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Abstract

To allow conditioning on counterfactual events, zero probabilities can
be replaced by infinitesimal probabilities that range over a non-Archi-
medean ordered field. This paper considers a suitable minimal field
that is a complete metric space. Axioms similar to those in Anscombe
and Aumann (1963) and in Blume, Brandenburger and Dekel (1991)
are used to characterize preferences which: (i) reveal unique non-
Archimedean subjective probabilities within the field; and (ii) can be
represented by the non-Archimedean subjective expected value of any
real-valued von Neumann—Morgenstern utility function in a unique car-
dinal equivalence class, using the natural ordering of the field.

1 Introduction and Outline

Following the standard definition due to Kolmogorov (1933), probabilities
are usually assumed to be real numbers. For events with positive probabil-
ities, conditional probabilities are found by applying Bayes’ updating rule.
In game theory, however, as discussed in Section 2, there is often a need
to discuss what would happen if a player deviated from a best response.
Because the probability of such a deviation is supposed to be zero, game
theorists are forced to consider probabilities conditional on zero probability
events.

This paper will begin in Section 2 by briefly reviewing some of the
main approaches game theorists and others have taken in attempting to

*Department of Economics, Stanford University, CA 94305-6072, U.S.A. e-mail:
hammond@leland.stanford.edu. My thanks to Don Brown for greatly improving my
knowledge of non-standard analysis while he was a colleague at Stanford. And to an
anonymous referee for helping me clear up some ambiguities.



escape from this and similar impasses.! The most interesting ideas appear
to involve going beyond Kolmogorov’s standard framework, and allowing
conditional probabilities to be defined for all (non-empty) events. Some
simple attempts founder, however, because they do not allow compound
lotteries to be reduced uniquely and unambiguously to simple one-stage
lotteries. Section 2 concludes with a simple example illustrating this diffi-
culty.

A more complicated remedy is to introduce the full-blown apparatus of
non-standard analysis. This allows probabilities in the form of positive in-
finitesimals, which are smaller than any positive real number. As discussed
by Royden (1968), for instance, the existence of such infinitesimals entails vi-
olating the Archimedean axiom which characterizes the real line. Obviously,
in non-standard analysis one can attach arbitrary infinitesimal probabilities
to deviations from best responses. But Section 3 will argue that the set of
all such positive infinitesimal probabilities is excessively rich and hard to
interpret.

As discussed in Section 4, the issue has become what the appropriate
range of allowable probabilities should be. Using a general non-Archimedean
field for the range of allowable probability values, Section 4 sets out axioms
similar to those devised by Anscombe and Aumann (1963) and, for non-
Archimedean probabilities, by Blume, Brandenburger and Dekel (1991a).
Most of these axioms can be given a consequentialist justification along the
lines of Hammond (1988, 1998a, 1998b).

In Section 5 it is then proved that the axioms guarantee the existence of a
unique cardinal equivalence class of real-valued von Neumann—Morgenstern
utility functions (NMUFSs) and also, except in the case of universal in-
difference, unique subjective probabilities belonging to the allowable non-
Archimedean range. Then preferences have an expected utility represen-
tation, with expected utilities taking values in the non-Archimedean field.
Moreover, preferred random consequences have expected utilities that are
greater according to the natural ordering of this field.

One of the axioms used in Section 5 is a particular “non-Archimedean
continuity” condition that the preference ordering must satisfy. In an at-
tempt to justify it, Section 6 considers a particular non-Archimedean ordered
field R(e), following Hammond (1994, 1998c). This is the smallest algebraic
field that includes both the real line and also at least one positive “basic”
infinitesimal e. However, in Section 6 the field R(e) will be extended to
R>(e) so that it becomes a complete metric space.

'For a fuller account, see Hammond (1994).



As shown in Section 7, the special field IR*(¢) allows preferences over lot-
teries to satisfy a suitable extended continuity axiom which, in combination
with a non-Archimedean version of a standard continuity axiom, implies the
non-Archimedean continuity axiom used in Section 5. In this setting, more-
over, applying the natural ordering of IR*(¢) to expected utilities induces a
preference ordering which corresponds to a familiar lexicographic expected
utility criterion, with a real-valued von Neumann—Morgenstern utility func-
tion and non-Archimedean subjective probabilities.

2 Background

2.1 Counterfactuals in Game Theory

In a normal form game, a Nash equilibrium occurs when each player’s strat-
egy is a best response to others’ equilibrium strategies. Also, a strategy
is rationalizable iff it is a best response to “rationalizable expectations”
attaching probability one to the event that all other players choose rational-
izable strategies. Thus, the notion of best response is fundamental. Yet, to
know whether a strategy is a best response, alternative strategies that are
not best responses must be contemplated and the consequences of playing
those strategies evaluated. This forces consideration of the counterfactual
event that at least one other player chooses what is supposed to be an in-
ferior response. In particular, in games with non-trivial extensive forms,
other players may have the opportunity to observe that a supposedly in-
ferior strategy has been played, while remaining unsure what this strategy
is. Then the usual rule of calculating conditional probabilities by Bayesian
updating is of no use because of the need to condition on a counterfactual
event with prior probability zero.

2.2 Trembles

Game theorists have resorted to various ad hoc procedures to deal with
this issue. In proper subgames, Selten’s (1965, 1973) criterion of subgame
perfection requires consideration of best responses in subgames that are not
reached in equilibrium; however, a proper subgame can be analysed as a
game in its own right, making it unnecessary in practice to apply Bayesian
updating to events with probability zero. More challenging is the case when
earlier moves give rise to an “improper subgame” of asymmetric information,
where each player remembers any moves he or she has already made, but
may be uncertain what moves other players have already chosen. Then, as in



Kreps and Wilson’s (1982) theory of “sequential equilibrium,” one wants to
apply Bayesian updating in order to derive the relevant player’s expectations
at each information set of the improper subgame. But if the information
set is supposed not to be reached when each player chooses best response
strategies, what are appropriate expectations and the best response of the
player who is to move at that information set?

In order to resolve such questions, Selten (1975) introduced the idea
that players would choose their strategies “with a trembling hand,” so that
even inferior strategies would be chosen with (small) positive probability. In
this way, every information set would be reached with positive probability,
so Bayesian updating would always be well defined. A “trembling-hand
perfect” equilibrium is the limit of Nash equilibria as the largest allowable
probability or “tremble” attached to inferior strategies converges to zero.
Myerson (1978) refined this concept by requiring in addition that trembles
to worse inferior strategies should be much less likely than trembles to better
inferior strategies.

2.3 Other Extended Probabilities

In their theory of sequential equilibrium, Kreps and Wilson (1982) brought
in hierarchies of probability distributions. These allow an ordinary first
level probability distribution, then a second level distribution over states
(or strategy profiles) whose first level probability is zero, then (if necessary)
third level probabilities over states whose first and second level probabili-
ties are both zero, and so on. A definitive treatment of such hierarchies,
and their application to derive proper equilibrium, can be found in Blume,
Brandenburger and Dekel (1991a, b) — henceforth referred to as BBD.

