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Abstract

The revelation principle is reconsidered in the light of recent work questioning its general

applicability, as well as other work on the Bayesian foundations of game theory. Imple-

mentation in rationalizable strategies is considered. A generalized version of the revelation

principle is proposed recognizing that, unless agents all have dominant strategies, the out-

come of any allocation mechanism depends not only upon agents’ “intrinsic” types, but also

upon their beliefs about other agents and their strategic behaviour. This generalization ap-

plies even if agents are “boundedly rational” in the sense of being Bayesian rational only

with respect to bounded models of the game form.
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A REVELATION PRINCIPLE

1. Background

The foundation of recent work on economies with private information is the revelation

principle which a number of us discovered more or less independently during the 1970s.1

But this principle is often misunderstood as giving a fully sufficient rather than merely

a necessary condition for implementability of an allocation mechanism. Also, others who

understand it very well have recently subjected it to several interesting criticisms.

The main problem with the revelation principle seems to be that, when the equivalent

direct revelation mechanism is constructed as a function of what individuals know about

the economic environment, truthful revelation of that knowledge is often only one among

several equilibrium strategies. Nor is it always the most plausible equilibrium. Green (1984)

discussed the difficulties associated with trying to elicit truthful revelation of summary pri-

vate information. More disturbingly, perhaps, Demski and Sappington (1984) show how,

when a principal is confronted with two agents who know about each other, some incen-

tive compatible mechanisms are vulnerable to manipulation by the two agents combining

together in order to move to a new “untruthful” equilibrium which makes them both bet-

ter off. Similar ideas underlie the more recent work of Ma, Moore, and Turnbull (1988).

This has led to a revival of the concept of full implementation, whereby every equilibrium

has to produce an outcome which is acceptable according to the social choice rule or per-

formance correspondence being implemented.2 Other authors have sought implementations

using refinements of Bayesian-Nash equilibrium, such as implementation in subgame perfect

equilibrium or in undominated strategies.3

Yet multiple Nash (or Bayesian) equilibria present their own problems of co-ordination.

That is precisely why “Battle of the Sexes” (Luce and Raiffa, 1957) is such an interesting

1 See Gibbard (1973), Green and Laffont (1977), Myerson (1979, 1982), Dasgupta, Hammond
and Maskin (1979), Townsend (1979), Harris and Townsend (1981), Laffont and Maskin (1982), Ku-
mar (1985), Townsend (1988), and Hammond (1992) for various versions of the revelation principle.

2 Past work on full implementation includes Maskin (1977, 1985), Hurwicz (1979), Dasgupta,
Hammond and Maskin (1979), Mookherjee (1984), Williams (1984, 1986), Postlewaite and Schmei-
dler (1986), Palfrey and Srivastava (1987), Strnad (1987), Ma (1988), Saijo (1988), McKelvey
(1989), Mookherjee and Reichelstein (1990), Moore and Repullo (1990), and Jackson (1991).

3 Examples of these approaches include Moore and Repullo (1988), Howard (1988), Abreu and
Sen (1990), and Palfrey and Srivastava (1991).
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game. Its outcome clearly depends on the two players’ expectations about each other, and

may not even be a Nash equilibrium at all. After all, Bernheim (1986) uses the notion of

rationalizability due to Bernheim (1984) and Pearce (1984) to argue that, even if a game

has a unique Nash equilibrium in pure strategies, that equilibrium is not always the only

possible outcome.

In fact recent game theoretical work emphasizes the fundamental rôle of players’ ex-

pectations. Prominent examples include Aumann (1987) on correlated equilibria, as well

as Tan and Werlang (1988) and Rubinstein (1988) on rationalizable strategies, etc. This

work makes clear that the outcome of a game is generally very sensitive to what each player

believes about other players and their behaviour. Standard Nash or Bayesian equilibrium

theory is really a very special case in which almost everything about the game, including the

equilibrium strategies played by the players, is supposed to be, if not quite common knowl-

edge in the sense of Lewis (1969) and Aumann (1976), then at least “mutual knowledge”

in the sense that all players know it (see Tan and Werlang, 1988). The most interesting

exceptions for which much less knowledge suffices occur when each player has a dominant

strategy, or when the game is at least “dominance solvable” in the sense of Moulin (1979).

These considerations suggest the need for a generalized version of the revelation prin-

ciple. The generalization is ultimately intended to allow participants in the economy to

have diverse prior beliefs, and very little if any common knowledge or ability to coordinate

in reaching a Bayesian or Nash equilibrium. This forces us to consider what can be imple-

mented when it is known only that agents are using rationalizable strategies in the allocation

game form. It must also be recognized that implementable allocation mechanisms may well

produce outcomes which are sensitive to players’ beliefs about each other. And also to their

beliefs about each others’ beliefs about each others’ beliefs . . ., and so on ad infinitum. The

principal exception is the special case considered in Section 7 below, when everybody has

a dominant strategy — or at least a “type-dominant” strategy which is optimal no matter

what types other agents may be, provided only that they are also using their type-dominant

strategies.

In addition, section 8 below is a preliminary exploration of implementation in boundedly

rationalizable strategies. A rather special concept of bounded rationality will be considered.

It is assumed that each agent constructs a simplified — possibly even a trivial — model of
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the game form being played, and then optimizes within that model in the usual Bayesian

rational manner. This will be called “bounded Bayesian rationality,” for obvious reasons.

It seems close in spirit to the procedure that Behn and Vaupel (1982) and Vaupel (1986)

have suggested for “busy” decision-makers who only have a limited time in which to reach

a decision.4 This all of us surely do when we are not merely deciding how to model rational

choice! I believe that it may also relate to the “framing” phenomena discussed in works

such as Kahneman, Slovic, and Tversky (1982), and Tversky and Kahneman (1986). After

all, the way in which a decision problem is presented to an agent — the way in which it is

“framed” — is very likely to influence the (very simplified) decision tree which that agent

uses to model the problem.

