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Abstract

Perfect capital markets require linear budget constraints, without credit rationing creating

any tight borrowing constraints before the end of agents’ economic lifetimes. Yet lifetime

linear budget constraints are totally unenforceable. This paper considers what allocations

can be enforced through monitoring in a simple two period economy when agents have

private information regarding their endowments. Then default may not become apparent

soon enough for any economic penalty to be an effective deterrent. Instead, borrowing

constraints must be imposed to control fraud (moral hazard). Adverse selection often

implies that some borrowing constraints must bind, creating inevitable capital market

imperfections.
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IMPERFECT CAPITAL MARKETS

Neither a borrower nor a lender be;
For loan oft loses both itself and friend,
And borrowing dulls the edge of husbandry.

— Hamlet (Act I, Scene 3, 75–77)

But where a system of borrowing and lending exists, by which I mean the granting
of loans with a margin of real or personal security, a second type of risk is relevant
which we may call the lender’s risk. This may due either to moral hazard, i.e.,
voluntary default or other means of escape, possibly lawful, from the fulfilment of the
obligation, or to the possible insufficiency of the margin of security, i.e., involuntary
default due to the disappointment of expectation.

— Keynes (1936, p. 144)

But contracts which encourage the dishonest select adversely.

— Hahn (1988, p. 970)

A lot of money got put into people’s pockets and they’ve rat-holed it somewhere.
Some of it is in artwork, fancy homes, fancy airplanes and Rolls-Royces. Some of
it went to Rolex watches, lizard shoes, hunting parties and yachts.

— The New York Times (January 10, 1989: quoted from a statement by

H. Joe Selby, former chief regulator for the Federal Home Loan Bank of Dallas)

1. Introduction

1.1. Unenforceable Budget Constraints

The general equilibrium theory developed by Walras, Arrow, Debreu, Radner and

others, and expounded in Arrow and Hahn (1971), involves linear budget constraints

and market clearing prices. For intertemporal environments, this is what is required for

“perfect” capital markets, in which agents are free to borrow and lend at the same market

rate of interest for all loans of the same maturity, and the rates of interest adjust to

match the plans of borrowers and lenders. This theory is for an economy of honourable

agents, who always satisfy their intertemporal budget constraints. Agents never expose

themselves deliberately to the risk of default. With perfect foresight, no default would

ever occur. Without perfect foresight, of course, some agents may be unable to avoid

bankruptcy ex post, as was realized by Green (1974) and Bliss (1976), amongst others.
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Yet in the theory of temporary equilibrium, as surveyed recently by Grandmont (1982,

1988), agents still arrange their affairs so that, according to their own expectations, they

can fulfill their budget constraints with probability one. As Milne (1980) has pointed out,

this is consistent with two traders making a contingent contract which each is sure that

he himself can honour, and yet is sure that the other cannot! By contrast, the world is full

of less honourable agents who, to the extent that they find it profitable, will knowingly

incur debts which they may find themselves unable to honour ex post.

1.2. The Need for Credit Rationing

Jaffee and Russell (1976) showed the need for non-linear pricing of credit in a model

where some borrowers would undertake investment projects leading to a risk of default

on their loans, while others would arrange always to honour their budget constraint, but

where the two types were indistinguishable ex ante. Later work by Stiglitz and Weiss (1981,

1983) demonstrated the need, in a somewhat more elaborate model, not only for non-

linear pricing, but also for a ceiling on borrowing and also, in some cases, for asymmetric

treatment of borrowers who are identical ex ante. Apart from being restricted to somewhat

special economic environments, this work did not point out how what Keynes (1936,

p. 144) called “moral hazard, i.e., voluntary default,” affects even economies without

uncertainty. Nor did it explain why some agents would choose to repay their loans, or why

others would choose to expose themselves to the risk of becoming defaulters. Without

drastic non-economic penalties, some agents will gain by deliberately planning to violate

their Walrasian budget constraints. There has been some recognition of this by Allen

(1981, 1983) and by Eaton and Gersovitz (1981). Yet their work includes production, or

international debt, in a way which may obscure somewhat the fact that enforcement is a

problem even in the simplest of intertemporal exchange economies.

In fact the essential difficulty in having perfect capital markets turns out to be the

incredibility of an intertemporal Walrasian budget constraint. This actually places no

limit whatsoever upon what an agent is allowed to borrow. In a two period economy,

an honourable agent will not borrow more than he anticipates being able to repay, with

interest. But a dishonourable agent can borrow an arbitrarily large amount, and face the

consequences of default later on. For some dishourable consumers who do not care much

about the future — perhaps because they are so ill that their survival is even in doubt —

no bankruptcy penalty will be able to deter them from deliberate default, so the Walrasian
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budget constraint fails completely to limit their borrowing.

Real economies may have few consumers with such preferences. Yet real economies do

have firms whose owners enjoy limited liability, and legal restrictions are clearly needed to

prevent the owners having the firm borrow indefinite amounts which are then paid out as

dividends to the owners, leaving the firm bankrupt. The usual Walrasian models typically

presume honourable agents who, when they die, leave estates large enough to discharge

any debts. Such budget constraints are especially impossible to enforce because agents

have to die before they can be declared in default. One could have all liabilities as well

as assets inherited by descendants (if there are any). But, with perfect capital markets,

the descendants themselves can borrow to discharge the debts they have just inherited, so

this is no deterrent either. To put the matter at its simplest, budget constraints can only

be enforced if there is a credit ceiling or borrowing constraint at some date in the future,

otherwise debts of any size can be rolled over and allowed to grow indefinitely. Such credit

ceilings may appear to create imperfections in the capital market.

1.3. Feasible Allocation Mechanisms

Credit ceilings may not, however, make capital markets imperfect by themselves.

Suppose that we were in an Arrow-Debreu economy in which any information that becomes

available to one agent becomes available to all simultaneously. Thus all information would

be public, and there would be a publicly known event tree (cf. Debreu, 1959). Then all

agents would know what contingent contracts other agents could honour. In other words,

at each event of the publicly known tree, it would be possible to limit each agent’s total net

short sales of Arrow contingent securities and/or Debreu contingent commodity contracts

to what that agent was known to be able to repay for sure after that event has occurred.

