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Abstract

Earlier work (Hammond, 1988a, b) on dynamically consistent “consequentialist” behaviour in

decision trees was unable to treat zero probability events satisfactorily. Here the rational proba-

bility functions considered in Hammond (1994), as well as other non-Archimedean probabilities,

are incorporated into decision trees. As before, the consequentialist axioms imply the existence

of a preference ordering satisfying independence. In the case of rational probability functions,

those axioms, together with continuity and a new refinement assumption, imply the maximiza-

tion of a somewhat novel lexicographic expected utility preference relation. This is equivalent to

maximization of expected utility in the ordering of the relevant non-Archimedean field.



Non-Archimedean Expected Utility

ma la natura la dà sempre scema

similemente operando all’artista

c’ha l’abito dell’arte e man che trema

Dante, La Divina Commedia, Vol. III: Paradiso (Canto XIII, 76–78)†

1. Introduction and Outline

1.1. Consequentialism in Single Person Decision Theory

The consequentialist approach to single-person decision theory, with uncertainty described

by specified objective probabilities, was previously described in Hammond (1988a, b). In

fact the latter paper also deals with states of nature and subjective probabilities. Here

non-Archimedean subjective probabilities will not be considered at all, but left for later

work.

This consequentialist approach is based on three axioms. Of these, the first requires

behaviour to be well defined for an (almost) unrestricted domain of finite decision trees

with: (i) decision nodes where the agent makes a move; (ii) chance nodes at which random

moves occur with specified positive probabilities; (iii) and terminal nodes which result in

a single consequence within a specified domain of relevant consequences. It follows that

behaviour in any such tree results in a set of probability distributions over consequences.

The second axiom requires behaviour to be dynamically consistent in continuation subtrees,

in the sense that behaviour at any decision node is the same in a subtree as in a full tree.

And the third is the “consequentialist choice” axiom, requiring that the set of possible

random consequences of behaviour in any decision tree of the domain be explicable as the

choice of desirable random consequences from the set of random consequences that the tree

makes feasible.

† “But Nature fumbles, with no sure command

Over her tools, like an artificer

Who know his trade but has a trembling hand.”

Dante Alighieri the Florentine, The Divine Comedy, Cantica III: Paradise; trans-
lated (rather freely) by D.L. Sayers and B. Reynolds (Penguin: Harmondsworth, 1962).
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The earlier work then showed how these three consequentialist axioms imply the ex-

istence of a preference ordering (i.e., a complete and transitive weak preference relation)

defined on the space of random consequences. Moreover, this ordering must satisfy Samuel-

son’s (1952) independence axiom. In this way, two of the most important and even contro-

versial axioms of standard decision theory become implications of apparently weaker and

possibly more appealing axioms of the consequentialist reformulation. Thereafter, an ex-

tra condition of continuity of behaviour with respect to changing probabilities leads to the

preference ordering having an expected utility representation.

1.2. Consequentialism in Game Theory

This paper is the second in a series whose purpose is to extend the scope of this conse-

quentialist approach from single-person decision trees to multi-person extensive games. In

fact, a decision tree is nothing more than a one person “consequentialist extensive game”

of perfect and complete information. The difference from the usual notion of a game in

extensive form comes about because no payoffs are specified. Instead, terminal nodes are

assumed to result in pure consequences within the specified domain of consequences. Then

the existence of a payoff function defined on this domain of consequences is not assumed,

but becomes an important implication of consequentialism.

The main obstacle to this extension of consequentialism comes about because the earlier

single person theory excludes zero probability chance moves — it is in this sense that the

domain of allowable decision trees is almost rather than fully unrestricted. Such a restriction

is excusable in single person decision theory where there are no good reasons for retaining

zero probability events. In multi-person game theory, however, testing to see whether a

particular profile of strategies for each player constitutes an equilibrium involves seeing

what happens when any player deviates and then all the other players react according to

their presumed equilibrium strategies. Yet these reactions are behaviour in the face of events

which are supposed to have probability zero, since that is supposed to be the probability of

any player deviating from equilibrium. So one is faced with the need to update probabilities

in a Bayesian manner even though a zero probability event has occurred. For this reason,

the zero probability restriction makes it difficult to apply consequentialist decision theory to

multi-person games in a way that yields subgame perfect or other kinds of refined equilibria.

The task of this work is to remove this burdensome restriction.
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Not surprisingly, the zero probability problem has already led several game theorists

to extend the space of ordinary probabilities in various ways. In particular, Selten (1975)

and Myerson (1978) considered “trembles.” Kreps and Wilson (1982), and then Blume,

Brandenburger and Dekel (1991a, b) considered lexicographic hierarchies of probabilities.

Myerson (1986) considered complete conditional probability systems. Finally, McLennan

(1989a, b) considered logarithmic likelihood ratio functions whose values can be infinite.

Hammond (1994) shows that all of these different extensions, when suitably formulated,

are in fact equivalent to each other, and also to a particular space of “conditional rational

probability functions.”

In decision trees, it is usual to specify independent probabilities at each separate chance

node. After all, in principle any causes of dependence can and should be modelled within

the structure of the tree itself. Then, however, it is particularly important to be sure that

the entire joint distribution of all chance moves is determined uniquely from the marginal

probability distributions over the chance moves at each separate chance node of the decision

tree. In the case of ordinary probabilities, this is trivial because joint probabilities are found

by simply multiplying appropriate marginal probabilities. Yet Hammond (1994) also shows

how the equivalent sets of extended probabilities mentioned in the previous paragraph

all fail this crucial test. That is, many different joint extended probability distributions

over nature’s possible strategies in the decision tree can arise from the same collection

of independent marginal probability distributions over nature’s moves at different chance

nodes. This is because such extended probabilities lack the structure of an algebraic field

in which the operation of multiplication is well defined.

1.3. Consequentialism with Non-Archimedean Probabilities

So it seems necessary to work with a richer space of extended probabilities, for which

multiplication and other algebraic field operations are well defined. There should also be an

ordering relation rich enough to give meaning to the statements that probabilities are non-

negative or positive and that they are larger or smaller. Now, within an ordered algebraic

field such as the real line �, the Archimedean axiom states that, for any positive number

r, no matter how small, there is an integer n for which n r > 1. Overcoming the zero

probability problem seems to require some kind of non-Archimedean ordered field with

some positive elements so small that this axiom is violated. So any such field must have
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at least one positive “infinitesimal” element ε with the property that n ε < 1 for every

positive integer n, even though ε is positive. Of course any such positive infinitesimal must

be smaller than any positive real number; in particular, it cannot be a real number itself.

Section 2 below therefore begins by briefly reviewing the definition and key proper-

ties of non-Archimedean ordered fields. Particular attention is paid to the elementary field

�(ε) whose use was recommended in Hammond (1994). All its members are rational func-

tions of a single indeterminate infinitesimal denoted by ε. For any finite support in an

appropriate sample space, Section 2 proceeds to consider a corresponding set of elementary

non-Archimedean probabilities. In the case when the field is �(ε), such probabilities are

called “rational probability functions” (or RPFs).

It then becomes natural to consider in Section 3 decision trees having RPFs or other

non-Archimedean instead of ordinary positive probabilities attached to each chance move

in the tree. Behaviour in such trees gives rise to non-Archimedean consequences — i.e.,

RPFs or more general non-Archimedean conditional probability distributions over the do-

main of relevant consequences. Within the corresponding domain of finite non-Archimedean

consequentialist decision trees the previous consequentialist axioms can be applied almost

without change. Most implications are also the same as in Hammond (1988a, b), since

virtually all the arguments in those two papers apply to probabilities taking values in a

general ordered field, and not just to those taking values in the Archimedean ordered field

�. In particular, the three “consequentialist” assumptions mentioned in Section 1.1 imply

the existence of a revealed preference ordering. And this ordering must satisfy Samuelson’s

(1952) independence axiom.