Not much later, Myerson (1986) provided a rather more formal discussion
which involved re-discovering the conditional probability spaces of Rényi
(1955, 1956). Like Myerson, I prefer the more evocative name “complete
conditional probability systems” (CCPSs). Myerson also linked CCPSs to
trembles, in the sense of vanishing sequences of positive probabilities. Earlier
Rényi and also Csaszar (1955) had already related CCPSs to hierarchies of
probability distributions. Another similar approach was McLennan’s (1989a,
b) use of “conditional systems” in the form of logarithmic likelihood ratio
functions that are allowed to have values +oo as well as all real values.

In earlier work (Hammond, 1994), T have shown that Rényi’s and McLen-
nan’s formulations are equivalent, at least for finite state spaces of the kind
that arise naturally in games with a finite number of players who each have
a finite strategy set. Also equivalent are hierarchies of probability distribu-



tions when the different distributions are required to have pairwise disjoint
supports. Somewhat more general are hierarchies of distributions whose
supports may overlap, as considered by BBD.

2.4 Non-Reduction of Compound Lotteries

For dealing with counterfactuals, Rényi’s CCPS formulation has consider-
able intuitive appeal. It simply requires P(E’|E) to be specified whenever
E' C FE, even if event E has probability zero. The obvious interpretation
is: “I believe that E cannot occur, but in the extremely unlikely event that
it does, then my new beliefs about E’ will be described by P(E'|E).” Such
beliefs seem to be exactly what is needed for game theory when E is the
event that a player deviates from a presumed best response.

A crucial hypothesis of von Neumann and Morgenstern is that it should
always be enough to analyse the normal form of a game, because the out-
come should be invariant to alterations in the extensive form that leave the
normal form unaffected. If one is content to consider games in extensive
form, and not impose this normal form invariance hypothesis, then it may
well be unnecessary to go beyond the elegant device of CCPSs. But the
invariance hypothesis is actually fundamental to orthodox game theory, and
even more to its foundations in consequentialist single person decision the-
ory. So we should see how far it is possible to proceed within the normal
form framework.

For this invariance hypothesis to hold, lotteries whose prizes are tickets
for other lotteries must be reducible to equivalent simple lotteries merely by
multiplying probabilities. That is, the fundamental and often implicit reduc-
tion of compound lotteries postulate of single-person decision theory must
hold. Unfortunately, where CCCPs are concerned, this reduction property
may fail because there can be infinitely many different ways of compounding
two lotteries which both involve zero probability events. A simple example
to show this is illustrated in Fig. 1.

In this tree, the conditional probabilities associated with the first chance
move at the initial node ng are assumed to satisfy P({n}|{¢,n}) = 1, im-
plying that P({a,b}|{a,b,c}) = 1, whereas the conditional probabilities
associated with the second chance move at node n are assumed to satisfy
P({a}|{a,b}) = 1. Of course, then the other conditional probabilities given
{¢,n} and {a,b} must be 0. Compounding these conditional probabilities
evidently implies that

P({atl{a,b,c}) = P({a}[{a,b}) P({a,b}{a,b,c}) =1



C

Figure 1: Non-Reduction of Compound Conditional Probabilities

Also, because P({a}|{a,b,c}) = P({a}|{a,c})P({a,c}{a,b,c}) =1it
must be true that P({a}|{a,c}) = 1. Of course, then all other conditional
probabilities given the non-trivial events {a,b}, {a,c} and {a,b,c} must
be 0. But so far nothing determines the relative likelihoods of the two differ-
ent “trembles” which result in states b and c respectively. Accordingly, the
two other conditional probabilities P({b}|{b,c}) and P({c}|{b,c}) could
be any real numbers in the interval [0,1] which sum to 1. Hence, reduc-
tion of compound lotteries can only occur in a richer space allowing more
information to be provided about the relative likelihood of the two trembles.

3 Non-Archimedean Probabilities

3.1 Infinitesimals

Selten (1975) and many successors have modelled a tremble as a vanishing
sequence of positive probabilities — or, equivalently, as vanishing perturba-
tions of the players’ (expected) payoff functions. Such vanishing sequences
are obviously closely related to the “infinitesimals” used in the early develop-
ment of “infinitesimal calculus” by Leibniz and many successors. Formally,
a positive infinitesimal is smaller than any positive rational number and so,
because the rationals are dense in the reals, smaller than any positive real
number. This obviously violates the “Archimedean” property of the real
line, requiring that for every r > 0, no matter how small, there should exist
an integer n such that rn > 1. So infinitesimals are only allowed in suitable
non-Archimedean structures. Evidently, infinitesimals are not real in the
mathematical sense.

Such infinitesimals have become incorporated into modern mathemat-
ics as a result of the development of “non-standard analysis” by Abraham
Robinson and others. They have also been used in utility theory by Chipman



(1960, 1971a, b), Richter (1971), Skala (1975), etc. As for non-Archimedean
probabilities, they were briefly mentioned by Chernoff (1954) and then by
BBD. They appeared more prominently in an earlier unpublished paper by
Blume on his own. Finally, LaValle and Fishburn (1996) have recently inves-
tigated several variant forms of non-Archimedean expected utility, especially
those involving “matrix” probabilities.

3.2 Non-Standard Analysis

One way of introducing non-Archimedean probabilities that this earlier work
suggests is to admit all members of *IR, the “hyperreal” line. This allows one
to use all the results of non-standard analysis, especially the “transfer princi-
ple” establishing a correspondence between results in standard analysis and
results in non-standard analysis concerning so-called “internal” mathemat-
ical objects like sets, functions, binary relations, etc. As Anderson (1991,
p. 2161) puts it, “any theorem about the standard world which has a non-
standard proof is guaranteed to have a standard proof.” Perhaps considering
all of *IR is what we need to do. However, *IR is an incredibly complicated
space many of whose members do not easily meet our intuitive notions of
infinitesimal or of vanishingly small probability.

In fact, the definition of *IR involves Zorn’s Lemma or the axiom of
choice in a rather essential and awkward way in order to construct a free
ultrafilter &/ on IN, the set of natural numbers or positive integers. The
existence of such a free ultrafilter is equivalent to the existence of a finitely
additive measure p: N — {0,1}. That is, u must give every set measure 0
or 1. In fact, it is required that every finite set be given measure 0, implying
that every co-finite set has measure 1. The ultrafilter 4 then consists of
all sets having measure 1. Note that if S; (i = 1 to m) is any partition of
IN into m disjoint sets, then exactly one set of the finite collection satisfies
w1(S;) = 1; all other sets of the collection have measure 0.

Let R*™® denote the Cartesian product space of all infinite sequences of
real numbers, with typical member r = (r,)nen. After the measure p or
the equivalent free ultrafilter ¢ has been constructed, define the equivalence
relation ~ on R*® so that for every pair a,b € IR one has

a~b < u({neN|a,=0b,}=1

Hence, a and b are regarded as equivalent iff their corresponding elements
an and b, agree on a subset of IN having measure 1. Now *IR can be defined
as the quotient space R*/ ~ of equivalence classes in R>. Let *r denote
the unique equivalence class in *IR containing the element r € IR*°.



