium

4.1 Two-Person Strictly Competitive Games

Following Borel (1921, 1924), von Neumann (1928) and von Neumann and
Morgenstern (1944) focused much of their discussion on the case they called a
“zero sum” two-person game, with I = { 1, 2 } and payoff functions satisfying

v1(s1, s2) + v2(s1, s2) = 0 (7)

for all strategy profiles (s1, s2) ∈ S1 × S2. Given any pair (π1, π2) ∈ ∆(S1) ×
∆(S2) of mixed strategies, the two players’ expected utilities are given by the
respective bilinear functions

W1(π1, π2) := Eπ1 Eπ2 v1(s1, s2)
W2(π1, π2) := Eπ1 Eπ2 v2(s1, s2) = −W1(π1, π2) (8)

where the last equality holds because of (7). Von Neumann and Morgenstern’s
minmax (or maxmin) theorem states that such a game has unique minmax (or
maxmin) values (ŵ1, ŵ2) for the two players. These are defined to satisfy

ŵ1 = −ŵ2 = max
π1∈∆(S1)

min
π2∈∆(S2)

W1(π1, π2) = min
π2∈∆(S2)

max
π1∈∆(S1)

W1(π1, π2)
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These values are generated by any mixed strategy equilibrium, which is equiva-
lent to any saddle point

(π̂1, π̂2) ∈ arg max
π1∈∆(S1)

min
π2∈∆(S2)

W1(π1, π2) = arg min
π2∈∆(S2)

max
π1∈∆(S1)

W1(π1, π2)

of the function W1(π1, π2). In particular,

W1(π1, π̂2) ≤ W1(π̂1, π̂2) ≤ W1(π̂1, π2)

for all (π1, π2) ∈ ∆(S1)×∆(S2). Necessary and sufficient conditions for (π̂1, π̂2)
to be such a saddle point are that the pair of inequalities

π̂1(s1) ≥ 0,
∑

s2∈S2

π̂2(s2) v1(s1, s2) ≥ ŵ1 (9)

should be complementarily slack (i.e., at least one inequality in each pair must
hold with equality) for all s1 ∈ S1, and also that the pair

π̂2(s2) ≥ 0,
∑

s1∈S1

π̂1(s1) v1(s1, s2) ≤ −ŵ2 (10)

should be complementarily slack for each s2 ∈ S2.
This minmax theorem is a special case of the Nash equilibrium existence

theorem to be discussed below, with each player i ∈ { 1, 2 } having a mixed
strategy π̂i which matches the other player’s belief πi about i’s strategy choice.
Alternatively, following Gale (1960, pp. 256–7, Ex. 1), it can be demonstrated
that the equilibrium mixed strategies (π̂1, π̂2) must solve the dual pair of linear
programs

max
w1,π2∈∆(S2)

{w1 |
∑

s2∈S2

π̂2(s2) v1(s1, s2) ≥ w1 }

min
w2,π1∈∆(S1)

{−w2 |
∑

s1∈S1

π̂1(s1) v1(s1, s2) ≤ −w2 }

Because ∆(S1) and ∆(S2) are compact sets, both these programs have a so-
lution. By the duality theorem of linear programming, the solutions (ŵ1, π̂2)
and (ŵ2, π̂1) are such that all the pairs of inequalities (9) and (10) are com-
plementarily slack, for all s1 ∈ S1 and all s2 ∈ S2 respectively. It follows that
ŵ1 = −ŵ2 = W1(π1, π2). This proves that an equilibrium exists, and also
suggests a numerical method for finding one.

Of more concern to this chapter, however, is the fact that (7) holds only
for some particular pairs of utility functions chosen from within each player’s
separate class of cardinally equivalent NMUFs. Rather than a zero-sum game, a
more appropriate concept which does not imply any interpersonal comparability
of different individuals’ utility functions is that of a strictly competitive two-
person game. Then (7) is replaced by the condition that there exist arbitrary
constants C, d1 and d2, with d1 and d2 both positive, such that

d1 v1(s1, s2) + d2 v2(s1, s2) = C (11)
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In particular

v1(s1, s2) ≥ v1(s′1, s
′
2) ⇐⇒ v2(s1, s2) ≤ v2(s′1, s

′
2)

for all s1, s
′
1 ∈ S1 and all s2, s

′
2 ∈ S2. Hence, when W1 and W2 are defined by

(8), one has

W1(π1, π2) ≥ W1(π′1, π
′
2) ⇐⇒ W2(π1, π2) ≤ W2(π′1, π

′
2)

for all π1, π
′
1 ∈ ∆(S1) and all π2, π

′
2 ∈ ∆(S2). This implies that the two

players’ objectives really are strictly opposed, as the term “strictly competitive”
suggests.

It is easy to see that, because the constants C, d1 and d2 are arbitrary, (11)
remains true after the two players’ NMUFs have undergone any independent
affine transformations v1 �→ v′1 and v2 �→ v′2 which satisfy

v′1(s1, s2) = α1 + δ1 v1(s1, s2) and v′2(s1, s2) = α2 + δ2 v2(s1, s2)

for arbitrary additive constants α1, α2, and arbitrary positive multiplicative
constants δ1, δ2. Such a game has all the features of a zero sum game, except
that the two players’ minmax (or maxmin) values (w1, w2) obviously satisfy
d1 w1 + d2 w2 = C instead of w1 + w2 = 0. Note, however, that a strictly
competitive game will usually cease to be strictly competitive if one or both
players’ attitudes to risk change, resulting in a non-linear transformation of the
corresponding NMUF.

4.2 Nash Equilibrium

After this extended detour to discuss the historically important case of two-
person games, let us now return to the general n-person framework. A Nash
equilibrium (Nash, 1950, 1951) of the game G is defined as a profile µI = 〈µi〉i∈I

of mixed strategies µi ∈ ∆(Si), one for each player i ∈ I, with the property
that µi(Bi(πi)) = 1 for the joint distribution

πi = µI\{i} =
∏

h∈I\{i}
µh (12)

induced by the other players’ independently chosen mixed strategies. That is,
with probability one each player i’s mixed strategy µi selects a best response
si ∈ Bi(πi) to the other players’ profile πi of independent mixed strategies.

Proving that such a Nash equilibrium in mixed strategies always exists is a
routine application of Kakutani’s fixed point theorem to the correspondence F
that maps the Cartesian product space

∏
i∈I ∆(Si) of mixed strategy profiles µI

into itself, with F (µI) :=
∏

i∈I ∆(Bi(πi)) where each πi satisfies (12). Indeed,
the theorem can be applied because the domain

∏
i∈I ∆(Si) is non-empty,

convex and compact, the image sets F (µI) are all non-empty and convex, and
the graph of the correspondence F is easily shown to be a closed set.
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4.3 Bayesian Nash Equilibrium

A game with incomplete information (Harsanyi, 1967–8) is defined as a collec-
tion

G∗ = 〈I, T I , SI , vI , qI〉 (13)

where I is the set of players and SI the set of strategy profiles, as in (1). Also,
each player i ∈ I has a finite type space Ti. Each possible type ti ∈ Ti of player i
is assumed to determine probabilistic prior beliefs qi(·|ti) ∈ ∆(T−i) about the
profile t−i ∈ T−i :=

∏
h∈I\{i} Th of all other players’ types. Moreover, the

profile tI ∈ T I of all players’ types is assumed to determine the payoff functions
vi(sI ; tI) of all the players. Here vi is allowed to depend on tI rather than just
on ti to reflect the possibility that there may be a fundamental determinant of
player i’s payoff which is correlated with other players’ types. This is the case
in common value auctions, for instance, as discussed by Milgrom and Weber
(1982) and by Milgrom (1987).

Equilibrium theory, based on objective probabilities, naturally concentrates
on the special case when there is one common prior distribution q ∈ ∆(T I)
such that each player i’s prior distribution qi(·|ti) is the conditional distribution
derived from q given ti. That is, for each possible type ti ∈ Ti of each player
i ∈ I, and for each profile t−i ∈ T−i of other players’ types,

qi(t−i|ti) =
q(ti, t−i)∑

t′−i∈T−i
q(ti, t′−i)

In the game G∗ each player i’s expectations concerning the profile s−i of
other players’ strategies, conditional on the other players’ types t−i, take the
form of a distribution πi(·|t−i) ∈ ∆(S−i). For the special case when, given
their profile of types t−i, these other players h ∈ I \ {i} choose independent
type-dependent mixed strategies µh(·|th) ∈ ∆(Sh), these probabilities satisfy

πi(s−i|t−i) =
∏

h∈I\{i}
µh(sh|th) (14)

for all s−i ∈ S−i. Generally, however, player i’s conditional beliefs πi(·|t−i)
about two or more other players’ strategies in the profile s−i may be correlated.
Even then, when combined with i’s own type ti and prior beliefs qi(·|ti) about
other players’ types t−i, these probabilities still determine player i’s expected
payoff

Vi(si, πi; ti) :=
∑

t−i∈T−i

qi(t−i|ti)
∑

s−i∈S−i

πi(s−i|t−i) vi(si, s−i; ti, t−i)

as a function of i’s strategy si and type ti. They also determine player i’s best
response correspondence, whose values are

Bi(πi; ti) := arg max
si∈Si

Vi(si, πi; ti)
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There are now two different ways of expressing G∗ as an ordinary game in
normal form, as in (1). For the first way, let S̃i := STi

i :=
∏

ti∈Ti
Si(ti), where

each Si(ti) is a copy of Si. Thus, S̃i is the set of player i’s type-contingent
strategies, each of which is a mapping from Ti to Si. Also, given the common
prior q ∈ ∆(T I) over all players’ type profiles, for each type-contingent strategy
profile s̃I ∈ S̃I :=

∏
i∈I S̃i, the expected utility of each player i ∈ I is obviously

given by

ṽi(s̃I) :=
∑

tI∈T I

q(tI) vi(sI(tI); tI)

where sI(tI) denotes the usual pure strategy profile 〈si(ti)〉i∈I in SI . Then
G̃ := 〈I, S̃I , ṽI〉 is an ordinary n-person game, except that it has some special
separability properties. Given expectations π̃i ∈ ∆(S̃−i) about other players’
type-contingent strategies and the common prior q ∈ ∆(T I) over type profiles,
player i’s expected utility is

Ṽi(s̃i, π̃i) =
∑

s̃−i∈S̃−i

π̃i(s̃−i) ṽi(s̃I)

But π̃i(s̃−i) =
∏

t−i∈T−i
πi(s−i(t−i)|t−i) where s−i(t−i) := 〈sh(th)〉h∈I\{i}. It

follows that

Ṽi(s̃i, π̃i) =
∑

s̃−i∈S̃−i

∏
t−i∈T−i

πi(s−i(t−i)|t−i)
∑

tI∈T I

q(tI) vi(sI(tI); tI)

=
∑

ti∈Ti

pi(ti) Vi(si(ti), πi; ti)

where pi(ti) :=
∑

t−i∈T−i
q(ti, t−i) and so q(tI) = pi(ti) qi(t−i|ti). So each

player i’s set of best responses is given by

B̃i(π̃i) := arg max
s̃i∈S̃i

Ṽi(s̃i, π̃i)

=
∏

ti∈Ti

arg max
si(ti)∈Si

Vi(si(ti), πi; ti) =
∏

ti∈Ti

Bi(πi; ti)

because the strategies si(ti) can be chosen separately for each ti ∈ Ti.
The second way to express G∗ as an ordinary game in normal form be-

gins by letting s−i,t−i denote the list 〈sj,tj 〉j∈I\{i}〉 of strategies chosen by
the other players participating in the game when their types are t−i. Then
G∗ = 〈I∗, SI∗ , vI∗〉 where I∗ := { (i, ti) | i ∈ I, ti ∈ Ti } is the set of players,
SI∗ is the Cartesian product

∏
i∈I

∏
ti∈Ti

Si,ti with each strategy set Si,ti a
copy of Si, independent of i’s type, while the payoff functions v∗i,ti

: SI∗ → R

are given by

v∗i,ti
(sI∗) =

∑
t−i∈T−i

qi(t−i|ti) vi(si, s−i,t−i
; ti, t−i)
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for all sI∗ ∈ SI∗ and (i, ti) ∈ I∗. Thus, G∗ has been re-cast as an ordinary game
in normal form, but with a special structure. In particular, for each i ∈ I, one
player (i, ti) is selected at random from the set {i} × Ti to make the strategy
choice si ∈ Si. This player’s best response correspondence is given precisely by
Bi(πi; ti). It follows that this alternative way of expressing G∗ as an ordinary
game in normal form gives rise to identical best responses, and so to identical
Nash equilibria.

A Nash equilibrium of such a game is generally called a Bayesian–Nash
equilibrium, especially in the case when qi(·|ti) is derived from a common prior
q by conditioning. Whether there is a common prior or not, such an equilibrium
consists of a profile of type-dependent but conditionally independent mixed
strategies µi(·|ti) ∈ ∆(Si) (all i ∈ I and ti ∈ Ti) with the property that, when
the probabilities πi(·|t−i) ∈ ∆(S−i) are given by (14), then µi(Bi(πi; ti)|ti) = 1
for all i ∈ I and all ti ∈ Ti.

4.4 Correlated Equilibrium

Finally, a correlated equilibrium (Aumann, 1974, 1987a) of the original game
(1) of perfect information is a general joint distribution µ ∈ ∆(SI) on the set
SI of strategy profiles, not necessarily independent, with the property that
for all sI ∈ SI with µ(sI) > 0 and all i ∈ I, if πi = µ(·|si) is the induced
conditional distribution on S−i given si, then si ∈ Bi(πi). The most plausible
interpretation is that a suitable correlation device is used to generate random
private signals to each player i that suggest the choice of some particular si ∈
Si. In equilibrium, the distribution µ of the different players’ signals must be
such that all players are willing to follow these suggestions. For other possible
interpretations of correlated equilibria, see Chapter 13 by Joyce and Gibbard
in Volume 1 of this Handbook.

Of course, any Nash equilibrium is a special case of a correlated equilibrium
which arises when µ specifies that different players’ signals are independently
distributed, implying that individuals’ induced mixed strategies happen to be
independent. Thus, µ(sI) =

∏
i∈I µi(si). Indeed, in this case πi is given by

(12). Also, because µi(Bi(πi)) = 1 and
∏

h∈I µh(sh) > 0, it must be true that
each si ∈ Bi(πi), as required for Nash equilibrium. Because a Nash equilibrium
exists, therefore, so does a correlated equilibrium.11 But many games have
correlated equilibria that are not Nash — e.g., the well-known Battle of the
Sexes (Luce and Raiffa, 1957). And in fact, by considering correlation devices
that are random mixtures of other correlation devices, it is not difficult to show
that the set of correlated equilibria must always be a convex subset of ∆(SI)
— see, for example, Osborne and Rubinstein (1994). On the other hand, in

11See Hart and Schmeidler (1989) for an alternative and elementary direct proof that a
correlated equilibrium exists. Their proof uses the duality theory of linear programming
rather than a fixed point theorem.
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the framework assumed here, Wilson (1971) and Harsanyi (1973) proved that
generically there is an odd finite number of mixed strategy Nash equilibria.

5 Perfect and Proper Equilibrium

5.1 Subgame Imperfection of Nash Equilibrium

In an important article that was overlooked for too many years — probably
because it was unavailable in English — Selten (1965) noted that some Nash
equilibria relied on players being deterred by threats which it would be irra-
tional to carry out if deterrence should happen to fail — see also Selten (1973).
Such threats can survive as part of each player’s best response in a Nash equilib-
rium because they are responses to actions which, in equilibrium, are deterred
and so occur with probability zero. The difficulty here is very similar to that
noticed in Chapter 5, which forced zero probability events to be excluded in
order to avoid universal indifference being the only possibility consistent with
the consequentialist axioms.

This serious deficiency of the Nash equilibrium concept led Selten to devise
the notion of “subgame perfect” equilibria in extensive form games. These
are defined as equilibria which rely only on threats that really are credible
because the person doing the threatening has an incentive to carry out the
threat even if deterrence fails. Kreps and Wilson’s (1982) notion of “sequential”
equilibria extends the idea to cases where there may not be a properly defined
subgame. As in subgame perfect equilibria, they require players to maximize
expected utility at each information set, given their probability assessments at
that set. In addition, at successive information sets which are reached with
positive probability, players must revise their assessments by using Bayes’ rule
to update the equilibrium probability distribution, based on the knowledge of
the information set they have reached.

Exploring subgame perfect and sequential equilibria would require us to
consider games in extensive form, which I propose to avoid in this survey. In
fact, later Selten (1975) himself came up with the concept of “trembling-hand
perfect” equilibria based only on the normal form. These have the attractive
property that, provided one considers the agent normal form in which each
player has only one information set, only subgame perfect equilibria are chosen
in any extensive form game having this agent normal form. Myerson (1978)
later refined this concept to “proper” equilibrium. This section will briefly
consider each of these two normal form equilibrium concepts in turn. Both
replace zero probabilities with vanishing trembles, but in different ways. Many
of the results reported here concerning perfect and proper equilibria can be
found in van Damme (1987) and in Fudenberg and Tirole (1991, pp. 351–3).

