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Abstract:
Game theory traditionally specifies players’ numerical payoff functions. Fol-
lowing the concept of utility invariance in modern social choice theory, this
paper explores what is implied by specifying equivalence classes of utility
function profiles instead. Within a single game, utility transformations that
depend on other players’ strategies preserve players’ preferences over their
own strategies, and so most standard non-cooperative solution concepts.
Quantal responses and evolutionary dynamics are also considered briefly.
Classical concepts of ordinal and cardinal non-comparable utility emerge
when the solution is required to be invariant for an entire class of “conse-
quentialist game forms” simultaneously.
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1 Introduction

Individual behaviour that maximizes utility is invariant under strictly in-
creasing transformations of the utility function. In this sense, utility is
ordinal. Similarly, behaviour under risk that maximizes expected utility is
invariant under strictly increasing affine transformations of the utility func-
tion. In this sense, expected utility is cardinal. Following Sen (1976), a
standard way to describe social choice with (or without) interpersonal com-
parisons is by means of a social welfare functional that maps each profile
of individual utility functions to a social ordering. Different forms of inter-
personal comparison, and different degrees of interpersonal comparability,
are then represented by invariance under different classes of transformation
applied to the whole profile of individual utility functions.1

This paper reports some results from applying a similar idea to non-
cooperative games. That is, one asks what transformations of individual
utility profiles have no effect on the relevant equilibrium set, or other appro-
priate solution concept.2 So far, only a small literature has addressed this
question, and largely in the context of cooperative or coalitional games.3 For
the sake of simplicity and brevity, this paper will focus on simple sufficient
conditions for transformations to preserve some particular non-cooperative
solution concepts.4

Before embarking on game theory, Section 2 begins with a brief review
of relevant concepts in single person utility theory. Next, Section 3 describes
the main invariance concepts that arise in social choice theory.

The discussion of games begins in Section 4 with a brief consideration
of games with numerical utilities, when invariance is not an issue. Section 5
then considers concepts that apply only to pure strategies. Next, Section 6

1See, for example, Sen (1974, 1977, 1979), d’Aspremont and Gevers (1977, 2002),
Roberts (1980), Mongin and d’Aspremont (1998), Bossert and Weymark (2004).

2Of course, the usual definition of a game has each player’s objective function described
by a payoff rather than a utility function. Sometimes, this is the case of numerical
utility described below. More often, it simply repeats the methodological error that was
common in economics before Fisher (1892) and Pareto (1896) pointed out that an arbitrary
increasing transformation of a consumer’s utility function has no effect on demand.

3See especially Nash (1950), Shapley (1969), Roth (1979), Aumann (1985), Dagan and
Serrano (1998), as well as particular parts of the surveys by Thomson (1994, pp. 1254–
6), McLean (2002), and Kaneko and Wooders (2004). Recent contributions on “ordinal”
bargaining theory include Kıbrıs (2004a, b) and Samet and Safra (2005).

4For a much more thorough discussion, especially of conditions that are both necessary
and sufficient for transformations to preserve best or better responses, see Morris and Ui
(2004).
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moves on to mixed strategies. Thereafter, Sections 7 and 8 offer brief dis-
cussions of quantal responses and evolutionary dynamics.

Section 9 asks a different but related question: what kinds of transfor-
mation preserve equilibrium not just in a single game, but an entire class
of game forms with outcomes in a particular consequence domain? In the
end, this extended form of invariance seems much more natural than invari-
ance for a single game. In particular, most of game theory can be divided
into one part that considers only pure strategies, in which case it is natural
to regard individuals’ utilities as ordinal, and a second part that considers
mixed strategies, in which case it is natural to regard individuals’ utilities
as cardinal. Neither case relies on any form of interpersonal comparison.

A few concluding remarks make up Section 10.

2 Single Person Decision Theory

2.1 Individual Choice and Utility

Let X be a fixed consequence domain. Let F(X) denote the family of non-
empty subsets of X. Let R be any (complete and transitive) preference
ordering on X. A utility function representing R is any mapping u : X → R
satisfying u(x) ≥ u(y) iff x R y, for every pair x, y ∈ X. Given any utility
function u : X → R, for each feasible set F ∈ F(X), let

C(F, u) := arg max
x

{u(x) | x ∈ F } := {x∗ ∈ F | x ∈ F =⇒ u(x∗) ≥ u(x) }

denote the choice set of utility maximizing members of F . The mapping
F 7→→C(F, u) is called the choice correspondence that is generated by max-
imizing u over each possible feasible set.5

A transformation of the utility function u is a mapping φ : R → R
that is used to generate an alternative utility function ũ = φ ◦ u defined by
ũ(x) = (φ ◦ u)(x) := φ[u(x)] for all x ∈ X.

2.2 Ordinal Utility

Two utility functions u, ũ : X → R are said to be ordinally equivalent if and
only if each of the following three equivalent conditions is satisfied:

5The decision theory literature usually refers to the mapping as a “choice function”.
The term “choice correspondence” accords better, however, with the terms “social choice
correspondence” and “equilibrium correspondence” that are widespread in social choice
theory and game theory, respectively. Also, it is often assumed that each choice set is
non-empty, but this requirement will not be important in this paper.
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(i) u(x) ≥ u(y) iff ũ(x) ≥ ũ(y), for all pairs x, y ∈ X;

(ii) ũ = φ ◦ u for some strictly increasing transformation φ : R → R;

(iii) C(F, u) = C(F, ũ) for all F ∈ F(X).