The set of preference orderings that satisfy the independence axiom on the space of

relevant non-Archimedean random consequences is actually very large. Many such order-

ings, however, pay no attention to the interpretation of ε as an infinitesimal. In addition,

recall that the only motivation which has been offered for non-Archimedean probabilities

is to resolve the zero probability problem mentioned in Section 1.2. Now, were zero prob-

abilities to be allowed, the problem they create is that the usual decision criteria generate

behaviour sets that are too large. Accordingly, Section 4 proposes an additional and rather

natural refinement axiom. This requires that in any decision tree whose chance moves

have non-Archimedean probabilities differing only infinitesimally from those in an ordinary
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decision tree with real probabilities, behaviour with non-Archimedean probabilities should

refine that with ordinary probabilities. It is then shown how this refinement axiom implies

that the strict preference relation over non-Archimedean random consequences must refine

the corresponding relation over ordinary random consequences. And, in the special case of

RPFs, there must be a unique extension which can be regarded as a lexicographic hierarchy

of preference orderings over ordinary random consequences.

Another part of the theory where the non-Archimedean field structure makes some

difference is in the continuity condition set out in Section 5 as a necessary and sufficient

condition for expected utility maximization. Within a general non-Archimedean field the

construction used by Herstein and Milnor (1953) and others to determine the real values

of a von Neumann–Morgenstern utility function is invalid, since it relies upon a continuity

or “Archimedean” axiom. Nevertheless, the theory presented here is meant to extend the

earlier standard theory of expected utility and subjective probability, so it seems reasonable

to retain this Archimedean axiom for the subspace of decision trees with real-valued positive

probabilities. In combination with the earlier axioms concerning behaviour in decision trees,

this restricted continuity axiom implies that, when probabilities are described by RPFs,

all the preference orderings making up the lexicographic hierarchy described in Section 4

can be represented by the expected value of the same von Neumann–Morgenstern utility

function. A particular feature of the new lexicographic expected utility criterion is that it

generalizes the standard criterion presented by Blume, Brandenburger and Dekel (1991a, b).

For example, it allows and even requires expected utility hierarchies of differing lengths to

be compared.

Now, the expectation of any real-valued utility function with respect to some non-

Archimedean probability distribution is itself a member of the non-Archimedean ordered

field introduced in Section 2. As Section 6 shows, the new lexicographic expected utility

criterion is equivalent to maximizing non-Archimedean expected utility with respect to the

ordering of the field �(ε) in which RPFs take their values.

Finally, Section 7 gathers together all the consequentialist axioms and their implica-

tions that have been set out in previous sections. They imply the existence of a unique

class of cardinally equivalent von Neumann–Morgenstern utility functions such that con-

sequentialist behaviour must be “non-Archimedean” Bayesian rational in the sense that it
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maximizes the lexicographic expected utility preference criterion set out in Section 4. More-

over, any behaviour which is non-Archimedean Bayesian rational in this sense will satisfy

the consequentialist axioms. This is the main theorem of the paper.

2. Non-Archimedean Probabilities

2.1. General Non-Archimedean Ordered Fields

An ordered field 〈IF,+, ·, 0, 1, >〉 is a set IF together with: (i) the two algebraic operations +

(addition) and · (multiplication); (ii) the two corresponding identity elements 0 and 1; (iii)

the binary relation > which is a total order of IF satisfying 1 > 0. The set IF must be closed

under its two algebraic operations. The usual properties of real number arithmetic also

have to be satisfied — i.e., addition and multiplication both have to be commutative and

associative, the distributive law must be satisfied, and every element of x ∈ IF must have

both an additive inverse −x and a multiplicative inverse 1/x, except that 1/0 is undefined.

The order must be such that y > z ⇐⇒ y − z > 0, while the set of positive elements

in IF must be closed under both addition and multiplication. Both the real line and the

rationals are important and obvious examples of ordered fields. The set Q(
√

2) of real

numbers expressible in the form a + b
√

2 for some pair of rationals a, b ∈ Q is a somewhat

less familiar example.

Any ordered field IF has positive integer elements n = 1, 2, . . . which can be found by

forming the sums n = 1 + 1 + . . . + 1 of n copies of the element 1 ∈ IF. Then IF is said to

be “Archimedean” if, given any x > 0 in IF, there exists such a positive integer n for which

n x > 1. So any non-Archimedean ordered field must have at least one positive infinitesimal

ε with the property that n ε ≤ 1 for all positive integers n.

The introduction claimed that the set of real-valued probabilities needs extending for a

fully satisfactory decision theory. In future, therefore, IF will always be a non-Archimedean

ordered field that extends the real line �. Now, for any positive r ∈ �, there exists an

ordinary positive integer n satisfying 1/n < r ∈ IF. Any positive infinitesimal ε ∈ IF must

therefore satisfy ε ≤ 1/n < r, and so must be smaller than any positive real number.

For any x ∈ IF, let |x| denote x if x ≥ 0 and −x if x < 0. Say that any x ∈ IF is

infinitesimal if |x| < r for all (small) real r > 0, and that x is finite if |x| < r for some
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(large enough) real r. Any x ∈ IF is said to be infinite if and only if it is not finite. Any

non-zero x ∈ IF is therefore infinitesimal if and only if 1/x is infinite.

Next, given any finite x ∈ IF, the two sets { r ∈ � | r > x } and { r ∈ � | r ≤ x }
partition the real line �, and so form a Dedekind cut. The usual properties of the real line

then ensure that there is a unique 0x ∈ �, called the real part of x, defined by

0x := inf { r ∈ � | r > x } = sup { r ∈ � | r ≤ x }.

For any real r > 0, note that x− r < 0x < x + r. Define εx := x− 0x. Then |εx| < r for all

real r > 0, so εx is infinitesimal. Since x = 0x + εx, it is natural to call εx the infinitesimal

part of x.

2.2. An Elementary Non-Archimedean Ordered Field

Since decision and game theory would seem to require some non-Archimedean ordered field

IF containing � as a subfield, it is natural to explore the simplest such field. This must

contain at least one positive infinitesimal ε. So no candidate for the field IF can possibly be

simpler than the one that results from appending ε to �, and then closing the resulting set

� ∪ {ε} under the operations of addition, subtraction, multiplication, and division except

by zero. The result of this closure is a field denoted by �(ε) that has been discussed by

Robinson (1973, p. 88–9) in particular. Its members are all the “rational” functions which

can be expressed as ratios

f(ε) =
A(ε)
B(ε)

=
a0 + a1 ε + a2 ε2 + · · · + an εn

b0 + b1 ε + b2 ε2 + · · · + bm εm
=

∑n
i=0 ai εi

∑m
i=0 bi εi

(1)

of two polynomial functions A(ε), B(ε) of the indeterminate ε with real coefficients; moreover

not all the coefficients of the denominator B(ε) can be zero.

Now, one can simplify (1) by successively: (i) eliminating any leading zeros a0 = a1 =

. . . = ak−1 = b0 = b1 = . . . = bj−1 = 0; (ii) dividing both numerator and denominator by

the leading non-zero coefficient bj of the denominator; (iii) cancelling any positive powers

of ε that are common to all terms of both numerator and denominator and relabelling the

coefficients ai, bi accordingly. The result is that any f(ε) ∈ �(ε) given by (1) gets put into

its normalized form

f(ε) =
∑n

i=k ai εi

εj +
∑m

i=j+1 bi εi
(2)
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for some integers j, k, m, n ≥ 0 such that j = 0 or k = 0 (or both). Moreover ak �= 0 unless

f(ε) = 0. Note too that each real number r ∈ � can be simply expressed in the form (2)

by writing r = r/1 ∈ �(ε), with j, k, m, n = 0 and a0 = r.

It remains to be shown that �(ε) really is a non-Archimedean ordered field. The binary

relation > will be defined so that y > z ⇐⇒ y − z > 0 where, for any x = f(ε) ∈ �(ε) in

its normalized form (2), one has f(ε) > 0 if and only if ak > 0. Recalling that ε is intended

to be an infinitesimal, this condition is entirely natural because it is equivalent to having

f(r), the corresponding real-valued rational function of the real variable r, be positive for

all small positive r. For later reference, note that > is effectively a lexicographic relation.

For if f(ε) is given by (1), then f(ε) > 0 if and only if ak/bj > 0, where ak and bj are the

first non-zero coefficients of the numerator and denominator respectively.