5.2 Trembling-Hand Perfection

Trembling-hand perfection derives its name from the fact that players are
prevented from choosing any strategy with perfect certainty. Because the
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“hand” governing their choice of strategy trembles unpredictably, no strat-
egy occurs with zero probability. Instead, given any strictly positive vector
η = 〈〈ηi(si)〉si∈Si

〉i∈I ∈
∏

i∈I R
Si
++ small enough to satisfy

∑
si∈Si

ηi(si) ≤ 1
for all i ∈ I, consider what happens when each player i ∈ I is restricted to
choosing a mixed strategy µi from the set

∆η(Si) := {µi ∈ ∆(Si) | µi(si) ≥ ηi(si) (all si ∈ Si) } (15)

of “η-trembles”. Given any probability beliefs πi ∈ ∆(S−i) concerning the other
players’ strategy profile, player i’s η-constrained best response set is defined by

Bη
i (πi) := arg max

µi

{Eµi
Vi(si, πi) | µi ∈ ∆η(Si) } (16)

:= {µη
i ∈ ∆η(Si) | µi ∈ ∆η(Si) =⇒ Eµη

i
Vi(si, πi) ≥ Eµi Vi(si, πi) }

instead of as the usual unconstrained best response set given by (5). Given that
trembles cannot be avoided, this is the best that player i can do. In fact, player
i maximizes Eµi

Vi(si, πi) subject to the constraints µi(si) ≥ ηi(si) by choosing
µi(si) = ηi(si) unless si ∈ Bi(πi). So if µi ∈ Bη

i (πi), then µi(si) > ηi(si) is
only possible when si ∈ Bi(πi).

Next, define an η-constrained equilibrium as any profile µI of independent
mixed strategies which, when πi =

∏
h∈I\{i} µh, satisfies µi ∈ Bη

i (πi) for all
i ∈ I. This is a Nash equilibrium in a “perturbed” game where each player i ∈ I
is restricted to completely mixed strategies in ∆η(Si), which is a compact con-
vex set. Consider the correspondence F η from the non-empty convex and com-
pact set

∏
i∈I ∆η(Si) to itself which is defined by F η(µI) :=

∏
i∈I Bη

i (µI\{i}).
Evidently F η has non-empty convex values. It is easy to verify that its graph is
closed. So for each allowable vector η � 0 the correspondence F η satisfies the
conditions needed to apply Kakutani’s theorem. It therefore has a fixed point,
which must be an η-constrained equilibrium.

Finally, say that µI ∈
∏

i∈I ∆(Si) is a trembling-hand perfect (or THP)
equilibrium if it is the limit as n → ∞ of an infinite sequence µI

n (n = 1, 2, . . . )
of ηn-constrained equilibria, where ηn ↓ 0. Then, for any infinite sequence
ηn (n = 1, 2, . . . ) satisfying ηn ↓ 0, compactness of each set ∆(Si) guarantees
that any corresponding sequence µI

n (n = 1, 2, . . . ) of ηn-constrained equilibria
has a convergent subsequence, whose limit is by definition a THP equilibrium.
Hence, THP equilibrium exists.

On the other hand, suppose that µI is a THP equilibrium. Then there exist a
sequence ηn ↓ 0 and a sequence µI

n = 〈µin〉i∈I (n = 1, 2, . . . ) of ηn-constrained
equilibria converging to µI = 〈µi〉i∈I . In particular, µin ∈ Bηn

i (πin) for all
i ∈ I, where πin =

∏
h∈I\{h} µhn. It follows that πin → πi =

∏
h∈I\{h} µh,

and then a routine convergence argument shows that µi ∈ Bi(πi) for all i ∈ I.
This proves that any THP equilibrium is Nash.

Moreover, for games in agent normal form, it is routine to show that any
THP equilibrium is also subgame perfect in any subgame of an extensive form
game with the given agent normal form. Indeed, any η-constrained equilibrium
reaches that subgame with positive probability. Therefore, the agent at the
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initial information set of that subgame must choose an η-constrained response,
which is also an η-constrained response in the subgame. Taking the limit as
η ↓ 0, it follows that this agent chooses a best response in the subgame, even
if the subgame is reached with probability zero in the trembling-hand perfect
equilibrium.

5.3 ε-Perfect and Perfect Equilibrium

There are two alternative characterizations of THP equilibria which will be use-
ful subsequently. As a preliminary, let ∆0(Si) denote the set of all “completely”
mixed strategies µi — i.e., those satisfying µi(si) > 0 for all si ∈ Si.

First, given any i ∈ I, any real ε ∈ (0, 1), and any πi ∈ ∆(S−i), the com-
pletely mixed strategy µi ∈ ∆0(Si) is said to be an ε-perfect response by player
i to πi provided that µi(si) ≤ ε for all inferior responses si ∈ Si \ Bi(πi).
Equivalently, the set of ε-perfect responses is given by

P ε
i (πi) := {µi ∈ ∆0(Si) | µi(si) > ε =⇒ si ∈ Bi(πi) } (17)

From the definitions, it is obvious that Bη
i (πi) ⊂ P ε

i (πi) whenever η(si) ≤ ε for
all si ∈ Si.

Say that the profile µI of independent mixed strategies is an ε-perfect equi-
librium if it satisfies µi ∈ P ε

i (µ−i) for all i ∈ I.
Obviously, when η(si) ≤ ε for all i ∈ I and all si ∈ Si, then any η-constrained

equilibrium is an ε-perfect equilibrium. It follows that any THP equilibrium
µI is the limit as n → ∞ and εn ↓ 0 of a sequence µI

n of εn-perfect equilibria.
The converse is also true, but establishing it is helped by introducing a second
alternative characterization of THP equilibrium.

Say that µI is a perfect equilibrium if it is the limit as n → ∞ of a sequence
of completely mixed strategy profiles µI

n ∈
∏

i∈I ∆0(Si) with the property that,
for each player i and strategy si ∈ Si, one has

µi(si) > 0 =⇒ si ∈ Bi(µ−i,n) (18)

Suppose that µI is the limit as εn ↓ 0 of a sequence µI
n of εn-perfect equilibria.

In this case, note that each µI
n is a completely mixed strategy profile. Also,

if si ∈ Si is any strategy for player i satisfying µi(si) > 0, then µi,n(si) > εn

for all large n. Then, because µI
n is an εn-perfect equilibrium, it follows that

µi,n ∈ P εn
i (µ−i,n), so si ∈ Bi(µ−i,n). This is true for all large n, so the limit

µI must be a perfect equilibrium.
On the other hand, suppose that µI is a perfect equilibrium, as the limit of

a sequence of completely mixed strategy profiles µI
n satisfying (18). For each

i ∈ I and si ∈ Si, define the sequence

ηin(si) :=
{

µi,n(si) if µi(si) = 0
1/(n + #Si) if µi(si) > 0

for n = 1, 2, . . . . Then
∑

si∈Si
ηin(si) ≤ 1 for all large n. Also, µi,n(si) ≥

ηin(si) for all large n, with strict inequality only if µi(si) > 0. Because µI
n
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satisfies (18), for large n it follows that µi,n(si) > ηin(si) implies si ∈ Bi(µ−i,n).
Hence, µI

n is an η-constrained equilibrium for large n, and the limit µI is a THP
equilibrium.

To summarize, µI is a THP equilibrium if and only if it is perfect, and also
if and only if it is the limit as n → ∞ and εn ↓ 0 of a sequence µI

n of εn-perfect
equilibria.

5.4 Proper Equilibrium

Consider any subgame which has been reached after one player i ∈ I in par-
ticular has already made some kind of mistake. This leaves player i with the
choice between several inferior strategies, of which some are likely to be better
than others. Then the argument for considering ε-perfect responses suggests
that any strategy which is best in the subgame should receive much higher
probability than those which are inferior, even within the subgame. Yet the
definition of ε-perfect responses used above makes no distinction between these
different inferior responses. Each of any player i’s inferior strategies si ∈ Si

must be given probability no less than ε, so it is best to give each of them
probability exactly equal to ε, without regard to whether some may be better
or worse than others. This equal treatment of all inferior strategies allows even
a perfect equilibrium to be subgame imperfect, unless one considers perfect
equilibria of the agent normal form, with different agents of each player then
being required to tremble independently of each other.

To remedy this deficiency, Myerson (1978) refines the definition (18) of
P ε

i (πi) by replacing it with P̂ ε
i (πi), the set of ε-proper responses, defined as

P̂ ε
i (πi) := { µi ∈ ∆0(Si) | ∀si, s

′
i ∈ Si : (19)

Vi(si, πi) > Vi(s′i, πi) =⇒ µi(s′i) ≤ ε µi(si) }

Thus, player i gives all inferior strategies low positive probability, but these
probabilities are much lower for worse strategies. Note that P̂ ε

i (πi) really does
refine the set P ε

i (πi) of ε-perfect responses, because the latter evidently satisfies

P ε
i (πi) = { µi ∈ ∆0(Si) | ∀si, s

′
i ∈ Si : Vi(si, πi) > Vi(s′i, πi) =⇒ µi(s′i) ≤ ε }

Next, define an ε-proper equilibrium as any profile µI of independent totally
mixed strategies which, when πi =

∏
h∈I\{i} µh, satisfies µi ∈ P ε

i (πi) for all
i ∈ I. Finally, say that µI ∈

∏
i∈I ∆(Si) is a proper equilibrium if it is the

limit as n → ∞ of an infinite sequence µI
n (n = 1, 2, . . . ) of εn-proper equilibria,

where εn ↓ 0 in R.
Because P̂ ε

i (πi) ⊂ P ε
i (πi), it is obvious that any ε-proper equilibrium is ε-

perfect. Taking limits as ε ↓ 0, it follows that any proper equilibrium, if one
exists, must be trembling-hand perfect.

In fact, existence of proper equilibrium can be proved fairly easily by re-
stricting completely mixed strategies to the closed convex set

∆̃ε(Si) := { µi ∈ Si | µi(si) ≥ εm/m (all si ∈ Si) } (20)
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for each i ∈ I and ε ∈ (0, 1), where m := maxi∈I #Si denotes the maximum
number of pure strategies available to any one player — see Fudenberg and
Tirole (1991, p. 357). Then, instead of P̂ ε

i (πi) or Bε
i (πi), consider

Aε
i(πi) := P̂ ε

i (πi) ∩ ∆̃ε(Si) (21)

For each fixed ε ∈ (0, 1), the set Aε
i(πi) is obviously non-empty, closed, and

convex. Also, because the expected utility Vi(si, πi) is a continuous function
of player i’s probability beliefs πi ∈ ∆(S−i), it is easy to show that the corre-
spondence πi �→→Aε

i(πi) has a closed graph, for each fixed ε ∈ (0, 1).
Next, define the correspondence F ε from the non-empty compact convex

set
∏

i∈I ∆̃ε(Si) into itself by F ε(µI) :=
∏

i∈I Aε
i(µ

I\{i}). The argument used
in Section 5.2 can be repeated to demonstrate that for each ε ∈ (0, 1) there
exists a fixed point µI(ε) ∈ F ε(µI(ε)), which must be an ε-proper equilibrium.
Existence of a proper equilibrium can then be proved by taking the limit as
ε ↓ 0, following the argument used in Section 5.2 to demonstrate existence of a
perfect equilibrium.

It is also easy to show that any proper equilibrium is not only trembling-
hand perfect, but now also subgame perfect, even outside the agent normal
form. Indeed, not only is each subgame reached with positive probability in
any ε-proper equilibrium; in addition, strategies that are inferior in the subgame
must be played with much lower probability, and so, in the limit as ε → 0, with
zero probability in proper equilibrium. Furthermore, Kohlberg and Mertens
(1986) proved that proper equilibria are also sequential. They also give an
example showing that, even in a single-person game, a proper equilibrium need
not be trembling-hand perfect in the agent normal form.

5.5 Importance of Best Responses

This very brief survey of the Nash, Bayesian, correlated, perfect, and proper
equilibrium concepts illustrates in particular how the best response correspon-
dence lies at the heart of non-cooperative game theory. For each player, this
correspondence specifies how behaviour depends on expectations. The equilib-
rium concepts considered so far treat the probability distribution µ ∈ ∆(SI)
as objective. Then the best response correspondence comes from maximizing
objectively expected utility. In equilibrium, µ attaches probability 1 to the set
of strategy profiles in which each player chooses a best response.

Section 9 will discuss some significant extensions of equilibrium theory. Nev-
ertheless, these extensions concern the determination of players’ expectations;
they still assume that, given their expectations, all players choose strategies
from their respective sets of best responses. Or later in Section 11, at least
from their respective sets of ε-perfect or ε-proper responses. The next section
removes this requirement completely.
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6 Quantal Response Equilibrium

6.1 Motivation

The previous section considered how small trembles may help to resolve the
zero probability problem created by the requirement that each player’s set of
best responses be given probability 1. Such trembles, however, play no role
in classical single-person decision theory. In fact, ideas from stochastic utility
theory (as reviewed by Fishburn in Chapter 7 of Volume 1) are introduced
artificially. Instead, it seems worth investigating the implications of applying
a fully articulated stochastic decision theory to non-cooperative games. In an
attempt to provide a more accurate description of observed behaviour in games,
McKelvey and Palfrey (1995) have initiated one important line of research in
this area. Some of the most recent analysis appears in Haile, Hortaçsu and
Kosenok (2003).

Consider an underlying set Y of consequences, and the set ∆(Y ) of simple
consequence lotteries. Ordinary decision theory, as explored in Chapters 5 and
6 of Volume 1, considers a choice function C defined on F , the collection of
non-empty finite subsets F of ∆(Y ), with C(F ) ∈ F and C(F ) ⊂ F for all
F ∈ F . Stochastic decision theory, on the other hand, as surveyed by Fishburn
in Chapter 7 of Volume 1, considers a simple lottery q(F ) ∈ ∆(F ) defined for
each F ∈ F . Thus, we may write q(λ, F ) for the probability of choosing λ ∈ F
when the agent is presented with the feasible set F ∈ F .

The main goal of our inquiry remains to explore the implications of the
consequentialist normal form invariance axiom described in Section 2.7, but
adapted to fit the stochastic choice framework considered in this Section. It
will be shown that stochastic utility theory is of no help in avoiding the zero
probability problem because only trivial extensions of the usual expected utility
maximizing decision rule satisfy consequentialist normal form invariance.

6.2 Ordinality

First, for each non-empty finite set F ⊂ ∆(Y ), define

C(F ) := {λ ∈ F | q(λ, F ) > 0 } (22)

as the set of elements that are chosen with positive probability from F . Next,
define the binary stochastic weak preference relation � on ∆(Y ) by

λ � µ ⇐⇒ λ ∈ C({λ, µ }) ⇐⇒ q(λ, {λ, µ }) > 0 (23)

It is immediate from the definition that the relation � must be complete. The
corresponding stochastic strict preference and stochastic indifference relations
obviously satisfy

λ � µ ⇐⇒ q(λ, {λ, µ }) = 1 and λ ∼ µ ⇐⇒ 0 < q(λ, {λ, µ }) < 1 (24)

Now, arguing exactly as in Section 5.6 of Chapter 5, consequentialism implies
that the relation � must be transitive, as well as complete, so a preference
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ordering. Moreover, one must have C(F ) := {λ ∈ F | ∀µ ∈ F : λ � µ } — in
other words,

q(λ, F ) > 0 ⇐⇒ ∀µ ∈ F : q(λ, {λ, µ }) > 0

Thus, the elements that are chosen with positive probability from F are exactly
those which maximize the ordering �.

6.3 Luce’s Superstrong Transitivity Axiom

Having considered the qualitative issue of what elements of F are chosen with
positive probability, we now consider the quantitative issue of what probabilities
are assigned to the elements of C(F ), defined by (22). Note that all elements
of C(F ) are stochastically indifferent, according to the definition (24) of the
symmetric relation ∼. From now on, let E denote any non-empty finite set of
stochastically indifferent lotteries in ∆(Y ).

n0
✘✘✘

✘✘
n1
✭✭✭✭✭
� xλ → λ❤❤❤❤❤ � xµ → µ❤❤❤❤❤❤❤❤❤❤ �

❍❍❍❍❍❍❍❍❍❍ �

�

✝ xν → ν (for ν ∈ E \ {λ, µ })✞

✆

Figure 2 Decision Tree Illustrating Superstrong Transitivity

The next stage of the argument considers essentially the same decision tree
as that used in Section 5.6 of Chapter 5 to prove that consequentialism im-
plies ordinality. Here consequentialism requires that the probability q(λ, E) of
choosing λ from E should be the same whether the agent faces the tree illus-
trated in Figure 2, or else is forced to make one single decision (in a trivial tree,
with only one chance node, and one terminal node for each member of E).

In the decision tree of Figure 2, consequentialism implies that the probability
of moving from n0 to n1 is q(λ, E)+q(µ, E), equal to the probability of choosing
one of the two lotteries λ and µ from the set E. Given this earlier choice,
the conditional probability of choosing λ in the subtree emanating from n1 is
q(λ, {λ, µ }). But consequentialist normal form invariance requires that q(λ, E)
be equal to the compound probability of choosing λ in the tree as a whole. So

q(λ, E) = q(λ, {λ, µ }) [q(λ, E) + q(µ, E)] (25)

Of course, this equation must be satisfied for each combination λ, µ, E with
{λ, µ } ⊂ E ⊂ ∆(Y ) and all elements of E stochastically indifferent. Similarly,
replacing λ by µ gives

q(µ, E) = q(µ, {λ, µ }) [q(λ, E) + q(µ, E)] (26)
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At this point, it is helpful to introduce the notation

5(λ, µ) :=
q(λ, {λ, µ })
q(µ, {λ, µ }) ∈ (0, 1) (27)

for the choice likelihood ratio between the choices λ and µ from the pair set
{λ, µ }, where λ ∼ µ. Obviously, (25), (26) and (27) together imply that

q(λ, E)
q(µ, E)

= 5(λ, µ) (28)

for each combination λ, µ, E with {λ, µ } ⊂ E ⊂ ∆(Y ) and all elements of
E stochastically indifferent. In particular, when E is the three-member set
{λ, µ, ν }, (28) implies that

5(λ, ν) =
q(λ, E)
q(ν, E)

=
q(λ, E)
q(µ, E)

q(µ, E)
q(ν, E)

= 5(λ, µ) 5(µ, ν) (29)

This important property is a form of transitivity. Provided we define 5(λ, λ) :=
1 for all λ ∈ ∆(Y ), it is also trivially valid when two or more of λ, µ, ν coincide.

