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ABSTRACT

In economies with adverse selection, Arrow-Debreu contingent commodity contracts must

satisfy incentive constraints. Following Prescott and Townsend (in Econometrica, 1984),

an Arrow-Debreu economy is considered with a continuum of agents whose feasible sets are

artificially restricted by imposing these incentive constraints. Equilibria in such an economy

must be incentive-constrained Pareto efficient. It is shown that deterministic equilibria of

this kind are achievable through “perfected” option markets with non-linear pricing in a

way which makes the incentive constraints self-enforcing. Rothschild, Stiglitz and others

have shown, however, that these equilibria must be vulnerable to free entry by profit seeking

firms.



PERFECTED MARKETS

1. Introduction.

It is becoming generally well understood how adverse selection and moral hazard cre-

ate incentive constraints which restrict what is truly feasible in economies with private

information. An adequate revised general equilibrium theory is still lacking, however. So

far, the most comprehensive attempt in this direction is that of Prescott and Townsend

(1984a, b). They undertook a systematic exploration of what allocation mechanisms in a

general continuum economy are ex ante Pareto efficient among the class of those which

can be implemented in dominant strategies, and sought a price system by means of which

such allocation mechanisms can be decentralized. When they tried to deal with adverse se-

lection problems in which agents could trade after acquiring private information, however,

they were unable to construct a satisfactory price system for decentralizing constrained

efficient allocations of resources. In unpublished preliminary versions of their paper, they

did consider various new expansions of the commodity space and were able to prove some

decentralization results. But as Prescott and Townsend (1984a, p. 44) frankly conclude,

“Thus equilibria of this kind fail to provide much predictive content and have undesirable

normative properties as well.” Nor is this too surprising, given the work of Rothschild and

Stiglitz (1976) and many successors on the necessary inefficiencies which competition can

create when there is adverse selection.

Here I will present a form of decentralization which differs from those considered by

Prescott and Townsend — even, it seems, from those considered in the earlier unpublished

versions of Prescott and Townsend (1984a). The decentralization relies on a very special

form of option market with non-linear pricing. No predictive content is claimed for this

kind of “perfected” market. But the normative properties will be everything that could be

desired. Both the first and the second fundamental efficiency theorems of welfare economics

will be true, subject to the usual kind of qualifications regarding the second theorem, and

allowing for some difficulties which arise because incentive constraints can cause local sati-

ation in the relevant feasible sets. Moreoever, perfected option market equilibria (POME’s)

will lie in a suitably defined version of the core, and that core will be equivalent to the set

of POME allocations for the continuum economy which I shall consider throughout.
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Section 2 below presents the basic model of an adverse selection economy with a contin-

uum of agents. In fact the model is derived by introducing adverse selection into a version

with a continuum of agents of Malinvaud’s (1972, 1973) description of a large economy with

individual uncertainty. It reduces to the Rothschild and Stiglitz (1976) model of insurance

markets as a special case when there is a single physical commodity and two different types

of agent with differing probabilities of experiencing each of two individual states.

Thereafter Section 3 explains why the incentive constraints caused by adverse selection

create problematic externalities between different types of the same agent. Such exter-

nalities, moroever, generate fundamental non-convexities of a kind which typically prevent

decentralization of efficient allocations through any linear price system. Individuals may

also have preferences which are locally satiated at some points. Section 4, however, shows

that a certain form of “coalitional local non-satiation” is satisfied.

Section 5 then takes us part way toward resolving the problems posed by these exter-

nalities. It describes both uncompensated and compensated Walrasian equilibria in which

agents are artificially constrained to internalize the externalities which they would other-

wise create. As shown in Sections 6 and 7, these artificially constrained equilibria have

most of the usual efficiency and even core properties of Walrasian allocations in continuum

economies — the only difference comes in the first efficiency theorem of welfare economics,

which holds only in a somewhat weakened form because individuals’ preferences may be

locally satiated in the space of incentive compatible allocations. Under standard assump-

tions, Section 8 demonstrates the existence of a weakened form of Walrasian equilibrium

— indeed, it shows how there are likely to be a vast profusion of such equilibria, in the

presence of adverse selection. Again, a weakening of the standard definition is necessary

because individual agents’ preferences may be locally satiated.

The heart of the paper comes in Section 9. This demonstrates how agents can be

induced to internalize voluntarily the externalities due to incentive constraints. This is

done by means of suitably designed markets for “insurance securities” which pay a specified

number of units of the numéraire commodity contingent upon each observed individual

state of the world. These are “perfected” option markets.

Section 10 concludes by discussing possible extensions and limitations to the scope of

perfected markets.
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2. A Continuum Economy with Adverse Selection

Consider a continuum economy with an atomless measure space of agents (A,A, α), as

in Aumann (1964, 1966) and Hildenbrand (1974).

Next, as in the individual uncertainty model of Malinvaud (1972, 1973) and the insur-

ance model of Rothschild and Stiglitz (1976), suppose that there is a finite set S of possible

individual states s, each of which is observable — for example, whether the individual suf-

fers an accident or has some other reason to make a legitimate insurance claim. Indeed,

where different possible kinds of accident are possible, s should determine what kind occurs,

and so what an insurance company’s liability must be. It will be assumed that these are ex

post states of the world, determined after all market transactions have taken place.

Suppose that there is also a finite set T of possible individual types or characteristics

t which are private information, so not observable by any other agent such as an insurance

company. For example, t could determine how likely the individual is to experience an

accident of each possible degree of severity, depending on the value of s. For simplicity it

is assumed that each agent has the same type space T . These are like ex ante states of

the world, in that they are supposed to be determined before any market transactions have

taken place.

Combining the elements of the last three paragraphs gives us three different sets of

“contingent” economic agents. First there is A, which can be regarded as the set of possible

agent labels. Second there is A × T , which is the set of possible type-contingent agents,

indexed by both a personal label a and an unobservable type t. Third there is the set

Θ := A × T × S, which is the set of possible state- and type-contingent agents, indexed by

a personal label a, by an unobservable ex ante type t, and also by an observable ex post

individual state s.

Actually, in order to resolve the continuum of independent random variables problem

noticed by Gale (1979), Feldman and Gilles (1985) and Judd (1985), the set of agents

is allowed to be random. Specifically, suppose that there is a joint probability measure

ν ∈ M(Θ) over the set of all possible state- and type-contingent agents, and that (with

probability one) ν is equal to the product measure α× µ for some well-defined distribution

µ ∈ ∆(T × S) on the finite set T × S of possible pairs (t, s) consisting of agents’ types and

states. Moreover, suppose that there is a well-defined distribution λ ∈ ∆(T ) on the finite
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set T of possible agents’ types t, and that each t ∈ T determines conditional probabilities

π(s|t) over the finite set S of possible agents’ states s. Thus it is being assumed that

µ(t, s) = π(s|t)λ(t) for all pairs (t, s) in the finite set T × S.