From the above definition, it is easy to check that > is asymmetric and transitive,

while either f(ε) > 0 or f(ε) < 0 unless f(ε) = 0. So > is indeed a total order. And it is

easy and routine to check that the corresponding set of positive elements is closed under

addition and multiplication. Finally, �(ε) is non-Archimedean because 1 > 0 and so the

order > defined above satisfies 1 − n ε > 0 for every positive integer n.

Let f(0) ∈ � denote the value at r = 0 of the corresponding polynomial function f(r) of

the real variable r. Then it is easy to see that any f(ε) ∈ �(ε) given by (2) is infinitesimal

if and only if k > j = 0, so that f(0) = 0. And any such f(ε) is infinite if and only if

j > k = 0, so that f(0) is undefined. Finally, whenever f(ε) ∈ �(ε) is finite, f(0) is equal

to its real part 0f(ε).

Choosing a more appropriate algebraic field in which probabilities can be defined is an

important first step. And for the purposes of this paper and some later work in decision and

game theory, the field �(ε) appears to be rich enough. However, some further extensions

of �(ε) are eventually going to be necessary so as to accommodate countably additive non-

Archimedean probability measures, continuous strategy spaces, etc. — for example, the

set �∞(ε) mentioned in Hammond (1994, p. 48), whose members are ratios of power series
∑∞

k=0 ak εk with real coefficients a0, a1, a2, . . .. Accordingly, much of the paper actually

works with a general non-Archimedean ordered field IF that extends �(ε). This field could

be as rich as the whole non-standard real line ∗� of “hyperreals,” or it could be one of many

possible sub-fields of ∗�, including �∞(ε).
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2.3. A Minimal Positive Cone

Probabilities are always non-negative. Avoiding the zero probability problem requires

them all to be positive. In fact, when requiring a probability to have some positive non-

Archimedean value p ∈ IF, a more restrictive condition than p > 0 will be used. Probabilities

will actually be given values in some convex non-Archimedean positive cone IP — that is,

in a set IP ⊂ IF+ := {x ∈ IF | x > 0 } containing all the positive reals and at least one

infinitesimal, such that IP is closed under addition, multiplication and division. Of course,

such a cone cannot be closed under subtraction. So it is natural to have IP as a minimal set

in IF with these properties. After all, this whole line of research is about having a space of

probabilities that is no larger than absolutely necessary. The members of such a minimal

IP will be described as strongly positive.

When IF = �(ε), let P(ε) denote the set of all f(ε) ∈ �(ε) given by (1) whose real

coefficients ai (i = 0 to I) and bj (j = 0 to J) are all non-negative, while f(ε) �= 0.

Equivalently, the numerator and denominator of f(ε) must each contain at least one positive

real coefficient, and no negative coefficient. Obviously P(ε) is the smallest set containing

both the positive part of the real line and ε which is also closed under addition, multiplication

and division. The set P(ε) is therefore a convex non-Archimedean positive cone, implying

that one can take IP = P(ε).

2.4. Non-Archimedean Probabilities

Let Ω be a non-empty sample space. Note carefully that Ω is not required to be finite. Let

F any non-empty finite subset of Ω. A IP-probability on (or with support) F is a mapping

p(·) : 2Ω → IP ∪ {0} which is defined on the domain 2Ω of all subsets of Ω, and satisfies the

three axioms:

(i) p(E) ∈ IP whenever E ∩ F �= ∅;

(ii) p(E) = 1 whenever F ⊂ E ⊂ Ω;

(iii) p(E ∪ E′) = p(E) + p(E′) whenever E, E′ ⊂ Ω are such that E ∩ E′ = ∅.

From axioms (ii) and (iii) it follows that, whenever E ∩ F = ∅, then

1 = p(E ∪ F ) = p(E) + p(F ) = p(E) + 1
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and so p(E) = 0. Actually, apart from (i), these are the usual axioms of probability theory,

but with p(E) taking values in IP ∪ {0} instead of �+. However, axiom (i) strengthens the

usual condition that p(E) ≥ 0 for all E ⊂ F . To justify this strengthening, recall that the

only reason for introducing extended and non-Archimedean probabilities has been the need

to overcome the zero probability problem in decision and game theory. Note too that p(E)

is allowed to be an arbitrarily small strongly positive infinitesimal in IP.

Let ∆0(F ; IP) denote the set of all such IP-probabilities with support F . This set is

obviously an extension of the set ∆0(F ) of ordinary probability distributions with support

F . Let ∆(Ω; IP) denote the set of all IP-probabilities that belong to ∆0(F ; IP), for some finite

F ⊂ Ω. Thus all the members of ∆0(F ; IP) definitely have F as their support, whereas each

member of ∆(Ω; IP) has a support which can be any finite subset of Ω.

As usual with finitely supported probability distributions, any p(·) ∈ ∆0(F ; IP) is com-

pletely determined by its values p({ω}) on the singleton subsets {ω} (ω ∈ F ). With the

customary slight abuse of notation, write these values as p(ω) (ω ∈ F ), all of which must be

strongly positive. Moreover, it must be true that p(ω) = 0p(ω) + η(ω), where the real part
0p(·) is an ordinary probability distribution in ∆(F ), while each η(ω) is infinitesimal in IF,

and also
∑

ω∈F η(ω) = 0. For any ω ∈ F it is necessary to have 0p(ω) > 0 or η(ω) ∈ IP (or

both).

In the special case when IP = P(ε), such non-Archimedean probabilities will be called

rational probability functions (or RPFs). Let ∆0(F ; ε) denote the set of all such RPFs with

support F . And let ∆(Ω; ε) denote the set of all RPFs that belong to ∆0(F ; ε), for some

finite F ⊂ Ω.

Members of ∆0(F ; ε) have probabilities given, for all ω ∈ F , by rational functions

p(ω; ε) =
A(ω; ε)
B(ω; ε)

=
a0(ω) + a1(ω) ε + a2(ω) ε2 + · · · + aI(ω)(ω)εI(ω)

b0(ω) + b1(ω) ε + b2(ω) ε2 + · · · + bJ(ω)(ω)εJ(ω)
=

∑I(ω)
i=0 ai(ω) εi

∑J(ω)
j=0 bj(ω) εj

of the form (1). Here the coefficients ai(ω) (i = 0 to I(ω)) and bj(ω) (j = 0 to J(ω)) are

all non-negative real numbers and, for any ω ∈ F , neither all the ai(ω) nor all the bj(ω)

are zero. Now, the finite collection B(ω; ε) (ω ∈ F ) of polynomials has a positive lowest

common denominator which will be written as L(ε) :=
∑H

h=0 �h εh, where each �h ≥ 0. For
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all ω ∈ F one has

p(ω; ε) =
L(ω; ε)
L(ε)

=
∑H

h=0 �h(ω) εh

∑H
h=0 �h εh

, where L(ω; ε) :=
A(ω; ε) L(ε)

B(ω; ε)
. (3)

Moreover, �h(ω) ≥ 0 for all ω ∈ Ω and for h = 0, 1, 2, . . . , H. After repeating the operations

used to obtain the normalized form (2) of a general rational function (1) — i.e., eliminating

any leading zeros, cancelling redundant powers of ε, and dividing by the leading coefficient

of the denominator — one obtains the normalized form

p(ω; ε) =
p0(ω) +

∑H
h=1 �h(ω) εh

1 +
∑H

h=1 �h εh
. (4)

Here
∑

ω∈F p0(ω) = 1 and
∑

ω∈F �h(ω) = �h for h = 1 to H. Moreover p0(ω) must be

equal to the real part 0p(ω; ε) of p(ω; ε), for all ω ∈ F . In particular, p0(·) is an ordinary

probability distribution in ∆(F ).

An alternative form of (4) will be used in Section 4 below. This comes from dropping

any terms for which �h = 0, while letting K denote the remaining set of those integers h

with �h > 0. Then (4) becomes

p(ω; ε) =
∑

k∈K �k pk(ω) εk

∑
k∈K �k εk

(5)

where pk(ω) := �k(ω)/�k for k ∈ K and all ω ∈ F . Then 0 ∈ K, �0 = 1, and pk(·) ∈ ∆(F )

for all k ∈ K.

