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Abstract

A powerful test of Varian’s (1982) generalised axiom of revealed preference

(GARP) with two goods requires the consumer’s budget line to pass through

two demand vectors revealed as chosen given other budget sets. In an exper-

iment using this idea, each of 41 student subjects faced a series of 16 succes-

sive grouped portfolio selection problems. Each group of selection problems

had up to three stages, where later budget sets depended on that subject’s

choices at earlier stages in the same group. Only 49% of subjects’ choices

were observed to satisfy GARP exactly, even by our relatively generous non-

parametric test.
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1 Introduction

1.1 Non-Parametric Tests of GARP

Varian (1982) in particular has emphasised how easily even a rational con-

sumer could exhibit demand behaviour that fails rationality tests based on

estimating preference parameters. As an alternative, Varian proposed more

robust non-parametric tests of Samuelson’s (1938) revealed preference theory

that are based on Afriat’s (1973) theoretically derived inequalities. This ap-

proach seems ideally suited to controlled laboratory experiments, where the

price and income changes needed to test the axioms are easy to implement,

and changes of taste can largely be ruled out. Also, in general violations of

revealed preference could perhaps be explained by errors in observation, but

hardly in experimental settings. Accordingly, several papers have followed

Sippel’s (1997) pioneering application of non-parametric tests to experimen-

tal data. Depending on the experimental design, however, including the

population of experimental subjects and the test method, past experimental

studies have produced estimates of the proportion of subjects whose demands

satisfy GARP which range widely from below 10% to almost 100%.

Such results raise the fundamental question whether or not to allow for

decision errors when testing revealed preference theory. On the one hand,

normative decision theory does not condone even the slightest inconsistency;

such a strict test has enormous statistical power but an impractically small

size. On the other hand, allowing for random decision errors significantly

reduces the power of a test in discriminating between rational and random

behaviour.
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Following Varian’s (1982) own suggestion, Sippel (1997) and most suc-

cessors have based their tests on Afriat’s (1973) efficiency index. Suppose

a consumer has been observed choosing the bundle x1 when the price vec-

tor was p1. By definition x1 is revealed preferred to any alternative bundle

x2 satisfying p1x2 < p1x1. Suppose nevertheless that the same consumer

were also observed choosing the bundle x2 when the price vector is p2, where

p2x2 > p2x1. This would imply that x2 is revealed preferred to x1, and

so violate GARP. The Afriat efficiency index of the choice x2 is the ratio

p1x2/p1x1, which is evidently less than 1.

Allowing choices whose Afriat efficiency index is less than one relaxes the

GARP axiom, and so increases considerably the corresponding measure of

how well subjects’ choices comply with GARP. This increase in measured

rationality, however, comes with a dramatic decrease in statistical power.

For example, consider a budget of $100, along with two budget lines

determined by the respective price vectors p1 = (1.25, 1) and p2 = (1, 1.25),

as illustrated in Fig. 1. Assume too that at prices p1 a person chooses the

consumption bundle x1 = (x1A, x
1
B) = (64, 20), or indeed any other bundle

on the line segment joining the end point Q to the point P = (444
9
, 444

9
) ≈

(44.4, 44.4) where the two budget lines intersect. Then it is straightforward

to show that at prices p2 the supporting set of consumption bundles satisfying

GARP consists of the line segment joining P to the end point Q′ = (100, 0).

Assuming a uniform distribution of choices along this second budget line,

there is a probability of 5
9
≈ 55.6% that a player who chooses at random will

satisfy GARP.
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Figure 1: Basic Example
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Allowing an Afriat efficiency index of 0.9, however, which is equivalent

to throwing away $10 at prices p1, moves the intersection of the two budget

lines down to the point P ′ = (222
9
, 622

9
) ≈ (22.2, 62.2). This extends the

supporting set to the line segment P ′Q′, so the chance of a random choice

being classified as rational rises to 7
9
≈ 77.8%.