It will now simply be assumed that the law of large numbers holds and induces perfect

risk-pooling. So there can be no aggregate uncertainty about the distribution of types and

states for the agents in any non-null measurable set K ∈ A. In fact, with probability one, a

fraction α(K) of all the agents in the economy have labels in K. Of these, a fraction λ(t) are

of unobservable type t, and a fraction µ(t, s) have the type-state pair (t, s). This, it should

be noted, is a different formulation of a random economy from that due to Hildenbrand

(1971) and to Bhattacharya and Majumdar (1973) because they had a fixed set of agents,

independent of the state of the world. Here, by contrast, in any finite approximation to the

continuum economy, the set of agents itself is random.

Now let there be a finite set G of physical commodities. Then each agent a of type t in

(individual) state s has three different possible contingent net trade vectors to be considered.

The first and most limited is the actual ex post (t, s)-contingent net trade vector xats ∈ �G,

which is simply a single vector of physical commodities. The second is the ex ante state-

contingent net trade vector xat ∈ �GS , which applies when agent a is of type t. The third

and most extensive is the complete contingent net trade vector xa ∈ �GTS , which is the

type- and state-contingent net trade vector for agent a from the point of view of any outside

observer, or other agent in the economy, who does not know agent a’s true type.

It is assumed that each agent a ∈ A has a type-independent set Xa ⊂ �GS of physically

feasible state-contingent net trade vectors, whose typical member is xat, for any t ∈ T .

Moreover, make the standard assumption that the graph { (a, x) ∈ A × �GS | x ∈ Xa } of

the feasible set correspondence X : A 
→→�GS is measurable. Then there is also a Cartesian

product set XT
a :=

∏
t∈T Xat ⊂ �GTS of physically feasible type- and state-contingent

net trade vectors, where each Xat is a copy of Xa. A typical member of XT
a is xa. Note

that endowments are not considered explicitly. Also, the assumption that the feasible net

trade set Xa is independent of t avoids the complications which arise when feasible sets or

endowments are unknown — see, for instance, Hammond (1989).

Suppose too that each agent a ∈ A has, for each type t ∈ T , a continuous type-

contingent utility function Uat(xat), defined for all state-contingent net trade vectors xat in
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the feasible net trade set Xa, and taking the expected utility form Uat(xat) ≡
∑

s∈S π(s|t) uats(xats)

for some state- and type-dependent von Neumann-Morgenstern utility function uats(·). Sup-

pose also that, for each fixed type t ∈ T and each fixed state-contingent commodity vector

xS ∈ �GS , Uat(xS) is measurable as a function of a wherever it is defined because xS ∈ Xa.

To complete the description of the economy, it suffices to specify the resource balance

constraint. In fact, after allowing aggregate free disposal, a physically feasible allocation

in the economy is given by an A-measurable and so α-integrable function x : A 
→ �GTS

satisfying the weak vector inequality∫
A

∑
t∈T

∑
s∈S

µ(t, s) xats α(da)<−− 0 ∈ �G,

where α(da) indicates integration with respect to a, using the measure α on A. This

expresses the restriction that the mean over all agents of each agent’s expected net trade

vector cannot have any positive component. Note that the law of large numbers ensures

that, with probability one, any allocation satisfying this inequality is feasible ex post , after

all the agents’ states have become known, and no matter what their true types happen to

be.

In order to permit inequalities such as the last to be written more succinctly, it is useful

to introduce the notation µ • z to indicate the double sum
∑

t∈T

∑
s∈S µ(t, s) zts whenever

z ∈ �GTS . If z is regarded as a function z : T × S 
→ �G and so a random variable with

distribution corresponding to the probabilities µ(t, s) on T×S, then µ•z is just the expected

value of z. With this notation, the above resource balance constraint reduces to∫
A

(µ • xa)α(da)<−− 0.

The R-S model of Rothschild and Stiglitz (1976) is an example of such a continuum

economy with adverse selection. Indeed, suppose that there is a single physical commodity.

Suppose that t ∈ T denotes the probability of having an accident, where T is some finite

subset of the line interval [0, 1]. Let S consist of the two states s = 0 and s = 1, where s = 1

signifies that an accident has occurred, and s = 0 signifies that it has not. Then let c0 denote

consumption if there is no accident, and let c1 denote consumption if there is an accident.

Suppose also that all individuals of all types have the same endowments e0, e1 of the only

consumption good, depending on whether or not they suffer an accident. Then, provided
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that agent a’s type is t, a’s net trade vector is the pair (xat0, xat1) := (cat0 − e0, cat1 − e1).

Because the agent’s type is private information, however, it is appropriate to consider the

entire state contingent net trade vector xa = 〈 (xat0, xat1) 〉t∈T . This is a point in the space

�2T of complete insurance contracts contingent on not only whether there is an accident,

but on now susceptible agent a is to having an accident. All agents are assumed to have

the same type-contingent expected utility function

Ut(x0, x1) ≡ (1 − t) v0(x0 + e0) + t v1(x1 + e1).

This function is defined for all (x0, x1) satisfying the two constraints x0 ≥ −e0 and x1 ≥ −e1

which together ensure that consumption in each possible individual state is non-negative.

Here v0(·) and v1(·) are the two state-contingent utility functions. Finally, the allocation

x : A 
→ �2T satisfies the aggregate resource balance constraint in the economy if and only

if ∫
A

∑
t∈T

λ(t)[(1 − t)xat0 + t xat1]α(da) ≤ 0,

where λ(t) denotes the proportion of agents in the economy whose probability of an accident

is t.

3. Incentive Constraints and Externalities

Because each agent’s type is private information, not every physically feasible allocation

is truly feasible. True feasibility requires in addition that the physically feasible allocation

x in the adverse selection economy should also satisfy the incentive constraints Uat(xat) ≥
Uat(xat′) for all pairs t, t′ ∈ T and for almost all a ∈ A. These constraints express the

requirement that, if agent a is really of type t, then agent a cannot gain by acting deceptively

in the economic system in a way which obtains the net trade vector of an agent whose true

type is t′. In the special case of the R-S model described above, the incentive constraints

take the form

(1 − t) v0(xat0 + e0) + t v1(xat1 + e1) ≥ (1 − t) v0(xat′0 + e0) + t v1(xat′1 + e1)

for all pairs t, t′ of types in T .

In future, Fa will be used to denote the set of type- and state-contingent net trade

vectors for agent a which are physically feasible and also satisfy the incentive constraints
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above — i.e.,

Fa := {xa ∈ XT
a | ∀t, t′ ∈ T : Uat(xat) ≥ Uat(xat′) }.

In reality, then, Fa denotes the set of feasible net trades for agent a, and so for the whole

set {a} × T of different type-contingent versions of agent a. Of course, only one agent in

the set {a} × T actually participates in the economy. Nevertheless, other agents, insurance

companies, etc., are unable to distinguish between the different type-contingent versions of

agent a, and so all must be included as potential participants in the economy.

In addition, all type-contingent agents in the set {a}×T must effectively be consuming

the same type- and state-contingent net trade vector xa ∈ Fa, since that is all that other

agents, insurance companies, etc., can observe. In this respect there is a form of externality

because the incentive constraints can only be satisfied if the net trade vector xat of any

one type-contingent agent (a, t) (t ∈ T ) puts an upper bound on the net trade vectors of

all the other type-contingent agents (a, t′) (t′ ∈ T \ {t}). So the economy is very like one

with local public goods being provided at a continuum of localities indexed by a ∈ A, with

a set {a} × T of individuals living in each locality a. Here, however, individuals have no

opportunity of changing their label a ∈ A, whereas in most models of local public goods

since the work of Tiebout (1956) — see also Bewley (1981) and the literature cited there

— individuals do have the option of changing their locality.