Finally, note that (5) can be regarded as specifying probabilities

p∗(k, ω; ε) :=
�k pk(ω) εk

∑
j∈K �j εj

as functions of ε on the extended sample space N × Ω, where N denotes the set of non-

negative integers, to be interpreted as various orders in a lexicographic hierarchy (cf. Blume

et al., 1991a, b). This is equivalent to compounding the ordinary conditional distributions

p∗(ω|k) := pk(ω) (all ω ∈ F and k ∈ K) with the particular RPF �(·; ε) ∈ ∆(N ; ε) given by

�(k; ε) := p∗({k} × Ω; ε) =
�k εk

∑
j∈K �j εj

(all k ∈ K).
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2.5. Independence

Suppose that the finite non-empty sample space Ω is the n-fold Cartesian product
∏n

s=1 Ωs.

Suppose that, for s = 1 to n, there are IP-probability distributions ps(·) ∈ ∆0(F s; IP) with

respective finite supports F s ⊂ Ωs. Then these n distributions are said to be independent

if their joint distribution has support F =
∏n

s=1 F s and is described by the unique IP-

probability distribution p(·) ∈ ∆(F ; IP) that satisfies

p(
∏n

s=1
Es) =

∏n

s=1
ps(Es) whenever Es ⊂ F s (s = 1, 2, . . . , n).

This corresponds to the strongest of the three definitions of independence in Blume et al.

(1991a) and in Hammond (1994). And it is the only one of the three allowing the joint

distribution to be inferred uniquely from the independent marginal distributions.

2.6. Non-Archimedean Conditional Probabilities

Suppose that p(·) ∈ ∆0(F ; IP) is any IP-probability distribution on the finite subset F ⊂ Ω.

Then the non-Archimedean conditional probability

P (E|E′) := p(E)/p(E′) ∈ IP (6)

is certainly well defined whenever ∅ �= E ⊂ E′ ⊂ F . The zero probability problem has

therefore been resolved.

Consider the case when IP = P(ε) and p(·; ε) ∈ ∆0(F ; ε) is any RPF on the finite subset

F ⊂ Ω. Then the non-Archimedean conditional probability (6) takes the form

P (E|E′; ε) := p(E; ε)/p(E′; ε) ∈ P(ε) (7)

where p(E; ε) and p(E′; ε) are rational functions in P(ε), and so therefore is P (E|E′; ε).

Since ε is an infinitesimal, it is tempting in this case to consider the ordinary conditional

probabilities that are defined by the limit

P (E|E′) := lim
r→0+

P (E|E′; r), (8)

of the positive real-valued rational function P (E|E′; r) as r tends to zero through ordinary

positive real values. The conditional probabilities P (E|E′) (∅ �= E ⊂ E′ ⊂ F ) then form a
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complete conditional probability system (or CCPS) on F , of the kind studied by Rényi (1955,

1970), Lindley (1965), and Myerson (1986), amongst others. Each such CCPS is obviously

represented by an equivalence class of RPFs, where any two RPFs p(·; ε), q(·; ε) ∈ ∆0(F ; ε)

are to be regarded as equivalent if and only if

lim
r→0+

p(E; r)/p(E′; r) = lim
r→0+

q(E; r)/q(E′; r) whenever ∅ �= E ⊂ E′ ⊂ F . (9)

Moreover, as pointed out in Hammond (1994), each such equivalence class of RPFs can be

represented by a single conditional rational probability function satisfying the property that

p(ω; ε) =
pk(ω)(ω) εk(ω)

∑K
k=0 εk

(10)

for all ω ∈ F , where pk ∈ ∆0(Fk) are ordinary probability distributions whose supports

Fk = {ω ∈ F | pk(ω) > 0 } = {ω ∈ F | k(ω) = k } (k = 0 to K)

form a partition of F . However, considering only such CCPSs loses a lot of valuable relevant

information. For, as discussed in Section 1.2, the joint distribution of several independent

random variables is only uniquely determined from the marginal distributions when non-

Archimedean probabilities are represented by RPFs in general form, with values in an

algebraic field.

3. Non-Archimedean Consequentialist Behaviour

3.1. Non-Archimedean Consequentialist Decision Trees

Let Y be a given domain of consequences which could conceivably occur. As remarked in

Section 1.1, consequentialism in single-person decision theory considers dynamically consis-

tent behaviour β in an almost unrestricted domain T (Y ) of consequentialist finite decision

trees. These are decision trees in the sense of Raiffa (1968), except that payoffs are not

specified. Instead, any terminal node x in any tree T ∈ T (Y ) has an associated consequence

y = γ(x) within the consequence domain Y .

This paper will consider instead the set T (Y ; IP) of IP-consequentialist finite decision

trees. Each member of T (Y ; IP) is a collection

T = 〈N, N∗, N0, X, N+1(·), n0, π(·|·), γ(·)〉 (11)
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whose eight component parts are described and interpreted as follows:

(i) N is a non-empty finite set of nodes of the tree T , which is partitioned into the three

disjoint sets N∗, N0, and X having properties (ii)–(vii) below;

(ii) N∗ is the (possibly empty) set of decision nodes;

(iii) N0 is the (possibly empty) set of chance nodes;

(iv) X is the non-empty set of terminal nodes;

(v) N+1 : N →→N is the immediate successor correspondence which, so that T really is

indeed a tree, must satisfy:

(a) ∀n ∈ N : n /∈ N+1(n);

(b) ∀n ∈ N : N+1(n) = ∅ ⇐⇒ n ∈ X;

(c) ∀n, n′ ∈ N : N+1(n) ∩ N+1(n′) �= ∅ ⇐⇒ n = n′;

and must also generate an acyclic binary successor relation � on N , defined by the

property that n′ � n if and only if there exists a chain n1, n2, . . . , nk in N such that

n1 = n, nk = n′ and nj+1 ∈ N+1(nj) for j = 1 to k − 1;

(vi) n0 is the unique initial node in N satisfying ∀n ∈ N : n0 /∈ N+1(n);

(vii) at each chance node n ∈ N0, there is a non-Archimedean conditional probability dis-

tribution π(·|n) ∈ ∆0(N+1(n); IP) over the set N+1(n) (whose members are to be

interpreted as the possible chance moves from n to each succeeding node n′ ∈ N+1(n));

(viii) γ : X → Y is the consequence mapping , indicating the consequence γ(x) of reaching

each terminal node x.

Most of this definition is identical to that in Hammond (1988a, b, Section 2). Natural

nodes and sets of possible states of the world are not considered, since consideration of

subjective probabilities has been left for later work. Otherwise, only the concept of IP-

probability in part (vii) and the consequence mapping in part (viii) are different. The latter

has been changed so that each terminal node x gives rise to just one sure consequence

γ(x) ∈ Y , rather than to a probability distribution over Y . The change is just to make

clear how all uncertainty is eventually resolved within a decision tree. The proof of the

Refinement Lemma in Section 4.1 below contains an example illustrating this definition.

Where it is desirable to emphasize dependence on T , I shall write N(T ), N∗(T ), etc.
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3.2. Dynamically Consistent Behaviour

As in the earlier work described in Section 1.1, it will now be assumed that behaviour

is formally described by a correspondence β with a domain consisting of all pairs (T, n)

satisfying T ∈ T (Y ; IP) and n ∈ N∗(T ). Its value is a behaviour set β(T, n), which is a

non-empty subset of the appropriate set N+1(T, n) of all decisions that are feasible at the

decision node n of the tree T in the domain T (Y ; IP) of non-Archimedean consequentialist

decision trees.

Now, given any decision tree T ∈ T (Y ; IP) and any fixed node n̄ of T , there is a

“subtree” of T or a continuation from n̄ with

T (n̄) := T̄ = 〈N̄ , N̄∗, N̄0, X̄, N̄+1(·), n̄0, π̄(·|·), γ̄(·)〉. (12)

To define T (n̄) explicitly, first let N(n) := {n′ ∈ N | n′ � n or n′ = n } denote the set

of nodes in N which either succeed or coincide with n. Then T (n̄) is the decision tree

with the initial node n̄0 := n̄, the set of nodes N̄ := N(n̄) and with all of the other sets,

correspondences, and functions N̄∗, N̄0, X̄, N̄+1(·), π̄(·|·), γ̄(·) of (12) given by appropriate

restrictions of N∗, N0, X, N+1(·), π(·|·), γ(·) to the smaller set of nodes N̄ . From this defi-

nition it is obvious that T (n̄) meets all the criteria set out in Section 3.1 above, and so is

itself an non-Archimedean consequentialist decision tree in T (Y ; IP).