Item (iii) expresses the fact that the choice correspondence defined by the
mapping F 7→→C(F, u) on the domain F(X) must be invariant under strictly
increasing transformations of the utility function u. Such transformations
replace u by any member of the same ordinal equivalence class.

2.3 Lotteries and Cardinal Utility

A (simple) lottery on X is any mapping λ : X → R+ such that:

(i) λ(x) > 0 iff x ∈ S, where S is the finite support of λ;

(ii)
∑

x∈X λ(x) =
∑

x∈S λ(x) = 1.

Thus λ(x) is the probability that x is the outcome of the lottery. Let ∆(X)
denote the set of all such simple lotteries.

Say that the preference ordering R on X is von Neumann–Morgenstern
(or NM) if and only if there is a von Neumann–Morgenstern (or NM) util-
ity function v : X → R whose expected value Eλv :=

∑
x∈X λ(x)v(x) =∑

x∈S λ(x)v(x) represents R on ∆(X). That is, Eλv ≥ Eµv iff λ R µ, for
every pair λ, µ ∈ ∆(X).

Let FL(X) = F(∆(X)) denote the family of non-empty subsets of ∆(X).
Given any F ∈ FL(X) and any NM utility function v : X → R, let

CL(F, u) := arg max
λ

{Eλv | λ ∈ F } := {λ∗ ∈ F | λ ∈ F =⇒ Eλ∗v ≥ Eλv }

denote the choice set of expected utility maximizing members of F .
The mapping φ : R → R is said to be a strictly increasing affine trans-

formation if there exist an additive constant α ∈ R and a positive multi-
plicative constant δ ∈ R such that φ(r) ≡ α+ δr. Two NM utility functions
v, ṽ : X → R are said to be cardinally equivalent if and only if each of the
following three equivalent conditions is satisfied:

(i) Eλv ≥ Eµv iff Eλṽ ≥ Eµṽ, for all pairs λ, µ ∈ ∆(X);

(ii) ṽ = φ ◦ v for some strictly increasing affine transformation φ : R → R;

(iii) CL(F, v) = CL(F, ṽ) for all F ∈ FL(X).
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Item (iii) expresses the fact that the lottery choice correspondence defined
by the mapping F 7→→CL(F, v) on the lottery domain FL(X) must be invari-
ant under strictly increasing affine transformations of the utility function v.
Such transformations replace v by any member of the same cardinal equiv-
alence class.

3 Social Choice Correspondences

3.1 Arrow Social Welfare Functions

Let R(X) denote the set of preference orderings on X. A preference profile
is a mapping i 7→ Ri from N to R(X) specifying the preference ordering of
each individual i ∈ N . Let RN = 〈Ri〉i∈N denote such a preference profile,
and RN (X) the set of all possible preference profiles.

Let D ⊂ RN (X) denote a domain of permissible preference profiles.
A social choice correspondence (or SCC) can be represented as a mapping
(F,RN ) 7→→C(F,RN ) ⊂ F from pairs in F(X)×D consisting of feasible sets
and preference profiles to social choice sets. In the usual special case when
C(F,RN ) consists of those elements in F which maximize some social order-
ing R that depends on RN , this SCC can be represented by an Arrow social
welfare function (or ASWF) f : D → R(X) which maps each permissible
profile RN ∈ D to a social ordering f(RN ) on X.

3.2 Social Welfare Functionals

Sen (1970) proposed extending the concept of an Arrow social welfare func-
tion by refining the domain to profiles of individual utility functions rather
than preference orderings. This extension offers a way to represent different
degrees of interpersonal comparability that might be embedded in the social
ordering.

Formally, let U(X) denote the set of utility functions on X. A utility
function profile is a mapping i 7→ ui from N to U(X). Let uN = 〈ui〉i∈N

denote such a profile, and UN (X) the set of all possible utility function
profiles.

Given a domain D ⊂ UN (X) of permissible utility function profiles, an
SCC is a mapping (F, uN ) 7→→C(F, uN ) ⊂ F defined on F(X) × D. When
each choice set C(F, uN ) consists of elements x ∈ F that maximize a social
ordering R, there is a social welfare functional (or SWFL) G : D → R(X)
mapping D ⊂ UN (X) to the set of possible social orderings.
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3.3 Utility Invariance in Social Choice

Given a specific SCC (F, uN ) 7→→C(F, uN ), one can define an equivalence
relation ∼ on the space of utility function profiles UN (X) by specifying that
uN ∼ ũN if and only if C(F, uN ) = C(F, ũN ) for all F ∈ F(X).

An invariance transformation of the utility function profiles is a profile
φN = 〈φi〉i∈N of individual utility transformations φi : R → R having the
property that uN ∼ ũN whenever ũN = φN (uN ) — i.e., ũi = φi(ui) for all
i ∈ N . Thus, invariance transformations result in equivalent utility function
profiles, for which the SCC generates the same choice set. In the following,
let Φ denote the class of invariance transformations.

3.3.1 Ordinal Non-Comparability

The first specific concept of utility invariance for SCCs arises when Φ consists
of mappings φN = 〈φi〉i∈N from RN into itself with the property that each
φi : R → R is strictly increasing. So uN ∼ ũN if and only if the two
profiles uN , ũN have the property that the utility functions ui, ũi of each
individual i ∈ N are ordinally equivalent. The SCC C(F, uN ) is said to
satisfy ordinal non-comparability (or ONC) if C(F, uN ) = C(F, ũN ) for all
F ∈ F(X) whenever uN and ũN are ordinally equivalent in this way.