The space *R is an obvious extension of R because each real number
r € R can be associated with the unique equivalence class *(r1) of all
sequences r such that r, = r on a set of measure 1. Let *r denote this
equivalence class.

Note next that any two elements *a and *b of *IR have:

1. asum *a+ *b = *(a+ b) where a + b = (a, + by)nen;
2. a difference *a — *b = *(a — b) where a — b = (a,, — by)nen;
3. a product *a-*b = *(a-b) where a-b = (a, - by)nen;

4. and also a quotient *a/*b = *(a/b) where a/b = (a,/b,)nen, pro-
vided of course that *b # *0, implying that b, # 0 for all n after
changing b if necessary on a set of measure 0.

Thus, *IR has the structure of an algebraic field with zero element *0
and unit element *1. Note too that for each pair a,b € IR, the sets
{n|ap,>by}, {n]|a,=0,}and {n | a, < by} form a partition of IN.
Hence, exactly one of these three sets must have measure 1. So there is a
total ordering * > on *R defined by

a *> b <<= u({neNja,>b,})=1
This makes *IR an ordered field.

The field *IR violates the Archimedean axiom because it has positive in-
finitesimal elements, for example (1/n),ecn, which are less than any positive
real *r. The reciprocals of these positive infinitesimal elements are positive
infinite elements of *IR, for example (n),en, which are greater than any
(finite) real *r.

The trouble with this ultrafilter construction is that the associated finite-
ly additive measure p has strongly counter-intuitive properties. It has al-
ready been remarked how, in a partition of IN into finitely many subsets,
exactly one set has measure 1. Hence, for each & € IN there must exist an in-
teger my, € {1,2,...,k} for which the set Sy := {mr+nk|n=0,1,2,...}
has measure 1. This is true even though Si becomes arbitrarily sparse for k&
large enough. Thus, while non-standard analysis is no doubt a useful device
for proving theorems in pure mathematics via the transfer principle, I ven-
ture to suggest that for applications to decision and game theory, we need
a more intuitively appealing framework.



4 Non-Archimedean Expected Utility

4.1 What Range of Probabilities?

Originally probabilities were rational numbers, usually with small denom-
inators. Every monetary bet that has ever been made and settled on the
precise agreed terms has involved a rational odds ratio. More sophisticated
mathematical models of probability involve continuous distributions, which
necessitate irrational but real probabilities. To date, real-valued probability
measures have served us rather well. Yet the previous discussion suggests
the need for infinitesimal probabilities in game theory. This forces us to face
the question: How rich should the range of allowable probabilities be?

My provisional answer is: As small as possible, provided that some essen-
tial requirements are met. If the transfer principle of non-standard analysis
is not an essential requirement, then there is no good reason to use every
possible “hyperreal” between 0 and 1, as non-standard analysis seems to
require. But the range must include some infinitesimal elements, it seems,
as well as all real numbers in the interval [0, 1].

Probabilities need to be added, because of finite additivity. They must
also be multiplied in order to compound lotteries. And they should be
divided in order to calculate conditional probabilities by Bayesian updating.
This makes it natural to impose the algebraic structure of a field — or, more
precisely, an appropriate positive cone within such a field.? Finally, since
the expectation of a real-valued von Neumann—Morgenstern utility function
lies within the same field, and expected utilities should represent a complete
preference ordering, there should be a linear or total order on the field.?

4.2 General Non-Archimedean Ordered Fields
An ordered field (F,+,-,0,1,>) is a set IF together with:

1. the two algebraic operations + (addition) and - (multiplication);
2. the two corresponding identity elements 0 and 1;

3. the binary relation > which is a linear order on F satisfying 1 > 0.

2Rather counter-intuitively, some calculations in quantum mechanics involve negative
probabilities at intermediate steps, though these are always later cancelled out by the
addition of larger positive probabilities (Feynman, 1987). Such negative probabilities
have no role in decision or game theory, however.

3 A binary relation > is a linear (or total) order on a domain X if it is transitive and,
for every disjoint pair x,y € X, one has either x > y or y > z.



Moreover, the set IF must be closed under the two algebraic operations. The
usual properties of real number arithmetic also have to be satisfied — i.e.,
addition and multiplication both have to be commutative and associative,
the distributive law must hold, and every element x € IF must have both
an additive inverse —z and a multiplicative inverse 1/x, except that 1/0 is
undefined. The order > must be such that y > z <= y — 2 > 0. Also,
the set Iy of positive elements in ' must be closed under both addition
and multiplication. Both the real line and the rationals are important and
obvious examples of ordered fields.

Any ordered field F' has positive integer elements n = 1,2, ... defined
as the sums n = 14+ 14 ... 4+ 1 of n copies of the element 1 € IF. Then
IF is said to be “Archimedean” if, given any x € IF,, there exists such a
positive integer n for which nz > 1. For any = € IF, let |z| denote x if z > 0
and —z if x < 0. Say that any =z € F \ {0} is infinitesimal iff |x| < 1/n
for every (large) positive integer n. Evidently, a field is Archimedean iff it
has no infinitesimal elements. Say that x is finite if |z| < n for some (large
enough) integer n. Any = € IF is said to be infinite iff it is not finite. Any
non-zero x € IF is therefore infinitesimal iff 1/z is infinite.

In the rest of the paper, IF will denote any non-Archimedean ordered
field that extends the real line R. Then, for any positive r € IR, there
exists an ordinary positive integer n € IN satisfying 1/n < r. Any positive
infinitesimal € € IF; must therefore satisfy ¢ < 1/n < r, and so must be
smaller than any positive real number. So the set of all positive infinitesimals
is bounded above by any positive real number, but not by any infinitesimal.
It follows that there is no least upper bound. In fact, as pointed out by
Royden (1968), if any ordered field contains all the rational numbers and
has the property that every bounded set includes both a supremum and an
infimum, then the field is isomorphic to the real line and so is Archimedean.

Also, in the ensuing analysis, it will be convenient to use the notation
(0,1)F to indicate the interval {z € IF | 0 < x < 1}. This notation helps to
distinguish the non-Archimedean interval from the usual real interval (0, 1),
which will often be denoted by (0, 1)g.

4.3 Consequences and States of the World

Let Y be a fixed domain of possible consequences, and S a fixed finite set of
possible states of the world. No probability distribution over S is specified.
An act, according to Savage (1954), is a mapping a : S — Y specifying
what consequence results in each possible state. Inspired by the Arrow
(1953, 1964) and Debreu (1959) device of “contingent” securities or com-
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modities in general equilibrium theory, I refer instead of contingent conse-
quence functions, or CCFs for short. Also, each CCF will be considered as a
list yS = (ys)ses of contingent consequences in the Cartesian product space
Yo = [lscs Ys, where each set Yy is a copy of the consequence domain Y.