Because (29) is so much stronger than most transitivity axioms considered
in stochastic choice theory, it will be called superstrong transitivity.12

6.4 Luce’s Model

For each stochastic indifference class E ⊂ ∆(Y ), fix an arbitrary lottery λE ∈
E, and then define the positive-valued function fE on E by fE(λ) := 5(λ, λE)
for all λ ∈ E. Let E∗(F ) denote the unique stochastic indifference class in
∆(Y ) such that C(F ) ⊂ E∗(F ), where C(F ) is the non-empty subset of F
defined by (22). Then (28) evidently implies that q(λ, F ) = αF fE∗(F )(λ) for
all λ ∈ C(F ), where αF is a suitable positive constant. Because of the definition
(22) of C(F ), it follows that

∑
λ∈C(F ) q(λ, F ) = 1, and also that q(λ, F ) = 0

for all λ ∈ F \ C(F ). Hence αF = 1/
∑

λ∈C(F ) fE∗(F )(λ), implying that

q(λ, F ) = fE∗(F )(λ)/
∑

λ′∈C(F )

fE∗(F )(λ′) (30)

for all λ ∈ C(F ). Then Luce’s model of stochastic choice is the special case
that results by imposing the requirement that q(λ, F ) > 0 for all λ ∈ F ∈ F .13

In this special case, one has E∗(F ) = F for all F ∈ F , so (30) simplifies to

q(λ, F ) = f(λ)/
∑
λ′∈F

f(λ′) (31)

12Luce (1958, 1959) describes it as a “choice axiom”.
13On p. 285 of Volume I, Fishburn offers other names, and also ascribes the basic idea to
Bradley and Terry (1952).
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for all λ ∈ F . Here one may call f : ∆(Y ) → R a stochastic utility function.
Note that (31) is invariant to transformations of f that take the form f̃(λ) ≡
ρf(λ) for a suitable mutiplicative constant ρ > 0. Thus, f is a positive-valued
function defined up to a ratio scale.

Much econometric work on discrete choice uses the special multinomial logit
version of Luce’s model, in which ln f(λ) ≡ βU(λ) for a suitable logit utility
function U on ∆(Y ) and a suitable constant β > 0. McFadden (1974) proved
how the associated form of q(λ, F ) corresponds to the maximization over F of a
“random utility” function βU(λ)+ε(λ) in which the different errors ε(λ) (λ ∈ F )
are independent random variables sharing a common cumulative distribution
function exp(−e−ε).14

6.5 Equilibrium

Consider the normal form game G = 〈I, SI , vI〉 as in (1). Recall from (4) the
notation Vi(si, πi) for the expected payoff of each player i ∈ I from the strategy
si ∈ Si, given the probability beliefs πi ∈ ∆(S−i) about the profile of other
players’ strategies. For each player i ∈ I, assume that Luce’s model applies
directly to the choice of strategy si ∈ Si. Specifically, assume that there is a
stochastic utility function of the form fi(si) = φi(Vi(si, πi)), where the trans-
formation φi : R → R+ is positive-valued, strictly increasing, and continuous.
In the special case of the multinomial logit model, this transformation takes
the form φi(Vi) ≡ eβiVi for a suitable constant βi > 0. In the general case, each
player has a corresponding stochastic response function pi : ∆(S−i) → ∆(Si)
satisfying pi(πi)(si) := φi(Vi(si, πi))/

∑
s′i∈Si

φi(Vi(s′i, πi)) for all πi ∈ ∆(S−i)
and all si ∈ Si.

A quantal response equilibrium is a profile µ̂I ∈
∏

i∈I ∆(Si) of independent
mixed strategies satisfying µ̂i(si) = pi(π̂i)(si) for each player i ∈ I and each
strategy si ∈ Si, where π̂i = µ̂I\{i} =

∏
h∈I\{i} µ̂h as in (12). In fact, such

an equilibrium must be a fixed point of the mapping p : D → D defined on
the domain D :=

∏
i∈I ∆(Si) by p(µI)(sI) = 〈pi(µI\{i})(si)〉si∈Si

. When D is
given the topology of the Euclidean space

∏
i∈I R

Si , it is easy to see that the
mapping p is continuous. Because D is non-empty and convex, Brouwer’s fixed
point theorem can be used to prove that such an equilibrium exists.

6.6 Strategic Choice versus Consequentialism

Actually, consequentialism really requires a different formulation, starting with
the consequentialist game form Γ = 〈I, SI , Y I , ψ〉 as in (2). For each player
i ∈ I, define the strategic outcome function φi : Si × ∆(S−i) → ∆(Yi) so
that φi(si, πi) :=

∑
s−i∈S−i

πi(s−i)ψi(sI) is the lottery in ∆(Yi) that results,
from player i’s perspective, when i plays si ∈ Si and has probabilistic beliefs

14See Amemiya (1981, 1985), for example, who provides a much fuller discussion of what
he calls “qualitative response models”. Note that the standard utility maximizing model
emerges in the limit as β →∞.
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about the other players’ strategies described by πi ∈ ∆(S−i). Let Φ(πi) :=
{φi(si, πi) | si ∈ Si } denote the range of possible lotteries available to player i.

Next, for each i ∈ I, let F(∆(Yi)) denote the family of non-empty finite
subsets of ∆(Yi). Then, for each F ∈ F(∆(Yi)) and each λ ∈ F , let qC

i (λ, F )
specify i’s “consequentialist” stochastic choice probability for λ when i faces the
feasible set F . To achieve these consequentialist stochastic choice probabilities
in the game, given the beliefs πi ∈ ∆(S−i) over other players’ strategies, player
i can choose any mixed strategy qi ∈ ∆(Si) belonging to the set Qi(πi) of all
such qi which satisfy

qi({ si ∈ Si | φi(si, πi) = λ }) = qC
i (λ, Φ(πi))

for all λ ∈ Φ(πi). Whenever there happen to be two different strategies s′i, s
′′
i ∈

Si such that φi(s′i, πi) = φi(s′′i , πi), the relative probabilities of s′i and s′′i will be
indeterminate. In fact, the set Qi(πi) will include a non-trivial line segment of
different mixed strategies. Hence, this consequentialist approach is inconsistent
with the unique stochastic choice pi(πi) that emerges when Luce’s model is
applied directly to player i’s choice from Si, as described in Section 6.5.

6.7 Consequentialist Stochastic Choice is Trivial

To revert to our discussion of consequentialist normal invariance, consider next
the decision tree illustrated in Figure 3, which is the same as that used in Sec-
tion 6.3 of Chapter 5 to prove that consequentialism implies the independence
axiom. Here, consequentialism requires that whenever λ and µ are stochasti-
cally indifferent, the choice likelihood ratio 5(λ, µ) in the subtree following n1

should satisfy

5(λ, µ) = 5(α λ + (1 − α) ν, α µ + (1 − α) ν) (32)

That is, it should be the same as the corresponding choice likelihood ratio in the
trivial decision tree with only one initial decision node and with two terminal
nodes leading to the random consequences α λ + (1 − α) ν and α µ + (1 − α) ν
respectively.

❡
n0
✘✘✘

✘✘✘
α

n1
✘✘✘

✘✘✘
� xλ → λ

� xµ → µ
1 − α

� xν → ν

Figure 3 Decision Tree Illustrating Triviality

Now consider any stochastically indifferent pair λ, µ ∈ ∆(Y ), and take ν = µ,
α = 1

2 in (32). The result is

5(λ, µ) = 5( 1
2 λ + 1

2 µ, µ) (33)
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Fix any ν̄ ∈ ∆(Y ) belonging to the same stochastic indifference class E as λ
and µ. Because of superstrong transitivity (29), equation (33) implies that

5(λ, ν̄) = 5(λ, µ) 5(µ, ν̄) = 5( 1
2 λ + 1

2 µ, µ) 5(µ, ν̄) = 5( 1
2 λ + 1

2 µ, ν̄)

even when λ = ν̄ or µ = ν̄. But the same argument with λ and µ interchanged
shows that

5(µ, ν̄) = 5( 1
2 λ + 1

2 µ, ν̄) = 5(λ, ν̄)

even when λ = ν̄ or µ = ν̄. Invoking superstrong transitivity (29) once again
implies that

5(µ, ν̄) = 5(λ, ν̄) = 5(λ, µ) 5(µ, ν̄)

Because λ, µ, ν̄ ∈ E and so 5(µ, ν̄) > 0, it follows that 5(λ, µ) = 1.
This argument is valid for any pair λ, µ in the same stochastic indifference

class E of ∆(Y ). It follows that, given any non-empty finite feasible set F ⊂
∆(Y ), if E = C(F ) is the top indifference class of all elements in F that
meximize the ordering �, then q(λ, F ) = q(µ, E) = 1/#E for all λ, µ ∈ E.
Thus, all elements in E are chosen with equal probability, as when the principle
of insufficient reason is used to specify a probability distribution.

This argument has shown that stochastic choice which satisfies the con-
sequentialist axioms — especially consequentialist normal form invariance —
allows only a trivial extension of the expected utility framework of Chapter 5.
Within the expected-utility maximizing choice set, all lotteries must receive
equal probability. In particular, all lotteries that are given positive probability
must have equal probability. This violates the formulation of quantal response
equilibria, according to which players should give higher probability to strate-
gies with greater expected payoff, and lower but still positive probability to
strategies with lower expected payoff. It also makes each player’s response cor-
respondence discontinuous, and so rules out existence of Nash equilibrium in
many games.

6.8 Assessment

The quantal response equilibria of McKelvey and Palfrey (1995) may well have
better predictive power than usual Nash equilibria, or than various refinements
such as proper equilibria. For this reason, it might be very sensible to advise
any one player in a game to use the quantal response idea, based on stochastic
utility theory, in order to attach probabilities to other players’ strategies, and
then to maximize expected utility accordingly. But quantal response equilibria
lack consequentialist foundations. So recommended behaviour based on such
advice will depend on the extensive form of the game, in general.

More seriously, perhaps, it makes no sense to recommend randomization
that attaches positive probability to inferior, even disastrous strategies. This
makes the stochastic utility framework unsuitable when trying to construct a



NON-COOPERATIVE GAME THEORY 33

normative model of two or more players’ behaviour simultaneously. So stochas-
tic utility offers no satisfactory escape from the zero probability problem, at
least for normative game theory.

7 Beyond Equilibrium

7.1 Is Equilibrium Attainable?

Early work on equilibrium in games addressed explicitly the issue of what play-
ers should believe of each other. In particular, Morgenstern (1928, 1935) had
perceived the need to determine agents’ expectations in order to make economic
forecasts. This seems to have been what motivated his subsequent interest in
von Neumann’s (1928) pioneering mathematical work on “parlour games”.15

In fact, given a Nash equilibrium profile µI of mixed strategies µi ∈ ∆(Si)
(i ∈ I) which every player finds credible, it seems reasonable for each player
i ∈ I to believe that the joint distribution of other players’ strategies is given by
πi =

∏
j∈I\{i} µj ∈ ∆(S−i). For games in which Nash equilibrium is unique,

players’ expectations are then determined uniquely. And for the two-person
strictly competitive or “zero sum” games for which von Neumann and Mor-
genstern were able to find a generally agreed solution, at least both players’
expected utilities are uniquely determined in equilibrium, even if their expec-
tations are not. In fact, for such games, the set E of equilibria must be ex-
changeable or “interchangeable” (Luce and Raiffa, 1957, p. 106) in the sense of
being the Cartesian product E = E1 ×E2 of the sets E1 and E2 of equilibrium
mixed strategies for both players.

Even when there are only two players, if the set of Nash equilibria is not
exchangeable, then reaching equilibrium requires, in effect, that each player i
know the other player j’s (mixed) strategy µj ∈ ∆(Sj). Games as simple as
Battle of the Sexes illustrate how restrictive this is. Similar difficulties arise
in n-person pure coordination games like those Lewis (1969) used to model
conventions. These take the form 〈I, SI , vI〉 where each Si = S, independent
of i, and also each vi(sI) = v̄ if si = s for all i ∈ I, independent of both i
and s; otherwise vi(sI) = w(sI) < v̄, independent of i. Thus, all players have
identical payoff functions, and also payoffs are equal to v̄ in any possible Nash
equilibrium. Yet reaching one of the multiple non-exchangeable equilibria with
si = s for all i ∈ I still requires players to have correct beliefs about what the
others will do. Much worse, Bernheim (1984, 1986) argues convincingly that
such knowledge of the other player’s strategy can be unduly restrictive even in
games with a unique Nash equilibrium that happens to involve a pure strategy
for each player.

When there are three or more players, Nash equilibrium generally requires
any two players to have identical expectations concerning any third player’s
strategy. It also requires each player i to believe that other players’ strategies

15For recent discussion of this issue, see Leonard (1995), especially pp. 745–51.
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are uncorrelated, even if i has reason to believe that there may be some hidden
common cause affecting the probabilities of these strategies — for example,
two other players might be identical twins. For a much more careful and exten-
sive discussion of what players must know about each other in order to reach
Nash equilibrium, see Aumann and Brandenburger (1995). See also the recent
interchange between Gul (1998) and Aumann (1998).

Harsanyi and Selten (1988) sought a way around this problem by devising
a theory that would select a unique Nash equilibrium in each non-cooperative
game — see also van Damme (1995). It seems fair to say, however, that this part
of their work has been viewed as too implausible to become generally accepted.
On the other hand, Fudenberg and Levine (1998) in particular summarize a
large body of work which investigates how plausible is the hypothesis that
players will learn to reach Nash equilibrium. Even in the most favourable case
when the same game is repeated many times, it is by no means guaranteed that
the learning process will converge, although if it does converge then typically
it must be to a Nash equilibrium. For more recent work on this topic, see
especially Foster and Young (2001, 2003), as well as Hart and Mas-Colell (2003).

7.2 The Zero Probability Problem

More devastating than the difficulty of attaining equilibrium, however, is the
fact that zero probabilities must be avoided if consequentialist normal form
invariance is to be maintained. As pointed out in Section 5, this contradicts
the hypothesis that inferior responses are played with zero probability. That
section considered the alternative proposal that players cannot avoid trembling,
as a basis for the useful notions of perfect and proper equilibrium. But, even
if all other players regard i as being likely to tremble, why should i hold those
beliefs about himself? Alternatively, suppose one takes the justifiable view that
it is only beliefs about other players that matter. Even so, when there are three
or more players, one may ask what drives players other than i all to have the
same probability belief that i will tremble — for example, 0.327 × 10−12? Or,
with trembles as a function of ε, what makes them believe the same relative
probabilities of two different trembles, given ε?

One alternative, of course, is to abandon the hypothesis of consequentialist
normal form invariance. If one does so, however, there is no obvious justification
for the orthodox view that players should have preference orderings, or cardinal
utility functions, or payoffs. It is very likely that empirical game theory would
do better to abandon the invariance hypothesis and all of its implications. But
for normative game theory, this hypothesis is about the only secure foundation
we have. So it seems worth exploring quite a bit further to see if the invariance
hypothesis can be maintained after all, in some form or other.

7.3 Beyond Objective Probability

Though the notion of equilibrium has played a fundamentally important role in
non-cooperative game theory, there are many situations where it seems inappli-
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cable. These are also situations in which it seems unreasonable to postulate that
players’ beliefs about each other are described by objective probabilities. The
main alternative, of course, would appear to be a theory based on subjective
probabilities. Before immersing ourselves completely in such a theory, however,
it is important to see whether one can extend to non-cooperative game theory
the axioms that justify the use of subjective probabilities in decision theory —
as discussed in Chapter 6 of this Handbook.

8 Subjectively Expected Utility in Game Theory

8.1 The Mariotti Problem

Several recent works on game theory have simply asserted that, because of
the axioms of subjective expected utility (SEU) theory, players should have
subjective probabilistic beliefs about each other, and then choose from their
respective best response correspondences induced by those beliefs.16 Yet it is
not immediately obvious how axioms like those discussed in Chapter 6 on SEU
theory can be applied to non-cooperative games. Indeed, it is really quite a
troublesome issue whether each player should attach subjective probabilities to
strategies under the control of other players who have their own objectives. Af-
ter all, orthodox single-person decision theory attaches them only to apparently
capricious moves by nature.

Now, virtually every result in decision theory requires a broad range of differ-
ent single-person decision problems to be considered. This includes the conse-
quentialist normal form invariance hypothesis set out in Section 2, which implies
consequentialist behaviour in each associated single-person decision tree. Yet
the results concerning such behaviour rely on being able to consider, if not nec-
essarily a completely unrestricted domain of decision trees with a fixed set of
states of the world, then at least one that is rich enough. In particular, a player
i’s preference between the random consequences of two different strategies is
revealed by forcing i to choose between just those two strategies. When such
alterations in the options available to an agent occur in a single-person decision
tree, there is no reason to believe that nature’s exogenous “choice” will change.
But in an n-person game, changes in the feasible set faced by any one player
i ∈ I will typically lead to changes in player i’s behaviour within the game, as
Mariotti (1996) and Battigalli (1996) have pointed out.

As an example, consider the 2-person game in normal form whose payoff ma-
trix is displayed in Table 2.17 Here, player P2’s strategy b3 strictly dominates b1,
suggesting that P2’s preference ordering over the strategy set S2 = { b1, b2, b3 }
should make b3 strictly preferred to b1. Yet if b1 is removed from P2’s strategy
set, then a2 weakly dominates a1 for player P1. This suggests that P2 should

16See, for example, the influential articles by Aumann (1987a) and by Tan and Werlang
(1988), as well as authoritative textbooks such as Myerson (1991, p. 92) or Osborne and
Rubinstein (1994, p. 5), and also the work by Harsanyi cited in Section 1.
17This game is adapted from Mariotti (1996, Figure 6.4).



36

regard a2 as much more likely than a1, and so that P2 should strictly prefer
b2 to b3. On the other hand, if b3 is removed from P2’s strategy set, then a1

weakly dominates a2 for player P1. This suggests that P2 should regard a1

as much more likely than a2, and so that P2 should strictly prefer b1 to b2.
But then putting these three conclusions together implies that P2 has a strict
preference cycle over S2 = { b1, b2, b3 }. There is accordingly no way in which
any choice by player P2 from S2 can be explained as maximizing a preference
relation based on choices in different games when only a pair of strategies is
available.