This form of credit rationing is mentioned by Foley and Hellwig (1975). It makes the

Arrow-Debreu budget constraint enforceable by replacing it with an entire sequence of

short-selling constraints preventing the agent from becoming excessively indebted in any

possible event. Yet any allocation which is achievable in Arrow-Debreu complete markets

is still achievable with these “perfect” short-selling constraints. These constraints only

prevent default — they do not prevent agents from making any short sales which can

actually be honoured for sure. Equilibrium allocations with such perfect constraints are

identical to those in perfect capital markets, and no loss of efficency or welfare will result.

The above discussion makes it clear then that credit rationing only creates capital
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market imperfections when we move outside the standard Arrow-Debreu framework of a

publicly known event tree. Even so, there are some forms of asymmetric information that

still fail to create problems for Walras-Arrow-Debreu perfect capital market allocations.

For example, if there is a continuum economy with private information regarding only

agents’ preferences, then the results of Hammond (1979) for static continuum economies

are easily integrated with those of Gale (1980, 1982), Harris and Townsend (1981), and

Harris (1987) for resource allocation mechanisms in sequence economies. The point is that

private information concerning preferences does not destroy the publicly known limits on

what each agent in each event is able to borrow without any risk of later default.

Although the literature on incentive compatibility concentrates on the special case

when only preferences are private information, this is, of course, very special. Real eco-

nomic systems must deal with private information concerning labour skills (cf. Mirrlees,

1971; Dasgupta and Hammond, 1980; Maskin, 1980) or other endowments (Postlewaite,

1979; Hurwicz, Maskin and Postlewaite, 1979; Maskin, 1980; Postlewaite, 1985). This

work, however, assumes that individuals are allowed only to understate their true skill or

to understate or perhaps even destroy their endowments. This is the kind of manipulation

to which Walrasian equilibrium allocation mechanisms are often vulnerable. As Hurwicz,

Maskin and Postlewaite in particular have pointed out, if individuals can overstate their

true endowments instead, and if their consumption sets are bounded below, then there

will be a problem in ensuring that an allocation mechanism actually produces feasible

outcomes.

In addition, Green (1987) has considered an infinite horizon economy with a contin-

uum of agents in which each individual’s endowment stream is private information. But

there is a single commodity and utility is both additively separable and negative expo-

nential. The possibility of an infeasible net trade vector never arises, because agents are

modelled as being always able to repay any arbitrarily large sum which they may have

borrowed in the past, even if this requires negative consumption in some periods. Of

course, in Green’s model it might well take a very long run of unluckily low endowments

before a debtor was forced to suffer negative consumption. Nevertheless, the feasibility

issue with which I shall specifically be concerned is not addressed.

My own past work (Hammond, 1979, 1987a) and that of Gale (1980, 1982) concen-

trated on allocation mechanisms or game forms which determine net trade rather than
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consumption vectors. This implicitly allowed agents’ endowments and feasible sets (con-

sumption sets, together with any domestic production possibilities) to be private infor-

mation. It did not really deal with the feasibility issue satisfactorily, however, because

it assumed explicitly that agents in any game form would never choose strategies which

could result in net trade vectors that are infeasible for them.

If the economy only lasts for a single period, this last assumption can often be justified

by suitable monitoring of defaulters. For if an agent in a game form plays a strategy which

would result in an infeasible net trade vector, presumably this fact is discovered before

the allocation has been determined irreversibly. After all, even if consumption demand

falls below subsistence, that is typically still feasible for an agent who is not supplying

anything, as discussed in Coles and Hammond (1986). So an infeasible net trade vector

only arises, one may assume, when a “defaulting” agent fails to supply something that

has been promised. Typically this will be detected, if only because some agent who was

expecting to receive at least a part of this supply will be disappointed and can be relied

upon to complain. Then, in a single period economy, it is not too late to change the

allocation by requiring the defaulting agent to amend his net trade vector to one that

really is feasible. Indeed, it may be possible to monitor any defaulter’s endowments, if

necessary, and to confiscate enough of them to deter any such defaults.

In a sequence economy, however, the situation can be quite different. Suppose for

simplicity that the economy lasts for just two periods. Then a consumer may be able to

play the game form in a way which appears in the first period to ensure feasibility, but

involves commitments which cannot possibly be honoured in the second period. More

concretely, an agent may be able to consume excessively in the first period by acting in

the economic system as would someone whose endowments were much larger, in effect

borrowing more than can ever be repaid. If the agent has been careful, this inability to

repay will not manifest itself until the second period. By then it may be too late to make

appropriate rearrangements in order to enforce the intertemporal allocation mechanism

which is incentive compatible in the usual sense. It may even be too late to punish the

defaulter severely enough to deter such default — the defaulter may have disappeared

without trace, or even died. Excessive consumption of this kind, of course, is precisely

what fraudulent borrowers achieve in actual economies. In real economies defaulters have

the additional advantage of being able to seek the protection of bankruptcy laws. Such
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deliberate default may be criminally fraudulent, but it does occur.

In any case, potential fraud of this kind introduces a form of moral hazard to add to

the obvious problems of adverse selection arising from private information about future

endowments. The consequences of default really need to be specified within the game

form. This was originally pointed out by Shubik (1973, 1974) in the context of a very

specific trading game, but only with a finite number of players. Later, Shubik and Wilson

(1977), as well as Dubey and Shubik (1979), did consider continuum economies, but they

also introduced non-economic penalties for bankruptcy. The question of whether there

can ever be purely economic penalties strong enough to deter all default still needs to be

carefully investigated within the framework of a game form. This paper attempts to fill

the gap.