We refer the interested reader to their paper to Andreoni and Harbaugh

(2008) for an extensive recent discussion of the pros and cons of several

different power indices for revealed preference tests, including that of Bronars

(1987). Instead, we now proceed directly to the experimental design involved

in our own more direct test.

1.2 A Three-Stage Direct Test

Consider any list sn = (pi,xi)ni=1 of n pairs of successive price and quantity

vectors that satisfy both GARP and, for each i = 1, . . . , n, the normalization

pixi = 1. Let pn+1 be any previously unobserved price vector. Then Varian

(1982, 2006) defines the supporting set S(pn+1; sn) of consumption bundles

xn+1 as those for which the extended sequence (pi,xi)n+1
i=1 also satisfies both

GARP and, for each i = 1, . . . , n+ 1, the normalization pixi = 1. As Varian

(1982) notes, the supporting set describes “what choice a consumer will make

if his choice is to be consistent with the preferences revealed by his previous

behavior” (p. 957).

Our new experimental design uses Varian’s (1982) supporting set directly.

Moreover, unlike previous tests of GARP, we seek to increase the power of

our tests by adjusting later budget lines to the consumer’s earlier choices.

Indeed, when teaching intermediate microeconomics, it is usual to explain
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the revealed preference axiom in a two-stage process. First it is assumed that

a consumer chooses a (two-dimensional) commodity bundle x1 at the price

vector p1. Second, one considers the consumer’s demands when faced with a

new price vector p2 and a new budget line p2x = p2x1 that passes through

the originally chosen bundle x1. The usual revealed preference axiom, of

course, implies that the new bundle x2 should satisfy p1x2 > p1x1.

Our experiment considers an obvious three-stage extension. The first two

stages involve observing the consumer choosing the two bundles x1 and x2

at the respective price vectors p1 and p2. Revealed preference requires the

chosen bundles to satisfy both p1x2 > p1x1 and p2x1 > p2x2. Provided this

condition was satisfied, subjects faced a third stage that involves a new price

vector p3 satisfying p3x1 = p3x2. In the two commodity case we consider,

this determines the third stage budget line p3x = p3x1 uniquely. Revealed

preference will be satisfied provided that the consumer’s third-stage choice

x3 is on the segment of the third budget line between the first two choices

x1 and x2.

In our experiment, subjects were actually confronted with a series of

16 grouped portfolio-selection problems, each group involving up to three

stages like this. As in the most important precursor to our own work, Choi

et al. (2007b), we study a portfolio selection problem for two reasons. First,

these authors were the first to test revealed preference theory with data

from risky decision making. Indeed, as far as we are aware, other scientists

have yet to reproduce their results. Second, their graphical interface seemed

highly appropriate and was relatively easy to adapt. Third, they reported
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particularly high consistency rates among their subjects, which suggests that

applying a more powerful test could be fruitful.

The paper is organised as follows. The next section 2 describes our ex-

periment in more detail. Then Section 3 explains our nonparametric test

procedure. The results are presented in Section 4. Section 5 concludes.

2 Details of the Experiment

2.1 Typical Decision Problem

As in Choi et al. (2007a, b), in each of our decision problems there were two

states of nature s = {A,B} and two associated Arrow securities, each yielding

a payoff of one “token” of experimental currency in one state and nothing

in the other. Following the usual random lottery incentive system, at the

end of the experiment one decision problem was selected at random and each

token won in that decision problem was converted into £0.20 of UK currency.

In each decision problem, subjects had to split an initial endowment of 100

tokens between the two Arrow securities. In principle, their choices had to

satisfy the budget constraint pAxA + pBxB = 100, where ps denotes the price

and xs the demand for Arrow security s. In practice, in order to represent

the allocation problem sensibly on the computer screen, prices were rounded

off to the first decimal place, and subjects could only choose nonnegative

integer amounts of each security. In addition to the budget constraint pAxA+

pBxB ≤ 100, subjects were restricted to pairs (xA, xB) of nonnegative integers

immediately below the budget line. Specifically, we allowed any nonnegative
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Figure 2: Example screen

integer allocation satisfying

100−max{pA, pB} < pAxA + pBxB ≤ 100.