P2

b1 b2 b3

a1 1 1 0
1 0 2

P1 a2 0 1 1
0 2 1

Table 2 Example Adapted from Mariotti (1996)

Instead, P2’s ordering over S2 has to be based on choices over pairs in differ-
ent extensive form games which all have the common feature that P1 believes
all three strategies are available to P2. Figure 4 illustrates an example of such
an extensive form, whose normal form is that Table 2. Note that player P2,
when at node n1, really does face the choice between only b2 and b3, though
P1 regards b1 as also possible at the ensuing information set — the only one
belonging to player P1.

✁✁
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✁
✁✁☛
❆
❆❆a2

❆❆�
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✁
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❆
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✁
✁✁☛
❆
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❆❆�

�
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✞
✝

�
✆

✟✟
✟✟

b1

✟✟✟✟✟✙

❍❍❍❥❍❍

✟✟
b2
✟✟✟✙ ❍❍❍❥b3

❍❍

�n0

�n1

(1, 1) (0, 0) (1, 0) (1, 2) (0, 2) (1, 1)

Figure 4 Extensive Game with Sequential Moves for Player P2

Arguing as in Chapter 5, player P2’s choice from S2 should be independent of
the structure of the single-person decision tree whose terminal nodes constitute
player P1’s information set. In particular, it should be independent of how
many moves have to be made — one or two. This implies that there must be
a preference ordering over S2 explaining both the player’s choice from S2, as
well as between two-element subsets in trees like that shown in Figure 2.



NON-COOPERATIVE GAME THEORY 37

To conclude, it may be reasonable to treat nature as a passive but capri-
cious bystander in a single-person decision problem or “game against nature”.
Indeed, this was the main theme in Chapter 6 of this Handbook. Yet in an
n-person non-cooperative game, we still lack a justification for treating other
active players in this way.

8.2 Battigalli’s Construction

In order to surmount this difficulty, Battigalli’s (1996) comment on Mariotti
(1996) suggests introducing, for each player i whose subjective probabilities
are to be determined, one extra player i∗ who plays the role of an “external
observer”. In effect, this extra player is an exact copy or “behavioural clone”
of player i. Following a somewhat similar idea in Nau and McCardle (1990),
player i∗ faces a variable opportunity to bet on how players other than i will
play the original game, but is unable to affect the consequences available to all
the other players, including i. Equivalently, one can ask how player i would
bet if placed outside the game, being replaced by player i∗ in the game.

With this useful and ingenious device, player i∗ can be faced with each
possible single-person decision tree in the unrestricted domain of trees where
moves by nature amount to strategy choices by players other than i. This
allows i∗’s subjective probabilities over strategy profiles for players other than
i to be inferred. Moreover, they should apply to i∗’s behaviour when facing
a single-person decision problem equivalent to that which i faces in the game
itself. Because i∗ is an exact copy of i, it follows that i’s behaviour in the
original game matches i∗’s in this equivalent single-person decision problem;
in particular, i will maximize subjective expected utility using i∗’s subjective
probabilities.

Using the notation defined in (2), let i ∈ I be any player in the game form
Γ = 〈I, SI , Y I , ψ〉. Following the analysis in Chapter 6, let Ti(S−i, Yi) denote
the “almost unrestricted” domain of all allowable decision trees for player i,
with every possible move at any chance node having positive probability, with
S(n0) = S−i as the set of states of the world which are possible at the initial
node n0, and with random consequences in ∆(Yi) at every terminal node. In
particular, each tree T ∈ Ti(S−i, Yi) should be regarded as separate from Γ,
except that the possible states of nature happen to correspond exactly to other
players’ strategy profiles s−i ∈ S−i.

Given the consequentialist game form Γ, it will also be necessary to consider
a family G = {Γ} ∪ (∪i∈IGi) of game forms derived from Γ, where

Gi = {Γ(i, T ) | T ∈ Ti(S−i, Yi) }

That is, for each player i ∈ I and tree T ∈ Ti(S−i, Yi), there is a corresponding
game form in Gi specified by

Γ(i, T ) = 〈{i∗} ∪ I, ST × SI , Yi × Y I , ψ̃T
i 〉

Because the extra player i∗ is a copy of player i, player i∗’s consequence space,
like i’s, is Yi. It is assumed that player i∗, as an external observer, effectively
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faces a single-person decision tree T ∈ Ti(S−i, Yi), in which the set of possible
states of nature is S−i. The set of i∗’s strategies in T is ST , and the outcome
function is denoted by ψT : ST → ∆(Y S−i). In the game form Γ(i, T ), the value
ψ̄T

i (sT , sI) of the outcome function ψ̄T
i : ST × SI → ∆(Yi × Y I) is assumed to

be given by the product lottery ψT (sT )×ψ(sI) for all (sT , sI) ∈ ST ×SI . Note
that, as far as all players h ∈ I are concerned, including the particular player i
of whom i∗ is a copy, the outcome of Γ(i, T ) is the same as the outcome of Γ,
independent of both T and also of i∗’s choice of strategy in T .

8.3 Players’ Type Spaces

It may be useful to think of a game form as a book of rules, specifying what
strategies players are allowed to choose, and what random consequence results
from any allowable profile of strategic choices. So the family G of consequen-
tialist game forms needs fleshing out with descriptions of players’ preferences,
beliefs, and behaviour. The Bayesian rationality hypothesis involves preferences
represented by expected values of von Neumann–Morgenstern utility functions
(NMUFs) attached to consequences. Also, beliefs take the the form of subjec-
tive probabilities attached jointly to combinations of other players’ preferences,
strategies, and beliefs. And behaviour should maximize subjectively expected
utility. It has yet to be shown, however, that the consequentialist hypotheses
imply such preferences, beliefs, and behaviour. To do so satisfactorily requires
a framework for describing preferences, beliefs, and behaviour in game forms
before the consequentialist hypotheses have been imposed. We shall postu-
late spaces of types similar to those considered by Harsanyi (1967–8) in his
theory of games of incomplete information, as discussed in Section 4.3. How-
ever, here each player will have three separate type variables, corresponding to
preferences, beliefs, and behaviour respectively.

Indeed, since one cannot directly assume that preferences exist, it is neces-
sary to consider instead, for each player i ∈ I, a decision type di ∈ Di which
determines what is normatively acceptable behaviour for i in any single-person
finite decision tree T ∈ T (Yi) without natural nodes that has random conse-
quences in ∆(Yi). Of course, consequentialist normal form invariance implies
the consequentialist hypotheses for single-person decision theory. So if continu-
ity of behaviour is added to these hypotheses, we know already that each player
i ∈ I will have a unique cardinal equivalence class of NMUFs vi(yi; di) on Y
parametrized by their decision type. The assumption that such a parameter di

exists is without loss of generality because if necessary it could be one NMUF
vi(yi) in the equivalence class appropriate for i. Together, the list of all players’
decision types forms a decision type profile dI ∈ DI :=

∏
i∈I Di.

As in orthodox equilibrium game theory, each player i ∈ I is assumed next
to have beliefs or an epistemic type ei ∈ Ei, with EI :=

∏
i∈I Ei as the set of all

possible epistemic type profiles. It will be a result rather than an assumption of
the theory that all such beliefs can be represented by subjective probabilities
on an appropriately defined space. For the moment, each ei ∈ Ei is assumed
to determine parametrically player i’s strategic behaviour in the form of a non-
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empty set σi(Γ′, di, ei) ⊂ Si defined for every game form Γ′ ∈ G and decision
type di for player i. In orthodox game theory, σi(Γ′, di, ei) is the set of i’s
“best responses” given the NMUF vi(yi; di) and subjective probability beliefs
over other players’ strategies determined by ei. The assumption that such a
parameter ei exists is without loss of generality because if necessary it could
be the correspondence (Γ′, di) �→→σi itself. Finally, it is also necessary to define
σi∗(Γ′, di, ei) for the copy i∗ of player i in every game Γ′ ∈ Gi. Note that,
because i∗ is a copy of i, player i∗’s behaviour depends on i’s type pair (di, ei),
as the above notation reflects.

Maintaining the normative point of view throughout, each set σi(Γ′, di, ei)
already describes how i with decision type di and epistemic type ei should
play Γ′. However, in forming beliefs, it is not enough for player i (and also
i∗ if Γ′ ∈ Gi) to know the other players’ sets σj(Γ′, dj , ej) (j ∈ I \ {i}); also
relevant are the tie-breaking rules which the other players j ∈ I \ {i} use to
select one particular strategy sj from the set σj(Γ′, dj , ej) whenever this set has
more than one member. Accordingly, each player i ∈ I is assumed to have in
addition a behaviour type bi ∈ Bi, with BI :=

∏
i∈I Bi as the set of all possible

behaviour type profiles. Each bi ∈ Bi is assumed to determine parametrically
player i’s selection rule yielding a single member si(Γ′, di, ei, bi) ∈ σi(Γ′, di, ei)
of each strategic behaviour set. The assumption that bi exists is without loss
of generality because it could be the function (Γ′, di, ei) �→ si itself. Note that
player i∗’s behaviour type need not be specified because i∗’s behaviour has no
effect on any other player.

To simplify notation in future, define for each player i ∈ I a combined
type space Θi := Di × Ei × Bi, whose members are triples θi := (di, ei, bi).
Note that each player’s selection rule can then be expressed as si(Γ′, θi). Let
ΘI := DI × EI × BI be the space of combined type profiles, with typical
member θI := (dI , eI , bI), and let Θ−i :=

∏
j∈I\{i} Θi denote the set of all

possible types for players other than i. A complete epistemic type ei ∈ Ei

should then describe in full player i’s beliefs about the other players’ types
θ−i ∈ Θ−i, including their epistemic types e−i. This creates a problem of
circularity or infinite regress which is an inevitable and fundamental part of
modern game theory. A possible resolution is the subject of Section 10.

8.4 Subjective Expectations

First, given any game Γ′ = Γ(i, T ) ∈ Gi, consider an extensive form in which
player i∗ moves first, before any player j ∈ I. Later these players must move
without knowing what i∗ has chosen. In this extensive form, after i∗ has moved,
Γ is effectively a subgame of incomplete information. Now, given any player
j ∈ I, and any combined type θj ∈ Θj which player j may have, applying an
obvious dynamic consistency hypothesis to the subgame Γ of Γ′ = Γ(i, T ) yields
the result that

σj(Γ′, dj , ej) = σj(Γ, dj , ej) and sj(Γ′, θj) = sj(Γ, θj)
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In particular, for each j ∈ I, both σj(Γ′, dj , ej) and sj(Γ′, θj) are effectively
independent of whatever player i ∈ I is copied and of whatever tree T ∈
Ti(S−i, Yi) is given to the copy i∗ of player i. So variations in i∗’s decision
tree within the domain Ti(S−i, Yi) are possible without inducing changes in the
behaviour of other players j ∈ I. This justifies applying the consequentialist
and continuous behaviour hypotheses to the whole domain Ti(S−i, Yi) of single-
person decision trees that player i∗ may face, while treating each s−i ∈ S−i as a
state of nature determined entirely outside the tree. So the usual arguments im-
ply the existence of unique and strictly positive subjective probabilities Pi(s−i)
(s−i ∈ S−i) such that behaviour in trees T ∈ Ti(S−i, Yi) maximizes the subjec-
tively expected value of a von Neumann–Morgenstern utility function vi(yi; di)
parametrized by i’s decision type di ∈ Di.

It remains to consider player i’s behaviour in the game form Γ itself. To
do so, consider the special decision tree TΓ

i ∈ Ti(S−i, Yi) in which the set of
i∗’s strategies is Si, equal to i’s strategy set in Γ, and the outcome function
ψΓ

i from Si to the set ∆(Y S−i

i ) of lotteries over Y
S−i

i , the Cartesian product of
#Si copies of player i’s consequence domain Yi, is given by the product lottery

ψΓ
i (si)(yS−i) =

∏
s−i∈S−i

ψ(si, s−i)(ys−i
)

for all yS−i = 〈ys−i〉s−i∈S−i ∈ Y
S−i

i . Then, at least under Anscombe and
Aumann’s reversal of order axiom which was discussed in Chapter 6, both the
strategy set Si and the outcome function ψΓ

i are exactly the same as in Γ itself.
In this case TΓ

i and Γ are consequentially equivalent from i’s (or i∗’s) point
of view, so consequentialism requires i’s behaviour in Γ to match that of i∗ in
TΓ

i or Γ(i, TΓ
i ). This implies that σi∗(Γ(i, TΓ

i ), di, ei) = σi(Γ, di, ei). Therefore
player i should choose si ∈ Si to maximize subjectively expected utility based
on the subjective probabilities Pi(s−i) (s−i ∈ S−i) that are appropriate for
all decision trees in Ti(S−i, Yi). Really, one should write these probabilities
as Pi(s−i, ei) to indicate that they represent player i’s epistemic type and so
characterize i’s acceptable behaviour sets σi(Γ′, di, ei) on the domain G of game
forms Γ′, including Γ itself.

So, by applying them in a suitable context, the axioms presented earlier in
Chapter 6 can be used to justify the claim that each player’s behaviour should
conform with the SEU model, just as most game theorists have always asserted.
The same axioms also justify the specification (1) of a game in normal form,
with “payoff” functions vI : SI → R

I that are really NMUFs. There is the
obvious qualification that each player’s payoff function or NMUF is only deter-
mined up to a unique cardinal equivalence class. Clearly this is unimportant,
because transformations within this class have no effect on the different players’
best response correspondences Bi(πi) — or, in games with incomplete informa-
tion, on their type-dependent best response correspondences Bi(πi; ti). Note,
however, that the framework used here differs from that of Börgers (1993),
whose assumptions do not allow decision problems with objective probabilities
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to be considered, and so yield only a unique ordinal equivalence class of utility
functions.

Another requirement is that each player i’s SEU model include a unique
specification of appropriate subjective probabilities Pi(s−i) over other play-
ers’ strategy profiles in the game form Γ. Failure to specify these probabilities
leaves the description of the players’ decision models fundamentally incomplete.
Yet specifying them arbitrarily ignores the fact that, in the end, other players’
strategies are really not like states of nature, because other players face their
own individual decision problems in the game, which they try to resolve ra-
tionally, at least to some extent. This tension is precisely the challenge that
non-cooperative game theory must meet.

A more serious worry is that, as explained in the chapter on SEU theory, the
consequentialist hypothesis actually implies the SEU* model, with null events
excluded. In particular, this implies that each player i’s subjective probability
attached to any strategy profile s−i ∈ S−i must be strictly positive. This
contradicts much of orthodox game theory, where each player is required to
attach zero probability to the event that one or more other players choose
strategies which are not best responses. In particular, the probability of any
player choosing a strictly dominated strategy must be zero. This topic will be
taken up again in Section 11.

Given any game in extensive form, any player i in that game effectively faces
a one-person game in which some moves are made, not by nature, but by other
players. Also, unlike the decision trees analysed in the two earlier chapters on
expected utility theory, there may be non-trivial information sets rather than
decision nodes. But then it is fairly easy to extend the dynamic programming
arguments in these previous chapters to cover such one-person games. So part
(2) of Theorem 5 in Chapter 6 remains valid, implying that subjective expected
utility maximizing behaviour does satisfy the consequentialist and other axioms
set out in that chapter.

8.5 Arbitrage Choice Theory

This section concludes with a brief discussion of the very different “arbitrage
choice theory” due to Nau and McCardle (1990, 1991) as well as Nau (1999).

To quote from the 1990 paper (p. 445): “The central idea is an extension
to the multi-player setting of de Finetti’s operational criterion of rationality,
namely that choices under uncertainty should be coherent in the sense of not
presenting opportunities for arbitrage (‘Dutch books’) to an outside observer
who serves as betting opponent. That is, a rational individual should not let
himself be used as a money pump.”

Further (p. 446): “Players who subscribe to the standard of joint coherence
are those who do not let themselves be used collectively as a money pump. Our
result is that a strategy is jointly coherent if and only if it occurs with positive
probability in some correlated equilibrium.”

So, like Battigalli’s construction, some outsider to the game is making gam-
bles on the side. But the concept of rationality is quite different from con-
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sequentialism and, in a multi-person context, seems to require the players to
coordinate in order to avoid exploitation by an outsider. In Battigalli’s con-
struction, on the other hand, the outsider is a behavioural clone of any one
of the players. Also, that construction presumes no coordination whatsoever,
and reaches only the weaker conclusion that all players should have subjective
probability beliefs and maximize subjective expected utility.

9 Rationalizable Expectations

9.1 Rationalizable Strategies

As discussed in Section 5.5, the probabilities that lie behind the usual Nash
equilibrium concept of non-cooperative game theory must be objective, at least
implicitly. Similarly for the refinements of Nash equilibria, or for correlated
equilibria. Then Section 7 argued that such apparent objectivity lacks in-
tuitive appeal in many non-cooperative games. With the apparent intention
of escaping from these somewhat implausible Nash constraints on expecta-
tions, Bernheim (1984) and Pearce (1984) independently proposed an entirely
novel approach to non-cooperative game theory. To do so, they defined sets
Rati ⊂ Si of rationalizable strategies as the largest family of sets Zi ⊂ Si which
together satisfy

Zi = Bi(∆(Z−i)) (34)

for all players i ∈ I.18

Let Rat−i ⊂ S−i denote the Cartesian product set
∏

h∈I\{i} Rath. Then
the associated sets ∆(Rat−i) are rationalizable expectations. In other words,
each set Rati consists of the entire range of best responses to rationalizable
expectations which attach probability one to the event that all players other
than i choose a rationalizable strategy profile s−i ∈ Rat−i; moreover, Rati is
the largest set with this property.