Obviously, in this case each equivalence class of an individual’s utility
functions is represented by one corresponding preference ordering, and each
equivalence class of utility function profiles is represented by one correspond-
ing preference profile. So the SCC can be expressed in the form C∗(F,RN ).
In particular, if each social choice set C(F, uN ) maximizes a social ordering,
implying that there is a SWFL, then that SWFL takes the form of an Arrow
social welfare function.

3.3.2 Cardinal Non-Comparability

The second specific concept of utility invariance arises when Φ consists of
mappings φN = 〈φi〉i∈N from RN into itself with the property that each
φi : R → R is strictly increasing and affine. That is, there must exist additive
constants αi and positive multiplicative constants δi such that φi(r) = αi +
δir for each i ∈ N and all r ∈ R. The SCC C(F, uN ) is said to satisfy cardinal
non-comparability (or CNC) when it meets this invariance requirement.
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3.3.3 Ordinal Level Comparability

Interpersonal comparisons of utility levels take the form ui(x) > uj(y) or
ui(x) < uj(y) or ui(x) = uj(y) for a pair of individuals i, j ∈ N and a pair
of social consequences x, y ∈ N . Such comparisons will not be preserved
when different increasing transformations φi and φj are applied to i’s and
j’s utilities. Indeed, level comparisons are preserved, in general, only if the
same transformation is applied to all individuals’ utilities.

Accordingly, in this case the invariance class Φ consists of those mappings
φN = 〈φi〉i∈N for which there exists a strictly increasing transformation
φ : R → R such that φi = φ for all i ∈ N . An SCC with this invariance class
is said to satisfy ordinal level comparability (or OLC).

3.3.4 Cardinal Unit Comparability

Comparisons of utility sums take the form
∑

i∈N ui(x) >
∑

i∈N ui(y) or∑
i∈N ui(x) <

∑
i∈N ui(y) or

∑
i∈N ui(x) =

∑
i∈N ui(y) for a pair of social

consequences x, y ∈ N . Such comparisons rely on being able to compare
different individuals’ utility differences, so one can say that one person’s
gain outweighs another person’s loss. Such comparisons are only preserved,
in general, if and only if increasing co-affine transformations are applied
to all individuals’ utilities. That is, the mappings φi (i ∈ N) must take
the form φi(r) = αi + δr for suitable additive constants αi (i ∈ N), and a
positive multiplicative constant δ that is independent of i. An SCC with
this invariance class is said to satisfy cardinal unit comparability (or CUC).

3.3.5 Cardinal Full Comparability

Some welfare economists, following a suggestion of Sen (1973), have looked
for income distributions that equalize utility levels while also maximizing
a utility sum. In order that comparisons of both utility sums and utility
levels should be invariant, the mappings φi (i ∈ N) must take the form
φi(r) = α+δr for a suitable additive constant α and a positive multiplicative
constant δ that are both independent of i. An SCC with this invariance class
is said to satisfy cardinal full comparability (or CFC).

3.3.6 Cardinal Ratio Scales

In discussions of optimal population, the utility sum
∑

i∈N ui(x) may get
replaced by

∑
i∈M ui(x) for a subset M ⊂ N of “relevant” individuals. Pre-

sumably, the individuals i ∈ N \M never come into existence, and so have
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their utilities set to zero by a convenient normalization. This form of welfare
sum, with the set of individuals M itself subject to choice, allows compar-
isons of extended social states (M,x) and (M ′, x′) depending on which of
the two sums

∑
i∈M ui(x) and

∑
i∈M ′ ui(x′) is greater. These comparisons

are preserved when the mappings φi (i ∈ N) take the form φi(r) = ρr for
a positive multiplicative constant ρ that is independent of i. An SCC with
this invariance class is said to satisfy cardinal ratio scale comparability (or
CRSC).

4 Games with Numerical Utility

4.1 Games in Normal Form

A game in normal form is a triple G = 〈N,SN , uN 〉 where:

(i) N is a finite set of players;

(ii) each player i ∈ N has a strategy set Si, and SN =
∏

i∈N Si is the set
of strategy profiles;

(iii) each player i ∈ N has a utility function ui : SN → R defined on the
domain of strategy profiles, and uN = 〈ui〉i∈N is the utility profile.

Of course game theorists usually refer to “payoff functions” instead of
utility functions. But the whole point of this paper is to see what properties
such functions share with the utility functions that ordinarily arise in single
person decision theory. To emphasize this comparison, the term “utility
functions” will be used in games just as it is in decision theory and in social
choice theory.

4.2 Numerical Utility

Before moving on to various forms of ordinal and cardinal utility in games, let
us first readily concede that sometimes players in a game do have objectives
that can be described simply by real numbers. For example, the players
may be firms seeking to maximize profit, measured in a particular currency
unit such as dollars, euros, yen, pounds, crowns, . . . . Or, as suggested by
the title of von Neumann’s (1928) classic paper, they may be people playing
Gesellschaftsspiele (or “parlour games”) for small stakes. The fact that
players’ objectives are then straightforward to describe is one reason why
it is easier to teach undergraduate students producer theory before facing
them with the additional conceptual challenges posed by consumer theory.
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Even in these special settings, however, numerical utility should be seen
as a convenient simplification that abstracts from many important aspects
of reality. For example, most decisions by firms generate profits at different
times and in different uncertain events. Standard decision theory requires
that these profits be aggregated into a single objective. Finding the expected
present discounted value might seem one way to do this, but it may not be
obvious what are the appropriate discount factors or the probabilities of
different events. As for any parlour game, the fact that people choose to
play at all reveals either an optimistic assessment of their chances of winning,
or probably more realistically, an enjoyment of the game that is not simply
represented by monetary winnings, even if the game is played for money.