The extra incentive constraints typically create nonconvexities in the feasible sets Fa,

as Prescott and Townsend (1984a), amongst others, have pointed out. Indeed, such non-

convexities are illustrated in Figure 1, for the case of one physical commodity, two observable

individual states of the world, and two unobservable types t1 and t2. The two axes indicate

net trade quantities in each of the two different observable states s1 and s2. The point

X1 represents the state contingent net trade vector of a typical agent a when of type t1;

the two points X2 and X ′
2 represent two different state contingent net trade vectors of a

type t2 agent. The indifference curves I1 and I2 of these two types of agent through the

respective net trade allocations X1 and X2 are drawn in. The two type- and state-contingent

allocations xa = (X1, X2) and x′
a = (X1, X

′
2) in the space �4 of such allocations are both

clearly incentive compatible when there are only these two possible types. Yet the convex

combination (X1, 1
2X2 + 1

2X
′
2) is incentive incompatible, because an agent of type t1 could

then gain by claiming to be a type t2 agent. Thus neither the set Fa of incentive compatible
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allocations, nor the subset Fa(xa) of such allocations which make neither type worse off than

at xa, is convex. The same diagram also shows how neither set may satisfy the usual free

disposal assumption of general equilibrium theory; the type- and state-contingent allocation

x′′
a = (X1, X

′′
2 ) ∈ �4 has X ′′

2 >> X2 and yet is not incentive compatible. Indeed, there

obviously exists an X ′
1 >> X1 near enough to X1 so that the type- and state-contingent

allocation (X ′
1, X

′′
2 ) has (X ′

1, X
′′
2 ) >> (X1, X2) in �4 and yet (X ′

1, X
′′
2 ) is not incentive

compatible.

This failure of the free disposal assumption in the set Fa of incentive compatible con-

tracts means that we should carefully reconsider whether agents’ preferences satisfy local

non-satiation. In fact, they need not. To see why, consider a specific example in which the

economy has two physical commodities, one individual state (i.e., no individual uncertainty

at all) and two types, T = { 1, 2 }. Suppose also that the two possible types of an individual

have piecewise linear, concave, and strictly increasing utility functions on �2 which are

8



given by

U1(x) ≡ min { p (x − a), 2q (x − b) }

U2(x) ≡ min { 2p (x − a), q (x − b) }

where a = (1,−1), b = (−1, 1), p = (1, 2), and q = (2, 1). Then I claim that the allocation

x̂ ∈ �4 with x̂1 = a and x̂2 = b is a point of local satiation in the relevant incentive-

constrained feasible set. For p (b − a) = q (a − b) = 2 > 0 and so, for all (x1, x2) in the

neighbourhood of x̂, the utility functions take the approximate linear forms

U1(x1) ≡ p (x1 − a); U1(x2) ≡ 2q (x2 − b);

U2(x1) ≡ 2p (x1 − a); U2(x2) ≡ q (x2 − b).

Therefore the two incentive constraints U1(x1) ≥ U1(x2) and U2(x2) ≥ U2(x1) become

p (x1 − a) ≥ 2q (x2 − b); q (x2 − b) ≥ 2p (x1 − a)

in such a neighbourhood. These inequalities clearly imply that

p (x1 − a) ≥ 2q (x2 − b) ≥ 4p (x1 − a) ≥ 8q (x2 − b)

which can only be satisfied, of course, if both p (x1 − a) ≤ 0 and q (x2 − b) ≤ 0. Therefore

the incentive constraints imply that U1(x1) ≤ U1(a) and U2(x2) ≤ U2(b) for all allocations

(x1, x2) in the neighbourhood of x̂ = (x̂1, x̂2) = (a, b) — i.e., they imply local satiation.

Globally, however, any type-contingent net trade vector x̃ ∈ �4 with x̃1 = x̃2 ≥ (1, 1)

is both Pareto superior and incentive compatible. So the satiation is local and not global.

And in a continuum economy, any coalition with a few extra resources can use them to move

a small proportion of its members up to x̃, while leaving all the others at x̂. Accordingly,

even though individuals may be locally satiated, coalitions are usually not, as will be shown

in the next section.

Part of Prescott and Townsend’s (1984a, 1984b) distinctive contribution was to show

how lotteries are useful in overcoming the individual non-convexities which incentive con-

straints create. Of course lotteries are indeed likely to be part of any ex-ante Pareto efficient

allocation. To avoid working with infinite dimensional spaces of measures over the com-

modity space �GTS , however, I shall consider here only “pure” rather than “mixed” or

randomized allocations. Apart from the need to allow for such individual non-convexities,
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this section has shown how incentive constraints typically mean that, for individuals, we

cannot just assume free disposal as usual, or even the much weaker standard condition of

local non-satiation.

4. Coalitionally Monotone Preferences

Nevertheless, in this continuum economy, make the standard assumption that the pref-

erences of each type-contingent agent in A × T are weakly monotone in the space �GS of

state-contingent net trade vectors — i.e., that if xat ∈ Xa and if z is any strictly positive

vector of �GS
++, then xat + z ∈ Xa and also Uat(xat + z) > Uat(xat). Then it can be shown

that, for any coalition K ⊂ A of agents with α(K) > 0, their aggregate preferences in the

space �GTS are weakly monotone in the following sense. Given any measurable function

x : K 
→ �GTS satisfying xa ∈ Fa (a.e. in K) which defines an incentive compatible type-

and state-contingent allocation to the members of K, and given any strictly positive vec-

tor y ∈ �G
++, no matter how small, there exists an alternative Pareto superior allocation

x′ : K 
→ �GTS to the members of K, with: (i) x′
a ∈ Fa; (ii) Uat(x′

at) ≥ Uat(xat) (for all

t ∈ T , for a.e. a ∈ K); (iii) for some subset K ′ ⊂ K of positive measure, Uat(x′
at) > Uat(xat)

(for a.e. a ∈ K ′ and all t ∈ T ); and (iv)
∫

K
[µ•(x′

ats−xats)]α(da)<−− y. Thus, if any coalition

K is allowed to have a little bit more of every physical commodity on aggregate, then it

can generate a strict Pareto improvement for almost all its own members.

To show how this follows from weak monotonicity in the space �GS , consider any

combination of: (i) a coalition K ⊂ A of agents with α(K) > 0; (ii) any measurable

function x : K 
→ �GTS satisfying xa ∈ Fa (a.e. a ∈ K); (iii) any strictly positive vector

y ∈ �G
++. Then take two small positive numbers ε and δ, and construct both a measurable

subset Kε ⊂ K for which α(Kε) < ε α(K), as well as a new allocation x̂ : K 
→ �GTS , by

taking

x̂at :=

{
arg maxt′∈T {Uat(xat′ + δy) } if a ∈ Kε;

xat otherwise.