The sets Rati (i ∈ I) are well defined, non-empty, and can be constructed
iteratively, starting with Z0

i := Si, then letting Zk
i := Bi(∆(Zk−1

−i )) (k =
1, 2, . . . ). Indeed, because Z1

i ⊂ Z0
i (all i ∈ I), it is easy to prove by induction

that ∅ != Zk
i ⊂ Zk−1

i (k = 1, 2, . . . ). So one can finally define the limit set
Rati := ∩∞k=1Z

k
i . In fact, because each player i’s strategy set Si is assumed to

be finite, the construction converges after a finite number of iterations — i.e.,
there exists a finite k, independent of i, such that ∅ != Rati = Zk

i ⊂ Zk+1
i

(all i ∈ I). From this it is easy to see that ∅ != Rati = Bi(∆(Rat−i)) and also
that, whenever Zi ⊂ Rati (all i ∈ I), then Bi(∆(Z−i)) ⊂ Rati. Therefore the

18Strictly speaking, in games with more than two players, this extends the original definition
of rationalizability by allowing each player i ∈ I to have correlated expectations regarding
the other players’ choice of strategy profile s−i ∈ S−i. This extension seems on the way to
becoming generally accepted. For example, in their textbook Osborne and Rubinstein (1994,
ch. 4) mention only in the notes at the end that their definition involves such an extension.
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sets Rati (i ∈ I) do indeed form the largest family satisfying (34), and are
non-empty.

In fact, it is not difficult to show that similar non-empty sets of rationalizable
strategies exist even when the sets Si are not all finite, provided they are
compact in a topology that makes all the payoff functions vi continuous. This
is just an implication of the finite intersection property of compact sets.

Note also that each set Rati is large enough to include all “Nash strate-
gies” — i.e., all strategies which i plays with positive probability in some Nash
equilibrium. But Rati may well be larger than i’s set of Nash strategies, as
Bernheim’s (1984, pp. 1024–5) Cournot oligopoly example clearly shows.

Indeed, each set Rati is large enough to include all strategies which i plays
with positive probability in some correlated equilibrium. To prove this, let
µ̄ ∈ ∆(SI) be any correlated equilibrium, and for each i ∈ I, define

S̄i := { si ∈ Si | µ̄i({si} × S−i) > 0 }

as the set of strategies which i plays with positive probability in equilibrium. By
definition of correlated equilibrium, if si ∈ S̄i, it must be because si ∈ Bi(πi)
where πi = µ̄(·|si) is the induced conditional distribution on S−i given si. But
µ̄(s−i|si) > 0 only if µ̄(si, s−i) > 0, which implies that sh ∈ S̄h for all h ∈ I\{i}.
So πi is in the set ∆(S̄−i) of distributions attaching probability one to the set
S̄−i :=

∏
h∈I\{i} S̄h. It follows that si ∈ Bi(∆(S̄−i)) and so, because si was an

arbitrary strategy in S̄i, that S̄i ⊂ Bi(∆(S̄−i)). The final step in the argument
is an induction proof, beginning with the trivial observation that S̄i ⊂ Si = Z0

i

for each i ∈ I. As the induction hypothesis, suppose that S̄i ⊂ Zk−1
i (all i ∈ I)

for some k = 1, 2, . . . . Then S̄−i ⊂ Zk−1
−i , so

S̄i ⊂ Bi

(
∆(S̄−i)

)
⊂ Bi

(
∆(Zk−1

−i )
)

= Zk
i

Thus S̄i ⊂ Zk
i for k = 1, 2, . . . , by induction on k, and so S̄i ⊂ ∩∞k=0 Zk

i = Rati,
as required.

9.2 Iterated Removal of Strictly Dominated Strategies

Given collections of strategies Zi ⊂ Si (i ∈ I), say that i’s strategy si ∈ Zi

is strictly dominated relative to ZI =
∏

i∈I Zi if there exists a mixed strategy
µi ∈ ∆(Zi) such that ∑

s′i∈Zi

µi(s′i) vi(s′i, s−i) > vi(si, s−i)

for all other players’ strategy profiles s−i ∈ Z−i. And say that i’s strategy
si ∈ Zi is weakly dominated relative to ZI if there exists a mixed strategy
µi ∈ ∆(Zi) such that ∑

s′i∈Zi

µi(s′i) vi(s′i, s−i) ≥ vi(si, s−i)
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for all other players’ strategy profiles s−i ∈ Z−i, with strict inequality for at
least one such profile.

Now the results of Sections 3.4 and 3.5 can be applied to the game in which
each player i ∈ I is restricted to choosing a strategy si from Zi instead of Si.
The first implication is that si ∈ Zi is a best response among strategies in
the set Zi to some expectations πi ∈ ∆(Z−i) if and only if si is not strictly
dominated relative to ZI . The second implication is that si ∈ Zi is a cautious
best response among strategies in the set Zi to some expectations πi ∈ ∆0(Z−i)
if and only if si is not weakly dominated relative to ZI .

The first of these two results implies that constructing the sets Rati is
equivalent to iteratively removing strictly dominated strategies for each player.
This property makes it relatively easy to compute the relevant sets.

As a necessary condition for rationality, rationalizability seems quite appeal-
ing. It completely resolves some well known games such as finitely repeated
Prisoner’s Dilemma, but places no restrictions at all on players’ behaviour or
beliefs in others such as Battle of the Sexes or pure coordination games.

9.3 Strictly Rationalizable Strategies

In Section 8 it was claimed that each player i should attach subjective prob-
abilistic beliefs πi to other players’ strategy profiles s−i, and then maximize
expected utility accordingly. But a major complication arises: the consequen-
tialist hypotheses require that all subjective probabilities be strictly positive.
At first, therefore, it seems that i’s beliefs πi must belong to the set ∆0(S−i)
consisting of probability distributions πi that are in the interior of ∆(S−i) be-
cause they satisfy πi(s−i) > 0 for all s−i ∈ S−i. In games where some strictly
dominated strategies can be eliminated, this contradicts the previous suggestion
that expectations be rationalizable — i.e., that πi ∈ ∆(Rat−i).

At this stage, following Börgers and Samuelson (1992, p. 20), it might be
tempting to look for “strictly rationalizable” strategies in the largest sets Zi ⊂
Si (i ∈ I) which satisfy

Zi = Bi(∆0(Z−i)) (35)

instead of (34). Hence, every player must attach positive probability to every
profile of the other players’ strictly rationalizable strategies. This suggests
that one should adapt the previous iterative procedure for finding the sets
of rationalizable strategies. Rather than taking Zk

i = Bi(∆(Zk−1
−i )) at each

step k = 1, 2, . . . , try Ẑk
i = Bi(∆0(Ẑk−1

−i )) instead. However, an immediate
problem arises from the awkward fact that ∆0(Ẑk

−i) and ∆0(Ẑk−1
−i ) will be

disjoint subsets of ∆(S−i) whenever Ẑk
−i is a proper subset of Ẑk−1

−i . Therefore,
it may not be true that Ẑk+1

i ⊂ Ẑk
i . To ensure that the constructed sets really

are nested, so that each player’s rationalizable beliefs and strategies become
more restricted at each stage, the construction really needs amending to

Z̄k
i = Bi(∆0(Z̄k−1

−i )) ∩ Z̄k−1
i (36)
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Now let us apply the result of Section 3.5 to a game in which each player i ∈ I is
restricted to the strategy set Z̄k−1

i . The implication is that si ∈ Bi(∆0(Z̄k−1
−i ))

if and only if si is not weakly dominated when other players are restricted
to playing a strategy profile s−i ∈ Z̄k−1

−i . Also, it turns out that (36) makes
Z̄k

i equal to the set of strategies si which are best responses to expectations
πi ∈ ∆0(Z̄k−1

−i ) subject to the constraint that si ∈ Z̄k−1
i — see Hammond

(1993, pp. 286–8). So each limit set Z∗i := ∩∞k=1 Z̄k
i (i ∈ I) is well-defined and

equal to the set of strategies that remain after iteratively deleting all weakly
dominated strategies for all players — a procedure that extends to general
normal form games an idea going back to the work of Gale (1953), followed by
Luce and Raiffa (1957, pp. 108–9), and also Farquharson (1969, pp. 74–75).19

However, (36) implies only that these limit sets satisfy Z∗i = Bi(∆0(Z∗−i)) ∩
Z∗−i. In particular, these sets need not satisfy (35). Furthermore, the precise
decision-theoretic foundations of this iterative procedure remain far from clear,
despite the recent work by Stahl (1995), Veronesi (1997), and Brandenburger
and Keisler (2002), amongst others.

9.4 The Centipede Game
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Figure 5 Rosenthal’s Centipede Game, Modified

Iterative deletion of weakly dominated strategies can lead to controversial,
almost paradoxical, conclusions. One famous example arises in a variation of
what Binmore (1987) calls the “centipede game,” which is due to Rosenthal
(1981, Example 3). This is illustrated in Figure 5 (see also Osborne and Ru-
binstein, 1994). There are two players labelled P1 and P2, with respective
strategy sets

S1 = { ai | i = 0, 1, . . . , n }, S2 = { bj | j = 0, 1, . . . , n }

If P1 chooses ai ∈ S1, then unless P2 ends the game beforehand, P1 moves
across in the tree exactly i successive times. Similarly, if P2 chooses bj ∈ S2,
then unless P1 ends the game beforehand, P2 moves across exactly j successive
times. The game ends immediately once either player has moved down. If
i = j = n, it ends anyway after P2 has chosen bn. Outside this case, if the two

19As in Section 12, Farquharson considers iterative deletion only of strategies that are weakly
dominated by other pure strategies, thus retaining strategies that are weakly (or even strictly)
dominated by mixed strategies only.
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players choose (ai, bj) where i = k ≤ j, then the game ends when P1 moves
down after they have both moved across k times. But if i > k = j, then P1

moves across k + 1 times but P2 only k times before moving down to end the
game. Hence, the two players’ respective payoffs are

v1(ai, bj) =
{

i + 1 if i ≤ j
j if i > j

and v2(ai, bj) =
{

i if i ≤ j
j + 2 if i > j

It is now easy to see how iterative deletion of weakly dominated strategies
proceeds. First P2’s strategy bn is removed because it is weakly dominated by
bn−1. Then P1’s strategy an is removed because it is weakly dominated by an−1

once bn has been eliminated. But then, by backward induction on k, for k =
n− 1, . . . , 1, each successive bk is weakly dominated by bk−1 once an, . . . , ak+1

have all been eliminated. Similarly, for k = n − 1, . . . , 1, each successive ak is
weakly dominated by ak−1 once bn, . . . , bk have all been eliminated. Therefore,
by backward induction, the iterative procedure successively deletes all strategies
except P2’s strategy b0 and then P1’s strategy a0. The only remaining strategy
profile (a0, b0) is a Nash equilibrium, of course, though there are other Nash
equilibria as well.

Starting with Rosenthal (1981) and Binmore (1987), several game theorists
have found this backward induction argument unconvincing, for the following
reason. Suppose P1 were unexpectedly faced with the opportunity to play ak

after all, because neither player has yet played down, and in fact each player has
played across k times already. Backward induction applied to the remaining
subtree leads to the conclusion that P2, if given the move, will play bk next
time, so P1 should play ak. Yet P2 has already played across k times, whereas
backward induction implies that P2 should move across whenever there is a
move to make. So, as Binmore in particular argues most persuasively, if k is
large enough, P1 has every reason to doubt whether the backward induction
argument applies to P2’s behaviour after all. Furthermore, if n−k is also large,
there may be much to gain, and at most 1 unit of payoff to lose, from allowing
the game to continue by moving across instead of playing ak.

Of course, P2 can then apply a similar argument when faced with the choice
between bk and continuing the game. Also, P1 should understand how moving
across once more instead of playing ak will reinforce P2’s doubt about whether
the backward induction argument applies to P1, and so make it more likely that
P2 will decline to play bk. This strengthens P1’s reasons for not playing ak.
Similar reasoning then suggests that P2 should not play bk−1, that P1 should
not play ak−1, etc. It may be sensible in the end for P1 not to play a0, for
P2 not to play b0, etc. Indeed, there are some obvious close parallels between
this idea and the reputation arguments of Kreps et al. (1982) for players first
to cooperate and then play tit-for-tat in the early stages of a finitely repeated
Prisoner’s Dilemma. Or for a chain-store to play “tough” in the paradox due
to Selten (1978). These parallels are thoroughly discussed in Kreps (1990, pp.
537–542). See also Fudenberg and Tirole (1991, Ch. 9) for a general discussion
of reputation in games.
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This argument strongly suggests that a theory of individual behaviour in
n-person games is too restrictive if it eliminates all weakly dominated strate-
gies iteratively without considering most of the details lying behind players’
rationalizable expectations. This view is supported by theoretical work such
as Dekel and Fudenberg (1990), Ben-Porath and Dekel (1992), and Ben-Porath
(1997).20

10 Hierarchies of Beliefs

10.1 Rationalizable Types

In Sections 8 and 9, the formulation of each player i’s decision problem treated
other players’ strategy profiles s−i as states of nature. Yet these strategy
profiles, if they consist of rationalizable strategies for each player, must be
those other players’ respective best responses, given their individual beliefs.
And really all these other players’ beliefs πh ∈ ∆(S−h) (h ∈ I \ {i}) are also
unknown to player i. As are their beliefs about other players’ beliefs, etc. In
fact, unless the players all know that a particular equilibrium will be played, and
know that the others know it, . . . , they are effectively in a game of incomplete
information, as described in Section 4.3.

Accordingly, given the game Γ as in (1), there are corresponding type spaces
Ti (i ∈ I). Each type is a pair ti = (si, θi) ∈ Si × Θi consisting of a strategy
si ∈ Si combined with a belief in the form of a probability distribution or
measure θi over the profile t−i ∈ T−i =

∏
h∈I\{i} Th of other players’ types.

There is a corresponding marginal distribution πi = margS−i
θi over other

players’ strategy profiles s−i ∈ S−i. A type (si, θi) is said to be rationalizable if
si ∈ Bi(margS−i

θi) and θi attaches probability one to the event that all other
players’ types are rationalizable.

The above definitions of type space and of rationalizable type, like the com-
plete epistemic types described in Section 8.3, are circular. This is because
types include descriptions of beliefs about other players’ types, and rationaliz-
able types of each player are almost sure that other all players’ types are ra-
tionalizable. Of course, a very similar circularity arises in Harsanyi’s (1967–8)
definition (13) of a game of incomplete information. Some time after Harsanyi,
several game theorists set out to show how such circularities can be resolved
without any logical inconsistency. They typically did so by constructing for each
player an infinite hierarchy of successively richer type spaces, whose respective
limits have the desired circularity property. See for instance Armbruster and

20For some recent lively and enlightening discussions, especially of backward induction, see
Aumann (1995, 1996a, b), Binmore (1996), Binmore and Samuelson (1996), and Nagel (1995),
as well as Feinberg (2002).

Finally, Vasin (1999) presents some interesting results on versions of the folk theorem
for repeated games with perturbed payoffs, using rationalizability. It remains to be seen
how many similar results hold for more general games that are usually solved by backward
induction.
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Böge (1979), Böge and Eisele (1979), Mertens and Zamir (1985), and Branden-
burger and Dekel (1993).

10.2 Mathematical Preliminaries

The standard construction which follows relies on some mathematical concepts
concerning Polish spaces, the topology of weak convergence of measures, and
the Prohorov metric corresponding to this topology. These concepts are briefly
reviewed below. Chapter 5 contains some discussion of the relevant concepts
in measure theory.

A metric space (X, d) consists of a set X together with a metric d : X ×
X → R+ satisfying the conditions: (i) d(x, y) ≥ 0 for all x, y ∈ X, with
d(x, y) = 0 ⇐⇒ x = y; (ii) d(x, y) = d(y, x) for all x, y ∈ X; (iii) d(x, z) ≤
d(x, y) + d(y, z) for all x, y, z ∈ X (the triangle inequality). The space is said
to be complete if the sequence (xn)∞n=1 in X converges whenever it is a Cauchy
sequence — i.e., whenever for each ε > 0 there exists Nε such that d(xm, xn) < ε
for all m, n > N . A metric space (X, d) is said to be separable if there is a
countable set {xn | n = 1, 2, . . . } in X whose closure is the whole of X.

A Polish space is defined to be a complete separable metric space equipped
with its Borel σ-algebra — i.e., the smallest σ-algebra generated by the sets
which are open in its metric topology. It should be noted that any finite or
even a countably infinite Cartesian product of Polish spaces is also a Polish
space — see, for example, Bertsekas and Shreve (1978).

Two Polish spaces X1, X2, together with their associated metrics, are said
to be isomorphic if they are homeomorphic as topological spaces — i.e., if
there exists a continuous mapping ψ from X1 onto X2 which has a continuous
inverse ψ−1 : X2 → X1. This mapping is called an isomorphism rather than a
homeomorphism because continuous mappings are measurable w.r.t. the Borel
σ-algebras — i.e., the inverse image of any measurable subset of the range is a
measurable subset of the domain — so ψ actually makes the Borel σ-algebras
of the two sets isomorphic, as well as their topologies.

Given any Polish space X with Borel σ-algebra B, the set ∆(X,B) of all
Borel probability measures on the measurable space (X,B) is also a Polish
space provided that it is given the topology of weak convergence of probability
measures. This topology corresponds to the Prohorov metric ρ, according to
which the distance between any pair of probability measures µ, ν ∈ ∆(X,B) is

ρ(µ, ν) := inf
ε

{
ε > 0 | ∀E ∈ B(X) : µ(E) ≤ ν(Nε(E)) + ε

and ν(E) ≤ µ(Nε(E)) + ε
}
,

where Nε(E) denotes the set of all points in X which are within a distance ε > 0
of points in E. This topology of weak convergence of probability measures
derives its name from the property that a sequence of measures (µn)∞n=1 in
∆(X,B) converges to the limit µ ∈ ∆(X,B) if and only if, for every bounded
continuous function f : X → R, the expected value

∫
X

f(x) µn(dx) of f with
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respect to the probability measure µn converges in R to the expected value∫
X

f(x) µ(dx) of f with respect to the probability measure µ.
A result of fundamental importance is that ∆(X,B) is compact and Polish

whenever X is a compact Polish space. See, for example, Parthasarathy (1967)
or Aliprantis and Border (1999).