4.3 Some Special Games

4.3.1 Zero-Sum and Constant Sum Games

Much of the analysis in von Neumann (1928) and in von Neumann and
Morgenstern (1944) is devoted to two-person zero sum games, in which the
set of players is N = {1, 2}, and u1(s1, s2) + u2(s1, s2) = 0 for all (s1, s2) ∈
S1×S2. Von Neumann and Morgenstern (1944) also consider n-person zero
sum games in which N remains a general finite set, and

∑
i∈N ui(sN ) ≡ 0.

They also argue that such games are equivalent to constant sum games in
which

∑
i∈N ui(sN ) ≡ C for a suitable constant C ∈ R.

4.3.2 Team Games

Following Marschak and Radner (1972), the game G = 〈N,SN , uN 〉 is said
to be a team game if there exists a single utility function u∗ : SN → R with
the property that ui ≡ u∗ for all i ∈ N .

4.4 Beyond Numerical Utility

All of the definitions in this section are clear and familiar when players have
numerical utilities. One of our tasks in later sections will be to investigate
extensions of these concepts which apply to different kinds of ordinal or
cardinal utility.

9



5 Games with Ordinal Utility

5.1 Ordinal Non-Comparability

A game G = 〈N,SN , uN 〉 will be described as having ordinal utility if it is
equivalent to each alternative game G̃ = 〈N,SN , ũN 〉 with the same sets of
players and strategies, but with transformed utility functions ũi having the
property that ui and ũi are ordinally equivalent for each i ∈ N . Thus, the
players’ utility functions are ordinally non-comparable. This section shows
that most familiar concepts concerning pure strategies in non-cooperative
games not only satisfy ordinal non-comparability because they are invariant
under increasing transformations of individuals’ utility functions, but are
actually invariant under a much broader class of utility transformations.

5.1.1 Two-Person Strictly Competitive Games

A two-person game with N = {1, 2} is said to be strictly competitive pro-
vided that for all (s1, s2), (s′1, s

′
2) ∈ S1 × S2, one has u1(s1, s2) ≥ u1(s′1, s

′
2)

iff u2(s1, s2) ≤ u2(s′1, s
′
2). Alternatively, the two players are said to have

opposing interests.
Note that a two-person game is strictly competitive if and only if the

utility function u2 is ordinally equivalent to −u1 — which is true iff u1 is
ordinally equivalent to −u2. Thus, strict competitiveness is necessary and
sufficient for a two-person game to be ordinally equivalent to a zero-sum
game.

5.1.2 Ordinal Team Games

The game G = 〈N,SN , uN 〉 is said to be an ordinal team game if there
exists a single ordering R∗ on SN with the property that, for all sN , s̃N ∈
SN , one has sN R∗ s̃N iff ui(sN ) ≥ ui(s̃N ) for all i ∈ N . Thus, all the
players have ordinally equivalent utility functions. Often game theorists
have preferred alternative terms such as “pure coordination game”, or games
with “common” or “identical interests”.

The players all agree how to order different strategy profiles. So all
agree what is the set of optimal strategy profiles, which are the only Pareto
efficient profiles. Any Pareto efficient profile is a Nash equilibrium, but there
can be multiple Nash equilibria. These multiple equilibria may be “Pareto
ranked”, in the sense that some equilibria are Pareto superior to others.
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5.2 Pure Strategy Dominance and Best Replies

5.2.1 Strategy Contingent Preferences

Suppose player i faces known strategies sj (j ∈ N \{i}) chosen by the other
players. Let s−i = 〈sj〉j∈N\{i} denote the profile of these other players’
strategies, and let S−i =

∏
j∈N\{i} Sj be the set of all such profiles.

Given the utility function ui on SN , player i has a (strategy contingent)
preference ordering Ri(s−i) on Si defined by

si Ri(s−i) s′i ⇐⇒ ui(si, s−i) ≥ ui(s′i, s−i)

Let Pi(s−i) denote the corresponding strict preference relation, which satis-
fies si Pi(s−i) s′i iff ui(si, s−i) > ui(s′i, s−i).

5.2.2 Domination by Pure Strategies

Player i’s strategy si ∈ Si is strictly dominated by s′i ∈ Si iff s′i Pi(s̄−i) si

for all strategy profiles s̄−i ∈ S−i of the other players. Similarly, player
i’s strategy si ∈ Si is weakly dominated by s′i ∈ Si iff s′i Ri(s̄−i) si for all
strategy profiles s̄−i ∈ S−i of the other players, with si Pi(s−i) s′i for at least
one s−i ∈ S−i.

5.2.3 Best Replies

Given the utility function ui on SN , player i’s set of best replies to s−i is
given by

Bi(s−i;ui) := arg max
si∈Si

ui(si, s−i)

= { s∗i ∈ Si | si ∈ Si =⇒ s∗i Ri(s−i) si }

The mapping s−i 7→→Bi(s−i;ui) from S−i to Si is called player i’s best reply
correspondence Bi(·;ui) given the utility function ui.