This construction obviously gives rise to a new allocation satisfying the incentive constraints

which are embodied in the definition of each set Fa. Moreover, the new allocation to the

members of K is feasible, and makes all the members of the coalition Kε better off without

changing the net trade vector of any member of K \Kε. Finally, because both S and T are
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finite sets, the new allocation also satisfies the feasibility constraint∫
K

[µ • (x̂ats − xats)]α(da) <−− y

provided that both ε and δ are small enough positive numbers. This confirms coalitional

local monotonicity.

5. Equilibrium with Internalized Externalities

The usual way of achieving Pareto efficient equilibria with externalities and public

goods is to price those externalities (with “Pigovian taxes”) and those public goods (with

Lindahl prices), as well as the usual physical commodities. In our economy with adverse

selection, this approach would require each type-contingent agent (a, t) ∈ A × T to pay for

the net trade vectors of all the type-contingent agents in the set {a} × T . Usually this will

not work, however, because of the non-convexities which arise in the incentive-constrained

feasible sets Fa for each agent a ∈ A. Accordingly, a more restrictive approach must be

adopted, resembling Foley’s (1967) “political-economic equilibrium” for an economy with

public goods. Instead of having Lindahl prices to clear markets for public goods, Foley’s

definition restricts changes in the vector of public goods and in the lump-sum taxes used

to finance their production to those which are agreed unanimously because they appear to

generate Pareto improvements when each individual regards private goods prices as fixed.

In similar fashion, given any specific contingent reference allocation x̂a ∈ �GTS to the

different possible types of agent a, it will be assumed that agent a is then restricted to the

set

Fa(x̂a) := {xa ∈ Fa | ∀t ∈ T : Uat(xat) ≥ Uat(x̂at) }

of incentive compatible contingent allocations xa ∈ �GTS which are Pareto non-inferior

for all the type-contingent agents (a, t) ∈ A × T . Thus the earlier incentive constraints

on type-contingent allocations have now been supplemented by what amount to “efficiency

constraints”.

Now all the ingredients are available for the modified Arrow-Debreu economy which I

shall construct. The commodity space is �GTS , the set of all type- and individual state-

contingent net trade vectors in the set G of physical commodities. There is a continuum

of (random) type-contingent agents in the set A × T . A given incentive-compatible and
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physically feasible reference allocation x̂ : A 
→ �GTS will always be postulated — it is

assumed that all the different possible types of agent a share the same reference allocation

x̂a ∈ Fa. Then the different type-contingent agents in {a}×T all have the same set Fa(x̂a)

of feasible net trades in Xa ⊂ �GS , but different preferences represented by a continuous

and weakly increasing utility function Uat : Xa 
→ �.

In general, price vectors would be arbitrary non-negative vectors in �GTS
+ , although

possibly normalized because only relative prices matter. In the particular insurance economy

being considered here, however, the continuum of agents ensures perfect risk pooling, so

it suffices to have a single price vector p ∈ �G
+, with type- and state-contingent prices

being derived by multiplying this price vector by the appropriate probabilities µ(t, s). Thus

the value of an agent a’s typical type-contingent net trade vector xa ∈ �GTS is given by

p (µ•xa), which is just the expected value at prices p of agent a’s physical net trade vector.

Various concepts of Walrasian equilibrium can now be defined. The definitions are

slightly different from the standard ones. This is because of the incentive-constraints, be-

cause of the externalities which those constraints cause, and also because of the efficiency

constraints which are being used to internalize these externalities. In addition, the follow-

ing definitions will allow for lump-sum redistribution of income, as required in the usual

second efficiency theorem of welfare economics. The usual definition without lump-sum

redistribution reduces to a special case.

A compensated (Walrasian) equilibrium (with transfers) is an allocation x̂ : A 
→ �GST ,

together with a price vector p ∈ �G
+, such that:

(i) for a.e. a ∈ A, both x̂a ∈ Fa and also xa ∈ Fa(x̂a) =⇒ p (µ • xa) ≥ p (µ • x̂a);

(ii)
∫

A
(µ • x̂a) α(da)<−− 0, p >−− 0 (comp).

Part (i) of the above definition has (almost) every agent a minimize expenditure at the

appropriate price system, subject to the incentive constraints and the constraint that no

type of agent a can be made worse off than with the allocation x̂; part (ii) is the usual market

clearing condition, including the rule of free goods — i.e., if any good is in excess supply,

its price must be zero. The above definition also presumes that lump-sum redistribution is

allowed; if it is not, then the additional requirement that p (µ • x̂a) = 0 (a.e. a ∈ A) would

have to be imposed.
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Compensated equilibria are useful because it is easier to prove results such as price

characterizations of efficient or core allocations using such equilibria instead of the more

customary uncompensated equilibria which will be defined next. Indeed, an uncompensated

(Walrasian) equilibrium (with transfers) is an allocation x̂ : A 
→ �GST , together with a

price vector p ∈ �G
+, such that the market clearing and rule of free goods condition (ii)

above is satisfied, as well as the following strengthened version of (i):

(i∗) for almost every a ∈ A, both x̂a ∈ Fa and also, for any other xa ∈ Fa(x̂a), if there

exists some t∗ ∈ T for which Uat∗(xat∗) > Uat∗(x̂at∗), then it must be true that

p (µ • xa) > p (µ • x̂a).

This is now a form of preference maximization, using the incomplete Pareto preference

relation for the entire set of type-contingent agents {a} × T . It requires that any Pareto

improvement to the allocation x̂ for this set of agents must be too expensive, given the

appropriate price system. If there is no lump-sum redistribution, then the additional re-

striction that p (µ • x̂a) = 0 (a.e. a ∈ A) must be met, just as for compensated equilibrium.

In standard general equilibrium theory, any uncompensated equilibrium will also be

a compensated equilibrium because consumers have locally non-satiated preferences ev-

erywhere in their feasible sets. Unfortunately, incentive constraints make this standard

implication false by allowing points of local satiation in agents’ feasible sets. This will com-

plicate the statement of the first efficiency theorem in the next section. It also means that

not even compensated equilibrium can be shown to exist, in general. Instead, the following

concept is used in the existence proof presented in Section 8 below.

A weak (Walrasian) equilibrium (with transfers) is an allocation x̂ : A 
→ �GST , to-

gether with a price vector p ∈ �G
+, such that the market clearing and rule of free goods

condition (ii) above is satisfied, as well as the following weakened version of (i):

(i′) for almost every a ∈ A, both x̂a ∈ Fa and also, for any other xa ∈ Fa(x̂a), if there

exists some t∗ ∈ T for which Uat∗(xat∗) > Uat∗(x̂at∗), then it must be true that

p (µ • xa) ≥ p (µ • x̂a).

This is a weakening of the corresponding (i) and (i∗) in the definitions of both compensated

and uncompensated equilibrium. The hypothesis of (i′) is the same as that of (i∗), but

stronger than that of (i), because at least one weak inequality has become strict. The
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conclusion of (i′) is the same as that of (i), but weaker than that of (i∗), because the

inequality has become weak instead of strict. If preferences for any agent happen to be

locally non-satiated everywhere in the budget set

{xa ∈ Fa | p (µ • xa) ≤ p (µ • xa) },

then a weak equilibrium must be a compensated equilibrium for that agent, but need not be

an uncompensated equilibrium. If there is no lump-sum redistribution, then the additional

restriction that p (µ • x̂a) = 0 (a.e. a ∈ A) must be met, just as it must be for compensated

and for uncompensated equilibrium without transfers.