Figure 2 reproduces an example of what an experimental subject could

see on the computer screen when faced with any of the choice problems. As

soon as a new decision problem appeared, the mouse pointer became visible

at its default position in the upper right-hand corner of the screen. When

the mouse pointer was close enough to the nearest feasible allocation, that

allocation was indicated by two numbers and by associated reference lines

marked in red. This information remained visible until the mouse pointer

had been moved far enough away from this allocation. If applicable, the next

allocation was then displayed.
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Subjects could also “fix” and later “release” an allocation by clicking the

left mouse button. Once a portfolio was fixed, then even if the mouse pointer

was moved, the numbers and reference lines turned green and stayed visible

on the screen until they were released. To choose this indicated portfolio and

proceed to the next decision problem, a subject could simply click the OK

button near the lower right-hand corner of the screen.

Some slight time pressure was introduced in order to impose a “cost” of

collecting information. The upper right-hand corner of the screen therefore

displayed how many seconds remained out of the original 30 allocated for each

choice. When time ran out, if the mouse pointer was over a feasible allocation,

or if one had been fixed by an earlier mouse click, then that portfolio was

recorded as the subject’s final choice. Otherwise a missing value was recorded

for that choice problem. In fact, no subject in our experiment ever exceeded

the time limit.

Figure 3 illustrates the basic experimental setup for a scenario where

pA = 1.5, pB = 1, and the probability of state A is π = 0.5. The solid line

represents the budget constraint with slope −pB/pA = −1.5. The dashed

45◦-line marks all portfolios for which xA = xB. It intersects the budget line

at the indicated safe portfolio (xA = xB = 40).

The second dashed line is the graph of the expected value

EV (xB) = πxA + (1− π)xB =
π

pA
(100− pBxB) + (1− π)xB

of each portfolio as a function of xB alone, as one moves along the budget

line. In figure 3 its slope is the positive fraction 1/6. Hence, portfolios to the

left of the safe portfolio are stochastically dominated.
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Figure 3: A first-stage choice problem with pA = 1.5, pB = 1, π = 0.5

2.2 First Stage

Each subject in the experiment faced 16 rounds of successive grouped choice

problems in up to three stages. At the first stage of each round, subjects

were graphically presented with a budget constraint p1x = 100, where p1 =

(p1A, p
1
B) and x = (xA, xB). The price vector p1 was taken from the eight-

point set

P = {(1, 1.5), (2, 1), (1, 2.5), (3, 1), (1.5, 2), (2.5, 1.5), (3, 1.5), (2, 3)}

of price vectors. Furthermore, the probability π of state A being chosen by

a pseudo-random number generator was either 0.5 or 0.67.

All subjects were eventually presented with the complete set of all possible

16 first-stage choice problems which can result from combining one of the
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eight possible price vectors with one of the two probability distributions.

The 16 possibilities were presented in random order, however.

2.3 Second Stage

Figure 4 shows how each subject’s first-stage choice was used to construct

the second-stage choice problem. The dashed line represents the first-stage

budget line; the subject’s portfolio choice is marked by one of the two dots

— e.g., x1 = (22, 67) in the figure. The subject, however, was shown only

the second-stage budget line p2x = 100. This was determined by first inter-

changing the two components of the first-stage price vector p1, then replacing

the new higher component with a different one chosen at random. Specifi-

cally, if the first-stage price p1B was lower, as in figure 4, and if x1B denotes the

amount allocated to asset B at the first-stage, then the second-stage price

p2B was determined by making a random choice from a uniform distribution

on the closed interval [100/x1B, 200/x1B], then rounding the result to the first

decimal place. In the figure, we have p2 = (1, 1.6).