5.2.4 Pure Strategy Solution Concepts

Evidently, each player i’s family of preference orderings Ri(s−i) (s−i ∈
S−i) determines which pure strategies dominate other pure strategies either
weakly or strictly, as well as the best responses. It follows that the same
orderings determine any solution concept which depends on dominance rela-
tions or best responses, such as Nash equilibrium, and strategies that survive
iterated deletion of strategies which are dominated by other pure strategies.
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5.3 Beyond Ordinal Non-Comparability

Each player i’s family of preference orderings Ri(s−i) (s−i ∈ S−i) over Si

is obviously invariant under utility transformations of the form ũi(sN ) ≡
ψi(ui(sN ); s−i) where for each fixed s̄−i ∈ S−i the mapping r 7→ ψi(r; s̄−i)
from R into itself is strictly increasing. This form of utility invariance is like
the social choice property of ONC invariance for a society in which the set
of individuals expands from N to the new set

N∗ := { (i, s−i) | i ∈ N, s−i ∈ S−i } =
⋃
i∈N

[{i} × S−i]

The elements of this expanded set are “strategy contingent” versions of
each player i ∈ N , whose existence depends on which strategy profile s−i

the other players choose. The best reply and equilibrium correspondences
will accordingly be described as satisfying strategy contingent ordinal non-
comparability (or SCONC).

5.4 Some Special Ordinal Games

5.4.1 Generalized Strictly Competitive Games

The two-person game G = 〈N,SN , uN 〉 with N = {1, 2} is said to be a
generalized strictly competitive game if there exist strictly increasing strat-
egy contingent transformations r 7→ ψ1(r; s̄2) and r 7→ ψ2(r; s̄1) of the two
players’ utility functions such that the transformed game G̃ = 〈N,SN , ũN 〉
with ũ1(s1, s2) ≡ φi(u1(s1, s2), s2) and ũ2(s1, s2) ≡ φi(u2(s1, s2), s1) is a
two-person zero-sum game. A necessary and sufficient condition for this
property to hold is that the binary relation R̂ on S1 × S2 defined by

(s1, s2) R̂ (s′1, s
′
2) ⇐⇒

s2 = s′2 and u1(s1, s2) ≥ u1(s′1, s
′
2)

or s1 = s′1 and u2(s1, s2) ≤ u2(s′1, s
′
2)

should admit a transitive extension.

5.4.2 Generalized Ordinal Team Games

The game G = 〈N,SN , vN 〉 is said to be a generalized ordinal team game if
there exists a single ordering R∗ on SN with the property that, for all i ∈ N ,
all si, s

′
i ∈ Si and all s̄−i ∈ S−i, one has si Ri(s̄−i) s′i iff (si, s̄−i) R∗ (s′i, s̄−i).

In any such game, the best reply correspondences and Nash equilibrium set
will be identical to those in an ordinal team game.
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6 Games with Cardinal Utility

6.1 Cardinal Non-Comparability

A game G = 〈N,SN , vN 〉 will be described as having cardinal utility if it is
equivalent to each alternative game G̃ = 〈N,SN , ṽN 〉 with the same sets of
players and strategies, but with transformed utility functions ṽi having the
property that vi and ṽi are cardinally equivalent for each i ∈ N . That is,
there must exist additive constants αi and positive multiplicative constants
δi such that ṽi(sN ) ≡ αi + δivi(sN ) for all i ∈ N .

6.1.1 Zero and Constant Sum Games

A gameG = 〈N,SN , vN 〉 is said to be zero sum provided that
∑

i∈N vi(sN ) ≡
0. This property is preserved under increasing affine transformations vi 7→
αi + δvi where the multiplicative constant δ is independent of i, and the
additive constants αi satisfy

∑
i∈N αi = 0. Thus, the zero sum property

relies on a strengthened form of the CUC invariance property described in
Section 3.3.4.

The constant sum property is satisfied when there exists a constant C ∈ R
such that

∑
i∈N vi(sN ) ≡ C. This property is preserved under increasing

affine transformations vi 7→ αi + δvi where the multiplicative constant δ is
independent of i, and the additive constants αi are arbitrary. Thus, the con-
stant sum property is preserved under precisely the class of transformations
allowed by the CUC invariance property. In this sense, the constant sum
property relies on interpersonal comparisons of utility.

6.1.2 Constant Weighted Sum Games

Rather more interesting is the constant weighted sum property, which holds
when there exist multiplicative weights ωi (i ∈ N) and a constant C ∈ R such
that

∑
i∈N ωivi(sN ) ≡ C. This property is preserved under all increasing

affine transformations vi 7→ ṽi = αi + δivi because, if
∑

i∈N ωivi(sN ) ≡ C,
then

∑
i∈N ω̃iṽi(sN ) ≡ C̃ where ω̃i = ωi/δi and C̃ = C +

∑
i∈N ωiαi/δi.

Thus, we are back in the case of CNC invariance, without interpersonal
comparisons.

A two-person game with cardinal utilities is said to be strictly competitive
if and only if the utility function u2 is cardinally equivalent to −u1. That is,
there must exist a constant α and a positive constant δ such that u2(s1, s2) ≡
α−δu1(s1, s2). This form of strict competitiveness is therefore satisfied if and
only if the two-person game with cardinal utilities has a constant weighted
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sum. The same condition is also necessary and sufficient for a two-person
game to be cardinally equivalent to a zero-sum game.

6.1.3 Cardinal Team Games

The game G = 〈N,SN , vN 〉 is said to be an cardinal team game if there
exists a single utility function v∗ on SN which is cardinally equivalent to
each player’s utility function vi. Thus, all the players must have cardinally
equivalent utility functions, and so identical preferences over the space of
lotteries ∆(SN ).

6.2 Dominated Strategies and Best Responses

6.2.1 Belief Contingent Preferences

Suppose player i attaches a probability πi(s−i) to each profile s−i ∈ S−i of
other players’ strategies. That is, player i has probabilistic beliefs specified
by πi in the set ∆(S−i) of all probability distributions on the (finite) set
S−i.