At first, however, bounded Bayesian rationality seems quite different from Simon’s con-

cept of “satisficing,” though much closer to “procedural rationality.”5 Of course, satisficing

could take the specific form of stopping the analysis of a series of increasingly complex deci-

sion trees once some course of action has been found which seems likely to lead to acceptable

consequences. Yet, as Behn and Vaupel (1982) argue, a more relevant stopping criterion

would seem to be one that takes into account the likelihood that any further analysis will

change the final decision. Bounded Bayesian rationality also seems quite different from the

approach of Rubinstein and others, who model agents as having strategies which are simple

in the sense of being representable by automata with only a few possible states.6 After all,

the full decision tree generated by the problem of choosing even quite a simple automaton

in order to solve a difficult decision problem could actually be far too complex for most

agents to analyse properly — indeed, it will often be far more complex than the original

decision problem itself.7

4 For a similar approach to bounded rationality, see Winston (1989).
5 See Simon (1972, 1982, 1986, 1987a), Radner (1975), Radner and Rothschild (1975).
6 See Abreu and Rubinstein (1988), Rubinstein (1986, 1987), Kalai and Stanford (1988). For a

related approach see Evans and Ramey (1988). In this connection, note that work on games played
by unlimited Turing machines, such as that by Anderlini (1988), Canning (1988), Binmore (1989),
is not really in the spirit of the bounded Bayesian rationality to be considered here.

7 More precisely, it has been shown by Gilboa (1988), Ben-Porath (1989), and Papadimitriou
(1989) that the problem of choosing an optimal automaton with a bounded number of states to play
a game is “NP-complete” — that is, equivalent to a problem like the travelling salesman problem
which is sufficiently hard that it is unknown whether it grows faster than any polynomial function
of the size of the problem, as the problem becomes large. The general presumption is that such
problems cannot in fact be solved in a number of steps which is a polynomial function of its size.
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Anyway, Section 8 does not actually consider how the agent chooses which simplified

game model to analyse, since that would seem to be a subject which it is better considered

by psychologists rather than economists or game theorists. Instead, Section 8 treats each

player’s final choice of a model in which to analyse the game as essentially exogenous, just

as economists usually treat tastes. Using this different notion of “bounded” Bayesian ra-

tionality, the conclusion of Section 8 is that the revelation principle still applies, although

now agents are characterized by their own models, including the supports of their (exoge-

nous) probabilistic beliefs about other agents’ models. Of course, there is no longer any

presumption that different agents’ models of the game or of each other have anything much

in common.

2. Commonly Modelled Game Forms

For the case of games in normal form, the framework I shall use here begins by defining

an intrinsic game form

G = (N, AN ,ΘN , X, vN , φ) (1)

in the way that game forms are usually defined. That is, there is a finite set N of players i

who each have specified (action) strategy spaces Ai, and AN is used to denote the Cartesian

product space
∏

i∈N Ai of action strategy profiles. Each player i also has an intrinsic type

space Θi. This includes “characteristics” such as endowments and preferences regarding

lotteries over outcomes. In other words, a player’s intrinsic type consists of those features

which would determine behaviour in single person decision models — i.e., in game models

which have that one person as their only player. Then ΘN is used to denote the Cartesian

product space
∏

i∈N Θi whose members are profiles of intrinsic types. There is also a set X

of possible outcomes — economic allocations, or social states, or payoff vectors, depending

on the context. Next, each player i ∈ N has a von Neumann–Morgenstern utility function

vi : X × Θi → � determining i’s utility vi(x; θi) as a function of the outcome x and of i’s

intrinsic type θi ∈ Θi. Finally, there is an outcome function φ : AN → ∆(X) determining

the (generally random) outcome φ(·; aN ) ∈ ∆(X) as a function of the pure strategy profile

aN = 〈ai〉i∈N ∈ AN chosen by the players i ∈ N . Here, of course, ∆(X) is used to denote

By contrast, the problem of calculating an unrestricted optimal automaton is a “simple” problem
which can be solved in a number of steps which is a polynomial function of its size.
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a space of probability distributions over the set X of possible outcomes. Note that at this

stage no player has any specified prior probability beliefs about other players’ types or about

their choices of action. Such beliefs will be specified next.

Indeed, a commonly modelled game form

Γ = (N, AN ,ΘN , MN , TN , X, vN , φ, µN ) (2)

is defined as an expanded intrinsic game form in which each player i’s type space has become

a subset Ti of the Cartesian product Θi ×Ai ×Mi of three spaces of different subtypes. Of

these three subtypes, the first is just player i’s intrinsic type θi ∈ Θi in the original game

form, which has already been discussed.

The second subtype is player i’s behaviour type. This is just an action strategy ai ∈ Ai.

The idea here is that a type for player i should include everything about which other players

may be uncertain, including even i’s choice of strategy if there can be any doubt about what

this will be. If such behaviour types are not included, the problem of multiple equilibria will

remain unresolved. Making explicit players’ beliefs about one anothers’ strategy choices is,

of course, entirely in the spirit of Bernheim (1984, 1986) and Pearce’s (1984) work on ratio-

nalizable strategies, as well as that of Aumann (1987) and others on correlated equilibrium.

The third subtype is player i’s modelling type (or just “model”) mi ∈ Mi. The space Mi

can be constructed along the lines described in Mertens and Zamir (1985), Tan and Werlang

(1988, pp. 373–5), or Brandenburger and Dekel (1993), using ideas pioneered earlier by Böge

and his associates.8 As an implication of this method of construction, an important theorem

on projective limits establishes that, provided both the strategy and intrinsic type spaces

are compact, complete and separable metric spaces, each player i ∈ N has a well defined

homeomorphism

µi : Mi → ∆(T−i). (3)

This homeomorphism establishes an equivalence between the set of models mi ∈ Mi and

the set of probability distributions µi(·;mi) over the product set

T−i =
∏

j∈N\{i}
Tj (4)

8 See Armbruster and Böge (1979), Böge and Eisele (1979), and the earlier unpublished work
cited therein.
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whose members are profiles

t−i = (θ−i, a−i, m−i) = 〈 (θj , aj , mj) 〉j∈N\{i} (5)

of the other players’ intrinsic, behaviour, and modelling types. It is precisely this theorem

which shows how the infinite recursion of beliefs concerning beliefs concerning beliefs con-

cerning . . . converges to something which can be described by a suitable “modelling type”

space for each player. It also justifies the above definition of a commonly modelled game

form, which has now been made complete by specifying that each component µi of µN must

be the homeomorphism which has just been described.

The game form is called “commonly modelled” because the same spaces Mi (i ∈ N)

both represent each player i’s space of possible models and also are the subject of each

other player’s model of i’s model. In fact it has been assumed that all the spaces Mi have

been made large and complicated enough to ensure that it is common knowledge among

all the players in the game form that each individual player i ∈ N has some model which

belongs to the space Mi. Realistically, spaces large enough to ensure this are likely to be

complicated indeed, and so make enormous demands on anybody who is trying to construct

such a commonly modelled game form. Accordingly, this important assumption of common

modelling will be relaxed in Section 8 below.