1.4. Additional Incentive Constraints

So Section 2 below considers allocation mechanisms with monitoring in order to take

this additional moral hazard into account. This is done with a simple two period economy

having just one consumption good. In the first period each agent has private information

which tells him exactly what his second period endowment will be. Only in the second

period does default become apparent, however, and only then can monitoring be used in

order to acquire public information about the second period endowment. By the time the

second period arrives, it is too late to reduce a defaulting borrower to autarky because the

benefit from the loan taken out in the first period can no longer be taken away. Thus in

sequence economies it becomes necessary to consider additional incentive or “individual

feasibility” constraints, beyond those already considered in Hammond (1979, 1987a), Gale

(1980, 1982), Harris and Townsend (1981), Prescott and Townsend (1984a, b), Harris

(1987), Townsend (1988), etc. And to introduce credit rationing in a way which may well

prevent attainment of an allocation which “perfect” capital markets would produce, if only

Arrow-Debreu budget constraints could somehow be enforced.

This may appear to contradict the results of Harris and Townsend (1981) and Harris

(1987, pp. 121–131) on incentive constraints in sequence economies. They were careful to

consider mechanisms as extensive form games and to demonstrate the revelation principle

for “perfect Bayesian equilibrium,” closely related to Kreps and Wilson’s (1982) concept

of “sequential equilibrium.” They proved that a sequential allocation mechanism is im-

plementable in perfect Bayesian equilibrium strategies if and only if there is an equivalent
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direct mechanism in which each individual commits himself to a single strategy of direct

revelation, and in which to do so truthfully is a Bayesian equilibrium (Theorems 1 and 2,

pp. 46–7).

By contrast, in Section 3 below the equivalent direct mechanism will be required to

depend not merely on the first period announcement of the second period endowment, as

would be the case for the kind of equivalent direct mechanism which Harris and Townsend

construct. In addition, the need for monitoring implies that in the second period the

equivalent direct mechanism must also depend on what the second period endowment

actually turns out to be, which will be different if a false announcement has been made

in the first period. It is as though agents were allowed to revise their earlier announce-

ments and to claim that they had previously misstated their true type. In Harris and

Townsend’s framework, this kind of claim is equivalent to no more than a different and

inconsistent deceptive strategy in the original (indirect) game form, and never benefits the

deceiver in equilibrium. But their framework incorporates the assumptions of a known

common consumption possibility set (p. 40) and a known set of allocations which are

“achievable” or feasible for each coalition of agents (p. 41). Since a coalition of size one

can presumably achieve only its initial endowment, or some private production possibility

set, this specifically rules out the crucial assumption that agents are privately informed of

their own endowments. Indeed, in Harris and Townsend’s framework, private information

never affects what is feasible — as Harris (1987, p. 121) indeed recognizes, but without

being able to suggest any resolution. Accordingly, it should not be surprising that Harris

and Townsend’s results need some modification in sequence economies for which there is

private information regarding endowments, consumption sets, or private production pos-

sibility sets. When one constructs an equivalent direct mechanism in such a sequence

economy, one cannot afford to ignore any non-null set of agents who claim that they pre-

viously mis-stated their types and now cannot supply what they are supposed to — some

form of monitoring and modification of their net trade vectors seems inevitable, if the

allocation mechanism really is to be both physically feasible and implementable in domi-

nant strategies. That is why both the announced and the true endowments feature in the

equivalent direct mechanism of Section 3. One can expect more complicated equivalent

direct mechanisms to emerge when there are many periods in which monitoring may be

triggered. And corresponding additional incentive constraints.
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1.5. Outline

Section 2 will set out the basic assumptions of a continuum economy lasting for two

periods with one good each period. It also describes the basic framework of extensive

game forms in which endowment monitoring is used to ensure individual physical feasi-

bility. Thereafter Section 3 discusses implementation in dominant strategies, as well as

the incentive and individual feasibility constraints which this requires. It also describes

the problem of finding incentive constrained Pareto efficient allocation mechanisms. Then

Section 4 explores the conditions under which an allocation mechanism can be imple-

mented without any monitoring occurring in equilibrium. Section 5 presents a particular

example of a demand revelation game form which generates an incentive compatible al-

location mechanism. An even more special example with just two possible second period

endowment levels, one of which is zero, is then considered. It is shown how, when the

Walrasian equilibrium allocation cannot be sustained, there will be a non-Walrasian equi-

librium with binding borrowing constraints for some individuals. Moreover, the borrowing

rate of interest must exceed the lending rate, even though there are no defaults on any

loans.

Conclusions are set out in Section 6.

2. Two Period Extensive Game Forms with Endowment Monitoring

2.1. A Continuum Economy

Consider a continuum economy with a non-atomic measure space of agents (N,N , ν)

— in fact, one could assume that N = [0, 1] ⊂ �, that N is the usual Borel σ-algebra, and

that ν is the usual Lebesgue measure. For simplicity, suppose that all agents i ∈ N have

the same known utility function u : �2
+ �→ � which is continuous and strictly increasing

on the known common consumption set �2
+. To keep the model simple, suppose also that

all agents have the same known endowment of 1 in the first period, but that their different

second period endowments e ∈ �+ remain as private information in the first period, and

can only be discovered through monitoring in the second period. Assume too that there is

a set E ⊂ �+ of possible second period endowments. Note that no trade is always possible

for each consumer, even if it does not necessarily guarantee survival.
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2.2. Random Endowments

Suppose that the allocation mechanism in this economy emerges from an extensive

game form with the following sequence of events. At the first stage of the game, nature

determines at random the measurable function e(·) : N → �+ that specifies the endowment

vector ei of each agent i ∈ N .1 This function determines the joint distribution λ ∈
∆(N × E) of agents’ names and endowments given by

λ(K) = ν({ i ∈ N | (i, ei) ∈ K }) (1)

for every Borel set K ⊂ N × E. Obviously, λ induces the marginal distribution ν on N .

Agents i ∈ N are supposed to be informed only of their own endowments ei, and to

remain uninformed about the endowments of others, or even about the distribution λ.

2.3. Strategies

At the second stage of the game form, each agent has the same set A of possible

strategies a. These can be interpreted as bargaining strategies, offers to borrow and lend,

announcements of credit demand functions, or whatever. All agents i ∈ N choose their

strategy functions ai : E → A specifying how their respective actions in the economic

system depend on their endowments, which represent the differences in what they know.