Given any NM utility function vi for player i defined on SN , and given
beliefs πi ∈ ∆(S−i), let

Vi(si;πi) :=
∑

s−i∈S−i

πi(s−i)vi(si, s−i)

denote the expected value of vi when player i chooses the pure strategy si.
Then

EσiVi(·;πi) :=
∑
si∈Si

σi(si)Vi(si;πi)

is the expected value of vi when player i chooses the mixed strategy σi ∈
∆(Si). There is a corresponding (belief contingent) preference ordering
Ri(πi) on ∆(Si) for player i defined by

σi Ri(πi) σ′i ⇐⇒ EσiVi(·;πi) ≥ Eσ′i
Vi(·;πi).

6.2.2 Dominated Strategies

Player i’s strategy si ∈ Si is strictly dominated iff there exists an alternative
mixed strategy σi ∈ ∆(Si) such that

∑
s̃i∈Si

σi(s̃i)vi(s̃i, s̄−i) > vi(si, s̄−i)
for all strategy profiles s̄−i ∈ S−i of the other players. As is well known,
a strategy may be strictly dominated even if there is no alternative pure

14



strategy that dominates it. So the definition is less stringent than the one
used for pure strategies.

Similarly, player i’s strategy si ∈ Si is weakly dominated iff there exists
an alternative mixed strategy σi ∈ ∆(Si) such that

∑
s̃i∈Si

σi(s̃i)vi(s̃i, s̄−i) ≥
vi(si, s̄−i) for all strategy profiles s̄−i ∈ S−i of the other players, with strict
inequality for at least one such strategy profile.

6.2.3 Best Replies

Given the NM utility function vi, player i’s set of best replies to πi is

Bi(πi; vi) := arg max
si∈Si

Vi(si;πi)

The mapping πi 7→→Bi(πi; vi) from ∆(S−i) to Si is called player i’s best reply
correspondence Bi(·; vi) given the NM utility function vi. It is easy to see
that the set

{σ∗i ∈ ∆(Si) | σi ∈ ∆(Si) =⇒ σ∗i Ri(πi) σi }

of mixed strategy best replies to πi is equal to ∆(Bi(πi; vi)), the subset of
those σi ∈ ∆(Si) that satisfy

∑
si∈Bi(πi;vi)

σi(si) = 1.

6.3 Beyond Cardinal Non-Comparability

The definitions above evidently imply that the preferences Ri(πi) and the
set of player i’s dominated strategies are invariant under increasing affine
transformations of the form

ṽi(sN ) ≡ αi(s−i) + δivi(sN )

where, for each i ∈ N , the multiplicative constant δi is positive. So, of
course, are each player’s best reply correspondence Bi(·; vi), as well as the
sets of Nash equilibria, correlated equilibria, and rationalizable strategies.6

This property will be called strategy contingent cardinal non-comparability
— or SCCNC invariance.

As in the case of SCONC invariance discussed in Section 5.3, consider
the expanded set

N∗ := { (i, s−i) | i ∈ N, s−i ∈ S−i } =
⋃
i∈N

[{i} × S−i]

6Such non-cooperative solution concepts are defined and discussed in Hammond (2004),
as well as some in the game theory textbooks cited there — for example, Fudenberg and
Tirole (1991) or Osborne and Rubinstein (1994).
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of strategy contingent versions of each player i ∈ N . Then SCCNC in-
variance amounts to CUC invariance between members of the set N∗

i :=
{ (i, s−i) | s−i ∈ S−i }, for each i ∈ N , combined with CNC invariance
between members of different sets N∗

i .

6.4 Some Special Cardinal Games

6.4.1 Generalized Zero-Sum Games

The two-person game G = 〈N,SN , vN 〉 with N = {1, 2} is said to be a two-
person generalized zero-sum game if there exist strictly increasing strategy
contingent affine transformations of the form described in Section 6.3 —
namely,

ṽ1(s1, s2) ≡ α1(s2) + ρ1v1(s1, s2)
and ṽ2(s1, s2) ≡ α2(s1) + ρ2v2(s1, s2)

— such that ṽ1 + ṽ2 ≡ 0. This will be true if and only if

v2(s1, s2) ≡ −ρv1(s1, s2) + α∗2(s1) + α∗1(s2)

for suitable functions α∗2(s1), α
∗
1(s2), and a suitable positive constant ρ.

These transformations are more general than those allowed in the constant
weighted sum games of Section 6.1.2 because the additive constants can
depend on the other player’s strategy.

For ordinary two-person zero-sum games there are well known special
results such as the maximin theorem, and special techniques such as linear
programming. Obviously, one can adapt these to two-person generalized
zero-sum games.

6.4.2 Generalized Cardinal Team Games

The game G = 〈N,SN , vN 〉 is said to be a generalized cardinal team game
if each player’s utility function can be expressed as an increasing strategy
contingent affine transformation vi(sN ) ≡ αi(s−i) + ρiv

∗(sN ) of a common
cardinal utility function v∗. Then the best reply correspondences and Nash
equilibrium set will be identical to those in the cardinal team game with
this common utility function.

In such a game, note that i’s gain to deviating from the strategy profile
sN by choosing s′i instead is given by

vi(s′i, s−i)− vi(si, s−i) = ρi[v∗(s′i, s−i)− v∗(si, s−i)].
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In the special case when ρi = 1 for all i ∈ N , this implies that G is a po-
tential game, with v∗ as the potential function. Because of this restriction
on the constants ρi, however, this definition due to Monderer and Shapley
(1996) involves implicit interpersonal comparisons. See Ui (2000) in particu-
lar for further discussion of potential games. Morris and Ui (2005) describe
games with more general constants ρi as weighted potential games. They
also consider generalized potential games which are best response equivalent
to cardinal team games.