Suppose that n is any decision node of a tree T ∈ T (Y ; IP) with the set of nodes N .

When the agent comes to make a decision at node n, the remaining decision problem is really

sufficiently described by the tree T (n). Behaviour at node n must therefore be described by

β(T (n), n) as well as by β(T, n). Thus it will also be assumed that behaviour is dynamically

consistent in the sense that β(T, n) = β(T (n), n) at all decision nodes n of every tree

T ∈ T (Y ; IP). This consistency condition is entirely natural since, as discussed in Hammond

(1988a, b), it is satisfied even by a näıve agent who neglects changing tastes altogether. Of

course, a näıve agent’s actual behaviour usually departs from planned behaviour. Also,

except in very special cases, näıve behaviour violates consequentialism, as defined below

(cf. Hammond, 1976).

From now on only consistent behaviour will be considered, and will be called simply

behaviour.
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3.3. Non-Archimedean Consequences of Behaviour

Finally, it will be presumed that the domain of consequences has been specified broadly

enough to capture everything that is relevant for the agent’s behaviour. Then “consequen-

tialism” means that in all decision trees in the domain, including the “continuation subtrees”

of any tree, the agent’s behaviour gives rise to a non-empty set of possible “chosen” random

consequences which depends only upon the feasible set of random consequences. Before this

can be formalized it is obviously necessary to see first what the feasible set and choice set

are in any tree T ∈ T (Y ; IP).

Let ∆(Y ; IP) denote the set of all IP-probabilities when the sample space is taken to

be the consequence domain Y . It turns out that, in any tree T ∈ T (Y ; IP), any kind of

feasible behaviour must yield a random consequence belonging to some non-empty feasible

set F (T ) ⊂ ∆(Y ; IP). Moreover, behaviour β must yield a random consequence belonging

to some non-empty (revealed) choice set Φβ(T ) ⊂ F (T ). This is best demonstrated by using

backward recursion to construct, in successively larger and larger subtrees T (n) with earlier

and earlier initial nodes n in N(T ), the corresponding pairs of subsets F (T, n) and Φβ(T, n)

of ∆(Y ; IP). Moreover, backward induction can be used to show that

∅ �= Φβ(T, n) ⊂ F (T, n) ⊂ ∆(Y ; IP)

at every node n ∈ N(T ). Finally, of course, one works back to the initial node n0 at which

F (T ) = F (T, n0) and Φβ(T ) = Φβ(T, n0), so that

∅ �= Φβ(T ) ⊂ F (T ) ⊂ ∆(Y ; IP).

The backward recursion and backward induction start at the terminal nodes x ∈ X

where only a single consequence γ(x) is possible. Then

∅ �= F (T, x) = Φβ(T, x) = {δγ(x)(·)} ⊂ ∆(Y ; IP) (13)

where δγ(x)(·) denotes the unique degenerate IP-probability distribution in ∆0({γ(x)}; IP)

with δγ(x)({γ(x)}) = 1. At previous nodes n ∈ N \X, both F (T, n) and Φβ(T, n) are calcu-

lated from the values of F (T, n′) and Φβ(T, n′) at all nodes n′ ∈ N+1(n) which immediately

succeed n. There are two different cases — cf. Hammond (1988b, Section 4).
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Case 1. At any decision node n ∈ N∗ one has

∅ �= Φβ(T, n) :=
⋃

n′∈β(T,n)

Φβ(T, n′) ⊂ F (T, n) :=
⋃

n′∈N+1(n)

F (T, n′) ⊂ ∆(Y ; IP). (14)

Case 2. At any chance node n ∈ N0 one has

∅ �= Φβ(T, n) :=
∑

n′∈N+1(n)
π(n′|n) Φβ(T, n′)

⊂ F (T, n) :=
∑

n′∈N+1(n)
π(n′|n)F (T, n′) ⊂ ∆(Y ; IP).

(15)

These constructions (14) and (15) evidently work just as well in the set ∆(Y ; IP) as

they did before in ∆(Y ). The proof of the Refinement Lemma in Section 4.1 provides a

simple example of how they work in practice.

3.4. Non-Archimedean Consequentialist Behaviour

The non-Archimedean consequentialist choice axiom requires behaviour β to reveal a unique

non-Archimedean consequence choice function Cβ with the property that

Φβ(T ) = Cβ(F (T )) (16)

in all the trees T ∈ T (Y ; IP). In particular, the structure of the decision tree must be irrele-

vant to consequentialist behaviour, as long as the feasible set F (T ) of possible distributions

stays the same.

3.5. Ordinality and Independence

So the three consequentialist axioms require that the behaviour sets β(T, n): (i) are non-

empty subsets of N+1(n) defined at every decision node n of every tree T ∈ T (Y ; IP);

(ii) satisfy the consistency condition β(T (n), n′) = β(T, n′) at all decision nodes n′ of any

subtree T (n) of a tree T ∈ T (Y ; IP); (iii) satisfy the consequentialist choice axiom (16).

The arguments of Hammond (1988b, Sections 5 and 6) can now be applied virtually

without change, and so will not be repeated here. They show first that consequentialist

behaviour β reveals, not only a consequence choice function Cβ , but also a corresponding

consequence preference ordering R — i.e., a complete transitive binary relation — on the

set ∆(Y ; IP) of IP-probabilities. Thus, for every T ∈ T (Y ; IP), one has

Φβ(T ) = {λ ∈ F (T ) | µ ∈ F (T ) =⇒ λ R µ }.
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Second, on the space ∆(Y ) of ordinary probability distributions, which is of course a

subset of ∆(Y ; IP), it was shown that the independence condition is another implication

of consequentialism. For all ordinary probability distributions λ, µ, ν ∈ ∆(Y ) and all real

numbers α with 0 < α < 1, independence requires that

λ R µ ⇐⇒ [α λ + (1 − α) ν] R [α µ + (1 − α) ν]. (17)

Exactly the same arguments now imply the non-Archimedean independence condition on

∆(Y ; IP). For all λ, µ, ν ∈ ∆(Y ; IP) this requires that

λ R µ ⇐⇒ α λ + θ ν

α + θ
R

α µ + θ ν

α + θ
(18)

whenever α, θ ∈ IP, so that α (α + θ)−1 and θ (α + θ)−1 can be regarded as IP-probabilities

over a pair of disjoint states.

In Hammond (1988b, Section 8) it is also shown that any preference ordering R over

the set ∆(Y ) satisfying the independence condition (17) generates consequentialist and

dynamically consistent behaviour on the “almost unrestricted domain” of all finite conse-

quentialist decision trees having strictly positive ordinary probabilities at all chance nodes.

It is important to consider only trees in this almost unrestricted domain because, if a com-

pletely unrestricted domain of finite consequentialist decision trees were allowed instead,

then the implication would be that all random consequences in each space ∆(Y ) must be

indifferent. Here, a corresponding result is true, but on the less restricted domain T (Y ; IP)

of finite consequentialist decision trees having strongly positive non-Archimedean probabil-

ities at all chance nodes. For any preference ordering R over the set ∆(Y ; IP) satisfying the

new independence condition (18) will generate consequentialist and dynamically consistent

behaviour on this domain. Once again, the proof is exactly the same as before.

18



4. Lexicographic Refinements

4.1. A Refinement Axiom

There are many different preference orderings R on ∆(Y ; IP) satisfying independence (18).

Some of these are implausible, however. For consider the case when IP = P(ε). Let v : Y →
� be any von Neumann–Morgenstern utility function defined on the set Y of all possible

sure consequences. Then, for each positive real number r, there is a corresponding ordering

Rr with the property that

p Rr q ⇐⇒
∑

y∈Y
[p(y; r) − q(y; r)] v(y) ≥ 0 (19)

whenever p, q ∈ ∆(Y ; ε), where p(y; r) and q(y; r) denote the real numbers obtained by

regarding p and q as functions of the real variable r instead of the infinitesimal ε. The

preferences defined by (19) obviously satisfy independence (18), as well as the restricted

continuity condition to be considered later. Yet such orderings pay no attention to the

intended interpretation of ε as an infinitesimal. A further assumption is needed.