6. Efficiency Theorems

An allocation x̂ : A 
→ �GTS is said to be Pareto efficient if there is no other physically

feasible allocation x : A 
→ �GTS satisfying both the incentive and efficiency constraints

which makes a non-null set of type-contingent agents (a, t) ∈ A × T strictly better off. In

other words, there must be no alternative allocation x : A 
→ �GTS such that:

(i) xa ∈ Fa(x̂a) (a.e. a ∈ A);

(ii)
∫

A
(µ • xa) α(da)<−− 0;

(iii) there is a measurable subset K ⊂ A × T , whose measure [α × λ](K) is positive, such

that Uat(xat) > Uat(x̂at) for all (a, t) ∈ K.

Any allocation x satisfying these three conditions is said to be Pareto superior or a Pareto

improvement to x̂.

Note that these are the suitable definitions of Pareto efficiency and of Pareto improve-

ments, bearing in mind the incentive constraints which arise because of private information.

Also, all potential type-consistent agents should be considered separately, in an economy

where each agent already knows his type when transactions are being arranged. An al-

ternative concept of ex ante Pareto efficiency, taking into account uncertainty about each

agent’s type, would be appropriate if agents were still uncertain about their own types.

Because individual type-contingent agents may have locally satiated preferences, even

this concept of Pareto efficiency is rather too strong to be satisfied by all (uncompensated)
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Walrasian equilibria, with or without lump-sum redistribution. Instead, given any measur-

able set of agents K ⊂ A, the allocation x̂ : A 
→ �GTS is said to be weakly K-Pareto

efficient if there is no Pareto superior allocation x : A 
→ �GTS such that, a.e. a ∈ K,

there exists some type t ∈ T for which Uat(xat) > Uat(x̂at). In other words, no Pareto

improvement can possibly benefit (almost) every agent of the set K. When K is empty,

this is the usual definition of Pareto efficiency. When K = A, this is a standard definition

of weak Pareto efficiency, requiring the absence of any alternative feasible allocation which

makes (almost) every agent better off simultaneously.

First Efficiency Theorem. Suppose that the allocation x̂ : A 
→ �GST and the price

vector p ∈ �G
+ together constitute an uncompensated equilibrium. Then the allocation x̂

must be weakly K-Pareto efficient, where K denotes the set of agents who are not in com-

pensated equilibrium (even though almost all of them are in uncompensated equilibrium)

— i.e.,

K := { a ∈ A | ∃xa ∈ Fa(x̂a) : p (µ • xa) < p (µ • x̂a) }.

Proof: Suppose that the allocation x̂ : A 
→ �GST is not weakly K-Pareto efficient. Then
there must be an alternative allocation x : A 
→ �GTS , and also some measurable set K ′

for which both α(K ′) > 0 and K ⊂ K ′ ⊂ A, such that xa ∈ Fa(x̂a) (a.e. a ∈ A) and also,
a.e. a ∈ K ′, there exists some type t ∈ T for which Uat(xat) > Uat(x̂at). By definition
of uncompensated equilibrium, it follows that p (µ • xa) > p (µ • x̂a) (a.e. a ∈ K ′). But
by definition of the set K, almost all agents a outside it, and so also outside K ′, are in
compensated equilibrium at x̂a. Therefore p (µ • xa) ≥ p (µ • x̂a) (a.e. a ∈ A \K ′). Then it
follows that

0 <

∫
K′

p [(µ • xa) − (µ • x̂a)]α(da) +
∫

A\K′
p [(µ • xa) − (µ • x̂a)]α(da)

=
∫

A

p [(µ • xa) − (µ • x̂a)]α(da).

Yet
∫

A
p (µ • x̂a)α(da) = 0, as an implication of the rule of free goods in the definition

of uncompensated equilibrium, and so
∫

A
p (µ • xa) α(da) > 0. This, however, contradicts

the pair of vector inequalities
∫

A
(µ • xa)α(da) <−− 0 and p >−− 0. So the allocation x̂ must be

weakly K-Pareto efficient after all.

Second Efficiency Theorem. If the condition of coalitionally monotone preferences is

satisfied, then any Pareto efficient allocation is a compensated equilibrium at some suitable

price vector.
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Proof: Let x̂ : A 
→ �GTS be any Pareto efficient allocation. For each a ∈ A, define the
set

φ(a) := { x̄a ∈ �G | ∃xa ∈ Fa(x̂a) : x̄a = µ • xa }

of net demand vectors which are equal to the expected value of some type- and state-
contingent allocation to agent a that is both incentive compatible and Pareto non-inferior
to x̂a. Because of our earlier assumptions, φ : A 
→→�G is a measurable correspondence
whose values are non-empty. Because A is a continuum, it follows from Hildenbrand (1974,
p. 62, Theorem 1) that

∫
A

φ(a)α(da) is a non-empty convex set. This set cannot intersect
�G

−−, otherwise there would be an allocation x : A 
→ �GTS for which xa ∈ φ(a) (a.e. a ∈ A)
and also

∫
A
(µ • xa) α(da) << 0. Then, because individual preferences are transitive and

those of the grand coalition A are coalitionally monotone, x̂ could not be Pareto efficient.
This shows that

∫
A

φ(a) α(da) and �G
−− are non-empty disjoint convex subsets of �G, and

so they can be separated by a hyperplane p x = 0 through the origin of �G. So there exists
a non-zero price vector p ∈ �G for which: (i) p x ≥ 0 whenever x ∈

∫
A

φ(a)α(da); and (ii)
p x ≤ 0 whenever x << 0. From (ii) it follows that p must be semi-positive.

Now let x̂ denote
∫

A
(µ • x̂a) α(da). Then x̂ <−− 0 because of feasibility, and also p >−− 0,

so p x̂ ≤ 0. Yet also p x̂ ≥ 0 because x̂a ∈ Fa(x̂a) and so µ • x̂a ∈ φ(a) (a.e. a ∈ A).
Therefore p x̂ = 0. This confirms the rule of free goods. Finally, again because x̂a ∈ Fa(x̂a)
(a.e. a ∈ A), it also follows that, for every measurable subset K ⊂ A, whenever xa ∈ Fa(x̂a)
(a.e. a ∈ K), then µ • xa ∈ φ(a) (a.e. a ∈ K). Therefore

∫
K

p (µ • xa)α(da) +
∫

A\K

p (µ • x̂a) α(da) ≥ 0 = p x̂ =
∫

A

p (µ • x̂a)α(da)

from which it follows that
∫

K

p [µ • (xa − x̂a)]α(da) ≥ 0.