In several cases, however, subjects chose first-stage portfolios that are

stochastically dominated because, as discussed in Section 2.1, they lie to the

left of the safe portfolio depicted in Figure 3. Worse still, in some cases

subjects chose portfolios so close to the extreme where the whole budget is

allocated to one security that our procedure would fail to determine a sensible

second-stage choice problem, because the respective budget line would have

had to be very steep (or flat). Our software, therefore, did not allow the

subject to proceed beyond the first stage in case: either (i) the first-stage
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1st stage choice

0
xB

xA

intersection

possible 2nd stage
budget line

x1=(22,67)

Figure 4: A second-stage choice problem with pA = 1, pB = 1.6, π = 0.5

choice was stochastically dominated; or (ii) the second-stage choice problem

would have involved a price ratio greater than 10 (or smaller than 0.1).

2.4 Third Stage

Even if the subject had been allowed to proceed to the second stage, the

portfolio chosen at this second stage could still fail to lie on the segment

of the budget line between: (i) the extreme portfolio with xB = 0; (ii)

the intersection of the two budget lines as depicted in Figure 4. Indeed,

if the subject’s second-stage choice was either stochastically dominated or

on the wrong side of the intersection marked in Figure 4, the computer

program would omit the third stage and, unless all 16 rounds had already

been completed, proceed directly to the next round in the sequence of three-

stage experiments. Otherwise, as Figure 5 indicates, the third-stage budget
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1st stage choice

0

supporting set

2nd stage choice

x1=(22,67)

x2=(61,24)

Figure 5: A third-stage choice problem with pA = 1.2, pB = 1.1, π = 0.5

constraint was constructed by taking the line through the different actual

choices in the first two stages, then rounding both prices to the first decimal

place. For example, assuming that the subject chose x1 = (22, 67) at the

first stage, followed by x2 = (61, 24) at the second stage, the third-stage

price vector would be p3 = (1.2, 1.1) as indicated in Figure 5. Then Varian’s

supporting set consists of the line segment joining the first and second-stage

portfolios.

2.5 Background

The experiment was conducted at the University of Warwick on 20th May,

2008, in a computer Laboratory that had often been used for experiments

by other researchers. To avoid bias due to expert knowledge, we recruited

41 non-economics undergraduates (26 male and 15 female students had re-

sponded to our invitation before the deadline). All had previously agreed to
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be included a database of potential recruits for economic laboratory experi-

ments and so were contacted by email.

The experiment was fully computerised. Standard software toolboxes in

experimental economics and psychology such as z-Tree (Fischbacher, 2007)

and Mouselab (Johnson et al., 1986) do not offer the graphical displays and

the data structure we required. Instead, our experiment was programmed in

Visual Basic.

Upon entering the laboratory, subjects were first given the on-screen in-

structions reproduced in the Appendix. Then a training session began where

subjects were presented random budget lines and could make choices as often

as they wanted. In order to end the training session and start the experi-

ment, the subject had to click a button. This initiated a short countdown,

after which the first-stage choice problem of the first round was displayed.

After each subject’s last choice of the 16th round, the computer deter-

mined the amount they were owed, which was paid in cash. Everyone at-

tending and completing the experiment was given £5 of UK currency. In

addition, following the random lottery incentive scheme, subjects were told

that one of the choice problems they were going to be presented would be

randomly selected for an actual payment at the end of the experiment. The

sum of all the payments was £461.20, which works out on average to £11.25

per participant, including the £5 participation fee.
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3 A Nonparametric Statistical Test

3.1 Two Hypotheses: GARP and Random Choice

Bronars (1987) was concerned to show how GARP was a refutable hypothesis,

even with the kind of aggregate data that Varian had considered. Accord-

ingly, he had GARP as the null hypothesis, with Becker’s (1962) model of

uniformly random choice from the relevant budget line segment as a very

specific alternative.

Instead, our concern will be to refute Becker’s model of irrationality,

where possible, by showing that it cannot explain the high proportion of

observed choices satisfying GARP. Accordingly, our null hypothesis for each

experimental subject is that, throughout the course of the experiment, a

portfolio was always randomly selected from a uniform distribution over the

current budget line segment; moreover, the random choices from successive

budget lines are stochastically independent. Ignoring complications due to

rounding, the probability of satisfying GARP in any one choice experiment

is therefore the ratio of the length of the supporting set (the respective line

segment in Figure 5) to the total length of the budget line segment.