As explained in Hammond (1994), the reason for introducing probabilities with values

in a general non-Archimedean cone IP is to refine consequentialist behaviour in trees having

zero probabilities at some chance nodes, while leaving unaffected such behaviour in trees

having positive probabilities at all chance nodes. Now, given any non-Archimedean tree

T ∈ T (Y ; IP) as in Section 3.1, let 0T ∈ T (Y ) be the corresponding ordinary tree obtained

when every non-Archimedean probability π(n′|n) ∈ IP (n ∈ N0, n′ ∈ N+1(n)) in T is

replaced by its corresponding real part 0π(n′|n) ∈ �. Also, to ensure that 0π(n′|n) > 0

throughout 0T , remove the entire subtree 0T (n′) from 0T whenever 0π(n′|n) = 0 for some

node n′ ∈ N+1(n) immediately succeeding the chance node n ∈ N0.

The refinement axiom then requires that at any decision node n ∈ N∗(0T ) ⊂ N∗(T ),

one must have β(T, n) ⊂ β(0T, n). In particular, if n ∈ N∗(0T ) is such that β(0T, n) = {n′}
for some unique n′ ∈ N+1(n), then it must be true that β(T, n) = {n′} as well. Actually,

it will be enough to assume this weaker condition in what follows. The main implication

of this refinement axiom is the following Lemma, whose conclusion could almost have been

stated as an alternative to the axiom.

Refinement Lemma. In combination with the consequentialist axioms of Section 3.5, the

refinement axiom implies that, whenever p, q ∈ ∆(Y ; IP) and 0p P 0q, then p P q.

19



Proof: First, let

Yp := { y ∈ Y | p(y) > 0 } and Yq := { y ∈ Y | q(y) > 0 }

denote the finite supports of the two distributions p, q ∈ ∆(Y ; IP). Then consider the
particular finite decision tree T ∈ T (Y ; IP) with initial node n0, which is the only decision
node, while the other nodes satisfy:

N+1(n0) = N0 = {np, nq } and X = Xp ∪ Xq

where Xp := N+1(np) = {xp(y) | y ∈ Yp } and Xq := N+1(nq) = {xq(y) | y ∈ Yq }.
Suppose too that the probabilities and consequences in T are given by

π(xp(y)|np) = p(y) and γ(xp(y)) = y (all y ∈ Yp);

π(xq(y)|nq) = q(y) and γ(xq(y)) = y (all y ∈ Yq).

Then the backward recursion construction of Section 3.3 shows that

Φβ(T, xp(y)) = F (T, xp(y)) = {δy} (all y ∈ Yp);

and Φβ(T, xq(y)) = F (T, xq(y)) = {δy} (all y ∈ Yq)

at the terminal nodes, while

Φβ(T, np) = F (T, np) =
∑

x∈Xp

π(x|np)F (T, x) =
∑

y∈Yp

p(y) {δy} = {p};

Φβ(T, nq) = F (T, nq) =
∑

x∈Xq

π(x|nq) F (T, x) =
∑

y∈Yq

q(y) {δy} = {q}.

at the chance nodes. So finally the feasible set is

F (T ) = F (T, n0) = F (T, np) ∪ F (T, nq) = {p} ∪ {q} = { p, q } ⊂ ∆(Y ; IP).

Also the revealed choice set of consequences is Φβ(T ) = Φβ(T, n0), where

p ∈ Φβ(T, n0) ⇐⇒ np ∈ β(T, n0) and q ∈ Φβ(T, n0) ⇐⇒ nq ∈ β(T, n0).

Now 0T differs from T only in replacing the probabilities p(y) and q(y) by their re-
spective real parts 0p(y), 0q(y), while also excluding altogether any terminal nodes xp(y)
or xq(y) for which 0p(y) = 0 or 0q(y) = 0, as appropriate. So a similar construction in 0T

shows that F (0T ) = { 0p, 0q } ⊂ ∆(Y ). Then the hypothesis 0p P 0q implies Φβ(0T ) = {0p}.
This obviously requires β(0T, n0) = {np}. But then the refinement axiom, even in its weak
form, implies β(T, n0) = {np}. Therefore Φβ(T ) = {p}, implying that p P q.

This lemma already gives the beginnings of a lexicographic preference criterion. It is

incomplete, however, because in the case when 0p I 0q nothing yet has been said about

what higher criterion determines whether or not p P q.
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4.2. Lexicographic Preferences

This section will consider RPFs with values in P(ε) and show that there must be a complete

lexicographic preference criterion in this special case. To this end, let

p(y; ε) =
∑

i∈I Pi pi(y) εi

∑
i∈I Pi εi

and q(y; ε) =

∑
j∈J Qj qj(y) εj

∑
j∈J Qj εj

(20)

be any two RPFs p, q ∈ ∆(Y ; ε) that have been expressed in the form (5). In particular,

it must be true that 0 ∈ I ∩ J and P0 = Q0 = 1, while Pi > 0, pi(·) ∈ ∆(Y ) (all i ∈ I)

and Qj > 0, qj(·) ∈ ∆(Y ) (all j ∈ J). Now these two RPFs can be given the common

denominator
∑

k∈K
Rk εk :=

∑
i∈I

Pi εi ×
∑

j∈J
Qj εj

where K := I + J (as the sum of the two sets of integers) and Rk :=
∑

(i,j)∈Hk
Pi Qj

with Hk := { (i, j) ∈ I × J | i + j = k } (all k ∈ K). These definitions, together with the

previously specified properties of I, J , and Pi (i ∈ I), Qj (j ∈ J), also imply that 0 ∈ K,

while R0 = 1 and Rk > 0 (k ∈ K). Then one has

p(y; ε) =

∑
i∈I Pi pi(y) εi ×

∑
j∈J Qj εj

∑
k∈K Rk εk

=

∑
k∈K

∑
(i,j)∈Hk

Pi pi(y)Qj εk

∑
k∈K Rk εk

. (21)

Now define p∗k(·), q∗k(·) ∈ ∆(Y ) (all k ∈ K) so that

p∗k(y) :=
∑

(i,j)∈Hk

Pi Qj

Rk
pi(y) and q∗k(y) :=

∑
(i,j)∈Hk

Pi Qj

Rk
qj(y). (22)

With this definition, (21) implies that

p(y; ε) =
∑

k∈K Rk p∗k(y) εk

∑
k∈K Rk εk

and similarly q(y; ε) =
∑

k∈K Rk q∗k(y) εk

∑
k∈K Rk εk

.

So, after dropping the function arguments from the notation, one has

p =
∑

k∈K Rk p∗k εk

∑
k∈K Rk εk

and q =
∑

k∈K Rk q∗k εk

∑
k∈K Rk εk

. (23)

Next, for any integer m ∈ K, define the following three subsets of K:

K<m := { k ∈ K | k < m }; K>m := { k ∈ K | k > m }; K≥m := { k ∈ K | k ≥ m }.
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Furthermore, define

Rm(ε) :=
∑

k∈K≥m

Rk εk, pm :=

∑
k∈K≥m

Rk p∗k εk

Rm(ε)
, qm :=

∑
k∈K≥m

Rk q∗k εk

Rm(ε)
. (24)

Then one can rewrite (23) as

p =

∑
k∈K<m

Rk p∗k εk + Rm(ε) pm

∑
k∈K<m

Rk εk + Rm(ε)
; q =

∑
k∈K<m

Rk q∗k εk + Rm(ε) qm

∑
k∈K<m

Rk εk + Rm(ε)
.

In case p∗k I q∗k for k ∈ K<m, it follows from repeated application of the independence

condition (18) that p P q ⇐⇒ pm P qm.

Now, dividing by Rm εm all the terms of both numerator and denominator in the

definitions of pm, qm in (24) gives

pm =
p∗m +

∑
k∈K>m

Rk p∗k εk−m/Rm

1 +
∑

k∈K>m
Rk εk−m/Rm

and qm =
q∗m +

∑
k∈K>m

Rk q∗k εk−m/Rm

1 +
∑

k∈K>m
Rk εk−m/Rm

.

The real parts of these probability distributions are therefore 0pm = p∗m and 0qm = q∗m.