For simplicity it is assumed that the resulting function a(·) : N × E → A is measurable,

and so induces a well defined joint distribution σ ∈ ∆(N × E × A) on the set of agents’

names, endowments and strategies which is given by

σ(K) = λ({ (i, e) ∈ N × E | (i, e, ai(e)) ∈ K }) = ν({ i ∈ N | (i, ei, ai(ei)) ∈ K }) (2)

for every Borel set K ⊂ N × E × A. This distribution has appropriate marginals λ on

N × E and so ν on N , of course.

1 For simplicity it will be assumed that this and other functions of i are measurable. This is
in common with almost all the rest of the literature on continuum economies and games with a
continuum of players — e.g., Green (1984). Yet it is not entirely satisfactory because, for instance,
a continuum of random variables almost never produces a measurable function (cf. Gale 1979,
Feldman and Gilles 1985, and Judd 1985). In fact one should probably consider distributions
rather than functions — e.g., the distribution λ ∈ ∆(N ×E) described in this section — without
necessarily assuming that there is a (measurable) function at all. To do so would complicate the
notation even further, however.
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Also, let α(σ) ∈ ∆(N ×A) denote the resulting marginal joint distribution of agents’

strategies and names in the game form, which is given by

α(σ)(K) = λ({ (i, e) ∈ N × E | (i, ai(e)) ∈ K }) = ν({ i ∈ N | (i, ai(ei)) ∈ K }) (3)

for every Borel set K ⊂ N × A. It will be assumed that all the relevant features of this

distribution can be observed by all those individuals in the economy who are responsible

for arranging net trades and any monitoring activities which are undertaken at later stages

of the game form, to be described below.

2.4. The Provisional Allocation Mechanism

Suppose now that, at the third stage of the game form, and still in the first period of

the sequence economy’s two periods, a provisional allocation of net trades

ξ0
i (a, α) : N × A × ∆(N × A) → �2 (4)

is determined for each agent i, as a jointly measurable function of i’s name, of i’s strategy

a in the game form, as well as the entire distribution of strategies α played by all the

other agents. Notice that ξ0
i (·) does not depend directly upon i’s endowment ei. So the

allocation mechanism is not using private information.

It is presumed that the first period part ξ0
i1(a, α) of this provisional mechanism comes

into immediate effect during this third stage of the game form, and that this is always

possible because ξ0
i1(a, α) + 1 ≥ 0 for all i ∈ N , all a ∈ A, and all α ∈ ∆(N × A). It is

presumed in addition that the second period part ξ0
i2(a, α) will also come into effect unless

there is some non-null set of agents who default in the second period by failing to repay

what this provisional mechanism prescribes.

2.5. Endowment Monitoring

In the second period, the game form goes on to fourth and further stages. First it is

assumed that agents are given the opportunity to make payments to each other voluntarily,

in an effort to settle their debts if they want to. If these voluntary payments do in fact

settle (almost) all debts, so that (almost) all agents i ∈ N have their appropriate net

expenditures ξ0
i2(a, α), then the game stops and the provisional allocation becomes the

actual one. Otherwise creditors pursue defaulting debtors and set in motion processes of
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monitoring and debt collection, as is the standard practice in bankruptcy proceedings. It

is therefore natural to suppose that monitoring signals are affected by true endowments —

indeed, in the extreme case of perfect monitoring, an agent’s true second period endowment

will be discovered. Thus the monitoring signal mi ∈ M for each monitored agent i ∈ N is

supposed to be a deterministic but possibly imperfect indicator of the true endowment ei

— obviously, randomness could be introduced into a more complicated model.

In fact, it will ease notation to suppose that all agents are monitored, but that for

some of them the monitoring only produces a “null signal” m0 which can be interpreted

as meaning that no real monitoring has taken place. It is therefore assumed that there is

a measurable monitoring function

mi(e, a, σ) : N × E × A × ∆(N × E × A) → M. (5)

The range of this is function is taken to be the fixed set M of possible monitoring signals,

which has the null signal m0 as one of its members. For technical reasaons it will be

necessary to assume that M can be given a topology and so also a Borel σ-algebra of

measurable sets. Of course, this is hardly a serious restriction.

Note that the monitoring signal is allowed to depend on the entire joint distribution

σ ∈ ∆(N × E × A) of agents’ names, endowments, and strategies, rather than just on

the marginal distribution α(σ) ∈ ∆(N × A) of names and strategies. This is because,

as discussed below, several rounds of monitoring will often be needed, with monitoring

decisons at later stages depending on the results of previous monitoring.

Given the joint distribution σ ∈ ∆(N × E × A), this monitoring function induces a

joint distribution µ(σ) ∈ ∆(N × A × M) which is given by

µ(σ) (K) := σ({ (i, e, a) ∈ N × E × A | (i, a, mi(e, a, σ)) ∈ K }) (6)

for every measurable subset K ⊂ N × A × M . It is this distribution which summarizes

whatever information about individuals’ endowments is available to the economic system,

and how those endowments are correlated with their behaviour in that system. Let α(µ) ∈
∆(N × A) denote the corresponding marginal distribution on just names and strategies.

Notice how one can only have mi(e, a, σ) = m0 for almost all i ∈ N when ξ0
i2(a, α(σ))+

e ≥ 0 for almost all i ∈ N . Otherwise there will be a non-null set of agents who are

bound to default in the second period when the economic system tries to implement the
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provisional allocation by calling upon them to repay their debts in full. If these defaulting

agents were not monitored and punished in some way, then no borrower would ever repay

his debts, and the credit allocation mechanism would collapse to autarky. So non-trivial

monitoring of defaulters is usually an essential part of any well functioning credit allocation

system.

In addition, if there is a non-null set of agents for whom ξ0
i2(a, α) + e < 0, their

unavoidable default and the consequent changes to the allocation mechanism may trigger

defaults by other agents — a familiar problem in real economies when significant numbers

of agents are in financial difficulties. That is why one cannot just assume, for each separate

i ∈ N , that ξ0
i2(a, α(σ)) + e ≥ 0 implies mi(e, a, σ) = m0. For the same reason, several

rounds of monitoring may be necessary, and the ultimate monitoring signal mi(e, a, σ) may

depend on actual endowments through the entire distribution σ ∈ ∆(N×E×A) of names,

endowments and actions, rather than just on the marginal distribution α(σ) ∈ ∆(N ×A)

of names and actions. This will be true for the special demand revelation mechanism

discussed in Section 5.1 below, for instance.