7 Quantal Response Equilibria

7.1 Stochastic Utility

Given any feasible set F ∈ F , ordinary decision theory considers a choice
set C(F ) ⊂ F . On the other hand, stochastic decision theory considers a
simple choice lottery q(·, F ) ∈ ∆(F ) defined for each F ∈ F . Specifically, let
q(x, F ) denote the probability of choosing x ∈ F when the agent is presented
with the feasible set F .

Following the important choice model due to Luce (1958, 1959), the
mapping u : X → R+ is said to be a stochastic utility function in the
case when q(x, F ) = u(x)/

∑
y∈F u(y) for all x ∈ F . In this case q(x, F )

is obviously invariant to transformations of u that take the form ũ(x) ≡
ρu(x) for a suitable mutiplicative constant ρ > 0. Thus, u is a positive-
valued function defined up to a ratio scale. And whenever x, y ∈ F ∈ F ,
the utility ratio u(x)/u(y) becomes equal to the choice probability ratio
q(x, F )/q(y, F ).

Much econometric work on discrete choice uses the special multinomial
logit version of Luce’s model, in which lnu(x) ≡ βU(x) for a suitable logit
utility function U on ∆(Y ) and a suitable constant β > 0. Then the formula
for q(x, F ) takes the convenient loglinear form

ln q(x, F ) = lnu(x)− ln

∑
y∈F

u(y)

 = α+ βU(x)

where the normalizing constant α is chosen to ensure that
∑

x∈F q(x, F ) = 1.
Obviously, this expression for ln q(x, F ) is invariant under transformations
taking the form Ũ(x) ≡ γ + U(x) for an arbitrary constant γ. A harmless
normalization should be to choose utility units so that β = 1. In which case,
whenever x, y ∈ F ∈ F , the utility difference U(x)−U(y) becomes equal to
the logarithmic choice probability ratio ln[q(x, F )/q(y, F )].
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7.2 Logit Equilibrium

Consider the normal form game G = 〈N,SN , vN 〉, as in Section 6.1. For
each player i ∈ N , assume that the multinomial logit version of Luce’s model
applies directly to the choice of strategy si ∈ Si. Specifically, assume that
there is a stochastic utility function of the form fi(si, πi) = exp[βiVi(si, πi)],
for some positive constant βi. Then each player i ∈ N has a logit response
function πi 7→ pi(πi)(·) mapping ∆(S−i) to ∆(Si) which satisfies

ln[pi(πi)(si)] = βiVi(si, πi)− ρi(πi)

for all πi ∈ ∆(S−i) and all si ∈ Si, where the normalizing constant ρi(πi) is
defined as the weighted exponential mean ln

{∑
si∈Si

exp[βiVi(si, πi)]
}
.

Following McKelvey and Palfrey (1995), a logit equilibrium is defined
as a profile µ̄N ∈

∏
i∈N ∆(Si) of independent mixed strategies satisfying

µ̄i(si) = pi(π̄i)(si) for each player i ∈ N and each strategy si ∈ Si, where
π̄i = µ̄N\{i} =

∏
h∈N\{i} µ̄h. In fact, such an equilibrium must be a fixed

point of the mapping p : D → D defined on the domain D :=
∏

i∈N ∆(Si)
by p(µN )(sN ) = 〈pi(µN\{i})(si)〉si∈Si . Note that this mapping, and the
associated set of logit equilibria, are invariant under all increasing affine
transformations of the form ṽi(sN ) ≡ αi(s−i) + δivi(sN ) provided that we
replace each βi with β̃i := βi/ρi. Indeed, one allowable transformation makes
each β̃i = 1, in which case each transformed utility difference satisfies

vi(si, s̄−i)− vi(s′i, s̄−i) = ln[pi(1s̄−i)(si)/pi(1s̄−i)(s
′
i)]

where 1s̄−i denotes the degenerate lottery that attaches probability 1 to
the strategy profile s̄−i. Once again, utility differences become equal to
logarithmic probability ratios.

8 Evolutionary Stability

8.1 Replicator Dynamics in Continuous Time

Let G = 〈N,SN , vN 〉 be a game with cardinal utility, as defined in Section
6.1. Suppose that each i ∈ N represents an entire population of players,
rather than a single player. Suppose too that there are large and equal
numbers of players in each population. All players are matched randomly
in groups of size #N , with one player from each population. The matching
occurs repeatedly over time, and independently between time periods. At
each moment of time every matched group of #N players plays the game G.
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Among each population i, each strategy si ∈ Si corresponds to a player
type. The proportion σi(si) of players of each such type within the popu-
lation i evolves over time. Assuming suitable random draws, each player in
population i encounters a probability distribution πi ∈ ∆(S−i) over other
players’ type profiles s−i ∈ S−i that is given by

πi(s−i) = π̄i(〈sj〉j∈N\{i}) =
∏

j∈N\{i}

σj(sj)

The expected payoff Vi(si, πi) experienced by any player of type si in pop-
ulation i is interpreted as a measure of (relative) “biological fitness”. It is
assumed that the rate of replication of that type of player depends on the
difference between that measure of fitness and the average fitness EσiVi(·, πi)
over the whole population i. It is usual to work in continuous time and to
treat the dynamic process as deterministic because it is assumed that the
populations are sufficiently large to eliminate any randomness.7 Thus, one
is led to study a replicator dynamic process in the form of simultaneous
differential equations which determine the proportional net rate of growth
σ̂i(si) := d

dt lnσi(si) of each type of player in each population.