Since this is true for every measurable subset K ⊂ A, it follows that

xa ∈ Fa(x̂a) =⇒ p [µ • (xa − x̂a)] ≥ 0

for almost all a ∈ A, as required for compensated equilibrium (with transfers).
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7. A Core Equivalence Theorem

A coalition is a measurable set K ∈ A whose measure α(K) is positive. The allocation

x̂ : A 
→ �GTS is said to be blocked by such a coalition K if there exists an alternative

allocation x : K 
→ �GTS to its members that satisfies: (i) xa ∈ Fa(x̂a) (a.e. a ∈ K); (ii)

Uat(xat) > Uat(x̂at) for all (a, t) in a subset of K × T which has positive measure; (iii)∫
K

(µ • xa)α(da)<−− 0. Thus an allocation is blocked by a coalition K provided that K can

generate a Pareto improvement for all its own type-contingent members in the set K × T

by using its own resources, while also satisfying the incentive constraints. An allocation

x̂ : A 
→ �GTS is in the core if and only if it is not blocked by any coalition.

Core Equivalence Theorem. If the condition of coalitionally monotone preferences is

satisfied, then any allocation in the core is a compensated equilibrium without transfers at

some suitable price vector.

Proof: Let x̂ : A 
→ �GTS be any allocation in the core. For each a ∈ A, define the set
φ(a) as in the proof of the second efficiency theorem above, and then let ψ(a) := φ(a)∪{0}.
Once again, like φ, the correspondence ψ : A 
→→�G is measurable and has values which are
non-empty sets, and so

∫
A

ψ(a)α(da) is a non-empty convex set. This set cannot intersect
�G

−−, otherwise there would be a measurable set K ⊂ A and an allocation x : K 
→ �GTS to
the members of K for which xa ∈ φ(a) (a.e. a ∈ K) and also

∫
A
(µ • xa)α(da) << 0. Then,

because individual preferences are transitive and those of K are coalitionally monotone, x̂

could not be in the core because K could block it.

Therefore, as in the proof of the second efficiency theorem,
∫

A
ψ(a)α(da) and �G

−− are
non-empty disjoint convex subsets of �G, so there exists a semi-positive price vector p ∈ �G

for which p x ≥ 0 whenever x ∈
∫

A
ψ(a)α(da). Moreover it must be true, as before, that

the rule of free goods
∫

A
p (µ • x̂a)α(da) = 0 is satisfied.

As before, because x̂a ∈ Fa(x̂a) (a.e. a ∈ A), it follows that, for every measurable
subset K ⊂ A, whenever xa ∈ Fa(x̂a) ∪ {0} (a.e. a ∈ K), then µ • xa ∈ ψ(a) (a.e. a ∈ K),
and so ∫

K

p (µ • xa) α(da) +
∫

A\K

p (µ • x̂a)α(da) ≥ 0 =
∫

A

p (µ • x̂a)α(da).

In particular, for every measurable subset K ⊂ A, it must then be true that

∫
K

p [µ • (xa − x̂a)]α(da) ≥ 0.
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From this it follows that

xa ∈ Fa(x̂a) =⇒ p [µ • (xa − x̂a)] ≥ 0

for almost all a ∈ A, as required for compensated equilibrium (with transfers). But now, in
addition, taking xa = 0 (a.e. a ∈ K) implies that

∫
A\K

p (µ • x̂a)α(da) ≥ 0 =
∫

A

p (µ • x̂a)α(da)

or that
∫

K
p (µ • x̂a) ≤ 0 for every measurable subset K ⊂ A. Therefore p (µ • x̂a) ≤ 0

for almost all a ∈ A. But then the rule of free goods
∫

A
p (µ • x̂a)α(da) = 0 implies that

p (µ • x̂a) = 0 for almost all a ∈ A, thus showing that the core allocation x̂ is actually a
compensated equilibrium without transfers.

8. Existence and Multiplicity of Weak Walrasian Equilibria

There is one special case in which both the existence of Walrasian equilibrium is easy

to explain, and the set of all such equilibria is easy to describe. This occurs when there

is only one physical commodity, in which case the only price vector to consider is just the

single real number 1. In this special case it is easy to see that the set of Walrasian equilibria

consists precisely of those incentive compatible allocations x̂ : A 
→ �TS with the property

that almost every agent a ∈ A has a type- and state-contingent net trade vector x̂a which is

Pareto efficient among the set {xa ∈ Fa | µ•xa = 0 } of incentive compatible and actuarially

fair feasible allocations to all type-contingent agents in the set {a} × T .

In order to prove existence of weak Walrasian equilibrium in general, it is necessary to

make one further assumption, to be used in this section only. It is that almost every agent

a ∈ A has the physically feasible net trade set Xa bounded below by a vector xa ∈ �GTS

— i.e., it must be true that xa ∈ Xa implies xa
>−−xa. Moreover, it must also be true that

the mean lower bound
∫

A
xaα(da) exists and is finite.

With this extra assumption, it is then not too difficult to prove that weak equilibrium

exists, and that there is actually a great multiplicity of such equilibria. Indeed, consider

any measurable function β : A 
→ interior ∆T , determining positive welfare weights βat for

each type-contingent agent (a, t) ∈ A × T , which sum to one for each agent a ∈ A. Then

it will actually be shown that, in the continuum economy, there exists a weak equilibrium
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consisting of a physically feasible and incentive compatible allocation x̂ : A 
→ �GTS to-

gether with a price vector p ∈ �G
+, having the following special property: for almost every

agent a ∈ A, any alternative type- and state-contingent net trade vector xa ∈ Fa(x̂a) which

satisfies
∑

t∈T βat [Uat(xat) − Uat(x̂at)] > 0 must also satisfy p (µ • xa) ≥ p (µ • x̂a) = 0.

Thus, if the first inequality in the hypothesis were weak, there would be a compensated

equilibrium in the economy where the feasible set of net trades for each agent a ∈ A

is Fa, and where each agent’s preferences are represented by the welfare weighted utility

function Wβa(xa) ≡
∑

t∈T βat Uat(xat). And if the second inequality in the implication

were strong, there would be an uncompensated equilibrium in the same economy. Because

of possible local non-satiation, however, the inequality in the hypothesis has to be strict,

thus giving a weak equilibrium in this economy. This is then also a weak equilibrium in

the sense of Section 5, since for almost every agent a ∈ A it must be true that whenever

xa ∈ Fa(x̂a) with Uat(xat) > Uat(x̂at) for at least one t ∈ T , then Wβ(xa) > Wβ(x̂a),

and so p (µ • xa) ≥ p (µ • x̂a). In general, of course, provided that at least one such weak

equilibrium exists for each different welfare weight function βat, varying this function will

give rise to different weak equilibrium allocations, so there is indeed a great multiplicity of

such equilibria.

In fact the existence of such weak equilibria is easy to show. One considers the “weak

compensated demand correspondence” defined by

ξC
a (p;βa) := { x̂a ∈ Fa | p (µ • x̂a) = 0

& Wβa
(xa) > Wβa

(x̂a) =⇒ p (µ • xa) ≥ p (µ • x̂a) }.