2.6. The Final Second Period Allocation Mechanism

Here, however, I shall consider only the final outcome after as many rounds as neces-

sary of monitoring and recontracting have been completely carried out in order to ensure

feasibility. So, in the very last stage of the game form, there will be a measurable final

second period allocation function

ξM
i2 (a, m, µ) : N × A × M × ∆(N × A × M) → �. (7)

There is also an associated direct second period allocation function ξi2(a, e, σ), whose

second argument is the individual’s true endowment e rather than the monitoring signal

m which was generated by e, and whose third argument is the joint distribution σ in the

population of combinations (i, e, a). This measurable function ξi2 : N × A × E × ∆(N ×
E × A) → � is given by the composition

ξi2(a, e, σ) ≡ ξM
i2 (a, mi(e, a, σ), µ(σ) ) (8)

of the above allocation and monitoring functions.
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2.7. Ensuring Physical Feasibility

Since the whole purpose of monitoring is to ensure physical feasibility, it will be

assumed that, for all (i, e, a, σ) ∈ N × E × A × ∆(N × E × A), the individual feasibility

constraint

ξM
i2 (a, mi(e, a, σ ), µ(σ) ) + e = ξi2(a, e, σ) + e ≥ 0 (9)

is satisfied. Note in particular how, for agents whose second period allocation would be

individually infeasible in the absence of monitoring, the inevitable default that follows

must trigger active monitoring, and lead to an adjustment of the allocation to something

that is feasible given the true endowment e. The assumption (9) guarantees that a feasible

allocation always results, even when individual consumers use disequilibrium strategies.

This is an essential condition for an economic system to be able to function, which must

always be satisfied somehow. Remember, after all, that I do not assume that feasibility

entails survival.

To illustrate how (9) is actually quite plausible, consider first the following perfect

monitoring mechanism. The monitoring signal space M is taken to be �+ ∪ {m0}. The

associated monitoring and second period allocation functions are then given by

mi(e, a, σ) =

{
m0 if ξM

i2 (a, m0, µ(σ) ) + e ≥ 0;

e if ξM
i2 (a, m0, µ(σ) ) + e < 0;

ξM
i2 (a, m, µ(σ) ) = −m ⇐⇒ m �= m0.

(10)

This evidently implies that

ξi2(a, e, σ) = max{ ξM
i2 (a, m0, µ(σ) ),−e } (11)

and so (9) is indeed satisfied. Under this perfect monitoring mechanism, agents are

monitored if and only if they would have to default otherwise. Also, monitoring de-

tects all the endowment of any agent who is actively monitored. All this endowment

is then confiscated, so consumption is forced down to zero in the second period. Be-

cause of our assumption that the consumption set is �2
+, this guarantees individual fea-

sibility. It will also deter default provided that the null monitoring consumption stream

( ξ0
i1(a

∗, α(σ))+1, ξM
i2 (a∗, m0, µ(σ) )+ e ) for the best strategy a∗ is always at least weakly

preferred to ( ξ0
i1(a, α(σ)) + 1, 0 ) for every alternative strategy a ∈ A.

Obviously punishing defaulters by reducing their consumption to zero in the second

period is rather drastic, especially as there is no guarantee that the individual defaulter
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can then even survive. In addition, not all an agent’s endowment can always be detected

through monitoring — and even if it can be, it may be too costly to do so. Thus one

may be forced to have “imperfect” monitoring mechanisms instead, with mi(e, a, σ) ≤ e

when ξM
i2 (a, m0, µ(σ) ) + e < 0, and ξM

i2 (a, m, µ(σ) ) ≥ −m when m �= m0. Then (11)

becomes replaced by the inequality ξi2(a, e, σ) ≥ max{ ξM
i2 (a, m0, µ(σ) ),−e } and so (9) is

still satisfied in this case. Such a mechanism does serve to show how individual feasibility

might be guaranteed even out of equilibrium.

2.8. Resource Balance

Physical feasibility also requires aggregate resource balance constraints to be satisfied.

In the second period, such constraints should reflect the resource costs of the monitoring

that is required in order to bring about the specified monitoring function. Thus a reason-

able formulation of such constraints is∫
N×A

ξ0
i1(a, α) α(di × da) ≤ y1;∫

N×E×A

ξi2(a, e, σ ) σ(di × de × da) ≤ y2(y1, σ)
(12)

for every joint distribution σ ∈ ∆(N × E × A) with marginal α ∈ ∆(N × A). Here y1

represents the mean level in the population of net expenditure (or excess of expenditure

over saving) during the first period; then y2(y1, σ) is an upper bound on the mean second

period net expenditure levels which are physically feasible. It reflects the non-monitoring

production possibilities of the economy. The dependence of y2 on σ, however, is a general

formulation recognizing that the process of producing monitoring signals according to the

function mi(e, a, α) must use up some real resources. These have to be diverted away

from meeting the net demands in the non-monitoring sector of the economy. Note that

the costs of monitoring an agent’s endowments are presumably always observable by the

person doing the monitoring and so incurring the costs. For this reason they can be treated

as part of the monitoring signal m, with a value of zero when m = m0, the null signal.

Aggregate feasibility constraints like (12) play no role, however, in determining the

incentive constraints which are our primary concern here. Thus they will largely be ignored

except when constrained Pareto efficient allocation mechanisms are discussed in Section

3.4 below.

That completes the basic description of the multi-stage extensive game form for de-

termining net trades in the simple two period sequence economy. Although its formulation
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may appear rather special at first sight, in fact it is hard to imagine any really different for-

mulation of an economic system that both allows trades to be consummated without any

monitoring when all individuals are indeed honouring their obligations, and also provides

for the monitoring which is needed when there are defaulters.