Anscombe and Aumann (1963) allowed subjective probabilities for the
outcomes of “horse lotteries” or CCFs to be inferred from expected util-
ity representations of preferences over compounds of horse and “roulette
lotteries”. Formally, Savage’s (1954) framework is extended to allow prefer-
ences over not only CCFs of the form y° € Y, but also over A(Y?), the
space of all (finitely supported) simple roulette lotteries defined on YS. Each
M € A(Y?) specifies a real number A%(y°) as the objective probability that
the CCF is y° € Y°. This implies that the collection of random variables
ys (s € S) has a multivariate distribution with probabilities \¥(y).

This paper considers instead the space A(Y;TF) of non-Archimedean
IF-valued simple lotteries on Y°. Each A% € A(Y®;TF) satisfies \*(y%) = 0
iff 4 is outside the finite support F C Y of AS. On F each probability
M (y%) € Fy, and doySer M (y%) = 1. That is, \¥(y¥) > 0 for all y° € Y9,
even though A¥(y®) could be infinitesimal.

4.4 Axioms for Objective Expected Utility

Anscombe and Aumann directly assumed expected utility maximization for
roulette lotteries, and then imposed extra conditions for preferences over
horse lotteries guaranteeing the existence of subjective probabilities. BBD,
like Fishburn (1970) and many others, laid out axioms implying expected
utility maximization rather than assuming it directly. Apart from being
in an obvious sense more fundamental, here such an approach is essential
because non-Archimedean expected utility maximization should be deduced
before non-Archimedean subjective probabilities are inferred. Accordingly,
I assume:

(O) Ordering. There exists a (reflexive, complete and transitive) preference
ordering &% on A(Y;TF).

(I*) Strong Independence. If A, pu°, % € A(Y®;F) and a € (0,1)F, then

N5 S = a4+ Q- B ap® (1 -apf

(NAC) Non-Archimedean Continuity. For all lotteries A%, u¥ v € A(Y®;TF)
satisfying A% = 1% and p® =° 15, there exists o € (0, 1) such that
aXd + (1 — a)v™ ~5 po.

11



Of these, axioms (O) and (I*) are obvious extensions to IF-valued proba-
bility distributions in A(Y™;IF) of standard conditions for real-valued prob-
ability distributions in A(Y¥). Even the real-valued version of the third
axiom (NAC) has appeared as an assumption in the literature. However,
when probabilities are real-valued, an equivalent condition is usually derived
from more fundamental continuity assumptions on preferences or behaviour
— see, for example, Hammond (1998a, b) for further discussion. For this
reason, condition (NAC) is discussed further in the special framework of
Sections 6 and 7.

The following two Lemmas and their proofs are simple adaptations to
non-Archimedean probabilities of results which are familiar for real-valued
probabilities. Accordingly, the proofs will not be provided here. For details
see, for example, Fishburn (1970) or Hammond (1998a).

Lemma 1 Suppose that azioms (O) and (I*) are satisfied on A(YS;TF).
Then, for any pair of lotteries X%, u® € A(Y®; ) with ¥ =5 p¥ and any
o, € (0,1)p with o' > o, one has
)\S >_S Oé/)\S + (1 - a/)'us >_S a//)\S+ (1 o O//)IUS >_S MS
Say that the the utility function U® : A(Y®;F) — F represents ° on
A(YS;TF) if for every pair of lotteries A%, u° € A(YS;TF) one has
)\S ,>\:S /’LS — US()\S) > US(/,LS)

Say also that U?® satisfies the non-Archimedean mizture preservation condi-
tion (NAMP) provided that, whenever a € (0, 1), then

US(aXs + (1 — a)p®) = a U (X)) + (1 — a) U (1)

Note how property (NAMP) implies that for every ¥ € A(YS;TF) one can
write U (\%) in the expected utility form

US(N) =3 cops A7) v(y®)

where v(y®) = Us(lys) is the utility of the degenerate lottery 1,5 which
attaches probability 1 to the particular CCF y° € Y5,

Finally, say that the two functions U®,V® : A(YS;F) — T are cardi-
nally equivalent provided there exist constants p € IF and § € IF such that
V(NS =6 + pUS(N9) for all \° € A(YS;TF).

Lemma 2 Suppose that the three azioms (0), (I*), and (NAC) are all sat-
isfied on A(YS;TF). Then there exists a unique cardinal equivalence class
of utility functions U : A(YS;F) — TF which represent =° and satisfy
(NAMP).

12



5 Non-Archimedean Subjective Probability

5.1 The Non-Archimedean SEU Hypothesis

The first aim of this section is to provide sufficient conditions like those
of Anscombe and Aumann for the preference ordering Z° on A(Y®;TF)
to have a subjective expected utility (SEU) representation which, for each
A e A(YS;TF), takes the form

USON) =3 oys X205 D2 g Psv(us) (1)

for a unique cardinal equivalence class of NMUFs v : ¥ — F, and for
suitable unique subjective probabilities ps € F satisfying > . .q ps = 1.
That is, the subjective probability distribution p = (ps)sep must belong
to AY(S;TF), the set of all distributions having support equal to the whole
of S. The difference from Anscombe and Aumann is that the subjective
probabilities ps and utilities v(y) may be non-Archimedean, as may the
objective probabilities A%(y®) determining the lottery A¥ € A(Y®;F). In
addition, the subjective probabilities ps must be positive rather than merely
non-negative. This particular characterization of the preference ordering <°
will be called the non-Archimedean SEU hypothesis.

A second aim is to ensure that the utility function v is real-valued, mak-
ing use of a new state-independent continuity axiom (SIC). Then only the
probabilities, and not the utilities, are allowed to be non-Archimedean.

5.2 Reversal of Order

In order to derive such subjective probabilities, Anscombe and Aumann
added three more axioms to their basic hypothesis that “roulette lotteries”
would be chosen to maximize objective expected utility.

For each y € Y and s € S, define Y%(y) := {y° € Y° | ys = ¢} as the
set of CCFs yielding the particular consequence y in state s. Then, given
any lottery A € A(YS;TF), any state s € S and any consequence y € Y, let

M) =3 seysy N W)

denote the marginal probability that y occurs in s. Then the probabilities
As(y) (y € Y) specify the marginal distribution in state s € S.
The first of the three additional axioms I shall present is:

(RO) Reversal of Order. Whenever A%, % € A(Y¥) have marginal distribu-
tions satisfying A\ = p, for all s € S, then A% ~ p5.

13



This condition owes its name to the fact that there is indifference be-
tween: (i) having the roulette lottery A\° determine the random CCF y*
before the horse lottery that resolves which state s € .S and which ultimate
consequence ys occur; and (ii) resolving the horse lottery first, before its
outcome s € S determines which marginal roulette lottery As generates the
ultimate consequence y.