It is then straightforward to adapt the arguments which Khan and Yamazaki (1981) used to

prove their existence result (Proposition 2, part (a)). Their arguments show that, for each

fixed set of welfare weights βa ∈ ∆T , the correspondence ξC
a is upper hemi-continuous as

prices vary, and then establish that there is a convergent subsequence of fixed points whose

limit is a price vector giving rise to a weak equilibrium. Their arguments remain valid even

when there may be local satiation.
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9. Perfected Option Markets

It has been seen how adverse selection, and the incentive constraints to which it gives

rise, create a form of externality. For general continuum economies, Prescott and Townsend

(1984a, b) sought to internalize such externalities by restricting agents to contingent com-

modity allocations which satisfy the incentive constraints. When agents can commit them-

selves to contingent contracts before knowing their own true type, or when their type is

something which they themselves choose (as in a moral hazard problem), this idea works

admirably. If agents trade when they are still symmetrically informed because none of them

yet knows their own type, then the incentive constraints really are self-enforcing to the ex-

tent that agents see the need to have incentive compatible contracts. Similarly if there is

moral hazard.

When agents already know their own type before they begin to trade, however, there

is no reason why they should choose to satisfy the incentive constraints. Nor does the

Prescott and Townsend approach succeed in this case. Unfortunately this seems to be

the usual adverse selection problem in practice. Yet there is an alternative form of mar-

ket decentralization, based on option contracts rather similar to those which Prescott and

Townsend considered for the cases where they did succeed in making the incentive con-

straints self-enforcing.

To introduce this new approach, notice that so far we have been considering a fictitious

economy in which there are complete markets for Arrow-Debreu contingent commodity

contracts, and in which, for some reason, individuals’ own exogenous feasibility constraints

force them to satisfy the incentive constraints. On moving from the above fictitious econ-

omy to the original economy in which the incentive constraints cannot simply be imposed

exogenously, special option markets will be devised which produce equivalent outcomes.

The idea here is that an incentive compatible type-contingent contract xa = 〈xat 〉t∈T ∈ Fa

is itself really an option contract. The agent of type t who buys xa will exercise whichever

option in the set {xat | t ∈ T } is preferred by such an agent. And, if xa is indeed incen-

tive compatible, this can be the option xat if the individual is indeed of type t. Thus the

option contract which is represented by the set {xat | t ∈ T } is effectively the same as the

self-enforcing type-contingent contract xa = 〈xat 〉t∈T ∈ Fa.
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Accordingly it is natural to think of an option contract for agent a as some (non-

empty and finite) subset Ca of the space �GS of individual state-contingent net trade

vectors. Given any such contract Ca, when agent a has type t he will choose an option

ξat(Ca) which maximizes his actual expected utility Uat(x) with respect to x subject to

x ∈ Ca. So the option contract Ca can be regarded as equivalent to the state contingent

contract 〈 ξat(Ca) 〉t∈T . Indeed, provided that the option rule ξat(·) is allowed to vary in an

appropriate manner for each type-contingent agent (a, t) and for each contract Ca, there

is an obvious one-to-one correspondence between the set of all allocations which can result

from such option contracts and the set of all incentive compatible contingent commodity

contracts.

Formally, then, an option contract for agent a is a non-empty finite set Ca ⊂ �GS . An

option rule for the type-contingent agent (a, t) is a mapping ξa ≡ 〈ξat(·)〉t∈T defined for all

non-empty finite subsets of �GS and satisfying the requirement that, for all t ∈ T ,

ξat(Ca) ∈ arg max
x

{Uat(x) | x ∈ Ca }

everywhere in its domain. As remarked above the following result is then obvious.

Decentralization Lemma. xa ∈ Fa if and only if there exists a contract Ca and an

option rule ξa for which xat = ξat(Ca) (all t ∈ T ).

Proof: See Hammond (1979, Theorem 2, p. 268), for instance.

We shall now see how the compensated, uncompensated, and weak equilibria which

were defined in Section 5 above can be implemented through “perfected” markets for such

option contracts. To this end, consider any incentive-compatible allocation x̂a ∈ Fa to agent

a. The corresponding option contract is then the set Ĉa := { x̂at | t ∈ T } ⊂ �GS . And the

corresponding option rule can be any rule ξ̂a satisfying ξ̂at(Ĉa) = x̂at for all t ∈ T .

Option contracts of this kind can obviously be used to deal with the incentive con-

straints. The efficiency constraints introduced in Section 5 require extra restrictions, how-

ever. In fact, it is enough to restrict each agent a to choose option contracts Ca satisfying

Ca ⊃ Ĉa. Then none of agent a’s possible types can possibly be made worse off, because

the set of options available to each never shrinks. In fact, the following is obvious.
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Lemma. If both xat = ξ̂at(Ca) and x̂at = ξ̂at(Ĉa) for all t ∈ T , where Ca ⊃ Ĉa, then

xa ∈ Fa(x̂a).

Proof: The above decentralization lemma shows that xa ∈ Fa. But then, by definition of
an option rule,

Uat(xat) = max
x

{Uat(x) | x ∈ Ca } ≥ max
x

{Uat(x) | x ∈ Ĉa } = Uat(x̂at)

and so xa ∈ Fa(x̂a), as required.

Thus agents in our perfected option market economy will be restricted to choosing

option contracts Ca satisfying Ca ⊃ Ĉa. Their derived utilities for such contracts are given

by

Vat(Ca) ≡ Uat(ξat(Ca)) = max
x

{Uat(x) | x ∈ Ca }

which is actually independent of the option rule ξa, not surprisingly. Given any physical

commodity price vector p ∈ �G
+, the corresponding price of a contract Ca will depend upon

the precise option rule ξa, and be given by the function

va(p, Ca; ξa) := p [µ • ξa(Ca)],

where ξa(Ca) ∈ �GTS denotes the type-contingent net trade vector 〈 ξat(Ca) 〉t∈T . Thus

va(p, Ca; ξa) is precisely the expected value at prices p of ξa(Ca). The corresponding budget

constraint, when there is lump-sum redistribution, is given by

va(p, Ca; ξa) ≤ va(p, Ĉa; ξa) = p (µ • x̂a).

And when there is no lump-sum redistribution, it is given by

va(p, Ca; ξa) ≤ 0 = va(p, Ĉa; ξa) = p (µ • x̂a).

The valuation function va(p, Ca; ξa) is generally not in any sense a linear function of

the set Ca. Indeed, unless preferences happen to be homothetic it will not even be true in

general that va(p, λCa; ξa) = λ va(p, Ca; ξa) for all λ > 0. So the budget constraint is nearly

always non-linear. Of course, in economies with more than one physical commodity, such

non-linear pricing will be vulnerable to manipulation by small coalitions, as in Hammond

(1987). Or it will be vulnerable to the same agent entering the market several times, as in
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Mas-Colell (1987). Then linear pricing may have to be imposed as an additional constraint.

But there can still be non-linear pricing of many insurance contracts. After all, except in the

special case of life insurance, the insurance industry naturally makes it hard for a claimant

to collect full compensation simultaneously on more than one insurance policy covering the

same risk.

The perfected option markets will clear when the contracts Ca chosen by the different

agents a ∈ A satisfy ∫
A

[µ • ξ̂a(Ca)]α(da)<−− 0; p >−− 0 (comp).