3.2 Implications of Uniform Randomness

Formally, let the discretised budget set of the typical ith third-stage choice

problem have Ki discrete elements (i ∈ {1, . . . , I}), of which exactly ki would

satisfy GARP if chosen. Under the null hypothesis, the proportion κi =

ki/Ki is the probability that the subject’s randomly chosen portfolio satisfies

GARP. Given a set Γ of I second or third-stage choice problems (up to a
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maximum of 16), there are 2I (≤ 216 = 65, 536) different possible choice

patterns of GARP compliance and noncompliance. Let H denote the set of

all these 2I possible patterns, and G ⊆ H the subset of the I choice problems

in which the subject’s choices comply with GARP. Under the null hypothesis,

each choice pattern γ ∈ H occurs with probability

pγ =
∏
i∈G

κi ×
∏
i∈I\H

(1− κi).

For each integer ` ∈ {0, 1, . . . , I}, let H(`) ⊂ H denote the set of choice

patterns that include exactly ` choices that are GARP consistent, and I − `

that are not. Then the probability of a subject exhibiting exactly ` GARP

consistent choices is P` =
∑

γ∈H(`) pγ. Cumulating downwards gives, for each

integer z ∈ {0, 1, . . . , I}, the probability 1− F (z) =
∑I

`=z P` that ` ≥ z.

3.3 Significance Tests

Let s denote the desired significance level of the test for GARP — for exam-

ple, 5%. Let zs denote the smallest possible integer satisfying 1−F (zs) ≤ s.

Then we reject the null hypothesis of uniform randomness at the significance

level s provided that the subject’s choice pattern satisfies GARP on at least

zs occasions.

In principle the critical proportion F (zs) needed for this test could be

calculated exactly from the finite stochastic process implied by the null hy-

pothesis. In practice we used an obvious Monte Carlo simulation procedure

to estimate F (zs) for each of the 11 particular values

s ∈ {0.01, 0.05, 0.1, 0.2, 0.3, . . . , 0.8, 0.9}.
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The dashed curve with squares as markers for the different significance levels

in Figure 6 displays the results of 1000 simulations, which were enough for

the observed proportions to converge. Of course, rounding implies the exact

probability Ps that F (`) ≥ s will exceed s unless s is chosen exactly equal

to one of the probabilities F (z) for z ∈ {0, 1, . . . , I}; this explains why the

curve lies below the 45◦ line except at the end points s = 0 and s = 1. For

this reason, our test slightly favours the null hypothesis of random choice.1

4 Experimental Results

4.1 Test Statistics

Table 1 gives an overview of our experimental results. Subjects were faced

with an identical set of 16 first-stage choice problems, though the order in

which each subject faced them was selected at random. No subject breached

the time constraint of 30 seconds in any choice problem. Hence, in principle,

there could have been 16 second-stage choices. But for reasons explained

in Section 2.3, our procedure stopped after the first-stage choice if that was

too inferior. On average, there were 4.2 such instances per subject, leaving

us with a mean of 11.8 second-stage choices per subject — or 73.9% of the

possible 16. Of the inferior choices, 84% (3.5 per subject) were dominated;

1There is an exact test with non-integer critical proportions ẑs satisfying F (ẑs) = s

which takes the following form. Having found the integer critical value zs as in the main

text, classify as rational not only the subjects whose choice patterns satisfy GARP on

at least zs occasions, but also a random sample of those that satisfy GARP on zs − 1

occasions where, independently of the others, each subject is included with probability

[s− F (zs − 1)]/[F (zs)− F (zs − 1)].