3. Implementation in Dominant Strategies

3.1. Dominant Strategies

Suppose that each individual i ∈ N in this game form has a dominant strategy

function a∗
i (e) : E → A at the second stage which depends upon i’s own endowment e,

but not on the distribution α of strategies chosen by other individuals. Thus

a∗
i (e) ∈ arg max

a
{u( ξ0

i1(a, α(σ) ) + 1, ξM
i2 (a, mi(a, e, σ), µ(σ) ) + e ) | a ∈ A }

= arg max
a

{u( ξ0
i1(a, α(σ) ) + 1, ξi2(a, e, σ) + e ) | a ∈ A }

(13)

which means that a∗
i (e) is always a best response to any joint frequency distribution

σ ∈ ∆(N × E × A) generated by the other agents’ choices of strategies. Notice that

there is no need to incorporate any feasibility constraint explicitly in the maximization

problem (13) because of the earlier assumption (9). It will be assumed finally that the

dominant strategy function a∗
i (·) : N ×E → A is measurable and so, for each distribution

λ ∈ ∆(N × E) of names and endowments, induces the well defined joint distribution

σ∗(λ) (K) := λ({ (i, e) ∈ N × E | (i, e, a∗
i (e) ) ∈ K }) ∈ ∆(N × E × A) (14)

for every measurable subset K ⊂ N × E × A, whose corresponding marginal distribution

is given by

α∗(λ) (K) := λ ({ (i, e) ∈ N × E | (i, a∗
i (e)) ∈ K }) ∈ ∆(N × A) (15)

for every measurable subset K ⊂ N ×A. In addition, the monitoring functions mi(e, a, α )

then determine the joint distribution in ∆(N × A × M) given by

µ∗(λ) (K) := λ ({ (i, e) ∈ N × E | (i, a∗
i (e), mi(e, a∗

i (e), α
∗(λ) ) ) ∈ K }) (16)

for every measurable subset K ⊂ N × A × M .
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3.2. An Equivalent Direct Mechanism

For each agent i ∈ N there are now two equivalent direct mechanisms, one for each

period, described by the measurable functions

fi1(λ, e) := ξ0
i1(a

∗
i (e), α

∗(λ) ) : ∆(N × E) × E → �;

fM
i2 (λ, e;m) := ξM

i2 (a∗
i (e), m, µ∗(λ) ) : ∆(N × E) × E × M → �.

(17)

But also, given the game form and dominant strategy function specified above, each agent

i ∈ N has an equivalent direct monitoring function defined by

gi(λ, e′; e) := mi(e, a∗
i (e

′), α∗(λ)) : ∆(N × E) × E × E → M (18)

which is also measurable. Thus gi(λ, e′; e) is the monitoring signal generated when agent

i with true endowment e is deceptive, and acts as would agent i with endowment e′, when

the joint distribution of all agents’ names and endowments appears to be λ. There is then

an even more direct second period mechanism given by

fi2(λ, e′; e) := ξi2(a∗
i (e

′), e, σ∗(λ) ) ≡ ξM
i2 (a∗

i (e
′), mi(e, a∗

i (e
′), α∗(λ)), µ∗(λ) )

≡ ξM
i2 (a∗

i (e
′), gi(λ, e′; e), µ∗(λ) ) ≡ fM

i2 (λ, e′; gi(λ, e′; e))
(19)

which is a measurable function fi2(λ, e′; e) : ∆(N×E)×E×E → �. So the net expenditure

stream ( fi1(λ, e′), fi2(λ, e′; e) ) results when agent i acts “deceptively,” as if having second

period endowment e′ when it is really e, and when the joint distribution of names and

endowments appears to be λ.

Note how the first period net borrowing fi1(λ, e′) of somebody who acts as though

their second period endowment were e′ must be independent of the true endowment e,

because e is unable to influence the monitoring signal m ∈ M until the second period,

and so can affect only the second period allocation. Of course fi2(λ, e′; e) does depend,

in general, not only upon the apparent value e′ of the agent’s endowment, but also upon

the true endowment e, since that ultimately influences the monitoring signal m ∈ M .

But it must be independent of e for those true second period endowments satisfying

gi(λ, e′; e) = m0, because then no monitoring occurs even in the second period.
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3.3. Incentive and Individual Feasibility Constraints

Because of our assumption (13) that a∗
i (e) is always a dominant strategy for each

agent i ∈ N , one has

u(ξ0
i1(a

∗
i (e), α∗(λ) ) + 1, ξi2(a∗

i (e
′), e, σ∗(λ) ) + e )

≤ u(ξ0
i1(a

∗
i (e), α∗(λ) ) + 1, ξi2(a∗

i (e), e, σ∗(λ) ) + e )
(20)

for all (λ, e′, e). Then it follows immediately from (17) and (19) that

u( fi1(λ, e′) + 1, fi2(λ, e′; e) + e ) ≤ u( fi1(λ, e) + 1, fi2(λ, e; e) + e ) (21)

for all (λ, e′, e). These are precisely the incentive constraints needed for truthtelling to be

a dominant strategy in the direct revelation game form induced by the direct mechanism

( fi1(λ, e′), fi2(λ, e′; e) ).

Because of (9), it must also be true that

ξi2(a∗
i (e

′), e, σ∗(λ) ) + e ≥ 0 (22)

for all (λ, e′, e). But then (19) implies that, for all (λ, e′, e), the equivalent direct mecha-

nism must satisfy the important additional individual feasibility constraint

fi2(λ, e′; e) + e ≥ 0. (23)

In our simple sequence economy, both constraints (21) and (23) must be satisfied for all

possible (λ, e′, e) if a direct mechanism is to be implementable in dominant strategies.

Satisfying the incentive constraints (21) alone is not enough.