3. Bayesian Rationalizable Game Forms

So far nothing has been said about the rationality of the behaviour which players’

beliefs ascribe to each other. This will now be remedied. Each player i’s type space

Ti ⊂ Θi × Ai × Mi is assumed to satisfy Bayesian rationality, and to be the space of

all possible “Bayesian rationalizable types,” in the following natural sense. First, let player

i’s expected utility from choosing strategy ai when his intrinsic and modelling types are

(θi, mi) be denoted by

Ui(ai; θi, mi) := IE[vi(x; θi)|ai, µi(·;mi)]

=
∫

X

∫
A−i

vi(x; θi) φ(dx; ai, a−i) margA−i
µi(da−i;mi).

(6)

Here dx is used to indicate that the outcome x is one variable of integration, and da−i

to indicate that a−i, the profile of all the other players’ behaviour types, is another. The
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integration is with respect to the convolution of the probability distribution φ(dx; ai, a−i)

over outcomes x ∈ X, conditional on ai and a−i, together with the marginal probability

distribution margA−i
µi(da−i;mi) over other players’ behaviour types a−i ∈ A−i which

is induced by the distribution µi(dt−i;mi) over other players’ entire types t−i ∈ T−i :=∏
j∈N\{i} Tj , conditional on i’s own modelling type mi.

Now, for all players i ∈ N and all pairs of intrinsic and modelling types θi ∈ Θi and

mi ∈ Mi, define the value Bi(θi, mi) of i’s best response correspondence as

Bi(θi, mi) = arg max
ai

{Ui(ai; θi, mi) | ai ∈ Ai } . (7)

Thus Bi(θi, mi) consists of those ai which maximize i’s expected utility conditional upon

i’s prior probability beliefs about the other players’ action strategies or behaviour types

a−i, as determined by i’s beliefs µi(·;mi) about other players’ entire types t−i. Then, for

all players i ∈ N and all pairs of intrinsic and modelling types θi ∈ Θi and mi ∈ Mi, the

entire type ti = (θi, ai, mi) is a Bayesian rationalizable type in Ti if and only if the strategy

ai satisfies the Bayesian rationality condition that

ai ∈ Bi(θi, mi). (8)

Thus the set Ti of player i’s Bayesian rationalizable types is equivalent to the graph

Ti = { (θi, ai, mi) | ai ∈ Bi(θi, mi) } (9)

of i’s best response correspondence. Note how each player i must therefore have beliefs

attaching probability one to the event that all other players j ∈ N \ {i} have Bayesian

rationalizable types tj ∈ Tj .

In fact, given any specific intrinsic game form as in (1), the construction of the type

spaces along the lines described in Section 2 can be done in a unique way which makes each

player i’s type set Ti become the largest possible set of Bayesian rational types satisfying (9),

for the particular homeomorphism (3) which is also uniquely determined. Any commonly

modelled game form (2) which results from this unique construction will be called a Bayesian

rationalizable game form. Note that, unlike in the traditional Bayesian equilibrium game

theory, as discussed by Harsanyi (1967–8) and many successors, here there is no presumption

that different players’ modelling types or prior beliefs are consistent with each other in any
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way, except through the requirement that types must be Bayesian rationalizable and that

all players must attach probability one to this being so.

4. Implementation

Next we ask what kind of allocation mechanisms or social choice rules can be imple-

mented with such Bayesian rationalizable game forms — in other words, how the outcome

of the game form depends upon what aspects of players’ types are treated as exogenous

variables. Generally it has been assumed that intrinsic types are exogenous, and that both

modelling and behaviour types are determined endogenously in equilibrium. For this con-

cept of implementation, the correspondence from intrinsic type profiles θN ∈ ΘN to random

outcomes which can be achieved through rationalizable strategies is

Ξ(θN ) := { ξ ∈ ∆(X) | ∃(aN , mN ) : (θN , aN , mN ) ∈ TN & ξ = φ(aN ) }. (10)

Thus Ξ(θN ) consists of those random outcomes which could result when players’ strategies

correspond to behaviour types that, in combination with some beliefs about other players,

complete the rationalizable Bayesian game model. Similar concepts of implementation,

including the standard concept of implementation in Bayesian strategies, would recognize

the dependence of the outcome upon just one particular aspect of each player’s modelling

type — notably, their beliefs about other players’ intrinsic types. Yet such concepts of

implementation are not really very satisfactory. In the end, only one pure strategy profile

aN ∈ AN can be selected — assuming, as I do, that if a player can achieve a “mixed” strategy

through some randomization device, the choice of this device should be modelled as part of

a pure strategy. Only one profile of modelling types mN ∈ MN describes the actual players

in the game. It is just that we do not know which is the right pair (aN , mN ) ∈ AN × MN ,

and so which probability distribution of outcomes ξ ∈ Ξ(θN ) will emerge.

Indeed, consider the decision problem which basically underlies all the implementation

literature, which is that of selecting a game form whose outcome is satisfactory, or even op-

timal, relative to some performance criterion. This is a decision problem under uncertainty,

including uncertainty about which rationalizable actions aN ∈ AN and which modelling

types mN ∈ MN will occur. Like all other uncertainty, it should be described by a sub-

jective probability distribution. This distribution will be essentially exogenous to the game
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form, since it could describe the probabilistic beliefs of an external observer, or those of one

of the players i ∈ N . There is no reason either to exclude correlated beliefs concerning the

behaviour types — i.e., about the strategies chosen by different players. Different subjective

probabilities about players’ types — especially about their behaviour types — will then give

rise to different beliefs about the allocation mechanism which is implemented by the game

form.

So it will be assumed that uncertainty about the game form can be represented by the

combination of:

(i) a joint probability distribution τ ∈ ∆(ΘN × MN ) describing external beliefs about

the pair (θN , mN ) of intrinsic and modelling type profiles, and with the property that,

for each player i ∈ N , and each type pair (θi, mi) ∈ Θi × Mi of player i, there exists

some conditional distribution τ−i(dθ−i × dm−i|θi, mi) ∈ ∆(Θ−i ×M−i) over the other

player’s intrinsic and modelling types;

(ii) for each (θN , mN ) ∈ ΘN × MN , a corresponding conditional joint probability distri-

bution α(· | θN , mN ) ∈ ∆(BN (θN , mN )) describing possibly correlated external beliefs

about the players’ selections from their respective sets of optimal strategy profiles,

where BN (θN , mN ) denotes the product set
∏

i∈N Bi(θi, mi).

Game theorists may choose to regard α(·|θN , mN ) as a solution concept, or as a single-

valued selection from a “solution correspondence.” A very special case is that of a Harsanyi

equilibrium, with prior beliefs πi(·; θi) ∈ ∆(Θ−i) (all i ∈ N and all θi ∈ Θi), and special

consistency conditions imposed on the model spaces Mi, on the “belief” functions µi, as

well as on the external probability distributions τ and α described above.