10.3 A Sequence of Type Spaces

The standard construction of the hierarchy whose limit is the space of ratio-
nalizable types begins with the finite sets T 0

i := Si (i ∈ I). Hence each player’s
type of order zero t0i ∈ T 0

i is equivalent to a possible choice of strategy. The
construction continues at the next step with the first-order type spaces

T 1
i := { (si, θ

0
i ) ∈ Si × ∆(S−i) | si ∈ Bi(θ0

i ) } ⊂ Si × ∆(T 0
−i)

where ∆(S−i) denotes the set of probability distributions θ0
i on the finite set

S−i = T 0
−i. Thus, T 1

i is the graph of player i’s best response correspondence.
Note that each T 1

i is the Cartesian product of a finite set Si with a space of
probability measures on a finite set S−i. By choosing the Prohorov metric on
∆(S−i), which induces the topology of weak convergence, this product space
can be made compact and Polish. The same is true of the Cartesian product
T 1
−i =

∏
j∈I\{i} T 1

j . It follows that there is a well-defined space ∆(T 1
−i) of Borel

probability measures on T 1
−i which is also a compact Polish space.

Next in the hierarchy comes the second-order type space

T 2
i := { (si, θ

0
i , θ1

i ) ∈ T 1
i × ∆(T 1

−i) | θ0
i = marg T 0

−i
θ1

i } (37)

Thus, each member of T 2
i consists of a probabilistic belief θ1

i ∈ ∆(T 1
−i) con-

cerning the profile t1−i ∈ T 1
−i of other players’ first-order types, together with

the induced marginal belief θ0
i = marg S−i θ1

i ∈ ∆(S−i) concerning other play-
ers’ zero-order types, and a best response si ∈ Bi(θ0

i ) to this marginal belief.
Because θ1

i ∈ ∆(T 1
−i), this belief attaches probability one to the event that all

other players h ∈ I \ {i} choose best responses sh ∈ Bh(θ0
h) to what i expects

their marginal beliefs θ0
h ∈ ∆(S−h) to be. As pointed out at the end of Section

10.2, the space of probability measures on any compact Polish space is com-
pact and Polish when given the topology generated by the Prohorov metric. It
follows that each set T 2

i is a compact Polish space, as a closed subset of the
product of two compact Polish spaces.

For each subsequent k > 2, define the kth order type space

T k
i := { (si, θ

0
i , θ1

i , . . . , θk−1
i ) ∈ T 1

i ×
k−1∏
r=1

∆(T r
−i)

| θr−1
i = marg T r−1

−i
θr

i (r = 1, 2, . . . , k − 1) }

as the natural extension of (37). Each tki ∈ T k
i therefore consists of a belief

θk−1
i ∈ ∆(T k−1

−i ) over other players’ types of order k − 1, together with the
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induced hierarchy (θ0
i , θ1

i , . . . , θk−2
i ) of marginal lower order beliefs which satisfy

θr
i = marg T r

−i
θk−1

i (r = 0, 1, . . . , k−2), and finally a best response si ∈ Bi(θ0
i )

to the induced belief θ0
i = marg S−i θk−1

i . Once again, each T k
i is a compact

Polish space, as a closed subset of the Cartesian product of a finite collection
of compact Polish spaces.

There is an important relationship between the construction of the type
spaces T k

i and that of the sets Zk
i = Bi(∆(Zk−1

−i )) whose intersection ∩∞k=1Z
k
i

forms the set Rati of i’s rationalizable strategies. Indeed, for k = 0, 1, 2, . . . ,
the projection of T k+1

i onto Si satisfies

projSi
T k+1

i = { si ∈ Si | ∃θk
i ∈ ∆(T k

−i) : si ∈ Bi(marg S−i
θk

i ) }
= Bi(marg S−i

∆(T k
−i)) = Bi(∆(projSi

T k
−i))

It follows by induction on k that each Zk+1
i is the projection projSi

T k+1
i , and

that marg S−i ∆(T k
−i) = ∆(Zk

−i).

10.4 The Limit Space

Finally, there is a well defined limit space

Ti := { (si, θ
0
i , θ1

i , θ2
i , . . . ) ∈ T 1

i ×
∞∏

r=1

∆(T r
−i)

| θr−1
i = marg T r−1

−i
θr

i (r = 1, 2, . . . ) }

It is not too difficult to prove that each limit space Ti is non-empty, compact
and Polish when given the obvious product topology. Most important, one
can construct a natural bijection hi between Ti and the space Si × ∆(T−i) of
strategies combined with beliefs concerning other players’ types, including their
strategies and their hierarchies of beliefs concerning other players’ types, etc.

Indeed, this construction begins by applying the well-known existence or
consistency theorem of Kolomogov regarding stochastic processes. This result
implies that, for each sequence 〈θr

i 〉∞r=0 ∈
∏∞

r=0 ∆(T r
−i) which is consistent in

the sense that θr
i = marg T r

−i
θr+1

i for r = 0, 1, 2, . . . , there exists a unique limit
probability measure θi = ξi (〈θr

i 〉∞r=0) ∈ ∆(T−i) satisfying θr
i = marg T r

−i
θi for

r = 0, 1, 2, . . . . The basic idea here is that each Borel set G in the infinite prod-
uct space T−i =

∏
h∈I\{i}[T

1
h ×

∏∞
r=1 ∆(T r

−h)] can be expressed as the limiting
infinite intersection G = ∩∞k=1G

k of the shrinking sequence of cylindrical sets

Gk := projT k
−i

G ×
∏

h∈I\{i}

∞∏
r=k

∆(T r
−h)

Moreover, because the sequence of sets Gk is shrinking, the sequence of mea-
sures θk

i

(
projT k

−i
G

)
is non-increasing and bounded below. So there is a well-

defined limit given by

θi(G) := inf ∞k=0 θk
i

(
projT k

−i
G

)
= lim

k→∞
θk

i

(
projT k

−i
G

)
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which turns out to be the required probability attached to the set G.
Furthermore, the mapping ξi constructed this way is evidently a bijec-

tion between
∏∞

r=0 ∆(T r
−i) and ∆(T−i), with an inverse given by ξ−1

i (θi) =
〈margT r

−i
θi〉∞r=0 for all θi ∈ ∆(T−i). So one can define hi : Ti → Si×∆(T−i) for

each i ∈ I by hi(t1i , 〈θr
i 〉∞r=0) := (t1i , ξi(〈θr

i 〉∞r=0)), which then gives the promised
bijection.

This construction of Ti as the set of player i’s rationalizable types resolves
the circularity problem. For more details, see especially Brandenburger and
Dekel (1993).

The construction requires that the spaces Θi consist of countably additive
probability measures. Otherwise, if for example one attempts to represent
knowledge either instead of or in addition to beliefs, no countable construction
is entirely adequate. In fact, there may even be no family of “universal” type
spaces large enough to represent all players’ possible knowledge and beliefs
about each others’ types. See, for example, Heifetz and Samet (1998), as well as
Fagin et al. (1999). Aumann (1999a, b) proposes circumventing this difficulty
by using a syntactic approach. But even this has its theoretical limitations, as
Heifetz (1999) points out.

11 Trembling Best Responses

11.1 The Zero Probability Problem

The argument for iterative deletion of weakly dominated strategies, as well as
the implied backward induction paradox, arose from the desire to attach zero
subjective probability to strategies that are not rationalizable, in combination
with the need to attach positive subjective probabilities to all strategies that
have not already been eliminated as weakly dominated. Recall that positive
probabilities are required so that Bayesian updating is always possible; except
in trivial cases, they are implied by the hypothesis that behaviour in decision
trees should be consequentialist. The paradoxes created by iterative deletion
of all weakly dominated strategies might be avoided, therefore, if positive in-
finitesimal probabilities were allowed, and could be attached to all strategies
that are not rationalizable. Such infinitesimal probabilities are positive but
smaller than 1/n for any positive integer n; they are not real numbers, but
belong to the space of “hyperreals” which are the basis of non-standard anal-
ysis.21 In game theory it usually does no harm to think of an infinitesimal as
an infinite sequence of real numbers that converges to zero.

Infinitesimal probabilities have already appeared in game theory in various
guises. As discussed in Section 5, Selten (1975) and Myerson (1978) considered
arbitrarily small “trembles” in players’ optimal mixed strategies. Following
earlier work by Rényi (1955, 1956) and other mathematicians, Myerson (1986)
rediscovered “complete conditional probability systems” that allow condition-

21See Anderson (1991) for an economist’s brief introduction and useful general bibliography.
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ing on events whose probability is zero. Kreps and Wilson (1982), followed
by Blume, Brandenberger and Dekel (1991a), introduced lexicographic hier-
archies of probabilities in game theory. In Hammond (1994a) I discussed the
history of such ideas in greater detail, and showed the close relationship be-
tween several different concepts. The papers by McLennan (1989a, b), Blume,
Brandenberger and Dekel (1991b), Brandenberger (1992), Battigalli (1994a, b,
1998), Battigalli and Siniscalchi (1999), and Rajan (1998) all explore the use-
fulness of infinitesimal probabilities in game theory; in Hammond (1999a, b) I
explore their use in consequentialist single-person decision theory, for the cases
of objective and subjective probabilities respectively.

Infinitesimal probabilities may also help to avoid the kind of paradox that
backward induction can create. In the centipede game of Section 9.4, for ex-
ample, they allow the probability of reaching any node of the tree to remain
positive. Moreover, if the game is modelled as having incomplete information
because the players lack common knowledge of each other’s theories of how
the game will be played, then successive moves by the same player may be
correlated in a way that makes it rational for each player to continue the game
for quite a while. See Binmore (1987) for further elaboration, as well as the
discussion at the end of Section 9.4.22

11.2 B-Perfect Rationalizability

Instead of introducing infinitesimal probabilities, a simpler alternative in the
same spirit may be to allow small positive probabilities which tend to zero. This
is what was done in Section 5, when discussing trembles and perfect and proper
equilibria. Here the same idea can be applied to rationalizable strategies.

In this subsection, the definition of Bernheim (1984, p. 1021) will be modified
to allow each player to have correlated beliefs regarding other players’ pure
strategies, as discussed in Section 9. This modification will lead to a concept
to be called “B-perfect rationalizability”. It is stronger than the newer and
more convenient concept of “W-perfect rationalizability” due to Herings and
Vannetelbosch (1999, 2000), which will be discussed in the next subsection.

The first definition will be of η-constrained rationalizable strategies, for each
i ∈ I and each small strictly positive vector η = 〈〈ηi(si)〉si∈Si〉i∈I ∈

∏
i∈I R

Si
++

of trembles ηi(si) attached to each strategy si ∈ Si of each player i ∈ I. The
iterative definition is based on strategy sets Zk

i (η) ⊂ Si, together with sets
P k

i (η) ⊂ ∆(Si) of other players’ permissible beliefs about what i will play, and
associated sets Ek

i (η) ⊂ ∆(S−i) of player i’s permissible beliefs about other
players’ strategy profiles.

22Positive infinitesimal probabilities help avoid the contradictions involved in normal form
game theory that were noticed by Abreu and Pearce (1984). Considering such probabilities
casts doubt on two of their axioms — namely, (A3) (Dominance) and (A4) (Subgame Re-
placement). In fact, the contradictions noted in their Propositions 1 and 2 can be avoided
by attaching positive but infinitesimal probabilities to dominated or other inferior responses.
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The construction starts with Z0
i (η) := Si. Then, for k = 0, 1, 2, . . . in turn,

having already constructed the strategy set Zk
i (η) ⊂ Si, define the associated

sets

P k
i (η) := {µi ∈ ∆η(Si) | ∀si ∈ Si \ Zk

i (η) : µi(si) = ηi(si) }

Ek
i (η) := co

[∏
h∈I\{i}

P k
i (η)

]
, (38)

where ∆η(Si) is defined as in (15) of Section 5.2. That is, µi ∈ ∆η(Si) iff
µi ∈ ∆(Si) with µi(si) ≥ ηi(si) for all si ∈ Si. Note that P k

i (η) is the set
of η-perfect “trembling beliefs” about i’s strategy, which attach the minimum
allowable probability ηi(si) to each strategy si !∈ Zk

i (η). Then Ek
i (η) is the set

of i’s beliefs about all other players’ strategy choices. These take the form of
joint distributions on S−i in the convex set whose extreme points arise when,
for each h ∈ I \ {i}, player i attaches the maximum allowable probability
1−

∑
s′h∈Sh\{sh} ηh(s′h) to one particular strategy sh ∈ Zk

h(η), and the minimum
allowable probability ηh(s′h) to each strategy s′h ∈ Sh \ {sh}. In effect, each
πi ∈ ∆(Zk

−i(η)) becomes replaced by the new lottery∑
s−i∈Zk

−i(η)

πi(s−i) ei(s−i)

where ei(s−i) denotes the product
∏

h∈I\{i} eih(sh) of independent lotteries
defined for all h ∈ I \ {i} by

eih(sh)(s′h) =

{
ηh(s′h) if s′h != sh;
1 −

∑
s̃h∈Sh\{sh} ηh(s̃h) if s′h = sh.

For games with two players 1 and 2, because P k
i (η) is already convex, one will

have Ek
1 (η) = P k

2 (η) and Ek
2 (η) = P k

1 (η) for all k and η.
At the next stage of the iteration, define

Zk+1
i (η) := Bi(Ek

i (η)) =
⋃

πi∈Ek
i (η)

Bi(πi) (39)

as the set of unconstrained best responses to expectations in Ek
i (η). For

k = 1, 2, . . . it is then easy to see that P k
i (η) = Bη

i (Ek−1
i (η)), the set of η-

constrained best responses to expectations in Ek−1
i (η), as defined in (16) of

Section 5.2.
Because Z0

i (η) = Si and so Z1
i (η) ⊂ Z0

i (η) (all i ∈ I), it is easy to prove
by induction that Zk+1

i (η) ⊂ Zk
i (η), P k+1

i (η) ⊂ P k
i (η), and Ek+1

i (η) ⊂ Ek
i (η)

(k = 1, 2, . . . ). So there is a limit set

Z∞i (η) := ∩∞k=0Z
k
i (η) (40)

of η-perfectly rationalizable strategies. As when rationalizable strategy sets were
being constructed in Section 9.1, because each Si is finite, the iteration must end
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in finitely many rounds — i.e., there exists a finite r such that Zk
i (η) = Zr

i (η),
P k

i (η) = P r
i (η), and Ek

i (η) = Er
i (η) for all i ∈ I and all k ≥ r. Of course, this

implies that there are associated limit sets satisfying

P∞i (η) := ∩∞k=0P
k
i (η) and E∞i (η) := ∩∞k=0E

k
i (η)

as well as Z∞i (η) = Bi(E∞i (η)), and P∞i (η) = Bη
i (E∞i (η)). In addition, E∞i (η)

must be the convex hull of
∏

h∈I\{i} P∞h (η) }.
Finally, for each player i ∈ I, say that the strategy si ∈ Si is B-perfectly

rationalizable if and only if there exists a vanishing decreasing sequence ηn ↓ 0
of allowable vectors in

∏
i∈I R

Si
++ such that si ∈ Z∞i (ηn) for all large n. Because

Z∞i (η) is a non-empty subset of the finite set Si for all η � 0, each player’s
limit set BPerf Rati is non-empty.

Let µI ∈
∏

i∈I ∆(Si) be any trembling-hand perfect equilibrium, as defined
in Section 5.2. Then µI must be the limit as n → ∞ of an infinite sequence
µI

n of ηn-perfect equilibria, for some vanishing sequence ηn (n = 1, 2, . . . ) in∏
i∈I R

Si
++. Suppose si ∈ Si is a strategy for which µi(si) > 0. Then µin(si) >

ηin(si) for all large n, implying that si ∈ Bi(πin) where πin =
∏

h∈I\{i} µhn.
But now an easy induction argument shows that for k = 0, 1, 2, . . . one has
si ∈ Zk

i (ηn), µin ∈ P k
i (ηn), and πin ∈ Ek

i (ηn). So in the limit as k → ∞,
one has si ∈ Z∞i (ηn), µin ∈ P∞i (ηn), and πin ∈ E∞i (ηn). Taking the limit as
n → ∞ and so ηn ↓ 0, it follows that si ∈ BPerf Rati. Thus, any strategy which
appears with positive probability in some trembling-hand perfect equilibrium
must be B-perfectly rationalizable.

It is instructive to consider how the concepts of rationalizability and B-
perfect rationalizability perform in the centipede game of Section 9.4. In the
first place, because neither player has a strictly dominated strategy, every strat-
egy is rationalizable for each player.

In the “biped” case when n = 1, only the backward instruction strategies a0

and b0 are B-perfectly rationalizable. In the more interesting case when n > 1,
only player P2’s strategy bn is not B-perfectly rationalizable; all the others are.
The reason is that player P1’s strategy ai is a best response to π1 ∈ ∆η(S2)
provided that π1(bi) is close to 1 and π1(bi+1) = η2(bi+1) is close to 0. Under
B-perfect rationalizability, this is possible whenever i ≤ n − 1. On the other
hand, player P2’s strategy bj is a best response to π2 ∈ ∆η(S1) provided that
π2(aj+1) is close to 1 and π2(aj+2) = η1(aj+2) is close to 0. Under B-perfect
rationalizability, this is possible whenever j ≤ n − 1.

11.3 Börgers’ Example

Table 3 describes an important example taken from Börgers (1994), but with
the row and column players interchanged to save space. The two players P1 and
P2 have strategy sets S1 = { a1, a2, a3 } and S2 = { b1, b2, b3, b4, b5 } respectively.