In particular, let % = [Iscr As denote the product lottery defined, for
all y¥ = (ys)ses € Y7, by p®(y°) := [lseq As(ys). Thus, the different
random consequences ys (s € S) become independently distributed. Then
condition (RO) requires A5 to be treated as equivalent to 1%, whether or not
the different consequences ys (s € S) are correlated random variables when
the joint distribution is A¥. Only marginal distributions matter. So any \% €
A(Y®) can be regarded as equivalent to the list (\s)ses of corresponding
marginal distributions. This has the effect of reducing the space A(Y™®) to
the Cartesian product space [[,cg A(Ys), with Yy =Y for all s € S.

5.3 The Sure Thing Principle

The second of Anscombe and Aumann’s additional axioms concerns any
event £ C S, together with the product space Y := [lser Ys of contin-
gent CCFs taking the form y¥ = (ys)sep € Y, and the existence of an
associated contingent preference ordering <. Here it is natural to assume
that <% is defined on A(YF;TF), the space of non-Archimedean probability
distributions, instead of only on A(Y¥), the space of real-valued probability
distributions. So the second extra axiom becomes:

(STP) Sure Thing Principle. Given any event E C S, there exists a contin-
gent preference ordering ¥ on A(YF;TF) satisfying

)\E ,_>\:E ME PN ()\E"VS\E) = (ME,VS\E)
for all \Z, P € A(YP;F) and v5\F € A(YS\E: ), where (AP, v5\F)
denotes the combination of the conditional lottery A¥ if E occurs with

vS\E if §\ E occurs, and similarly for (u, v5\F).

However, following an idea due originally to Raiffa (1961) and then used by
BBD, it is easy to show that (STP) is implied by axioms (O), (I*) and (RO):

Lemma 3 Suppose that the three azioms (0), (I*), and (RO) are all satis-
fied on A(YS;TF). Then so is (STP).
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Proof: Consider any event £ C S and also any lotteries A, u# € A(Y¥®; ),
7\E ¢ A(YS\E,F) satisfying (\F,75\F) =5 (P 79\F). For any other
lottery v5\F € A(YS\E: F), axioms (I*) and (RO) respectively imply that

()\E’VS\E)_’_%()\E’ES\E) =S
S

~

(N 0S\E) 4 (1)
(4, v5\F) + (A, 75\F)

N[— N[—=

By transitivity of Z° and axiom (I*), one has (\?,v5\E) 5 (uF,5\F),
This confirms condition (STP), asserting the existence of a contingent pref-
erence ordering Z¥ on A(Y?;TF) that is independent of v5\F. 1

Because of this result, (STP) will not be imposed as an axiom, but it
will often be used in the ensuing proofs.

5.4 State Independence

The last of Anscombe and Aumann’s axioms can now be stated. It relates to
the fact that the NMUF v : Y — IF is independent of the state s. Now, for
each s € S, condition (STP) ensures the existence of a contingent preference
ordering 1%} on A(Ys;F) = A(Y;TF) that is represented by the expected
value of v(ys), and so is independent of s. So the last axiom is:

(SI) State Independence. Given any state s € S, the contingent preference
ordering Z1*} over A(Y;TF) is independent of s.

Let Z* denote this state-independent preference ordering. When &5
on A(Y®;TF) satisfies conditions (O), (I*) and (NAC), so too must <* on
A(Y;TF), because of (STP).

5.5 Subjective Probabilities

The five axioms (O), (I*), (NAC), (RO), and (SI) are assumed throughout
the following, as is condition (STP).

Lemma 4 (a) Suppose that E C S is any event and that \¥, u? ¢ A(YF;TF)
satisfy A\s &% ps for all s € E. Then \F &F 1P,
(b) If in addition \F ~F uF then Ay ~* ps for every state s € E.

Proof: There is an obvious proof by induction on m, the number of states
in . 1
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Suppose it were true that A ~* u for all pure roulette lotteries A\, u €
A(Y;TF). Because S is finite, Lemma 4 would then imply that A% ~5 u°
for all A%, ¥ € A(YS;TF). However, the ordering <° could then be rep-
resented by the trivial subjective expected utility function Y ,cp ps U*(As)
for arbitrary subjective probabilities ps and any constant utility function
U*: A(Y;F) — {c} C F. So from now on, exclude the trivial case of uni-
versal indifference by assuming throughout that there exist two pure roulette
lotteries A, A € A(Y;TF) with A =* \.

The key idea of the following proof involves the IF-valued NMUF whose
existence was claimed in Section 4.4. Because <* satisfies conditions (O),
(I*) and (NAC), Lemma 2 can be applied. Therefore, Z* can be represented
by a non-Archimedean expected utility function U* : A(Y) — IF which is
normalized so that

U*(A)=0 and U*(\) =1 (2)
while also satisfying the mixture preservation property (NAMP).

Next, given any event £ C S and any lottery A € A(Y;TF), let A1F
denote the lottery in A(Y?;IF) whose marginal distribution in each state
s € Eis Ay = A, independent of s.

Lemma 5 The ordering =* on A(Y;TF) is represented by a wutility function
U*: A(Y;TF) — T satisfying U*(\) = US(A15) for all X € A(Y;TF).

Proof: Because <° on A(Y;TF) and Z* on A(Y;IF) both satisfy conditions
(0), (I*) and (NAC), Lemma 2 of Section 4.2 implies that they can be
represented by normalized utility functions U® : A(YS;F) — IF and U* :
A(Y;F) — F satisfying (NAMP) and also

USA1%) =0, U(A1%)=1, and U*(N) =0, UN)=1 (3)

Next, Lemma 4(a) implies that A &* p = A1° Z° p1°. On the other
hand, Lemma 4(b) implies that g =* A = p 1% = A1%. Because &* and
%9 are complete orderings, the reverse implication A 1% &% ;15 = X\ &* u
follows. Hence, A1° <% ;1% <= X\ &* pu. So UY(A19) and U*(\) must
be cardinally equivalent functions of A on the domain A(Y;F). Because of
the two normalizations in (3), the result follows immediately. |

Next, define the functions gs : A(Y;F) — R and constants ¢s (all s € .S)
by

gs(N) := USA1ME ) and g, = go(N) (4)
Evidently, because of the normalization (3), it must be true that
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Lemma 6 For each A5 € A(Y®;TF) one has
US(N) =3 asUT(A) (6)
where qs := US(A19ME X\ € Ty for all s € S, implying that 3 ,cq gs = 1.

Proof: (cf. Fishburn, 1970) Let m be the number of elements in the finite
set S. Note that

1 m—1 1
v Loy s g Ly
seS m(_ As) m A +m (7)

for all A5 € A(Y9;TF). Because U satisfies (NAMP), applying U® to the
mixtures on each side of (7) gives

L s/ 15\{s} m—1_q. .5, 1 5.5
= 1 )= 1 =
Y e USRI ) =TS 1 LS
But U%(A1%) = 0 by (3), so (8) and definition (4) imply that
S Sy
USOS) =Y g0 o)

Then (STP) and (4) jointly imply that gs := gs(\) € F.