Formally then, a completed Bayesian rationalizable game model is defined as

(N, AN ,ΘN , MN , X, vN , φ , µN , τ , α) (11)

— i.e., as a rationalizable Bayesian game form which has been made into a complete model

by the addition of the external probability distributions τ and α whose form has just been

described.

Corresponding to each such completion of the original Bayesian rationalizable game

form is a unique equivalent direct mechanism ξα : ΘN × MN → ∆(X) given by the convo-
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lution of φ(·; aN ) ∈ ∆(X) with α(·|θN , mN ) ∈ ∆(AN ). Thus

ξα(K|θN , mN ) :=
∫

BN (θN ,mN )

φ(K; aN ) α(daN |θN , mN ) (12)

for every Borel set K ⊂ X. Given the conditional beliefs α(daN |θN , mN ) regarding the

strategy profile aN , this equivalent direct mechanism specifies the implied probability dis-

tribution ξα(dx|θN , mN ) over outcomes, as a function of the pair (θN , mN ) of intrinsic

and modelling type profiles. This is the direct mechanism which will be implemented

by the Bayesian rationalizable game form, according to the belief system described by

α(daN |θN , mN ).

It remains to be seen what “incentive constraints” must be satisfied by an equivalent

direct mechanism which can be implemented by some such game form. These constraints

are most easily expressed in terms of the marginal external beliefs regarding the strategy

choice of each player i ∈ N conditional on knowing only i’s type (θi, mi) ∈ Θi × Mi. In

fact these marginal conditional beliefs are equivalent to a mixed strategy for player i in

the game of incomplete information where (θi, mi) describes i’s type. The relevant mixed

strategy αi(dai|θi, mi) over Ai is given by the marginal distribution on Ai that is derived

from the convolution of α(daN |θi, θ−i, mi, m−i) with τ−i(dθ−i × dm−i|θi, mi). Thus

αi(Ki|θi, mi) =
∫

Θ−i×M−i

τ−i(dθ−i × dm−i|θi, mi)
∫

Ki

∫
B−i(θ−i,m−i)

α(dai × da−i|θi, θ−i, mi, m−i)
(13)

for every measurable set Ki ⊂ Ai. Note in particular that αi(Bi(θi, mi)|θi, mi) = 1. Thus

αi(dai|θi, mi) is a probability mixture over the set of i’s optimal pure strategies. It can be

regarded therefore as an optimal mixed strategy for player i, given i’s type (θi, mi). This

last property will be crucially important in the following section.
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5. A Generalized Revelation Principle

The revelation principle actually applies to any such completed Bayesian rationalizable

game model. For there is also an equivalent completed rationalizable Bayesian game model

of direct revelation

(N, ADN ,ΘN , MN , X, vN , φD, µDN , τD, αD). (14)

This is a special kind of game form in which each player i’s strategy set AD
i , which is

also the set of possible behaviour types, has become equal to the direct revelation strategy

set Θi × Mi of i’s possible intrinsic and modelling type pairs. So the outcome function

φD : ADN → ∆(X) mapping profiles of action strategies into (possibly random) outcomes is

effectively defined on the domain ΘN ×MN , and is exactly the equivalent direct mechanism

ξα : ΘN × MN → ∆(X) which has just been defined. Also in this direct revelation game

model, each player i’s probabilistic beliefs

µD
i (·;mi) ∈ ∆(AD

−i × Θ−i × M−i) = ∆(Θ−i × M−i × Θ−i × M−i) (15)

about each others’ intrinsic and modelling types, together with truthful announcements of

those types, are assumed to correspond exactly to those for the original Bayesian ratio-

nalizable game form. That is, for every player i ∈ N , modelling strategy mi ∈ Mi, and

measurable subset K ⊂ Θ−i × M−i × Θ−i × M−i, it should be true that

µD
i (K;mi) = µi ({ t−i = (θ−i, a−i, m−i) ∈ T−i|(θ−i, m−i, θ−i, m−i) ∈ K };mi) . (16)

The direct revelation Bayesian rationalizable game form is assumed to be completed by

special external beliefs τD = τ ∈ ∆(ΘN×MN ) and also, for each pair (θN , mN ) ∈ ΘN×MN ,

by αD(dθN × dmN |θN , mN ). According to these latter external beliefs, with probability

one, each player i’s action strategy rule should be the identity map on Θi × Mi. That is,

for every pair (θN , mN ) ∈ ΘN × MN and every measurable subset K ⊂ ΘN × MN , the

conditional distribution αD(dθN × dmN |θN , mN ) should satisfy

αD(K|θN , mN ) =
{

1 if (θN , mN ) ∈ K;

0 otherwise.
(17)

With this construction, truthful revelation happens to be a Bayesian rationalizable

strategy in the direct revelation game model. Showing this involves verifying a new version
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of the Bayesian rationality condition (8). Note first that any action strategy in the direct

revelation game model is a reported pair of types (θ′i, m
′
i). According to the external beliefs

τ and α, player i’s type pair (θ′i, m
′
i) corresponds to the mixed strategy αi(·|θ′i, m′

i) defined

by (13) in the completion of the original Bayesian rationalizable game form. So in the direct

revelation game form we have just constructed, the appropriate new version of player i’s

expected utility function (6) is

UD
i (θ′i, m

′
i; θi, mi; τ, α) :=

∫
Ai

Ui(ai; θi, mi) αi(dai|θ′i, m′
i). (18)

Written out in full, UD
i (θ′i, m

′
i; θi, mi; τ, α) is the multiple integral

∫
Ai

∫
X

∫
a−i∈A−i

vi(x; θi) φ(dx; ai, a−i) margA−i
µi(da−i;mi)

×
∫

Θ−i

∫
M−i

τ−i(dθ−i × dm−i | θ′i, m
′
i)

×
∫

b−i∈B−i (θ−i,m−i)

α(dai × db−i | θ′i, θ−i, m
′
i, m−i).

(19)

Note how this is the external expectation, according to the pair of distributions τ and

α(daN |θN , mN ), of player i’s own expected utility, according to the intrinsic type θi and

expectations determined by the model mi. Alternatively, (19) can be written much more

simply as

UD
i (θ′i, m

′
i; θi, mi; τ, α) =

∫
X

vi(x; θi) ξα
i (dx|θ′i, m′

i, mi) (20)

where ξα
i : Θi × Mi × Mi → ∆(X) is defined by

ξα
i (dx|θ′i, m′

i, mi) :=
∫

Ai

∫
A−i

φ(dx; ai, a−i) margA−i
µi(da−i;mi) αi(dai|θ′i, m′

i) (21)

for all i ∈ N and all θi, θ
′
i ∈ Θi, all mi, m

′
i ∈ Mi. The distribution ξα

i (dx|θ′i, m′
i, mi)

therefore represents i’s beliefs about the outcome of the mechanism, were i to have the true

modelling type mi but then choose the mixed strategy αi(dai|θ′i, m′
i) defined by (13) for the

intrinsic type θ′i and the (generally different) modelling type m′
i.