17
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Figure 6: Test properties
Legend: The circular dots connected by solid lines represent actual observations of 39

subjects; the square dots connected by dashed lines represent a simulation using 1000

random players; the dotted line represents the theoretical level of significance.

the remaining 16% (0.7 per subject) were extreme in the sense that, if we had

continued with our algorithm, it would have required the price ratio p2A/p
2
B to

be either larger than 10 or smaller than 0.1. About 58.6% of the second-stage

choices (6.9 per subject) enabled us to construct a third-stage choice. The

remaining 4.9 second-stage choices per subject were either dominated (1.9 per

subject) or (3.0 per subject) on the wrong side of the point where the first-

stage and the second-stage budget lines intersect, thus making it impossible

to construct the relevant supporting set. Finally, 5.4 third-stage choices

per subject (77.5% of all third-stage choices) were both undominated and
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consistent with GARP. The remaining 1.6 third-stage choices either violated

GARP (1.4 per subject) or were stochastically dominated (0.2).

Table 1: GARP Consistency of Choices: Aggregated Data

Number of Stage

consistent choices 1 2 3

theoretical maximum 16 16 16

mean number of consistent choices 11.8 6.9 5.4

mean % of maximum 73.9% 43.1% 33.8%

mean % of previous column − 58.6% 77.5%

N = 41 subjects.

Any test of individual rationality requires disaggregated data. After all,

the fact that about 78% of all third-stage choices were GARP consistent

says little about how consistent each individual’s choices were. Table 2 lists

each subject’s ID in the experiment (for reference purposes only), followed

by statistics concerning their performance in the third-stage choice problems.

For the subjects with ID numbers in the range 1–21, columns 2–5 respectively

report the total number of third-stage choices I, then the number z and

proportion z/I of GARP consistent and undominated third-stage choices,

followed by the significance level p(z) of our rationality test. Columns 7–10

do the same for the subjects with ID numbers in the range 22–41.

The p-values that are reported in columns 5 and 11 of Table 2 are com-

puted to allow a separate non-parametric exact test for each subject, based

on all possible permutations of choice patterns. They specify the conditional
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probability that a third-stage choice satisfies GARP, given that the subject’s

first and second stage choices did not rule out reaching the third stage.

4.2 Discussion of Results

Subject 13, for example, was a male who got to the third stage in 13 out

of the 16 maximum possible grouped choice problems. Of these 13, no less

than 12 (92%) third-stage choices lay within the support sets for GARP and

were undominated. The probability that his random choices would pass the

test at least 12 out of 13 times is just 0.007%. Hence, using our significance

level of 10%, we reject the null hypothesis that his 12 GARP consistent

choices were purely random. Note that two female subjects (#7 and #12)

did not reach any third-stage choice essentially because they always chose

only stochastically dominated portfolios in the first or second stage. The

following discussion focuses only on the remaining 39 subjects who reached

the third stage at least once.

Figure 6 displays the results graphically. Although our subjects often

violated GARP, they did so distinctly less often than the uniformly random

consumer would have done. For example, at the 10% significance level, 19

subjects (or 48.7%) were classified as rational. Comparing the curves for

stage three and for the simulation shows that our test is powerful enough to

distinguish clearly between: (i) actual subjects who could validly be classified

as rational; (ii) simulated random subjects that were incorrectly classified as

rational. It is worth recalling that Sippel’s (1997) procedure with an Afriat

choice efficiency index of 0.9 classified as rational no fewer than 98.5% of the

20



Table 2: GARP Consistency of Choices: Individual Data

ID total consistent p-value† ID total consistent p-value†

I z z/I p(z) I z z/I p(z)