Because the function U® satisfies (NAMP), equation (4) and Lemma 5
evidently imply that the functions g5 (s € §) and U* do the same. Also,
by (STP), gs(\) and U*(X) both represent {*} on A(Y;TF) while satisfying
(NAMP), so they must be cardinally equivalent utility functions. By (2)
and (5), U*(A) = gs(A) = 0. Hence, there exists p > 0 for which

9s(A) = pU(N) (10)
By (2), U*(\) = 1. By (4), putting A = X in (10) yields g5 = gs(A\) = p.
Therefore (10) becomes gs(A) = ¢s U*(N). Substituting this into (9) gives
(6). Finally, (3), (6) and (2) jointly imply that
_ 778y 15\ _ *(Y)
1=0U7(1 )_ZSGS 4 U ()\)_ZSES s

which completes the proof. 1

Lemma 7 There exists a unique cardinal equivalence class of NMUFs
v:Y — IF and, unless there is universal indifference, unique subjective
probabilities ps (s € S) such that the ordering =° on A(Y®;TF) is repre-
sented by the subjective expected utility function

USOS) =Y L pe X M) v(y) (1)
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Proof: By Lemma 6, with p, replacing ¢s in (6), one has

USONF) =20 o ps U ) =30 opa Do @) v"(y)  (12)

where v*(y) := U*(1,) for all y € Y, and the second equality in (12) follows
because s is the (finite) mixture >°, cy As(y) 1, and U* satisfies (NAMP).
Asin Lemma 2, the NMUF v* could be replaced by any cardinally equivalent
v:Y — . But this is equivalent to replacing U® by a cardinally equivalent
VS A(Y®;F) — F. Any such transformation leaves the ratio

B US(AIS\{S},S\) _ US(Als)
Ps = 0s(x15) — US(A 19)

of expected utility differences unaffected. This ensures that the subjective
probabilities are unique. 1

5.6 Real-Valued Utility

By axiom (SI), there is a state-independent contingent preference ordering
Z* on A(Y;IF). Now, in game theory, relevant states of the world include
profiles of other players’ strategies. The motivation for non-Archimedean
probabilities is to allow infinitesimal subjective probabilities to be attached
to strategy profiles in which some players deviate from their presumed best
responses. Where there is no uncertainty of this kind, but only risk in the
form of specified objective probabilities, there is no good reason to depart
from classical expected utility theory, which requires preferences over real-
valued probability distributions to be continuous, and expected utility to
be real-valued. So it will be assumed that Z* on A(Y) satisfies a standard
continuity axiom for real-valued probability distributions. Hence:

(SIC) State Independent Continuity.* For all \, u,v € A(Y) with A =* p =*
v, there exist o/, a” € (0,1) such that

AN+ (1= )w=*p and p>=*"'A+(1-a")w

Finally:

4This is sometimes called the Archimedean aziom — see, for instance, Karni and
Schmeidler (1991, p. 1769). For obvious reasons I avoid this name here.
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Theorem 8 Suppose that the six axioms (0), (I*), (NAC), (RO), (SI) and
(SIC) are all satisfied on A(YS; ). Then, unless there is universal indiffer-
ence, there exist unique subjective probabilities ps € A(S;F) and a unique
cardinal equivalence class of real-valued NMUFs v :Y — R such that

MRS = 3 s D AW 2D v Y ps(y) v(y)

Proof: The existence of unique subjective probabilities ps and of a suitable
NMUF v : Y — F are direct implications of Lemma 7, as is the uniqueness
of v up to cardinal transformations.

Because there is not universal indifference, the NMUF v : Y — F cannot
be constant. So there must exist 7,y € Y such that v(y) > v(y), implying
that the NMUF v : Y — F can be normalized to satisfy v(y) = 1 and
v(y) =0.

Next, let <% denote the restriction of the ordering <* to the space
A(Y) of real-valued probability distributions. Note that <%, satisfies axioms
(0), (I*), and (SIC). Hence, a standard result in (real-valued) expected
utility theory implies that E*R can be represented by a real-valued utility
function U : A(Y) — R which satisfies the traditional real-valued mixture
preservation property (MP). Also, both U, and the associated NMUF v, :
Y — R defined by v3(y) = Ui(1y) can be normalized to satisfy vi(y) =
1 and vi(y) = 0. But now, because the expected values of both v and
vy, represent ?Q}‘% on A(Y), these two NMUFs are cardinally equivalent.
Therefore, because of the common normalization, they must be identical.
That is, v(y) = vi(y) € R for all y € Y, implying that v : ¥ — R. I

6 The Ordered Field R™(¢) as a Complete Metric
Space

6.1 The Ordered Field R(¢)

In Hammond (1994, 1998c), the search for a minimal suitable range of prob-
abilities led me to consider the particular ordered field R(e), originally de-
scribed by Robinson (1973). This field contains a basic infinitesimal element
e € I and so is non-Archimedean. One can regard € as a positive infinitesi-
mal element of *IR. Or, probably more intuitively, as any vanishing sequence
(€n)22, of positive real numbers. Then R(e) is the smallest field that in-
cludes all the real line R as well as €. Each of its elements can be written
as a “rational expression” f(e) = a(e)/b(e), where a(e) and b(e) are both
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“polynomial expressions” involving powers of e, with b(e) # 0. That is, if
e were replaced by a real variable r, then f(r) would be the ratio of two
polynomials, with the denominator not identically equal to zero.

In fact, the typical element of IR(¢) can be expressed in the normalized
form 5 ‘
ap €+ 30 a; €

1+ Z;nzl bj éj

for some unique integer k£ and some unique leading coefficient a;. Note that
ax # 0 unless f(e) = 0.

Define the ordering > on IR(¢) so that f(e) > 0 whenever f(r) > 0 for all
small enough real r > 0. It follows from (13) that f(e) > 0 iff ax > 0. This
makes > a lexicographic linear ordering on IR(e), in effect. It also makes
R(e) a non-Archimedean ordered field.

fle) =

(13)

6.2 A Metric

In Sections 4 and 5, the existence of subjective probabilities relied on prefer-
ences over lotteries satisfying the non-Archimedean continuity axiom (NAC)
of Section 4.2. Section 7 will be concerned with finding weaker sufficient con-
ditions for this axiom to be satisfied when probabilities are allowed to range
over IR(e). For this reason, the space R(e) needs to be given a topology.
One suitable topology for IR(¢) is based on a metric that has been suggested
by Lightstone and Robinson (1975).

Given the normalized form (13) of f(¢), define k as the infinitesimal order
v[f(e)] of f(e), with v[0] := oo for the zero element of R(e). If f(e) # 0,
note that:

1. if £ > 0, then f(e) is an infinitesimal of order k;

2. if k <0, then f(e) is really an infinite number of order —k, which can
be regarded as an infinitesimal of negative order;

3. if k = 0, then f(e) is infinitesimally different from a non-zero real
number, in which case it is said to be of infinitesimal order 0.