Truthful revelation in the direct revelation game model corresponds to player i’s mixed

strategy αi(·|θi, mi), given that player’s true type. At the end of Section 4 it was seen that

αi(·|θi, mi) attaches probability one to those Bayesian rationalizable strategies in Bi(θi, mi)

which maximize expected utility with respect to all pure strategies ai ∈ Ai. So, as remarked

12



at the end of Section 4, αi(·|θi, mi) is itself an expected utility maximizing mixed strategy

— i.e., it satisfies

αi(·|θi, mi) ∈ arg max
α′

i

{ ∫
Ai

Ui(ai; θi, mi) α′
i(dai) | α′

i ∈ ∆(Ai)
}

. (22)

It follows that no “deceptive” mixed strategy αi(·|θ′i, m′
i) for a different type pair (θ′i, m

′
i)

will increase expected utility, and therefore neither will any corresponding deception in

the direct revelation game form. In other words, (22) implies that the mixed strategy

αi(·|θi, mi) ∈ ∆(Ai) is a member of the set

arg max
α′

i
∈∆(Ai)

{ ∫
Ai

Ui(ai; θi, mi) α′
i(dai) | ∃(θ′i, m

′
i) ∈ Θi × Mi : α′

i = αi(·|θ′i, m′
i)

}
. (23)

This implies that

(θi, mi) ∈ arg max
(θ′

i
,m′

i
)

{ ∫
Ai

Ui(ai; θi, mi) αi(dai|θ′i, m′
i) | (θ′i, m

′
i) ∈ Θi × Mi

}

= arg max
(θ′

i
,m′

i
)

{
UD

i (θ′i, m
′
i; θi, mi; τ, α) | (θ′i, m

′
i) ∈ Θi × Mi

}
,

(24)

where the last line follows from (18). This is the appropriate new version of (8), and proves

that there is indeed an equivalent direct revelation completed Bayesian rationalizable game

model, in which each player’s strategy rule is simply truthful revelation of his type.

So the following revelation principle applies: the only allocation rules from profiles

of players’ types to random outcomes which can be implemented by a completed Bayesian

rationalizable game model (in the sense of having that allocation rule as their equivalent

direct mechanism) are those which are incentive compatible, in the usual sense that truthful

revelation completes the direct revelation Bayesian game mechanism.

Incentive compatibility requires that (24) be satisfied. This imposes restrictions on the

allocation rule which are called incentive constraints. From (18) and (6) it follows that

these constraints can be expressed as

UD
i (θ′i, m

′
i; θi, mi; τ, α) ≤ UD

i (θi, mi; θi, mi; τ, α).

Equivalently, because of (20), they can also be expressed as
∫

X

vi(x; θi) ξα
i (dx|θ′i, m′

i, mi) ≤
∫

X

vi(x; θi) ξα
i (dx|θi, mi, mi). (25)

13



Obviously these incentive constraints depend in general upon the external belief system

specified by τ(dθN × dmN ) and α(daN |θN , mN ). Indeed, the incentive constraints cannot

even be expressed simply in terms of an equivalent direct mechanism. Instead, for each

i ∈ N they involve a separate and artificial mechanism ξα
i (·|θ′i, m′

i, mi), as defined by (21).

Yet no matter what the external belief system may be, truthful revelation is always

believed to be Bayesian rational for each player in the corresponding direct revelation game

form. This is because the external belief system affects only the allocation mechanism

which it is believed that the completed game form implements. It does not affect the set of

Bayesian rationalizable types or any players’ beliefs about other players. Therefore the set

of expected utility maximizing actions remains unchanged.

It has thus been shown that incentive compatibility is a necessary condition for imple-

mentability. The same condition is also sufficient, to the following extent. Suppose that,

because the incentive constraints are satisfied, the equivalent direct mechanism itself can be

set up as a completed Bayesian rationalizable game model, as in (14), with truthful direct

revelation as its action strategy rule. Then it is easily checked that the equivalent direct

mechanism implements itself. Often, however, the choice of an economic system is subject

to additional restrictions which are not modelled within the framework considered here.

6. Concentrating upon Intrinsic Types

If modelling types are not being modelled explicitly, one is led naturally to consider a

“reduced form” model. This has modelling types removed by considering the appropriate

concentrated marginal distributions. The result will be a marginal conditional probability

distribution ξ̂τ,α(dx|θN ) over outcomes, conditional upon the profile of intrinsic types being

θN . The revelation principle still applies for this new “concentrated” equivalent direct

mechanism, as will now be shown.

Formally, assume that the external distribution τ(dθN × dmN ) generates, conditional

upon each intrinsic type profile θN ∈ ΘN , some distribution πτ (dmN |θN ) over the space MN

of modelling type profiles. Suppose too that, for each individual i ∈ N , the same distribution

τ(dθN × dmN ) also generates a marginal distribution τi(dθi × dmi) over Θi × Mi having

the property that, for each intrinsic type θi ∈ Θi, there is some conditional distribution

πτ
i (dmi|θi) over the space Mi of player i’s modelling types.
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With this notation, the equivalent direct mechanism can be expressed as the convolu-

tion ξ̂τ,α : ΘN → ∆(X) of the distributions ξα(·|θN , mN ) and πτ that is given by

ξ̂τ,α(K | θN ) :=
∫

MN

ξα(K|θN , mN )πτ (dmN |θN )

:=
∫

MN

∫
BN (θN ,mN )

φ(K; aN ) α(daN |θN , mN ) πτ (dmN |θN )
(26)

for every Borel set K ⊂ X. Now, however, (24) implies that

θi ∈ arg max
θ′

i

{
UD

i (θ′i, mi; θi, mi; τ, α) | θ′i ∈ Θi

}
(27)

for every mi ∈ Mi. From this it follows that

θi ∈ arg max
θ′

i

{
ÛD

i (θ′i; θi; τ, α) | θ′i ∈ Θi

}
(28)

where

ÛD
i (θ′i; θi; τ, α) :=

∫
Mi

UD
i (θ′i, mi; θi, mi; τ, α) πτ

i (dmi|θi)