Combining the above results with the refinement lemma then shows that, in case p∗k I q∗k

for all k ∈ K<m, one has

p∗m P q∗m ⇐⇒ 0pm P 0qm =⇒ pm P qm ⇐⇒ p P q

and so p∗m P q∗m =⇒ p P q. Finally, in case p∗k I q∗k for all k ∈ K, repeated application of

the independence condition (18) shows that p I q. So it has been proved that

Theorem. Suppose that the consequentialist axioms of Section 3.5 and the refinement

axiom of Section 4.1 are all satisfied. Then, for all pairs of RPFs p, q ∈ ∆(Y ; ε) given by

(20), one has

p P q ⇐⇒ 〈p∗k〉k∈K PL 〈q∗k〉k∈K

where 〈p∗k〉k∈K , 〈q∗k〉k∈K ∈ ∆K(Y ) are the lexicographic hierarchies of probability distri-

butions whose members are given by (22), and where PL is the lexicographic preference

criterion defined by

〈p∗k〉k∈K PL 〈q∗k〉k∈K ⇐⇒ ∃m ∈ K : p∗k I q∗k (all k ∈ K<m) & p∗m P q∗m.
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5. Continuity and von Neumann–Morgenstern Utility

5.1. Continuous Preferences

In Section 3.5 it was claimed that consequentialist behaviour in trees T ∈ T (Y ; IP) must

maximize a preference ordering R on ∆(Y ; IP) satisfying the non-Archimedean indepen-

dence axiom (18). Because (18) implies the ordinary independence condition (17), two of

Jensen’s (1967) three axioms which imply expected utility maximization are satisfied. But

discontinuous lexicographic preferences are still possible, even in trees with strictly positive

ordinary probabilities at chance nodes. In single person decision theory, the motivation

for avoiding such discontinuities is not entirely clear, beyond analytical convenience and

a feeling that continuity is anyway rather natural. In the case of n-person game theory,

however, continuity of behaviour as common expectations vary is crucial for the existence

of equilibrium in general games.

To derive expected utility maximization, an axiom of continuity as probabilities vary

— or what some have called an “Archimedean” axiom — will be added. The following was

included as Jensen’s (1967) third and last axiom, modifying Herstein and Milnor’s (1953)

simplification of the original von Neumann and Morgenstern (1944) formulation:

Restricted Continuity Axiom. If λ, µ, ν ∈ ∆(Y ) with λ P µ and µ P ν, then there

exist real numbers α and θ with 0 < α < θ < 1 such that

[(1 − α) λ + α ν] P µ and µ P [(1 − θ)λ + θ ν].

As Jensen (1967) shows, this assumption, together with the fact that R is a preference

ordering on ∆(Y ) satisfying the independence axiom (17), implies the existence of a real-

valued von Neumann–Morgenstern utility function (NMUF) v on Y such that

λ R µ ⇐⇒ IEλ v ≥ IEµ v (25)

for all λ, µ ∈ ∆(Y ), where

IEλ v :=
∑

y∈Y
λ(y) v(y) (26)

denotes the expected value of v with respect to λ, and IEµ v is defined similarly.

The two NMUFs v, ṽ on Y are said to be cardinally equivalent if there exist real

numbers ρ > 0 and α such that ṽ(y) ≡ α + ρ v(y) on Y . Then, as is well known, there
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is a unique cardinal equivalence class of NMUFs whose expected values all represent the

ordering R on ∆(Y ).

5.2. Continuous Behaviour

Rather than assume directly continuity of preferences on the domain of ordinary proba-

bilities ∆(Y ), however, it is in the spirit of consequentialist decision theory to postulate

continuity of behaviour instead, whether or not that behaviour is in fact consequentialist.

Accordingly, let T be any ordinary decision tree in T (Y ), with strictly positive real proba-

bilities at all its chance nodes. Let n∗ be any decision node of T , and n0 any chance node of

the subtree T (n∗) ∈ T (Y ) whose initial node is n∗. Consider now a family of ordinary deci-

sion trees Tπ ∈ T (Y ) in which only the probability distribution π = π(·|n0) ∈ ∆(N+1(n0))

at the chance node n0 varies. To ensure that π(n) > 0 for all n ∈ N+1(n0) and so that

Tπ ∈ T (Y ), remove from T the entire subtree T (n) following any node n ∈ N+1(n0) with

π(n) = 0. All the other features of the decision trees Tπ should be entirely independent of

the probabilities π.

Now, the behaviour set β(Tπ, n∗) at the fixed decision node n∗ ∈ N∗ is well defined

and varies with π. Accordingly, one obtains a correspondence π �→→β(Tπ, n∗) whose graph

is

Gβ(T, n∗, n0) := { (π, n) ∈ ∆(N+1(n0)) × N+1(n∗) | n ∈ β(Tπ, n∗) }.

Since ∆(N+1(n0)) is compact while N+1(n∗) is a finite set, this correspondence will have a

compact graph, and so be upper hemi-continuous, provided that its graph is a closed set.

So behaviour β is said to be continuous provided that Gβ(T, n∗, n0) is indeed closed, for

every decision tree T ∈ T (Y ), decision node n ∈ N∗(T ), and chance node n0 ∈ N0(T (n∗)).

Formally, this is weaker than the stronger condition which requires β to be jointly continuous

as all probabilities vary in each decision tree. In combination with the other axioms,

however, the weaker continuity condition used here is actually equivalent to joint continuity.

The proof given in Hammond (1988b, Section 9) shows how such continuous behaviour

implies the restricted continuity axiom stated in Section 5.1. Then there must indeed exist

a unique cardinal equivalence class of von Neumann–Morgenstern utility functions whose

expected values are maximized by the random consequences of behaviour in the restricted

trees of T (Y ).
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6. Non-Archimedean Expected Utility

6.1. Representing Lexicographic Preferences

Suppose that non-Archimedean probabilities are RPFs taking values in the positive cone

P(ε). Suppose that the restricted continuity axiom of Section 5.1 is satisfied by consequen-

tialist behaviour in the domain T (Y ; ε) := T (Y ;P(ε)) of all finite decision trees with such

RPFs attached to their chance nodes. Then the restriction of the ordering R to ∆(Y ) is

represented by the expected value of an NMUF v : Y → �, as in (25).

Define the ordinary real-valued expected utility function U : ∆(Y ) → � so that

U(λ) := IEλ v =
∑

y∈Y
λ(y) v(y) (27)

for all λ ∈ ∆(Y ). This definition can now be extended from ordinary probability distribu-

tions to RPFs in an obvious way. The result will be the non-Archimedean expected utility

function U(·; ε) : ∆(Y ; ε) → �(ε) which is defined so that, given any

p = p(y; ε) =
∑

i∈I Pi pi(y) εi

∑
i∈I Pi εi

∈ ∆(Y ; ε),

one has

U(p; ε) := IEp v =
∑

y∈Y
p(y; ε) v(y) =

∑
i∈I Pi

∑
y∈Y pi(y) v(y) εi

∑
i∈I Pi εi

=
∑

i∈I Pi U(pi) εi

∑
i∈I Pi εi

.

(28)

Suppose that the refinement axiom of Section 4.1 is imposed in addition. Section

4.2 characterized the resulting lexicographic preferences. Now these preferences can be

interpreted as maximizing expected utility with respect to the total ordering on the space

�(ε). To see this, let p, q ∈ ∆(Y ; ε) be any pair of rational probability functions of ε taking

the form (20). They can be given a common denominator and put in the form

p =
∑

k∈K Rk p∗k εk

∑
k∈K Rk εk

and q =
∑

k∈K Rk q∗k εk

∑
k∈K Rk εk

as in (23) of Section 4.2, with the ordinary probability distributions p∗k(·), q∗k(·) ∈ ∆(Y )

given by (22), and with Rk > 0 (all k ∈ K). So U(p; ε) > U(q; ε) in �(ε) if and only if

∑
k∈K Rk U(p∗k) εk

∑
k∈K Rk εk

−
∑

k∈K Rk U(q∗k) εk

∑
k∈K Rk εk

=
∑

k∈K Rk [U(p∗k) − U(q∗k)] εk

∑
k∈K Rk εk

> 0 in �(ε),
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or if and only if
∑

k∈K
Rk [U(p∗k) − U(q∗k)] εk > 0 in �(ε). (29)

But (29) is true if and only if the following lexicographic criterion is satisfied: there must

exist an integer m ∈ K for which U(p∗k) = U(q∗k) whenever k ∈ K with k < m, while

U(p∗m) > U(q∗m). However, for all k ∈ K one has U(p∗k) > U(q∗k) ⇐⇒ p∗k P q∗k. Also, the

theorem stated at the end of Section 4.2 shows that

p P q ⇐⇒ ∃m ∈ K : p∗k I q∗k (all k < m) & p∗m P q∗m.