Note too that, for all non-zero pairs f(e), g(e) € R(¢), one has

v[f(€)-g(e)] = v[f(e)] +vlg(e)] and v[f(e) +g(€)] = min{ v[f(e)],v]g(€)] }

It follows that the infinitesimal order is an instance of what Robinson (1973)
describes as a “non-Archimedean valuation”.
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Now define the function d : R(e) x R(e) — R so that
(£, g(0) s= 2710010

for every f(e),g(e) € R(e), with the obvious convention that 27°° := 0.
Obviously, d(f(€),g(e)) = d(g(e), f(e€)) and d(f(e),g(€)) = 0 if and only if
v[f(€e) — g(€)] = oo, which is true iff f(e) = g(e). Finally, it is easy to verify
that d is a metric because the triangle inequality is satisfied.

6.3 Convergence

Consider any infinite sequence f"(e) (n = 1,2,...) of elements in R(e).
Evidently f™(e) — f(e) as n — oo iff d(f"(¢), f(€)) — 0, which is true iff
v[f"(€)—f(€)] — oco. But after defining ¢"(¢) := f"(e)—f(e) forn =1,2,...,
this holds iff ¢g"(e) — 0 because v[g"(e)] — oco. Ignoring any zero terms of
the sequence ¢g"(€¢) (n = 1,2,...), this requires that the infinitesimal order
k™ of |
A "+ 3y Al €
14+ 370 by el

should tend to +o0o. But then, for each number M = 1,2, ..., there must ex-
ist n(M) such that n > n(M) implies k™ > M because a]' = 0 for all i < M.
That is, all coefficients a;' of the numerator must become 0 for n sufficiently
large. This is a necessary and sufficient condition for convergence.

An equivalent test of convergence involves looking at a non-Archimedean
or field metric p : R(e) x R(e) — R(e) defined by p(f(e€),g(e);€) == |f(€) —
g(€)|. This is not a metric because it is not real-valued over the whole of its
domain. Nevertheless, in the domain R(e€) it is symmetric, has the value 0
iff f(e) = g(e), and satisfies the triangle inequality. Moreover, one can say
that f"(e) — f(e) as n — oo iff for every d(e) € R (€) there exists n(J)
such that n > n(d) implies p(f"(€), f(€);€) < d(€) in the natural ordering of
R(e). It is then an easy exercise to verify that this gives exactly the same
test of convergence as the ordinary metric defined above.

Note one important implication of these definitions: An infinite sequence
of real numbers converges if and only if it is eventually equal to a real
constant. Thus, the (very fine) topology we have defined on R(e) induces
the discrete topology on the subspace IR, meaning that every subset of IR is
open in the subspace topology.

g"(e) =
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6.4 Completing the Metric Space

Just as the ordinary continuity concept requires completing the space of
rationals by going to the real line R in which Cauchy sequences converge,
here I will consider a similar completion R (¢) of R(¢). Now, any sequence
f™(e) (n =1,2,...) of elements in R(e) is a Cauchy sequence iff for every
real § > 0 there exists M () such that d(f™(e), f™(e)) < 6 whenever m,n >
M(5). Equivalently, the infinitesimal order of f™(e) — f™(e) must exceed
—logy 0 whenever m,n > M(J). Finally, using the non-Archimedean metric
p, another equivalent condition for f"(e) (n = 1,2,...) to be a Cauchy
sequence is that for every d(e) € R, (e) there must exist a number M such
that p(f™(€), f"(€);¢€) < d(e) whenever m,n > M.

In R(€) there are many Cauchy sequences that do not converge. Indeed,
consider any sequence of the form f™(e) = >.7_, arpe® (n =1,2,...) where
the infinite sequence (ay);2; of real coefficients is non-recurring — for ex-
ample, the power series Y ~2 ¢, An analogy is the non-recurring decimal
expansion of any irrational real number such as v/2 = 1.4142 1356 2373 ...,
which has no limit among the set of rational numbers. The obvious limit of
the sequence f™(e) should be the power series 372 ay, €¥, just as the limit
of the decimal expansion 1.4142 1356 2373 ... is v/2. Yet a non-recurring
power series Y 7o ag ¥ does not correspond to a rational expression in R(e),
because multiplying it by any polynomial expression always leaves one with
an infinite power series, never a polynomial.

The obvious way to complete R(€), therefore, is to allow such “irrational”
infinite power series. As before, one wants an ordered algebraic field, so the
ratios of such power series must also be accommodated. However, the recip-
rocal of any power series is itself a power series, but of the form 3772 | = ax "
where the leading power kg could be negative. Accordingly, define R*(¢) as
the set of all such power series.® Of course, the reciprocal of any polynomial
in R(e) is a power series in IR*(€), so any rational expression in R(e) is a
power series in R*°(€). Hence, R*(¢) does extend RR(e).

For convenience, write the typical member of R*(€) as the doubly infi-
nite power series Y72 ___ ay, €°, where it is understood that there must exist
ko such that ap = 0 for all k¥ < kg. Then both the metric d and the non-
Archimedean metric p that were defined on R(e) can obviously be extended
to IR*(e). The criterion for convergence of any sequence is therefore exactly
the same, except that the denominator is clearly irrelevant. In fact, the

®In fact R™(¢) is a proper subset of the space £ described by Levi-Civita (1892/3)
and by Laugwitz (1968), whose members are power series of the form Z;O:ko ak €’% where
(vk)72 is any increasing sequence of real numbers that tends to co as k — oo.

22



infinite sequence f"(e) (n =1,2,...) of power series > 72 af ¥ in R™(¢)
will converge to the limit f(e) = 322 ag €* in R*(e) iff for every k there
exists ny such that af = a;, for all n > ny,.

Finally, for any sequence > ;2 _ a} e® (n = 1,2,...) of power series
in R*(e) to be a Cauchy sequence, it must be true that: (i) there exist
ko,no € IN such that a} = 0 whenver k& < ko and n > ng; (ii) for every
k > ko there exist both ny € IN and a; € R such that af = a; for all
n > ng. But then the sequence obviously converges to f(e) := 302 ax €,
which is equal to 3 ;2  a ¢® because a; must be 0 for all k < k. So the
Cauchy sequence has a limit in IR*°(¢). This confirms that IR*(e) is indeed
a complete metric space.

Two Cauchy sequences (370 _ . af €¥)22, and (302 bl eF)o0 ;| are
said to be “limit equivalent” in IR*(€) whenever Y22 (a? — b?)€* con-
verges to 0 in IR (e) as n — oo. Because the quotient space of limit equiv-
alence classes of Cauchy sequences in R(e) is easily seen to be an ordered
field which is isomorphic to R™>(e), it follows that IR*(¢) is effectively the
smallest complete metric space containing R(e), just as R is the smallest
complete metric space containing the ordered field of rationals.

7 Lexicographic Expected Utility

7.1 Continuity

In the special case when the non-Archimedean ordered field IF is the com-
plete metric space R™(¢€), the unsatisfactory non-Archimedean continuity
(NAC) axiom of Section 4.2 will emerge as an implication of two weaker
continuity axioms. Of these, the first is a non-Archimedean version of the
familiar continuity axiom for preferences which requires that the sets of
weakly preferred and weakly dispreferred mixtures of any two lotteries both
be closed.