1 6 5 0.83 0.050* 22 7 4 0.57 0.079*

2 11 7 0.64 0.219 23 6 3 0.50 0.316

3 3 3 1.00 0.032* 24 10 8 0.80 0.114

4 8 7 0.88 0.003* 25 11 8 0.73 0.244

5 5 4 0.80 0.128 26 14 12 0.86 0.062*

6 15 15 1.00 0.000* 27 3 2 0.67 0.355

7 0 0 — — 28 5 3 0.60 0.069*

8 11 10 0.91 0.003* 29 4 3 0.75 0.173

9 13 12 0.92 0.033* 30 2 0 0.00 1.000

10 10 9 0.90 0.002* 31 10 9 0.90 0.000*

11 0 0 — — 32 10 9 0.90 0.001*

12 3 2 0.67 0.381 33 6 3 0.50 0.546

13 13 12 0.92 0.007* 34 12 10 0.83 0.008*

14 3 3 1.00 0.045* 35 3 2 0.67 0.405

15 1 1 1.00 0.370 36 7 5 0.71 0.042*

16 14 9 0.64 0.249 37 11 10 0.91 0.003*

17 4 2 0.50 0.261 38 7 5 0.71 0.042*

18 3 2 0.67 0.333 39 6 6 1.00 0.003*

19 1 0 0.00 1.000 40 10 4 0.40 0.782

20 1 0 0.00 1.000 41 2 1 0.50 0.565

21 13 10 0.77 0.512

†Significance level of a non-parametric exact test. The null hypothesis is random

choice. An asterisk indicates significance at the 10% level.
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randomly generated consumers (as against 91.7% of the actual subjects).2

By contrast, our three-stage test classified only 5.2% of simulated subjects

as rational.

Finally, Table 3 reports the results of some tests for gender differences.

The share of GARP consistent choices was significantly greater for male

subjects. Likewise, the mean rejection probability reported in Table 2 was

much higher for female subjects. A possible explanation for this may lie in

the relative shares of portfolios chosen by each gender that were first-order

stochastically dominated, as reported in the last three rows of Table 3. In

all three stages female subjects chose between two and four times as many

dominated portfolios as their male counterparts. This may reflect a higher

proportion of male subjects with some prior experience of the type of in-

vestment problem and of graphical computer display that was used in the

experiment.

Table 4 gives the results of a pooled-sample logit regression whose depen-

dent indicator variable equals 1 if and only if the subject chose a first-order

stochastically dominated portfolio. To allow for the panel structure of the

data, the regression used a method of robust covariance estimation. The ex-

ogenous variables are gender, round, and the interaction term between these

two. We conducted the regression first for the whole sample, then for each

stage separately, both with and without the interaction term. The table

shows that the gender term is highly significant for all regressions except the

2Following Bronars’ (1987) proposal, Sippel actually compared his experimental data

with a set of 1000 demand vectors created using randomly determined constant budget

shares, which correspond to Cobb–Douglas preferences — for details, see Sippel (1996).
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Table 3: GARP Consistency of Individual Choices: Gender Differences

Gender Significance

female male level

mean s.e. mean s.e.

share of GARP consistent choices

3rd stage 0.647 (0.058) 0.815 (0.026) 0.010*

probability of rejecting substantive rationality

3rd stage 0.381 (0.083) 0.164 (0.052) 0.026*

share of dominated portfolios

1st stage 0.324 (0.029) 0.153 (0.018) 0.000*

2nd stage 0.256 (0.035) 0.108 (0.017) 0.000*

3rd stage 0.162 (0.045) 0.042 (0.014) 0.013*

*Significant at the 10%-level according to a two-tailed independent-

sample t test (checked for equality of variances).

23



one for the third stage when an interaction term is included. This accords

with our previous result that, in general, female subjects chose dominated

portfolios more often than males. Also, there were no significant round or

learning effects, nor any significant interaction between round and gender.

5 Conclusion

We have reported and analysed an experiment in which subjects were faced

with a series of 16 grouped three-stage portfolio-selection problems. In previ-

ous studies significance levels were computed by tolerating small changes of

the chosen portfolios or budget lines — that is, they allow an Afriat efficiency

index below one. In contrast, for our test to be passed, a sufficient number

of portfolios chosen in a sequence of three-stage problems have to satisfy the

relevant inequalities exactly. This sharpens the distinction between truly

rational subjects and random players.