Finally, therefore, this chain of equivalences shows that U(p; ε) > U(q; ε) in �(ε) if and

only if p P q. This is true for all pairs p, q ∈ ∆(Y ; ε). So the preference ordering R is

perfectly represented by the non-Archimedean expected utility function U(·; ε), provided

that the (lexicographic) total ordering in �(ε) is applied to each pair of non-Archimedean

�(ε)-valued expected utilities.

6.2. Why Refinement is Needed

Lemma. Suppose that f(ε), g(ε) ∈ P(ε) with f(ε) > g(ε). Suppose too that p, q ∈ ∆(Y ; ε)

with p P q. Then, given any other h(ε) ∈ P(ε) and the two members pf , pg ∈ ∆(Y ; ε)

defined by

pf :=
f(ε) p + h(ε) q

f(ε) + h(ε)
and pg :=

g(ε) p + h(ε) q

g(ε) + h(ε)
,

it must be true that pf P pg.

Proof: For the non-Archimedean expected utility function U(·; ε) which represents R on
∆(Y ; ε), one has

U(pf ) − U(pg) =
f(ε) U(p; ε) + h(ε)U(q; ε)

f(ε) + h(ε)
− g(ε)U(p; ε) + h(ε)U(q; ε)

g(ε) + h(ε)

=
[f(ε) − g(ε)]h(ε)

[f(ε) + h(ε)] [g(ε) + h(ε)]
[U(p; ε) − U(q; ε)] > 0

when f(ε) > g(ε) and p P q, because then f(ε)− g(ε), f(ε), g(ε), h(ε), and U(p; ε)−U(q; ε)
are all positive elements of �(ε).

This lemma is important because it shows the need to distinguish the two members

f(ε), g(ε) ∈ P(ε) whenever f(ε) �= g(ε). For if these two were not distinguished, the cor-

responding two members pf , pg ∈ ∆(Y ; ε) would have to be regarded as identical, and so
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indifferent according to the conditional relation I. But then, since the order ≥ on �(ε) is

total, one of the pair f(ε), g(ε) is greater than the other — say, f(ε) > g(ε). Finally, the

Lemma would imply that p I q for all p, q ∈ ∆(Y ; ε), so that all random consequences would

have to be indifferent. For this reason, non-trivial consequentialist decision theory requires

all the different members of P(ε) to be distinguished.

7. Main Theorem

Suppose probabilities take strongly positive values in the particular non-Archimedean field

�(ε). For this particular case, the five assumptions introduced in previous Sections are:

A1) Unrestricted Domain: There is a non-empty behaviour set β(T, n) ⊂ N+1(n) at

every decision node n of every tree T in the domain T (Y ; ε) of finite decision trees hav-

ing (strongly positive) P(ε)-valued probabilities at all chance nodes and consequences

in Y at all terminal nodes.

A2) Dynamic Consistency: Whenever T ∈ T (Y ; ε) and n′ is a decision node of the

subtree T (n), then β(T (n), n′) = β(T, n′).

A3) Consequentialist Choice: There is a revealed consequence choice function Cβ

such that the set Φβ(T ) of possible random consequences of behaviour β in any tree

T ∈ T (Y ; ε) satisfies Φβ(T ) = Cβ(F (T )), where F (T ) is the set of random consequences

which are feasible in T .

A4) Refinement: Given any tree T ∈ T (Y ; ε), let 0T ∈ T (Y ) be the tree which is

derived from T by replacing the P(ε)-valued probabilities π(n′|n; ε) (n′ ∈ N+1(n))

at each chance node n of T by their corresponding real parts 0π(n′|n), followed by

omitting any nodes which can only be reached with probability zero according to the

probabilities 0π. Then one should have β(T, n) ⊂ β(0T, n) at every decision node n

of 0T .

A5) Restricted Continuity: For every ordinary decision tree T ∈ T (Y ), decision node

n∗ in T , and chance node n0 in the subtree T (n∗) with initial node n∗, the correspon-

dence π �→→β(Tπ, n∗) from real-valued probabilities π ∈ ∆(N+1(n0)) to behaviour at

n∗ in the tree Tπ ∈ T (Y ) with probabilities π at n0 has a closed graph.

Now:
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Main Theorem.

(1a) Any behaviour satisfying the first four axioms A1)–A4) above reveals a (complete and

transitive) preference ordering R defined on ∆(Y ; ε) with the properties that:

(i) There is a restricted preference ordering 0R on the space ∆(Y ) which, whenever

λ, µ, ν ∈ ∆(Y ) and 0 < α < 1, satisfies the independence condition

[α λ + (1 − α) ν] 0R [α µ + (1 − α) ν] ⇐⇒ λ 0R µ.

(ii) Suppose that

p =
∑

k∈K Rk p∗k εk

∑
k∈K Rk εk

and q =
∑

k∈K Rk q∗k εk

∑
k∈K Rk εk

are any two RPFs in ∆(Y ; ε) that have been given a common denominator, while

Rk > 0 and p∗k, q∗k ∈ ∆(Y ) for all k ∈ K, where K is a non-empty set of non-negative

integers. Then one has p P q if and only if the lexicographic criterion

∃m ∈ K : p∗k
0I q∗k (k < m & k ∈ K) and p∗m

0P q∗m

is satisfied.

(1b) Conversely, if R is any ordering defined on ∆(Y ; ε) that is derived by applying the

lexicographic criterion in part (ii) of (1a) to an ordering 0R on ∆(Y ) satisfying the inde-

pendence condition in part (i) of (1a), then behaviour that maximizes R in each decision

tree of T (Y ; ε) will satisfy A1)–A4).

(2a) Behaviour will satisfy all five axioms A1)–A5) above only if, in addition, there is a

unique cardinal equivalent class of NMUFs v : Y → � for which

λ 0R µ ⇐⇒
∑

y∈Y
[λ(y) − µ(y)] v(y) ≥ 0 whenever λ, µ ∈ ∆(Y ),

in which case the ordering R on ∆(Y ; ε) is the unique ordering induced by applying the

(lexicographic) total order ≥ in �(ε) to values U(p; ε) of the non-Archimedean expected

utility function that is defined for all p ∈ ∆(Y ; ε) by

U(p; ε) :=
∑

y∈Y
p(y; ε) v(y).

(2b) Conversely, maximizing the non-Archimedean expected value of any such NMUF in

the (lexicographic) order of �(ε) will generate behaviour satisfying A1)–A5).
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Proof: First, (1a) is proved by combining the arguments of Hammond (1988a and b, Sec-
tions 5 and 6) — see also Section 3.5 above — with the Theorem of Section 4.2. Conversely,
(1b) is proved by a dynamic programming argument like that in Hammond (1988b, Sec-
tion 8); the refinement axiom A4) is then obviously satisfied because of the lexicographic
criterion in part (ii) of (1a).

For (2a), Section 5 explained why A5) would imply the existence of a unique cardinal
equivalence class of NMUFs, and then Section 6.1 showed that behaviour would maximize
non-Archimedean expected utility in the (lexicographic) total order ≥ of �(ε). Conversely,
the single hypothesis of (2b) obviously implies all the hypotheses of (1b), so A1)–A4) will
be satisfied. Furthermore, behaviour in ordinary decision trees with random consequences
in ∆(Y ) will maximize ordinary expected utility and so satisfy the restricted continuity
axiom A5).

An important corollary of this Main Theorem is that all attempts to treat as equivalent

any pair of non-Archimedean probability distributions having different values in P(ε) are

doomed to fail. For, when combined with the five axioms set out above, any such attempt

leads to the unacceptable conclusion that all non-Archimedean random consequences are

indifferent — see Section 6.2.
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