3.4. Pareto Efficient Mechanisms

Now that the physical feasibility and incentive constraints have all been specified, it

is possible in principle to describe Pareto efficient mechanisms which satisfy these con-

straints. The choice variables are the first period allocation mechanism fi1(λ, e) and then,

in the second period, the combination consisting of the space M of monitoring signals,

the monitoring function gi(λ, e′; e), and finally the second period allocation mechanism

fM
i2 (λ, e′;m) based on these monitoring signals. The latter allocation mechanism gives

rise to the measurable function fi2(λ, e′; e) ≡ fM
i2 (λ, e′; gi(λ, e′; e)).
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For each possible distribution λ ∈ ∆(N×E), a Pareto efficient mechanism will usually

maximize an objective which can be expressed as a utility integral

W ≡
∫

N×E

ωi(λ, e) u( fi1(λ, e) + 1, fi2(λ, e; e) + e )λ(di × de) (24)

with welfare weights ωi(λ, e). This should then be maximized subject to the individ-

ual feasibility constraints (23), the incentive constraints (21), and then resource balance

constraints such as∫
N×E

fi1(λ, e) λ(di × de) ≤ y1∫
N×E

fi2(λ, e; e) λ(di × de) ≤ y2(y1) −
∫

N×E

γM
i (λ, gi(λ, e; e))λ(di × de)

(25)

for each of the two periods. Here, the function γM
i (λ, m) : ∆(N × E) × M → �+ indi-

cates the resource cost of monitoring, which can be assumed to satisfy the condition that

γM
i (λ, m0) = 0 — i.e., the resource cost of the null signal is zero, so that monitoring should

be avoided if possible. Nevertheless, it is quite possible that monitoring will occur for some

agents even when they use their (truthful) dominant strategies. Indeed, monitoring of en-

dowments could be part of an optimal solution even if there were no problem of default:

it could simply be the most cost effective incentive compatible method of arranging the

redistribution needed to achieve allocations that are both distributively just and also fully

Pareto efficient. After all, if monitoring of endowments were both perfect and costless, it

could be used to bring about a first-best allocation in every possible economic environ-

ment. For instance, since land holdings are often quite easy to monitor, land reform is

often advocated as a powerful tool for redistribution.

Although the problem of finding an incentive-constrained Pareto efficient allocation

mechanism has now been formulated in a fairly simple way, its solution seems to be very

far from simple, even in very special cases such as when the set E of possible endowments

has only two values. Thus the characterization of such solutions has had to be left for later

work. No doubt this will build on important insights such as those in Harris and Raviv

(1979), Townsend (1979), Gale and Hellwig (1985), as well as more recent unpublished

work by several authors.
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4. When Can Monitoring Be Avoided in Equilibrium?

4.1. Incentive Constraints without Monitoring

This section will examine the conditions under which there is (almost) no monitoring

in the economy when (almost) all agents use their dominant strategies in the game form.

After all, if monitoring is costly, and if the second period resource balance constraint is

tight even in the absence of monitoring — as it presumably should be for an optimal

mechanism — then there cannot be any monitoring at all if that mechanism is indeed to

be physically feasible.

To this end, first define the function

f0
i2(λ, e) := fM

i2 (λ, e;m0) : ∆(N × E) × E → �. (26)

This is the second period allocation in the event of their being no monitoring. In terms

of the equivalent direct mechanism, in which agents reveal their true endowments in equi-

librium, there will be no monitoring in equilibrium provided that, for all e ∈ E, one

has

gi(λ, e; e) = m0 and fi2(λ, e; e) = fM
i2 (λ, e, m0 ) = f0

i2(λ, e). (27)

Now suppose that a typical agent i ∈ N acts as though having endowment e′ even

though the true endowment is e. If agent i is not monitored in the second period either

when his endowment is e or when it is e′, this deception can never be detected because

monitoring is the only way of noticing the difference between these two endowment levels.

But because of (27), an agent whose endowment appears to be either e or e′ will not be

monitored in dominant strategy equilibrium when those endowments are the real ones,

and when λ ∈ ∆(N ×E) is the real joint distribution of names and endowments. Thus the

only way in which this deception can ever be detected is if it triggers monitoring because

it leads to default. In other words, if agent i acts as though his endowment were e′ when

it is really e, there will be no monitoring unless f0
i2(λ, e′) + e < 0, which is precisely when

agent i will have to default and so trigger monitoring. So (27) implies that

gi(λ, e′; e) = m0 and fi2(λ, e′; e) = fM
i2 (λ, e′, m0 ) = f0

i2(λ, e′)

⇐⇒ f0
i2(λ, e′) + e ≥ 0.

(28)

Thus active monitoring occurs if and only if it is needed to ensure individual feasibility in

the second period.
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Notice how (28) implies that, if f0
i2(λ, e′) + e ≥ 0 and the incentive constraints (21)

are also satisfied, then

u( fi1(λ, e′) + 1, f0
i2(λ, e′) + e ) = u( fi1(λ, e′) + 1, fi2(λ, e′; e) + e )

≤ u( fi1(λ, e) + 1, fi2(λ, e; e) + e ) = u( fi1(λ, e) + 1, f0
i2(λ, e) + e ).

(29)

In particular, this shows that the implication

f0
i2(λ, e′) + e ≥ 0 =⇒

u( fi1(λ, e′) + 1, f0
i2(λ, e′) + e ) ≤ u( fi1(λ, e) + 1, f0

i2(λ, e) + e )
(30)

must be true for all pairs e, e′ ∈ E. These are “restricted” incentive constraints in the sense

that they need only be satisfied for those deviations e′ which result in individually feasible

net expenditure streams ( fi1(λ, e′), f0
i2(λ, e′) ). Incentive constraints involving deviations

which lead to individually infeasible allocations are simply ignored. For the case of static

economies this corresponds precisely to the assumption made in Hammond (1979, 1987a),

in Gale (1980, 1982), and apparently in Postlewaite and Schmeidler (1986, 1987) too.

It is therefore especially important to understand clearly the difference between (30)

and the earlier combination of the incentive constraints (21) with the individual feasibility

constraints (23). Because of the need to ensure individual feasibility, through monitoring

if necessary, each individual’s second period net expenditure fi2(λ, e′; e) in (21) depends

on both e′ and e (as well as on λ, of course), and the incentive constraints are required to

hold for all possible pairs e, e′. Whereas (30) restricts attention to just those pairs e, e′ for

which the individual feasibility constraint f0
i2(λ, e′) + e ≥ 0 is satisfied anyway, and does

not need to make f0
i2(λ, e′) depend on e as well as on e′.