=
∫

Mi

∫
Ai

Ui(ai; θi, mi) αi(dai|θ′i, mi) πτ
i (dmi|θi)

=
∫

Mi

∫
Ai

∫
X

∫
A−i

vi(x; θi) φ(dx; ai, a−i) margA−i
µi(da−i;mi)

× αi(dai|θ′i, mi) πτ
i (dmi|θi)

=
∫

X

vi(x; θi) ξ̂τ,α
i (dx|θ′i, θi)

(29)

This is what i’s expected utility would be if his true intrinsic type were θi, but then he

acted in the game form with the mixed strategy αi(dai|θ′i, mi) which matches external

expectations regarding the behaviour of an agent of intrinsic type θ′i. The last line of (29)

involves the mapping ξ̂τ,α
i : Θi ×Θi → ∆(X) whose value ξ̂τ,α

i (dx|θ′i, θi) for any pair (θ′i, θi)

is defined to be the probability distribution

∫
Mi

∫
Ai

∫
A−i

φ(dx; ai, a−i) margA−i
µi(da−i;mi) αi(dai|θ′i, mi) πτ

i (dmi|θi). (30)

This describes what i’s beliefs concerning the outcome x ∈ X would be if i’s true intrinsic

characteristic were θi, but i chose the mixed strategy αi(dai|θ′i, mi) which the external

beliefs implicitly ascribe to an agent with intrinsic characteristic θ′i.
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As in Section 5, a routine argument then shows that θ′i = θi is a Bayesian rationalizable

strategy for each player, so the revelation principle remains valid even after eliminating the

modelling types. The incentive constraints, however, take the new form

ÛD
i (θ′i; θi; τ, α) ≤ ÛD

i (θi; θi; τ, α)

or equivalently
∫

X

vi(x; θi) ξ̂τ,α
i (dx|θ′i, θi) ≤

∫
X

vi(x; θi) ξ̂τ,α
i (dx|θi, θi) (31)

for all i ∈ N and all θi, θ
′
i ∈ Θi. So obviously these incentive constraints depend in general

upon the external belief system τ(dθN × dmN ) and α(daN |θN , mN ) through the induced

distribution of modelling types πτ
i (dmi|θi). In the end, therefore, external beliefs about

modelling types cannot be neglected altogether.

7. Dominant Strategy Incentive Constraints

There is, however, one very important special case in which the outcome is virtually

independent of external beliefs about modelling types, and can be treated as independent

of behaviour types as well. This is when each player i ∈ N has a type dominant strategy

rule a∗
i : Θi → Ai which is optimal against the other players’ strategy rules a∗

j : Θj → Aj

(all j ∈ N \{i}), no matter what their type profile θ−i ∈ Θ−i may be. Thus all the strategy

rules a∗
i : Θi → Ai (all i ∈ N) must together have the property that

∫
X

vi(x; θi) φ(dx; ai, a
∗
−i(θ̄−i)) ≤

∫
X

vi(x; θi) φ(dx; a∗
i (θi), a∗

−i(θ̄−i)) (32)

for each intrinsic type θi ∈ Θi, each action ai ∈ Ai, and for all θ̄−i ∈ Θ−i. Here, of course,

a∗
−i(θ̄−i) denotes the profile 〈a∗

j (θ̄j)〉j∈N\{i}. Note that in this case the best response rule

a∗
i (θi) must be entirely independent of i’s modelling type.

Now let a∗N (θN ) denote the strategy profile 〈a∗
i (θi)〉i∈N . And suppose that the external

expectations α(daN |θN , mN ) concentrate on the point a∗N (θN ) for all θN and all mN —

i.e., suppose they satisfy the restriction that each individual i ∈ N is believed to select the

particular type dominant strategy a∗
i (θi) with probability one. This means that, for every

Borel set K ⊂ AN , one has

α(K|θN , mN ) =
{

1 if a∗N (θN ) ∈ K;

0 otherwise.
(33)
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Then we have a dominant strategy completed game form for which there is an equivalent

direct mechanism

ξ∗(dx|θN ) := φ(dx; a∗N (θN )). (34)

The random outcome of this mechanism therefore depends only upon the intrinsic type

profile θN ∈ ΘN .

Now (32) clearly implies that

∫
X

vi(x; θi) φ(dx; a∗
i (θ

′
i), a

∗
−i(θ̄−i)) ≤

∫
X

vi(x; θi) φ(dx; a∗
i (θi), a∗

−i(θ̄−i)) (35)

for all i ∈ N , all θi, θ
′
i ∈ Θi, and all θ̄−i ∈ Θ−i. Therefore, in the equivalent direct revelation

Bayesian game model, it must be true that

∫
X

vi(x; θi) ξ∗(dx|θ′i, θ̄−i) ≤
∫

X

vi(x; θi) ξ∗(dx|θi, θ̄−i). (36)

So truthful direct revelation is always a dominant strategy. Players’ models no longer

matter, provided each player i believes with probability 1 that all the other players will

choose actions in the range space of those a−i for which there exists some θ−i ∈ Θ−i with

a−i = a∗
−i(θ−i).

In this case both the equivalent direct mechanism and the incentive constraints have

become independent of modelling and behaviour types. However, if there are multiple dom-

inant strategies for some intrinsic type profiles θN ∈ ΘN , both do depend on the selection

rule used to construct a∗N (θN ). These properties of dominant strategy mechanisms, of

course, are just familiar results (as in Dasgupta, Hammond and Maskin, 1979) slightly

adapted to suit the new setting.
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8. Bounded Modelling

In Section 2, a commonly modelled game form was defined so that the players all had

models of the other players in some large common product set MN . This implies that

players must not only have models of each other’s preferences and strategy choices, but

also models of each other’s models, and of each other’s models of each other’s models, . . .

etc., without end. It has been common in Bayesian game theory, following the pioneering

work of Harsanyi (1967–8), to assume that each player can only have a finite number of

possible types, so that the modelling sets Mi are finite. Mertens and Zamir (1985) showed

that this could be an acceptable approximation. Yet still the number of different models

needed for such an approximation might have to be immensely large. So one could well

argue that expecting players to have such rich models of one another imposes excessive

demands upon their modelling and reasoning faculties. This, of course, merely adds to all

the usual and well known reasons for wanting to model players of games as being merely

boundedly rational.