8.2 Standard Replicator Dynamics

Following the ideas of Taylor and Jonker (1978) and Taylor (1979), the stan-
dard replicator dynamics (Weibull, 1995) occur when the differential equa-
tions imply that the proportional rate of growth σ̂i(si) equals the measure
of excess fitness defined by

Ei(si;σi, πi) := Vi(si, πi)− EσiVi(·, πi)

for each i ∈ N and each si ∈ Si. In this case, consider affine trans-
formations which take each player’s payoff function from vi to ṽi(sN ) ≡
αi(s−i) + δivi(sN ), where the multiplicative constants δi are all positive.
This multiplies by δi each excess fitness function Ei(si;σi, πi), and so the
transformed rates of population growth. Thus, these utility transformations
in general speed up or slow down the replicator dynamics within each pop-
ulation. When δi = δ, independent of i, all rates adjust proportionately,
and it is really just like measuring time in a different unit. Generally, how-
ever, invariance of the replicator dynamics requires all the affine transfor-
mations to be translations of the form ṽi(sN ) ≡ αi(s−i) + vi(sN ), with each
δi = 1, in effect. This is entirely appropriate because each utility difference

7See Boylan (1992) and Duffie and Sun (2004) for a discussion of this.
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vi(si, s̄−i) − vi(s′i, s̄−i) equals the difference Ei(si;σi, 1s̄−i) − Ei(s′i;σi, 1s̄−i)
in excess fitness, which is independent of σi, and so equals the difference
σ̂i(si)− σ̂i(s′i) in proportional rates of growth.

8.3 Adjusted Replicator Dynamics

Weibull (1995) also presents a second form of adjusted replicator dynamics,
based on Maynard Smith (1982). The proportional rates of growth become

σ̂i(si) =
Ei(si;σi, πi)
EσiVi(·, πi)

=
Vi(si, πi)

EσiVi(·, πi)
− 1

for each i ∈ N and each si ∈ Si. Then the above affine transformations have
no effect on rates of population growth in the case when ṽi(sN ) ≡ δivi(sN ),
for arbitrary positive constants δi that can differ between populations. Thus,
different utility functions are determined up to non-comparable ratio scales.
Indeed, each utility ratio vi(si, s̄−i)/vi(s′i, s̄−i) equals the excess fitness ratio
Ei(si;σi, 1s̄−i)/Ei(s′i;σi, 1s̄−i), which is independent of σi, and so equals the
ratio σ̂i(si)/σ̂i(s′i) of the proportional rates of growth.

9 Consequentialist Foundations

9.1 Consequentialist Game Forms

Let X denote a fixed domain of possible consequences. A consequentialist
game form is a triple Γ = 〈N,SN , γ〉 where:

(i) N is a finite set of players;

(ii) each player i ∈ N has a strategy set Si, and SN =
∏

i∈N Si is the set
of strategy profiles;

(iii) there is an outcome function γ : SN → X which specifies what conse-
quence results from each strategy profile in the domain SN .

Consider any fixed profile wN of individual utility functions wi : X → R
defined on the consequence domain X. Given any consequentialist game
form Γ, there is a unique corresponding game GΓ(wN ) = 〈N,SN , uN 〉 with
ui(sN ) ≡ wi(γ(sN )) for all sN ∈ SN and all i ∈ N . There is also a best
reply correspondence

s̄−i 7→→BΓ
i (s̄−i;wi) := arg max

si∈Si

wi(γ(si, s̄−i))

and a (possibly empty) pure strategy Nash equilibrium set EΓ(wN ).
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9.2 Ordinal Invariance

An obvious invariance property is that BΓ
i (s̄−i;wi) ≡ BΓ

i (s̄−i; w̃i) for all
possible Γ, which is true if and only if wi and w̃i are ordinally equivalent
functions on the domain X, for each i ∈ N . Similarly, all the other pure
strategy solution concepts mentioned in Section 5.2.4, especially the pure
strategy Nash equilibrium set EΓ(wN ), are preserved for all possible Γ if
and only if the two profiles wN and w̃N are ordinally equivalent. In this
sense, we have reverted to the usual form of ONC invariance, rather than
the SCONC invariance property that applies when just one game is being
considered. This is one reason why the theory set out in Hammond (2004),
for instance, does consider the whole class of consequentialist game forms.

9.3 Cardinal Invariance

A similar invariance concept applies when each player i’s strategy set Si is
replaced by ∆(Si), the set of mixed strategies, and the outcome function
γ : SN → X is replaced by a lottery outcome function γ : ∆(SN ) →
∆(X). Then all the players’ best reply correspondences are preserved in all
consequentialist game forms Γ if and only if the two profiles wN and w̃N are
cardinally equivalent. Similarly for any other solution concepts that depend
only on the players’ belief contingent preference orderings Ri(πi).

10 Concluding Remarks

Traditionally, game theorists have contented themselves with specifying a
single numerical payoff function for each player. They do so without any
consideration of the units in which utility is measured, or what alternative
profiles of payoff functions can be regarded as equivalent. This paper will
have succeeded if it leaves the reader with the impression that considering
such measurement issues can considerably enrich our understanding of the
decision-theoretic foundations of game theory. A useful by-product is iden-
tifying which games can be treated as equivalent to especially simple games,
such as two-person zero-sum games, or team games.

Finally, it is pointed out that the usual utility concepts in single-person
decision theory can be derived by considering different players’ objectives
in the whole class of consequentialist game forms, rather than just in one
particular game.
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