Note how there is a one-to-one correspondence between:

(i) the set of all allocations xa ∈ �GST which, for some option rule ξa, result from an

option contract Ca satisfying both the budget constraint va(p, Ca; ξa) ≤ va(p, Ĉa; ξa)

and the restriction that Ca ⊃ Ĉa;

(ii) the set of all incentive compatible and efficiency constrained type-contingent net trade

vectors in Fa(x̂a) satisfying the usual Arrow-Debreu linear budget constraint p (µ•xa) ≤
p (µ • x̂a).

All this motivates the following three definitions. First, an uncompensated perfected

option market equilibrium is a type-independent allocation of option contracts Ĉa to each

agent, together with an option rule ξa, and also a physical commodity price vector p ∈ �G
+,

such that:

(i) for almost every agent a ∈ A, and for each finite set Ca ⊂ �G and type t ∈ T , the

option rule ξa satisfies ξat(Ca) ∈ arg maxx {Uat(x) | x ∈ Ca };

(ii) for almost every agent a ∈ A, and for each type t ∈ T , the same option contract Ĉa

maximizes each type’s derived utility function Vat(Ca) with respect to Ca, subject to

the budget constraint va(p, Ca; ξa) ≤ va(p, Ĉa; ξa) and the restriction that Ca ⊃ Ĉa;

(iii) the resulting allocation ξat(Ca) satisfies the market clearing condition∫
A

[µ • ξa(Ca)]α(da)<−− 0; p >−− 0 (comp).

Second, a compensated perfected option market equilibrium is defined similarly as a

collection Ĉa, ξa (all a ∈ A), and p ∈ �G
+ which together satisfy (i) and (iii) above, as well

as the following modified form of condition (ii):
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(ii′) for almost every agent a ∈ A, and for each type t ∈ T , the same option contract

Ĉa minimizes each type’s net expenditure va(p, Ca; ξa) with respect to Ca, subject to

the constraint that the derived utility Vat(Ca) is no less than Vat(Ĉa), as well as the

restriction that Ca ⊃ Ĉa.

Third, a weak perfected option market equilibrium is defined similarly as a collection

Ĉa, ξa (all a ∈ A), and p ∈ �G
+ which together satisfy (i) and (iii) above, as well as the

following modified form of condition (ii):

(ii′′) for almost every agent a ∈ A, and for each type t ∈ T , the same option contract Ĉa has

the property that, whenever Ca satisfies both Ca ⊃ Ĉa and Vat(Ca) > Vat(Ĉa), then

va(p, Ca; ξa) ≥ va(p, Ĉa; ξa).

Note that the allocation which corresponds to a perfected option market equilibrium

— uncompensated, compensated, or weak — is given by x̂at := ξat(Ĉa) for all t ∈ T .

This allocation is certainly physically feasible, because of (iii) above. It is also incentive

compatible because of the decentralization lemma above, and in fact it must also be true

that x̂a ∈ Fa(x̂a).

It has already been noted that there is a one-to-one correspondence between, on the

one hand, the set of all type-contingent net trade vectors in Fa(x̂a) which satisfy the usual

Arrow-Debreu linear budget constraint, and on the other, the set of all those allocations

which, for some suitable option rule ξa, are generated by option contracts Ca which sat-

isfy the non-linear budget constraint va(p, Ca; ξa) ≤ va(p, Ĉa; ξa) as well as the restriction

that Ca ⊃ Ĉa. So the earlier efficiency, core equivalence, and existence theorems, when

applied to the fictitious Arrow-Debreu economy with exogenous incentive and efficiency

constraints, imply similar results for perfected option market equilibria. In particular, as

already mentioned above, apart from the modifications which are needed because of possible

local satiation, such equilibria usually exist and are incentive constrained Pareto efficient,

while any incentive constrained Pareto efficient allocation can be achieved through perfected

option markets in equilibrium, and the usual core equivalence theorem is true as well.
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10. Comparison with Other Work

At first sight, these results may seem clearly to contradict Rothschild and Stiglitz (1976)

and the extensive work which has grown out of that article on non-existence and inefficiency

of equilibrium in insurance markets subject to adverse selection. It is important, in fact, to

see why there is no such contradiction. The reason is that their definition of competitive

equilibrium is different. Rothschild and Stiglitz look for allocations in which no firm could

enter and make a profit by offering new insurance contracts. Their work shows that the

efficient self-enforcing Arrow-Debreu option equilibria just discussed are often vulnerable

to entry by firms seeking profit opportunities. If entry into the insurance industry cannot

in fact be restricted, that imposes an additional constraint which should really be reflected

in the notion of constrained Pareto efficiency that we use.

In standard general equilibrium theory, a counterpart to the Rothschild-Stiglitz notion

of equilibrium with free entry is the core. Typically, in an economy whose consumers

have continuous locally non-satiated preferences and in which free disposal is possible, an

allocation can be blocked or improved by a coalition if and only if a firm could enter and

earn a profit from arranging net trades close to, but slightly less than, those which the

blocking coalition uses. So any Walrasian equilibrium is an equilibrium with free entry, and

in an economy with a continuum of agents, the usual core equivalence theorem of Aumann

(1964) and Hildenbrand (1974) shows that any equilibrium with free entry is a Walrasian

equilibrium. Because there is usually a Walrasian equilibrium, the core is non-empty, so

there is an equilibrium with free entry. Because all core allocations are Pareto efficient,

so are all equilibria with free entry. These results even remain true for an economy with

adverse selection, provided that the core is defined in a way which takes account of the need

for each blocking coalition to respect the incentive constraints due to adverse selection, and

provided that the distinction between compensated and uncompensated equilibria remains

unimportant.

With adverse selection, however, there is a crucial difference between the core and the

Rothschild-Stiglitz concept of equilibrium with free entry. The latter allows coalitions to

form whose membership is not a fixed set of individuals, but rather a group who select

themselves. An entering firm offers new option contracts, in effect, and can do so in a way

which implies that only good risks become the new firm’s customers. This makes it easier
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to earn a profit from a new contract than it would be if every entering insurance firm were

forced to offer new contracts which all members of a fixed set of individuals wanted to

accept, regardless of their true type. Yet the latter is what is involved in finding a blocking

coalition in the usual sense. The easier notion of blocking used by Rothschild and Stiglitz

explains why they find that there may be no equilibrium with free entry.

Finally, these results should be compared with those of Greenwald and Stiglitz (1986,

1988), who demonstrate the generic Pareto inefficiency of competitive equilibria with adverse

selection and moral hazard. They do so, however, after assuming linear commodity pricing,

whereas the self-enforcing Arrow-Debreu option equilibria considered here involve non-linear

pricing. If linear pricing is necessary to ensure multilateral incentive compatibility when

trading on the side is possible, as in Gale (1980, 1982), Hammond (1987), then our notion

of incentive-constrained efficiency should change accordingly.

Perfect option market equilibria, however, clearly remain far from reality. One can

immediately think of many reasons for this, but some of the most interesting are perhaps

additional incentive constraints. These may be due to difficulties in enforcing non-linear

pricing and credit rationing schemes, as mentioned in the previous paragraph, or to diffi-

culties in regulating entry by competing firms, in arranging effective monitoring without

wasteful duplication, as well as in regulating the regulators, etc. These all seem important

issues. They deserve attention in future work which goes beyond the scope of this paper.
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