Indeed, one should really think of each player i as having a possibly very limited model

in which the modelled set of other players’ possible models is also possibly very limited

— perhaps even trivial. Players could even simplify their respective models of the game

by leaving out some of the other players altogether. Actually, in some games described by

Markov processes, as in Shefrin (1981), this could even be fully rational, because no player

needs to know who the other players are, but only what Markov process their equilibrium

behaviour generates for those state variables that the player can observe. Of course, a player

could also restrict greatly the modelled strategy and type sets of those other players whom

he does choose to include in his model. He may even simplify his own strategy set. All of

these simplifications are things that real players of real game forms do, as we know full well

from both introspection and more careful psychological studies. Some such simplifications

are clearly necessary for real life game forms which have to be played out in “real time.”

As game theorists or social scientists, however, we are free to allow ourselves the conceit

that our game models can be much richer. But they are still game models in the sense of (2).

Actually, most game theorists’ game models have not been rich enough precisely because

they have ignored psychological reality and modelled players as if they were unboundedly

rational — or, at least, as if they were no less rational than the modeller who is able to draw
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upon the as yet imperfect and incomplete conclusions of many collective highly intelligent

human-years of game-theoretic studies. This is inevitable if we retain the common modelling

assumption. So it is time to abandon that assumption and allow different players to have

different models. We should also allow ourselves as game-theorists to have our own models

which may well differ from all the players’ models. This is precisely what appropriate

generalizations of the game models described by (2) allow, as long as we stay well clear of

the strait-jacket of common modelling.

Accordingly, a boundedly modelled intrinsic game form

G = (N, AN ,ΘN , XN , vN , φN ) (37)

will now be defined in a way which resembles (1), but with some important differences. Of

these, the first is that each player i is allowed to have a modelled action strategy set Ai(θi)

which depends upon his intrinsic type θi ∈ Θi. This reflects the possibility that player i will

model his own set of possible strategies as just a small subset of the true set Ai. Also, each

player i has a modelled outcome set Xi(θi) which depends upon θi, reflecting the possibility

that a player could even model the range of possible outcomes as some proper subset of the

true set X. In a similar way, player i’s von Neumann–Morgenstern utility function vi(x; θi),

which is now only defined on the domain of pairs (x; θi) satisfying x ∈ Xi(θi), could well be

a simplification of the true function, though all this is supposed to be reflected already in

the description of the intrinsic type θi. Finally, each player i also has a boundedly modelled

outcome function φi(dx; aN , θi) ∈ ∆(Xi(θi)) specifying only modelled outcomes as possible.

Later, too, its values will only be used for those strategy profiles aN which i models as

possible.

Next, a boundedly modelled game form

Γ = (N, AN ,ΘN , MN , TN , XN , vN , φN , µN ) (38)

is defined as a boundedly modelled intrinsic game form in which, as in (2) above, each player

i’s type space has become a subset Ti of the Cartesian product Θi ×Ai ×Mi of three spaces

of different subtypes. As before, player i’s behaviour type is any action strategy ai ∈ Ai;

there is no need for any other player to impose the same limitations on his model of i’s

strategy space as those which i places on his own model.
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Even with the additional complications which arise because players’ models can be

bounded, the space Mi of player i’s modelling types can still be constructed along the lines

mentioned earlier in Section 2, provided that both the strategy and intrinsic type spaces

remain as compact, complete and separable metric spaces, for each player i ∈ N . Neverthe-

less, as has been the tradition in discussing Bayesian games of incomplete information, it

will be assumed here that, for each player i ∈ N , there are finite model spaces Mi and well

defined mappings as in (3) above which together determine, for each mi ∈ Mi, a probability

distribution µi(·;mi) over the product set Θ−i × A−i × M−i defined in (4). In fact, when

players use only bounded models, then both the set of possible models Mi and the function

µi which is given by (3) have to be regarded as additional parts of the exogenous description

of the game model. This is quite unlike the unique construction of the players’ Bayesian

type spaces and their expectations which yielded a Bayesian rationalizable game form in

Section 3 above. This need to specify exogenously the sets Mi and the functions µi (all

i ∈ N) is really the main change from the previous analysis of unbounded models.

After this slight change of notation but radical change of interpretation, much of the

previous analysis of Sections 3, 4 and 5 remains valid. Nevertheless there are a few differ-

ences as follows. The first is that player i’s expected utility function becomes

Ui(ai; θi, mi) :=
∫

Xi(θi)

∫
A−i

vi(x; θi) φi(dx; ai, a−i, θi) margA−i
µi(da−i;mi) (39)

instead of (6). This is because of the limitations of i’s model of the game form. Also, i’s

best response correspondence (7) takes the “bounded” form

Bi(θi, mi) = arg max
ai

{Ui(ai; θi, mi) | ai ∈ Ai(θi) } (40)

because player i only considers strategies in the modelled set Ai(θi).

No doubt one should consider more general models of boundedly rationality than those

which presume such bounded Bayesian rationality. Here, however, I shall display some

bounded rationality of my own by limiting the models which I myself consider to those

which presume some degree of Bayesian rationality on the part of all players. In fact I

am assuming that the only bounds on a player’s rationality are limits on the model in

which beliefs are formulated and in which an expected utility maximizing action strategy

is chosen, rather than limits on the player’s ability to maximize expected utility per se. In
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other words, players are assumed to use models no more complicated than those in which

they can solve the appropriate expected utility maximization problem.

In addition, (11) is changed so that a completed boundedly rationalizable game model

is defined as

(N, AN ,ΘN , MN , XN , vN , φN , φ , µN , τ , α) (41)

— i.e., a boundedly rationalizable Bayesian game form which has been made into a complete

model by the addition of an externally assessed outcome function φ, as well as the external

probability distributions τ, α as in Section 4.

Next (14) is modified to become a completed boundedly rationalizable Bayesian game

model of direct revelation

(N, ADN ,ΘN , MN , XN , vN , φN , φD, µDN , τD, αD) (42)

which is equivalent to (41). Of course, the appropriate new version of player i’s expected

utility function (39) is

UD
i (θ′i, m

′
i; θi, mi; τ, α) :=

∫
Ai(θi)

Ui(ai; θi, mi) αi(dai|θ′i, m′
i) (43)

rather than (18). Similar changes have to be made to (22), (23), and (24) in turn. This

implies that the incentive constraints (25) take the slightly new form

∫
X

vi(x; θi) ξ̃α
i (dx|θ′i, m′

i, mi) ≤
∫

X

vi(x; θi) ξ̃α
i (dx|θi, mi, mi). (44)

The only difference is that ξα
i (dx|θ′i, m′

i, mi) has been replaced by ξ̃α
i (dx|θ′i, m′

i, mi), which

is a function whose value is defined everywhere as

∫
Ai(θi)

∫
A−i

φ(dx; ai, a−i) margA−i
µi(da−i;mi) αi(dai|θ′i, m′

i). (45)

In this very slightly revised form, the revelation principle of Section 5 still remains valid.
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9. Desirable Extensions

The above discussion was conducted throughout for game models in normal form, in

which each player is modelled as having a single modelling type mi in the game form,

and as making a single choice of action strategy Ai to last for the entire duration of the

modelled game. Of course, extensive form game models could also be discussed in this

way, by introducing the standard fiction due to Selten (1975) that each potential player

lives only at a single information set before turning into somebody else. But it would

obviously be desirable to use an appropriate concept of (bounded) sequential Bayesian

rationalizability (generalizing Kreps’ and Wilson’s (1982) concept of sequential equilibrium).