Overall, using a 10% significance level, only 19 out of 39 subjects (or

48.7%) could be classified as having made third-stage choices that all passed

our test of the standard GARP axiom of revealed-preference theory. Even

though our nonparametric test is easier to satisfy than many predecessors,

this proportion is distinctly lower than in previous studies. This may be due

in part to the fact that economics undergraduates subjects were specifically

excluded from our subject pool.
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Appendix

Instructions

Experimental Instructions (Please, read carefully)

This is an experiment in decision-making. The entire experiment should be

complete within about 30 minutes. Research foundations have provided funds

for conducting this research. Please, pay careful attention to the instructions

as a considerable amount of money is at stake. At the end of the experiment,

you will be paid privately. Your payoffs will depend partly on your decisions

and partly on chance, but not on the decisions of the other participants in the

experiment. You will receive 5 pounds as a participation fee. In addition you

will receive a payment whose calculation will be explained in the following.

During the experiment, we will speak in terms of experimental “tokens”

instead of pounds. At the end of the experiment your payoff will be calculated

in tokens and translated into pounds. The exchange rate between tokens and

pounds is stated on a note at your workplace.

In each decision problem, you will be asked to allocate an initial endow-

ment of 100 tokens between two accounts labeled A and B. The A account

corresponds to the vertical and the B account to the horizontal axis in a two-

dimensional graph. Each choice will involve choosing with the mouse pointer

a point on a blue line representing possible token allocations. In each choice,

you may choose any A and B pair that is on the blue line.

Each decision problem will start by having the computer select such a line

randomly, where each line permits a minimum of 10 and a maximum of 100

tokens on each account. The “prices” for the two accounts are stated on
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the right side of the screen. An example: the blue line runs from 50 on the

vertical axis (account A) to 33 on the horizontal axis (account B). Hence,

the price for allocating a token to account A is two tokens, and for a token

on account B you have to give up three tokens of your initial endowment.

You have exactly 30 seconds for choosing one point on the blue line. The

time remaining is stated on the screen. Furthermore, you will receive an

acoustic signal during the last five seconds.

To choose an allocation, use the mouse to move the pointer over the blue

line. You will be shown the token allocations that belong to the respective

points on the blue line. Once you have found the allocation that you like

best, click with the left mouse button somewhere on the screen, and the most

recent allocation will be fixed. If you want to revise your decision, click the

left mouse button again and the line will be released. If you are satisfied

with your decision, click the “OK” button with the mouse pointer.

As noted above, you can choose only allocations that are located on the blue

line. You have 30 seconds for each choice. If you run out of time before

you fixed an allocation, the computer will automatically move on to the next

decision problem. If you did not touch the blue line at least once within the

30 seconds in order to display an allocation, the computer will record that

you did not make a decision; if you displayed an allocation but did not fix it

by mouse click, the computer will record the most recent allocation as your

choice. You cannot revise your decision after having clicked the “OK” button

or the 30 seconds have elapsed.
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Afterwards you are asked for your next decision. At the end you will be

informed that the experiment has ended and the computer determines you

payoff.

Your payoff is determined as follows: at the end of the experiment the com-

puter will randomly select one decision round. It is equally likely that any

round will be chosen. Afterwards the computer will decide whether account

A or B will be paid off. The probability of an account to be selected is stated

on the screen for each decision problem. The probability is either 50:50 or

67:33. Pay attention to the probabilities shown on the screen while making

your choice. At the beginning of each decision problem, the probabilities

briefly flash up in red color. Be careful: if the computer selects a decision

task in which you did not make a choice, your payoff will be zero.

Your payoff in tokens, your choice, and the account that has been selected,

will be shown in a popup window. Please, let our assistant know that you

have finished.

Your participation in the experiment, your choices, and your payoff will be

kept confidential. Only on the payoff receipt will we have to record your

name. In order to keep your privacy you should not talk to anyone about

the experiment and your choices (at least until the complete experiment has

ended). We would like to ask you not to talk during the experiment and to

remain silent until the end of the last round.

If you are ready for a trial run, click the “OK” button. If there are open

questions, please, contact one of our assistants.
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