(C*) Continuity. For all lotteries A%, %, 1% € A(Y¥;R™(e)) satisfying
NS =5 1% and p® =5 1%, the two sets

A = {ale) € (0,1)gee( | a4+ (1 —a)p® =¥
B = {afe) € (0,1)gee(e | aX + (1 —a)S 39

are both closed.
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7.2 Extended Continuity

Before presenting the second continuity axiom, let me first re-state axiom
(NAC) for the case when probabilities take values in IR*(e).

(NAC) Non-Archimedean Continuity. Given any three lotteries A%, u%, % €
A(Y3;R*®(€)) satisfying \° =9 p¥ and p® =5 19, there exists a(e) =
S0 0 € € (0, 1)Ree(¢) such that NS+ [1 — a(e)v® ~ .

Then it is evident that axiom (NAC) can only be satisfied if the following
logically weaker axiom is as well:

(XC) Extended Continuity. Suppose that ay,(€) := S0, ax €* € (0, DR (o)
has the property that whenever & (¢) = ay,(€) + & €™ and 6,,(c) =
am(€) — 6" €™ for some real ¢’,8” > 0, then

57—;(6))\5 +[1— 5,.—:(6)]1/5 =5 S-S 6,;(6))\5 +[1— 5;1(6)]115 (14)

In this case, there must exist a], 1, al, 1 € R such that, if v/, (e) =

am(€) +al, 1 €™ and ) 1 (€) = am(e) +all, ;1 €™, then

S S, 5 S

Va1 (A + L= 701 ()] = 1 = 4 (A + [L = 7 ()]

Clearly, axiom (XC) is specific to the field R*(¢). When «,, (€) satisfies
(14), any positive probability perturbation of order €™ is strictly preferred,
and any negative perturbation of the same order is strictly dispreferred.
Then axiom (XC) requires there to be some perturbations of order e™*!
that are strictly preferred, and others that are strictly dispreferred. Note
the similarity here with the requirements of the following non-Archimedean
version of a standard weakening of axiom (C*):

(C) Continuity. For all A% 1% 15 € A(Y¥;R>(¢)) satisfying \° =9 p°
and p® =% 19, there exist /(€),a” (€) € (0,1)ge(c) such that

A (ON +[1— o/ ()] =% u¥ =5 o ()N +[1 — (&)

7.3 Non-Archimedean Continuity

It will now be shown that axioms (C*) and (XC) can replace the questionable
(NAC) among the sufficient conditions for the SEU hypothesis.

Lemma 9 On the space A(Y®;R*(€)) of probability distributions taking
values in the complete metric space R*(€), the four axioms (0), (I*), (C*)
and (XC) together imply (NAC).
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Proof: Suppose that A%, u% 15 € A(YY,R®(¢)) satisfy \¥ = p° and

p® =% v5. The following proof involves a recursive construction. This
begins at stage m = 0 with a_1(€) := 0 and the two disjoint subsets

Ay = {aec(0,Dr|aX "+ 1 —ap’ =% 45}

By = {ae(0,)r|aX+ (1 —-a)’ < 5}

of the real interval (0,1)gr. By Lemma 1 of Section 4.4, it follows from
axioms (O) and (I*) that there must exist a unique ag € (0,1)g such that
ag = inf Ay = sup By.

Suppose that recursion steps kK =0, 1,...,m (m > 0) have already been
completed, and that they yield the coefficients ag, a1, ..., a, of the poly-
nomial expression a,,(€) := Y7L, ar€e® € (0, 1)Reo(e), together with the
associated sets
Ay = {aeR|[am1(e) +ae™N +[1 —am_1(e) —aem® =5 15}
By = {aeR|[am1(e) +ae™N +[1 —am_i1(e) —ae™® <5 u}

which satisfy al,, > a,, > all, whenever a, € A, and a, € By,.

At the recursion step m + 1 (m > 0), axiom (XC) implies that the next
two sets Ap,41 and By,41 of the construction are both non-empty. Applying
Lemma 1 once again, it follows that there must exist a unique a,,+1 € R
such that a,,+1 = inf Ayp1 = sup Byg1. Let apypi(e) = 2”:01 ap €F €
(0, 1)gee(e). Then ay, 1 > ami1 > ay,, g Wheneveray, ;1 € Apy1anday, | €
Bp+1. This completes recursion step m + 1.

Consider next the two sequences a;'(€) := ap(€) + €™ and a,(€) :=
am(€) — €™ (m=1,2,...). Then the above construction implies that

af (N +[1—af ()] =% 1% =% o (N +[1 — oy ()]

for m = 1,2,.... In addition, because R*(€) is complete, as m — oo
both sequences o} (¢) and «, (¢) converge to the same infinite power series
ale) == 3220 ar€® € (0,1)goe(e). Using axiom (C*) and the definitions of
the two sets A and B it contains, it follows that a(e) € AN B. Evidently, it
is this o(e) which satisfies a(e)A% + [1 — a(e)]v® ~° u¥ and so makes (NAC)

true. 1

7.4 Main Theorem

Finally, the following theorem shows that we have provided sufficient condi-
tions for the non-Archimedean version of the SEU hypothesis to hold, with
a real-valued utility function:
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Theorem 10 Suppose that the seven azioms (0), (I*), (C*), (RO), (SI),
(SIC) and (XC) are all satisfied on A(Y®;R®(e)). Then, unless there is
universal indifference, there exist unique strictly positive non-Archimedean
subjective probabilities p(-;€) € A(S;RF(€)) and a unique cardinal equiv-
alence class of real-valued NMUFs v : Y — R such that, for each (non-
empty) event E C S, the corresponding contingent preference ordering ~E
on A(YF;R™(e)) is represented by the R (e)-valued subjective expected
utility expression

UPOE) =3 (s X, () v(y) (15)

in the sense that \¥ ZF p¥ if and only if UP(NF) > UF (uF) in the natural
ordering of R (e).

Proof: The result follows trivially from applying Theorem 8 to the field
IF = R*°(¢) and then using Lemma 9 to replace the particular axiom (NAC)
with the two axioms (C*) and (XC). 1

7.5 Lexicographic Expected Utility

For every s € S, the subjective probability p(s;€) € R3°(e) can be expressed
as the power series Y72 pr(s) €*. Thus, the SEU expression (15) can be
re-written as the power series U¥ (A\F) = 3°0° ) ul/(A\F) €% whose coefficients
are given by

UE(AE) = ZseE pr(s) ZyEY //’S(y) v(y) (k =0,1,2,...)

But then \f ZF 4F if and only if the associated infinite hierarchies of coef-
ficients (ul’(AF))22, and (ulff (uF))2, satisfy (uf (AE))22 ) >1 (uf (u¥))22,
w.r.t. the lexicographic total ordering > on R*°. In this sense, the prefer-
ence ordering ZF has a lexicographic expected utility representation.
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