For player P2, strategies b4 and b5 are both weakly dominated. Thus, neither
can be best responses when a1, a2 and a3 are all expected to occur with positive
probability, even if this is merely the result of trembling by player P1. Hence,
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P2

b1 b2 b3 b4 b5

a1 0 0 0 3 0
3 0 2 0 0

P1 a2 0 0 0 2 2
1 1 0 0 0

a3 0 0 0 0 3
0 3 2 0 0

Table 3 Börgers’ Example

any η-constrained best response for player P2 satisfies µ2(b4) = η2(b4) and
µ2(b5) = η2(b5).

Note that player P1’s payoff is 0 whenever P2 chooses b1, b2 or b3, regardless
of what strategy P1 chooses. In fact, P1’s expected payoff from a1 is 3η2(b4),
whereas from a2 it is 2[η2(b4) + η2(b5)], and from a3 it is 3η2(b5). Accordingly,
player P1’s best response is entirely determined by the likelihood ratio ρ :=
η2(b4)/η2(b5) of the two strategies b4 and b5 when P2 trembles. In fact, there
are five different cases:

Case 1: ρ > 2. Here a1 is P1’s unique best response to P2’s tremble, and
(a1, b1) is the unique pair of η-perfectly rationalizable strategies.

Case 2: 1
2 < ρ < 2. Here a2 is P1’s unique best response to P2’s tremble,

and, except in the boundary case when η1(a1) = η1(a3), either (a2, b1)
or (a2, b2) is the unique pair of η-perfectly rationalizable strategies, de-
pending upon the likelihood ratio η1(a1)/η1(a3) of the two strategies a1

and a3 when P1 trembles. In no case is b3 an η-perfectly rationalizable
strategy for player P2.

Case 3: ρ < 1
2 . Here a3 is P1’s unique best response to P2’s tremble, and

(a3, b2) is the unique pair of η-perfectly rationalizable strategies.

Case 4: ρ = 2. Here a1 and a2 are both best responses for player P1

to P2’s tremble. Note that b1 is P2’s unique best response whenever a1,
a2 and a3 all occur with positive probability, and the probability of a3 is
sufficiently small. So the only η-perfectly rationalizable strategies are a1

or a2 for player P1, and b1 for player P2.

Case 5: ρ = 1
2 . Here a2 and a3 are both best responses for player P1

to P2’s tremble. Note that b2 is P2’s unique best response whenever a1,
a2 and a3 all occur with positive probability, and the probability of a1 is
sufficiently small. So the only η-perfectly rationalizable strategies are a2

or a3 for player P1, and b2 for player P2.

From this analysis, after considering all the different possible limits as η → 0,
it follows that the sets of B-perfectly rationalizable strategies are the whole of
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S1 for player P1, and { b1, b2 } for player P2. The fact that b3 in particular is
not B-perfectly rationalizable for player P2 will be used later on to argue that
B-perfect rationalizability may be too stringent a requirement.

11.4 W-Perfect Rationalizability

As remarked at the beginning of Section 11.2, Herings and Vannetelbosch (1999,
2000) have introduced a weaker concept which they call “weakly perfect ratio-
nalizability”. Here the term “W-perfect rationalizability” is used instead. This
new concept has some advantages over Bernheim’s, even in two-person games
for which the issue of whether to allow each player to have correlated beliefs
regarding other players’ pure strategies does not arise.

Consider any fixed small strictly positive vector ξ = 〈〈ξi(s−i)〉si∈Si〉i∈I ∈∏
i∈I R

S−i

++ of minimum possible probabilities ξi(s−i) that each player i ∈ I is
allowed to attach to each strategy profile s−i ∈ S−i. The iterative construction
is based on strategy sets Z̄k

i (ξ) ⊂ Si, together with associated sets Ēk
i (ξ) ⊂

∆(S−i) of permissible beliefs about other players’ strategy profiles.
The construction starts with Z̄0

i (ξ) := Si. Then, for k = 0, 1, 2, . . . in turn,
given the already constructed strategy set Z̄k

i (ξ) ⊂ Si, define the set

Ēk
i (ξ) := {πi ∈ ∆0(S−i) | πi(s−i) > ξi(s−i) =⇒ s−i ∈ Z̄k

−i(ξ) } (41)

of permissible beliefs, where Z̄k
−i(ξ) :=

∏
h∈I\{i} Z̄k

h(ξ). At the next stage of
the iteration, define

Z̄k+1
i (ξ) := Bi(Ēk

i (ξ)) =
⋃

πi∈Ēk
i (ξ)

Bi(πi) (42)

as the set of unconstrained best responses to expectations in Ēk
i (ξ).

Because Z̄0
i (ξ) = Si and so Z̄1

i (ξ) ⊂ Z̄0
i (ξ) for all i ∈ I, it is easy to prove

by induction on k that Z̄k+1
i (ξ) ⊂ Z̄k

i (ξ), and Ēk+1
i (ξ) ⊂ Ēk

i (ξ) (k = 1, 2, . . . ).
So one can define the limit sets

Z̄∞i (ξ) := ∩∞k=0Z̄
k
i (ξ) and Ē∞i (ξ) := ∩∞k=0Ē

k
i (ξ) (43)

The latter consists of ξ-perfect trembling beliefs. As with rationalizable strate-
gies, because each Si is finite, the iteration must end in finitely many rounds.
Of course, the associated limit sets satisfy

Z̄∞i (ξ) = Bi(Ē∞i (ξ))
Ē∞i (ξ) = {πi ∈ ∆0(S−i) | πi(s−i) > ξi(s−i) =⇒ s−i ∈ Z̄∞−i(ξ) }

Finally, for each player i ∈ I, say that the strategy si ∈ Si is W-perfectly
rationalizable if and only if there exists a vanishing decreasing sequence ξn ↓ 0
of allowable vectors in

∏
i∈I R

S−i

++ such that si ∈ Z̄∞i (ξn) for all large n. Because
Z̄∞i (ξ) is a non-empty subset of the finite set Si for all ξ � 0, each player’s
limit set Perf Rati is non-empty.
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Note that W-perfect rationalizability is indeed a weaker concept than B-
perfect rationalizability, in the sense that BPerf Rati ⊂ Perf Rati for all i ∈ I.
To show this, it is enough to prove by induction on k that, when ξi(s−i) =
maxh{ ηh(sh) | h ∈ I \ {i} } for all i ∈ I and all s−i ∈ S−i, then Zk

i (η) ⊂ Z̄k
i (ξ)

and Ek
i (η) ⊂ Ēk

i (ξ) for all i ∈ I and for k = 0, 1, 2, . . . . Of course, when k = 0,
then Z0

i (η) ⊂ Z̄0
i (ξ) = Si and

E0
i (η) = co

∏
h∈I\{i}

∆η(Sh) ⊂ ∆0(S−i) = Ē0
i (ξ)

As the induction hypothesis, suppose that Zk
i (η) ⊂ Z̄k

i (ξ) for all i ∈ I.
Suppose that πi ∈ Ek

i (η). Let s−i be any strategy profile in S−i for which
πi(s−i) > ξi(s−i). By definition of Ek

i (η), there exist m and, for j = 1, 2, . . . , m,
mixed strategies µj

h ∈ P k
h (η) for all h ∈ I and convex weights λj ≥ 0 such

that
∑m

j=1 λj = 1 and πi =
∑m

j=1 λj πj
i where πj

i (s−i) =
∏

h∈I\{i} µj
h(sh).

Because πi(s−i) > ξi(s−i), there exists at least one j ∈ { 1, 2, . . . , m } such
that πj

i (s−i) > ξi(s−i). In fact, for at least one j it must be true that

πj
i (s−i) =

∏
h∈I\{i}

µj
h(sh) > ξi(s−i) = max

h
{ ηh(sh) | h ∈ I \ {i} }

Because µj
h(sh) ≤ 1 for each h ∈ I \ {i}, it follows that

µj
h′(sh′) ≥

∏
h∈I\{i}

µj
h(sh) > max

h
{ ηh(sh) | h ∈ I \ {i} }

for each h′ ∈ I\{i}. This implies that for all h ∈ I\{i} one has µj
h(sh) > ηh(sh)

and so sh ∈ Zk
h(η). Hence πi(s−i) > ξi(s−i) implies that s−i ∈ Zk

−i(η). But
Zk
−i(η) ⊂ Z̄k

−i(ξ) by the induction hypothesis.
So it has been proved that πi ∈ Ek

i (η) implies that πi ∈ Ēk
i (ξ). Hence

Ek
i (η) ⊂ Ēk

i (ξ), from which it is obvious from the definitions that Zk+1
−i (η) ⊂

Z̄k+1
−i (ξ). This completes the induction step of the proof.
The fact that W-perfect rationalizability is strictly weaker than B-perfect

rationalizability will be shown at the end of Section 11.5, after introducing a
useful characterization of W-perfect rationalizability.

11.5 The Dekel–Fudenberg Procedure

In Section 9.2 it was shown that rationalizable strategies are precisely those
which survive iterated deletion of strictly dominated strategies. On the other
hand, we have also discussed the iterative procedure of eliminating on each
round every strategy that is weakly dominated. In their discussion of games
with payoff uncertainty, Dekel and Fudenberg (1990) were led to investigate a
new iterative procedure for eliminating dominated strategies. This procedure
is stronger than iterated deletion of strictly dominated strategies, but weaker
than iterated deletion of all weakly dominated strategies. In fact, the first step
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of the Dekel–Fudenberg (or DF) procedure does eliminate all weakly dominated
strategies from each player’s strategy set Si. On each later round, however, only
strictly dominated strategies are removed from those that remain; strategies
that are merely weakly dominated are all retained.

Formally, the DF procedure constructs a sequence of strategy sets Dk
i (k =

0, 1, 2, . . . ) for each player i ∈ I. As usual, D0
i = Si. But then D1

i is the set of
strategies in Si that are not weakly dominated, and so D1

i = Bi(∆0(Si)). At
each later stage of the construction, Dk+1

i is the set of strategies in Dk
i that are

not strictly dominated when the other players’ strategy profile s−i is restricted
to Dk

−i :=
∏

h∈I\{i}Dk
h. As with previous constructions, the result is a nested

sequence of non-empty sets satisfying . . . Dk+1
i ⊂ Dk

i ⊂ . . . ⊂ D1
i ⊂ D0

i for
all i ∈ I and for k = 0, 1, 2, . . . . Once again, because each Si is finite, the
procedure converges in finitely many steps to a family of non-empty sets D∞i
(i ∈ I).

Recall that a strategy is not strictly dominated if and only if it is a best
response in the strategy set Si to some probability distribution π ∈ ∆(S−i).
Similarly, Dk+1

i must consist of those constrained best responses within the set
Dk

i to some probability distribution π ∈ ∆(Dk
−i).

Apart from its intrinsic interest, the DF procedure also happens to yield
exactly the same set of strategies for each player as the W-perfect rationaliz-
ability criterion discussed in the previous subsection. In the first place, note
that Z1

i (ξ) ⊂ Bi(∆0(S−i)), so si ∈ Z1
i (ξ) only if si is not weakly dominated by

any mixed strategy in ∆(Si). That is, the first step of the iteration eliminates
weakly dominated strategies from Si. On each later round, strictly dominated
strategies are removed from those that remain. Hence, a strategy is W-perfectly
rationalizable only if it survives the DF procedure. The converse is also true,
as Herings and Vannetelbosch (2000) have recently demonstrated.

This equivalence can also be used to illuminate the difference between B-
and W-perfect rationalizability. Indeed, consider once again Börgers’ exam-
ple which was the subject of Section 11.3. Player P2’s strategies b4 and b5

are obviously weakly dominated; none of the others are. None of player P1’s
strategies are even weakly dominated. The same is obviously true once b4 and
b5 have been removed. Thus, the DF procedure leads to the respective strategy
sets S1 for player P1 and { b1, b2, b3 } for player P2. Of course, these are the
W-perfectly rationalizable strategy sets. Because player P2’s set of B-perfectly
rationalizable strategies was shown to be only { b1, b2 }, this confirms that B-
perfect rationalizability is a strict refinement of W-perfect rationalizability.

11.6 Proper Rationalizability

Perfectly rationalizable strategies clearly suffer from exactly the same defect
as perfect equilibria: they rely on all inferior responses being treated equally,
even though some inferior responses may be much worse than others. Just as
Myerson’s concept of proper equilibrium is able to deal with this difficulty, so
here we can consider properly rationalizable strategies.
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The first definition will be of ε-proper rationalizable strategies, following
Schuhmacher (1999) — see also Herings and Vannetelbosch (1999, 2000) and
Asheim (2002). These are based on sets of best responses Ẑk

i (ε) ⊂ Si, sets of
completely mixed strategies P̂ k

i (ε) ⊂ ∆0(Si), and associated sets of expecta-
tions Êk

i (ε) ⊂ ∆0(S−i) (k = 0, 1, 2, . . . ). These sets are constructed iteratively
for each i ∈ I and small ε > 0, starting with Ẑ0

i (ε) := Si, P̂ 0
i (ε) := ∆0(Si) and

Ê0
i (ε) := ∆0(S−i). Then, for each k = 1, 2, . . . in turn, let

Ẑk
i (ε) := Bi(Êk−1

i (ε))

P̂ k
i (ε) := {µi ∈ ∆0(Si) | ∃πi ∈ Êk−1

i (ε) : ∀si, s
′
i ∈ Si :

V (si, πi) > V (s′i, πi) =⇒ µi(s′i) ≤ ε µi(si) }
Êk

i (ε) := co P̂ k
−i(ε) (44)

where P̂ k
−i(ε) denotes

∏
h∈I\{i} P̂ k

h (ε). Thus, Ẑk
i (ε) is the set of all strategies

that are best responses for some expectations πi ∈ Êk−1
i (ε), whereas P̂ k

i (ε) is
the set ∪πi∈Êk−1

i (ε)P̂
ε
i (πi) of all ε-proper reponses to some expectations πi ∈

Êk−1
i (ε), as defined by (19) in Section 5.4. The definition of Êk

i (ε) is like that of
Ek

i (ε) in the construction of B-perfectly rationalizable strategies — see Section
11.2.

Given any ε ∈ (0, 1), let µ̄I =
∏

i∈I µ̄i be any ε-proper equilibrium. From
(19) and (44) it is clear that µ̄i ∈ P̂ ε

i (π̄i) ⊂ P̂ 1
i (ε) ⊂ P̂ 0

i (ε) for all i ∈ I, where
π̄i =

∏
h∈I\{i} µ̄h. Then it is easy to prove by induction that π̄i ∈ Êk

i (ε) ⊂
Êk−1

i (ε), Ẑk
i (ε) ⊂ Ẑk−1

i (ε), and µ̄i ∈ P̂ k
i (ε) ⊂ P̂ k−1

i (ε) for k = 1, 2, . . . . It
follows that one can define

Ẑ∞i (ε) := ∩∞k=0 Ẑk
i (ε), P̂∞i (ε) := ∩∞k=0 P̂ k

i (ε) and Ê∞i (ε) := ∩∞k=0 Êk
i (ε)

as the limit sets of ε-properly rationalizable strategies, responses, and expecta-
tions respectively. Moreover µ̄i ∈ P̂∞i (ε) and π̄i ∈ Ê∞i (ε). This shows that any
ε-proper equilibrium µ̄I is made up of ε-properly rationalizable responses µ̄i to
π̄i for each player i ∈ I. The existence theorem for ε-proper equilibrium pre-
sented in Section 5.4 implies that the three sets Ẑ∞i (ε), P̂∞i (ε), and Ê∞i (ε) must
all be non-empty. Also, because the correspondence πi �→→Bi(πi) has a closed
graph, Ẑ∞i (ε) = Bi(Ê∞i (ε)), P̂∞i (ε) = P̂ ε

i (Ê∞i (ε)) and Ê∞i (ε) = co P̂∞−i(ε).
After these preliminaries, define each player i’s set Êi of properly rationaliz-

able expectations so that πi ∈ Êi if and only if there exists a decreasing vanish-
ing sequence εn ↓ 0 and a sequence πin ∈ Ê∞i (εn) such that πin → πi as n → ∞.
Finally, define each player i’s set Prop Rati := Bi(Êi) := ∪πi∈Ei

Bi(πi) of prop-
erly rationalizable strategies as those which lie within the range of possible best
responses, given the set Êi of properly rationalizable expectations.

11.7 Properties

Let µ̄I ∈
∏

i∈I ∆(Si) be any proper equilibrium. Then µ̄I must be the limit as
n → ∞ of an infinite sequence µ̄I

n of εn-proper equilibria, for some vanishing
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sequence εn (n = 1, 2, . . . ). As shown above, for all i ∈ I these εn-proper
equilibria must satisfy µ̄in ∈ P̂∞i (εn) and π̄in ∈ Ê∞i (εn) for n = 1, 2, . . . , where
π̄in =

∏
h∈I\{i} µ̄hn and so π̄in → π̄i =

∏
h∈I\{i} µ̄h as n → ∞. It follows that

π̄i ∈ Êi.
Suppose that µ̄i(si) > 0. Then µ̄in(si) > εn for all large n, implying that

si ∈ Bi(π̄in). Taking the limit as n → ∞ and so εn → 0, it follows that
si ∈ Bi(π̄i) ⊂ Bi(Êi) = Prop Rati. Thus, any strategy which appears with
positive probability in some proper equilibrium must be properly rationalizable.

Next, one can show that any properly rationalizable strategy must be W-
perfectly rationalizable. Indeed, as was argued in Section 5.4, given any player
i ∈ I with expectations πi ∈ ∆(S−i), any ε-proper response µi ∈ P̂ ε

i (πi) is an
ε-perfect response in P ε

i (πi) — that is, P̂ ε
i (πi) ⊂ P ε

i (πi). It follows by induction
on k that Ẑk

i (ε) ⊂ Zk
i (ε), Êk

i (ε) ⊂ Ek
i (ε) and P̂ k

i (ε) ⊂ P k
i (ε) for k = 0, 1, 2, . . . .