Then, as in Kumar’s (1985) “incomplete” revelation principle, the timing of information

revelation becomes an important issue.9

All this suggests to me that the revelation principle is very much more broadly applica-

ble than has generally been realized, but there is a high price. Those allocation mechanisms

or social choice rules which can be implemented by completed rationalizable Bayesian game

models generally have outcomes which depend on player’s modelling and behaviour types

as well as on intrinsic types such as preferences and endowments. Multiple outcomes are

indeed possible for any given profile of intrinsic types. It is true that adding modelling

and behaviour types makes the outcome unique for each profile of entire types, but then

external beliefs about agents’ behaviour types affect both the mechanism which a game

form is thought to implement and the incentive constraints which that mechanism must

satisfy. Perhaps economists’ models of the whole economy or of particular parts of it really

do need to treat agents’ modelling and behaviour types as being at least in part exogenous,

rather than wholly endogenous as in standard models of “rational expectations.”

This conclusion seems to be reinforced by a considerable body of relevant recent work.

For example, McAllister (1988) and Rahi (1993) in particular demonstrate the general

multiplicity of rational expectations equilibria. Then Kirman (1983) and other papers in

Frydman and Phelps (1983), as well as those of Marcet and Sargent (1988, 1989) and Kurz

9 See also the recent work on “renegotiation-proof equilibria” by Laffont and Tirole (1987, 1988a,
1988b), Dewatripont (1988), Hart and Tirole (1988), as well as related work by Freixas, Guesnerie
and Tirole (1985), Malcomson and Spinnewyn (1988), etc. Townsend (1988) specifically discusses
problems with the revelation principle in a dynamic setting, but appears to be unaware of Kumar’s
work.
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(1988), all consider how even fully rational agents are likely to face difficulties in learning

to acquire rational expectations. Also, Plott and Sunder (1988), together with Smith,

Suchanek and Williams (1988), show how difficult it can be for real people to acquire

rational expectations even in laboratory experiments, which are surely much less complex

than real economies. Most recently, the published papers by Fudenberg and Kreps (1993)

and by Jordan (1993) point out some problems which players face in learning to play mixed

strategy Nash equilibria in particular. See also the series of discussion papers by Nyarko

(1992a, b). These conclusions may at first seem to contradict those of Kalai and Lehrer

(1993), but do not really do so because the latter authors rely on rather special assumptions.

In the end it seems that the only satisfactory alternative to explicit consideration of

modelling and behaviour types in the theory of mechanism design is to construct allocation

mechanisms which not only ensure that all (sequential, or subgame perfect) Nash equilib-

rium outcomes are acceptable, but so too are all those which can emerge from rationalizable

strategies, etc. Such are the type dominant strategy mechanisms considered in Section 7.

10. Conclusion

The revelation principle can be regarded as saying that, by the time agents have ma-

nipulated the economic system or any other game form as much as they please, the resulting

equivalent direct mechanism cannot possibly be manipulated any further. With this simple

interpretation in mind, it should not be at all surprising how robust this principle turns

out to be. The main difficulty, in fact, comes in constructing the equivalent direct mecha-

nism. The natural construction presented in this paper depends upon external prior beliefs

over the set of agents’ (boundedly) Bayesian rationalizable strategies in the game form. For

someone trying to construct an optimal game form, such prior beliefs are an entirely natural

Bayesian description of uncertainty regarding agents’ strategic choices in that game form.

This paper has shown that there is a sense in which the revelation principle survives,

even when agents do not share the same prior distribution over one anothers’ intrinsic types,

strategy choices, and models, and even when they use models sufficiently simple for them to

be able and willing to maximize expected utility within them. Nevertheless, the principle

becomes significantly weakened. The equivalent direct mechanism to which the revelation

principle applies is generally sensitive to agents’ models. Moreover, this mechanism, as well
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as the incentive constraints which it has to satisfy, are both sensitive to the specification of

external beliefs concerning which Bayesian rationalizable strategies the agents will choose.

This conclusion leaves us with just two alternatives. Either players’ action strategies

must be modelled as functions of their modelling and behaviour types, and the possible

dependence of the economic allocation upon such types duly recognized. For the case

of Dutch auctions, this dependence was illustrated in Hammond (1990). Alternatively,

attention must be restricted to allocation mechanisms which can be implemented with type

dominant strategy game forms.

In fact it seems to me that dominant strategy mechanisms have generally been neglected

for too long. This may be due to the (highly deserved) attention paid to such early negative

results as those of Hurwicz (1972, 1973), Gibbard (1973, 1977), Satterthwaite (1975), and

Barberà (1979) for general economic or social environments. It may be due to the difficul-

ties of getting Groves transfer schemes to balance and even to avoid bankruptcy in some

cases, even for the very restricted domain of quasi-linear preferences (Green and Laffont,

1979). Much of this work, however, looked only for mechanisms which achieve first best

Pareto efficient outcomes despite incomplete information. Or else failed to consider random

mechanisms which make use of cardinal information regarding individuals’ von Neumann–

Morgenstern utility functions. Often both these restrictions were imposed together. More

recently, however, Grossman and Hart (1983), Prescott and Townsend (1984a, b), Townsend

(1987), and others have all shown, for environments with finite decision and type spaces,

how to set up and solve linear programs which determine dominant strategy mechanisms

that are Pareto efficient subject to incentive constraints, or incentive constrained Pareto ef-

ficient. Moreover, Page’s (1987, 1988) work in particular suggests how extensions to larger

decision and type spaces may be possible.
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W. Armbruster and W. Böge (1979), “Bayesian Game Theory,” in Game The-

ory and Related Topics edited by O. Moeschlin and D. Pallaschke (Amsterdam:

North-Holland), pp. 17–28.

R.J. Aumann (1976), “Agreeing to Disagree,” Annals of Statistics, 4: 1236–1239.

R.J. Aumann (1987), “Correlated Equilibrium as an Expression of Bayesian Rationality,”

Econometrica, 55: 1–18.
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