Consider any extensive form game of perfect information which is generic
in the sense that no player is indifferent between any pair of consequences at
terminal nodes. Then backward induction selects the unique subgame perfect
equilibrium. As shown by Schuhmacher (1999), this is the unique profile of
properly rationalizable strategies. To see why, first note that a proper equilib-
rium exists and must be subgame perfect. So the unique backward induction
outcome is also the unique proper equilibrium. But any strategies appearing
with positive probability in a proper equilibrium must be properly rationaliz-
able, implying that backward induction determines a profile of properly ratio-
nalizable strategies.

Conversely, the only properly rationalizable strategies in a generic extensive
form game of perfect information must be those resulting from backward in-
duction. The reason is that each backward induction step eliminates strategies
which are inferior in each successive subgame, given that the relevant subgame
is reached with positive probability. Proper responses involve playing such in-
ferior strategies with a probability relative to other strategies in the subgame
that converges to 0 as ε → 0. Thus, backward induction selects for each player
the unique properly rationalizable strategy in each subgame, and so a unique
profile of properly rationalizable strategies in the game as a whole.

Finally, proper rationalizability is a strict refinement of W-perfect ratio-
nalizability, but there is no logical relationship between B-perfect and proper
rationalizability. Showing this requires two examples.

The first example is the centipede game of Section 9.4, with n > 1. By
our earlier argument, the unique properly rationalizable strategies are a0 for
player P1 and b0 for player P2. Yet, as discussed at the end of Section 11.2,
all strategies except bn for player P2 are B-perfectly rationalizable, so also
W-perfectly rationalizable.

The second example is once again the game due to Börgers analysed in
Section 11.3. There it was shown that the B-perfectly rationalizable strategy
sets are all of S1 for player P1, and { b1, b2 } for player P2. Yet b3 is a properly
rationalizable strategy for player P2. To show this, note that given any ε ∈
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(0, 1), an ε-proper equilibrium takes the form

µ1(a1) = µ1(a3) =
1

2 + ε
; µ1(a2) =

ε

2 + ε
;

µ2(b1) = µ2(b2) =
ε

1 + 2ε + 2ε2
; µ2(b3) =

1
1 + 2ε + 2ε2

;

µ2(b4) = µ2(b5) =
ε2

1 + 2ε + 2ε2
.

Taking the limit as ε → 0, one obtains a proper equilibrium with µ1(a1) =
µ1(a3) = 1

2 and µ2(b3) = 1. In particular, b3 must be a properly rationalizable
strategy for player P2, even though it is not B-perfectly rationalizable.

12 Rationalizable Preferences over Pure Strategies

12.1 Quasi-Orderings as Dominance Relations

Except in Section 6, all the previous discussion in this chapter has been of solu-
tion concepts in which players are assumed to choose strategies that maximize
expected utility. This is true whether probabilities are effectively objective,
as in the case of Nash equilibrium and its refinements discussed in Sections
3–5, or whether probabilities are explicitly recognized to be subjective, as in
the case of rationalizability and its refinements discussed in Sections 9 and 11.
In particular, the notion of utility is essentially cardinal, insofar as solutions
are invariant whenever each player’s utility function is replaced by one that is
cardinally equivalent — i.e., related by an increasing affine transformation.

Inspired by the fact that rationalizable strategies are precisely those which
survive iterative deletion of strictly dominated strategies, as well as the cor-
responding relationship between W-perfect rationalizability and the Dekel–
Fudenberg procedure, this section constructs a binary dominance relation over
pure strategies for each player. These dominance relations will depend only on
the profile of players’ preference orderings over the consequences of different
pure strategy profiles. In this sense, the relevant concept of utility is entirely
ordinal, insofar as the relations are invariant whenever each player’s utility
function is replaced by one that is ordinally equivalent — i.e., related by any
increasing transformation, not necessarily affine.23

As a preliminary, recall that a quasi-ordering on any set X is a binary
relation Q that is irreflexive (there is no x ∈ X satisfying x Q x) and transitive
(for all x, y, z ∈ X, if x Q y and y Q z, then x Q z). Evidently, a quasi-
ordering is also asymmetric — i.e., no pair x, y ∈ X can satisfy both x Q y and
y Q x, otherwise there would be a violation either of irreflexivity or transitivity.
Unlike an ordering, a quasi-ordering may be incomplete — i.e., there may be
pairs x, y ∈ X such that neither x Q y nor y Q x,

23As remarked in the introduction, Farqhuarson’s notion of iterated deletion of strategies
that are weakly dominated by other pure strategies shares this ordinality property, as does
Börgers’ (1993) different concept of pure strategy dominance.
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In what follows, a dominance relation D on the set X will be any quasi-
ordering. We shall often identify any dominance relation D with its graph,
defined as the subset of pairs (x, y) ∈ X × X satisfying x D y.

12.2 A Recursive Construction

Consider any game 〈I, SI , vI〉 in normal form. The aim of this section will be
to construct a profile DI = 〈Di〉i∈I of “rationalizable” dominance relations for
each player, where each Di is a quasi-ordering on that player’s strategy set Si.
There will be associated sets R(Di) of “rationalizable” preference orderings
for each player, consisting of all orderings Ri on Si whose corresponding strict
preference relations satisfy Di ⊂ Pi (when each relation is interpreted as its
graph).

The recursive construction that follows begins with each D0
i as the null

relation whose graph is the empty set. But each D1
i ⊂ Si×Si will be the graph

of the weak dominance relation for pure strategies. Also, succeeding relations
Dk

i (k = 2, 3, . . . ) will have graphs that are supersets of preceding relations.
Thus, the dominance relations gradually extend the usual weak dominance
relation (which extends the usual strict dominance relation). The corresponding
set of undominated strategies therefore becomes more and more refined. As
does the corresponding set R(Dk

i ) of rationalizable preference orderings, and
the set of (undominated) strategies which maximize at least one rationalizable
preference ordering.

Let i ∈ I be any player, and let D−i = 〈Dh〉h∈I\{i} denote any profile of
dominance relations for the other players. Define the associated binary relation
�−i (D−i) on the set S−i of other players’ strategy profiles so that

s−i �−i (D−i) s′−i ⇐⇒ ∃h ∈ I \ {i} : sh Dh s′h (45)
and ∀h ∈ I \ {i} : [sh Dh s′h or sh = s′h]

Then �−i (D−i) is obviously both irreflexive and transitive, so a quasi-ordering
or dominance relation in its own right.

In the special case of two players, this definition implies that �−i (D−i) =
Dh, where h != i is the only other player. More generally, note that if sh != s′h
for any h ∈ I \ {i} and s−i �−i (D−i) s′−i, this can only be because sh Dh s′h.
That is, for any player h ∈ I \ {i} whose strategy sh in the dominant profile
s−i differs from s′h in the profile s′−i, it must be true that sh dominates s′h.
Accordingly, an informal interpretation of s−i �−i (D−i) s′−i could be that
s−i is much more likely than s′−i precisely because the two profiles differ, and
moreover every player with a different strategy in the two profiles has switched
to a dominating strategy.

An obvious implication of the above definition is that whenever D′−i =
〈D′h〉h∈I\{i} is an alternative profile of strengthened dominance relations whose
graphs satisfy Dh ⊂ D′h for all h ∈ I \ {i}, then �−i (D′−i) must strengthen
�−i (D−i) in the same sense — i.e., their two graphs must satisfy �−i (D−i) ⊂
�−i (D′−i).
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The complementary part of the construction starts with any quasi-ordering
�−i on S−i, and uses it to generate an associated dominance relation Di(�−i)
for player i. Specifically, Di(�−i) is defined by

si Di(�−i) s′i ⇐⇒ ∃s̄−i ∈ S−i : vi(si, s̄−i) > vi(s′i, s̄−i) (46)
and

{
∀s−i ∈ S−i : vi(si, s−i) < vi(s′i, s−i)

=⇒ [∃s̃−i �−i s−i : vi(si, s̃−i) > vi(s′i, s̃−i)]
}

In fact, si Di(�−i) s′i if and only if si is better than s′i for at least one s̄−i ∈ S−i;
moreover, if si is worse than s′i for any s−i ∈ S−i, then it must be better for
some other s̃−i �−i s−i which is much more likely than s−i.

Suppose one strengthens �−i in the sense of replacing it with a different
relation �′−i whose graph is a superset of the graph of �−i. Then, as with
�−i (D−i), the relation Di(�−i) becomes strengthened in the sense that its
graph is a subset of that of the new relation Di(�′−i).

Clearly Di(�−i) always extends weak dominance, or is equal to it in case �−i

is the null relation. It is also evident that Di(�−i) is irreflexive; demonstrating
transitivity, however, is a little intricate.

Indeed, suppose that si Di(�−i) s′i and s′i Di(�−i) s′′i , with vi(si, s̄−i) >
vi(s′i, s̄−i) in particular. If vi(s′i, s̄−i) ≥ vi(s′′i , s̄−i), then obviously vi(si, s̄−i) >
vi(s′′i , s̄−i). Otherwise, if vi(s′i, s̄−i) < vi(s′′i , s̄−i), then s′i Di(�−i) s′′i implies
that there exists s̄1

−i �−i s̄−i such that vi(s′i, s̄
1
−i) > vi(s′′i , s̄1

−i). In which
case, either vi(si, s̄

1
−i) ≥ vi(s′i, s̄

1
−i), so vi(si, s̄

1
−i) > vi(s′′i , s̄1

−i), or alternatively
vi(si, s̄

1
−i) < vi(s′i, s̄

1
−i). But in the latter case si Di(�−i) s′i implies that there

exists s̄2
−i �−i s̄1

−i such that vi(si, s̄
2
−i) > vi(s′i, s̄

2
−i).

Because �−i is transitive and S−i is finite, this process of constructing suc-
cessive s̄r

−i ∈ S−i with

s̄r
−i �−i s̄r−1

−i �−i . . . �−i s̄2
−i �−i s̄1

−i �−i s̄−i

must terminate after finitely many steps. So in the end there must exist s̄r
−i ∈

S−i such that vi(si, s̄
r
−i) ≥ vi(s′i, s̄

r
−i) ≥ vi(s′′i , s̄r

−i), with at least one strict
inequality, implying in particular that vi(si, s̄

r
−i) > vi(s′′i , s̄r

−i).
The same argument shows that, if vi(si, s−i) < vi(s′′i , s−i) for any s−i ∈ S−i,

then because either vi(si, s−i) < vi(s′i, s−i) or vi(s′i, s−i) < vi(s′′i , s−i), there
must exist s̃−i �−i s−i such that vi(si, s̃−i) ≥ vi(s′i, s̃−i) ≥ vi(s′′i , s̃−i), with at
least one strict inequality, implying in particular that vi(si, s̃−i) > vi(s′′i , s̃−i).
Hence, Di(�−i) is transitive, as well as irreflexive, and so is a quasi-ordering
that can serve as a dominance relation.

After these essential preliminary definitions and results, each player i’s ratio-
nalizable dominance relation D∞i can be constructed recursively. The recursion
starts with D0

i equal to the null relation, whose graph is the empty subset of
Si × Si. Then, for each successive k = 0, 1, 2, . . . , define

�k
−i := �−i (Dk

−i) and Dk+1
i := Di(�k

−i) (47)
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Clearly �0
−i is also equal to the null relation, but on S−i instead of Si. Then,

as already remarked, D1
i is the usual weak dominance relation between pure

strategies, defined on Si. In particular, D0
i ⊂ D1

i . Successive application of the
“strengthening property” satisfied by both mappings �−i (D−i) and Di(�−i)
then implies that the relations must have graphs satisfying the inclusions

�k
−i ⊂ �k+1

−i and Dk
i ⊂ Dk+1

i (k = 0, 1, 2, . . . ) (48)

for each player i ∈ I. Because both Si and S−i are finite sets, this recur-
sion terminates in finitely many stages. So for each i ∈ I there exist both a
limiting rationalizable dominance relation D∞i on Si, and also an associated
quasi-ordering �∞−i on S−i, whose respective graphs are defined by

D∞i :=
∞⋃

k=0

Dk
i and �∞−i :=

∞⋃
k=0

�k
−i (49)

Moreover, these relations satisfy D∞i = Dr
i and �∞−i = �r

−i for some finite r.
From which it follows that D∞i is the dominance relation Di(�∞−i) associated
with the limit quasi-ordering �∞−i, whereas �∞−i is the quasi-ordering associated
with the profile of other players’ limit dominance relations D∞h (h ∈ I \ {i}).

12.3 Assessment

So far only a few very preliminary implications of this definition have been
explored. It has already been remarked that D1

i is the usual weak dominance
relation among pure strategies, so any strategies which are weakly dominated
by other pure strategies will be eliminated from S1

i . Thereafter, each profile s−i

of other players’ strategies involving a dominated strategy is �−i-dominated
by some other profile s′−i. So it is rather obvious that strategies which are
strictly dominated by other pure strategies when other players are restricted
to profiles in Sk

−i must be eliminated from Sk+1
i , for k = 1, 2, . . . and all i ∈ I.

The conclusion is that any strategy in S∞i must have survived one round of
eliminating all strategies which are weakly dominated by other pure strategies,
followed by iteratively eliminating strategies which are strictly dominated by
other pure strategies. In other words, the strategies that are undominated in
the limit must have survived an obvious modification of the Dekel–Fudenberg
procedure described in Section 11.5. The key difference is that, like Farqhuar-
son (1969), the new procedure only eliminates strategies which are dominated
by other pure strategies; strategies which are dominated by mixed strategies,
but not by other pure strategies, may be retained, unlike with orthodox ra-
tionalizability. This is only natural in a framework which deliberately avoids
using cardinal utilities.

The rationalizable dominance criterion is finer than this, however. Indeed,
consider any generic extensive form game of perfect information with the prop-
erty that no player is indifferent between any pair of terminal nodes (or rather
the consequences attached to those terminal nodes). In this case, backward
induction reaches a unique outcome, as in the centipede game discussed in
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Section 9.4. Rationalizable dominance then leads to the same outcome, which
coincides with what remains after iterative deletion of all strategies that are
weakly dominated by other pure strategies. This is because it is easy to prove
that strategies which are eliminated at stage k of the usual backward induction
argument based on best responses must be Dk

i -dominated for whatever player
i has the move at each relevant node of the game tree. So any profile s−i

involving strategies which are eliminated in this way will be �k
−i-dominated.

On the other hand, as is well known, it takes as many rounds as necessary of
iterative removal of weakly dominated strategies to achieve the same result —
it is not enough to remove weakly dominated strategies just once, followed by
removing only strictly dominated strategies iteratively.

A second example described by Table 4 is due to Dekel and Fudenberg (1990,
Fig. 7.1, pp. 265–6). It can be interpreted as a game of Battle of the Sexes in
which each player is presented with an additional outside option that avoids
the “battle” entirely. Specifically, by choosing a1, player P1 guarantees each
player’s third-best outcome. But if player P1 avoids a1, then player P2 can
choose b1, which guarantees each player’s second-best outcome. On the other
hand, if both players avoid these respective “outside options”, then the game
reduces to Battle of the Sexes.

P2

b1 b2 b3

a1 2 2 2
2 2 2

P1 a2 3 4 0
3 1 0

a3 3 0 1
3 0 4

Table 4 Battle of the Sexes with Two Outside Options

In this game, initially the only dominance relation is that strategy b1 for
player P2 weakly dominates b2. All strategies are therefore rationalizable.
When b2 is removed, still no strategy strictly dominates any other. Hence,
the pure strategy version of the DF-procedure terminates after b2 has been
removed. So does the construction discussed in this section.

Once b2 has been removed, however, player P1’s strategy a3 weakly domi-
nates a2. But after a2 has been removed, player P2’s strategy b3 weakly dom-
inates b1, leaving only strategy b3 for player P2. But when this is P2’s only
remaining strategy, player P1’s strategy a1 strictly dominates a3. So (a1, b3)
is the only strategy profile that survives iterative deletion of all weakly domi-
nated strategies. It follows that this iterative procedure refines the construction
described in this section.
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13 Conclusion: Insecure Foundations?

This chapter has shown how the results of Chapter 6 of Volume I could be
used in order to justify applying the subjective expected utility (SEU) model
to n-person games, with each player attaching subjective probabilities to the
different strategy profiles that can be chosen by the other n − 1 players. Some
remaining difficulties in applying the SEU model are then discussed.

Only games such as finitely repeated Prisoner’s Dilemma, in which a unique
strategy profile can be found by deleting strictly dominated strategies, itera-
tively if necessary, seem to have a clear and generally accepted solution. In
other games, it seems reasonable to restrict beliefs to rationalizable expecta-
tions of the kind described in Sections 9–11. But often rationalizability is not
much of a restriction. For example, in Matching Pennies or Battle of the Sexes,
it is no restriction at all. Then psychological or other influences that are ex-
traneous to the game are likely to determine players’ beliefs about how the
game will be played, as well as about what players should believe about each
other. In most decision problems or games, not even normative decision theory
suffices in general to determine an agent’s beliefs, just as it generally fails to
determine tastes or attitudes to risk. Utility theory, of course, is unable to do
any better.

Most worrying, however, may be the artificiality of the Battigalli construc-
tion used in Section 8.2 to justify the existence of subjective probabilities. That
construction was based on each player having a “behavioural clone” who func-
tions as an external observer able to choose among bets whose outcome depends
on the strategy profile chosen by the other players. In the end, an approach
such as that of Section 12, which does not rely on expected utilities at all, may
be more suitable. But if players have only rationalizable preference orderings
over each of their own strategy sets, we are back to using only ordinal utility.
With a pair of utility functions, moreover, of which the first is defined on the
consequences of strategy profiles, whereas the second is defined on the player’s
own pure strategies. Indeed, even the domain of this second utility function
must be different in each game. That seems to be a radical departure from tra-
ditional game theory, and it may even remove most of the usefulness of utility
as a tool.
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