Note too how, when (27) holds, then the incentive constraints (21) must implicitly

include “deterrence constraints” ensuring that, if agent i defaults in the second period

and so allows monitoring to be triggered, then allocating i the net expenditure level

fM
i2 (λ, e′;m) with m �= m0 is an effective punishment ensuring that there are no benefits

to default. So, if (27) could be made true, not only would truthful revelation always be

a dominant strategy, but it would also follow that monitoring is never necessary when

individuals do reveal their true endowments.
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4.2. Sufficient and Necessary Conditions

Second period consumption fi2(λ, e′; e) + e must always be non-negative, however,

even if all of a defaulter’s endowment is monitored and then confiscated. Since utility is

strictly increasing, combining (27) with the incentive constraints (21) implies that, for all

pairs e, e′ ∈ E, one has

u(fi1(λ, e′) + 1, 0) ≤ u( fi1(λ, e′) + 1, fi2(λ, e′; e) + e )

≤ u( fi1(λ, e) + 1, fi2(λ, e; e) + e )

= u( fi1(λ, e) + 1, f0
i2(λ, e) + e )

(31)

as a necessary condition for feasibility to be possible without any monitoring in equilib-

rium.

Some unnecessarily strong sufficient conditions for this key property (31) to hold are

that fi1(λ, e) + 1 > 0 and f0
i2(λ, e) + e > 0 for all e ∈ E, and also that

u(c′1, 0) ≤ u(c1, c2) whenever c′1 ≥ 0 and c1, c2 > 0. (32)

This will be true in particular when preferences are “smooth”, implying that no indifference

curve intersects the c2 = 0 axis. When (32) is satisfied, (31), (21) and (23) can indeed

all be made true provided that any defaulter’s second period consumption gets reduced

to zero by means of a mechanism such as (10). In this special case, then, there will be no

need for monitoring in equilibrium, when all agents do use their dominant strategies.

On the other hand, if zero consumption (or whatever other lower bound is imposed

on defaulters) is not too bad, perhaps because the defaulter is no longer in a position to

care very much anyway, then the necessary condition (31) for deterring all default imposes

an upper bound on fi1(λ, e′). For the specific case when

u(c1, c2) ≡
√

c1 +
√

c2, (33)

for instance, (31) obviously implies that

sup
e′∈E

{ fi1(λ, e′) } ≤ inf
e∈E

{(√
fi1(λ, e) + 1 +

√
f0

i2(λ, e) + e

)2

− 1

}
(34)

for almost all i ∈ N . This necessary condition for the absence of default when agents use

their dominant strategies need not be true even for the usual kind of Walrasian mechanism,
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with budget sets given by the familiar

c1 + (1 + r)−1 c2 ≤ 1 + (1 + r)−1 e (35)

for a suitable rate of interest r. For in a pure exchange economy with utility function given

by (33), the appropriate unique Walrasian equilibrium is symmetric, with net expenditures

and an interest rate which are easily calculated as being given by the functions

fi1(λ, e) ≡ e − ē(λ)
ē(λ) +

√
ē(λ)

; f0
i2(λ, e) ≡ ē(λ) − e√

ē(λ) + 1
; r(λ) ≡

√
ē(λ) − 1. (36)

Here ē(λ) denotes the mean second period endowment
∫

N×E
e λ(di × de). In this case it

is easy to check that (34) is satisfied if and only if

e∗ +
√

ē(λ)
e∗ +

√
ē(λ)

≤
(√

ē(λ) + 1
)2

(37)

where e∗ and e∗ denote respectively the supremum and the infimum of the set E of possible

second period endowments which the allocation mechanism has to allow for. In particular,

(37) is never satisfied if e is lognormally distributed.

Accordingly, it seems that one has to abandon the hypothesis that, even when individ-

uals are privately informed about their endowments, there are always dominant strategy

incentive compatible mechanisms in which all defaults can be prevented, without the need

for any monitoring in equilibrium. Also, even if such mechanisms do exist, it may still be

true that the incentive constraints (21) and feasibility constraints (23) are together strictly

stronger than just the restricted incentive constraints (30).

5. A Special Case

5.1. A Demand Revelation Mechanism

A particular demand revelation mechanism of some interest is when each individual

i ∈ N has a strategy space A consisting of all possible net expenditure demand corre-

spondences D(r, x̄1) : �+ × �+ →→�2 which have closed graphs and non-empty compact

values, as well as satisfying the condition that

D(r, x̄1) ⊂ { (x1, x2) ∈ �2 | −1 ≤ x1 ≤ x̄1 & x1 + (1 + r)−1 x2 ≤ 0 }. (38)

The relevant parameters which determine the budget set on the right hand side of (38)

are an interest rate r and a first period borrowing ceiling x̄1. The economy is supposed to

22



be one of pure exchange. So there will exist functions r(α) and x̄1(α) of the distribution

α ∈ ∆(N × A), together with selections x0
i (α) ∈ D(r(α), x̄1(α)), such that the resource

balance constraints
∫

N×A
x0

it(α)α(di×da) ≤ 0 are always satisfied for both periods t = 1, 2.

The monitoring signal space is taken to be �+, the set of possible endowment levels.

When some agents default in the second period, and have endowments which turn out

to be too low to cover their debts, there will be an aggregate deficit. For simplicity it

is assumed that this is financed by means of a proportional reduction in the return to

lenders, while borrowers pay no more than their nominal obligations require. If this were

not true, and borrowers were also expected to contribute to the deficit, one would have

to consider which additional borrowers would be forced to default because of these extra

payments, how much extra deficit arises, and so on — as in the analysis by Green (1974).

Thus, for each possible value of σ ∈ ∆(N ×E ×A), it is simply assumed that there exists

some θ(σ) ∈ [0, 1] with the property that:

(i) in the absence of monitoring, each agent i’s net expenditure level in period 2 is given

by

ξM
i2 (a, m0, µ(σ)) :=

{
θ(σ)ξ0

i2(a, α) if ξ0
i2(a, α) > 0;

ξ0
i2(a, α) if ξ0

i2(a, α) ≤ 0;
(39)

(ii) the monitoring function is given by (10);

(iii) the appropriate simplified form for an exchange economy of the second period resource

balance constraint in (12), namely

∫
N×E×A

max{ ξM
i2 (a, m0, µ(σ) ),−e }σ(di × de × da) ≤ y2(σ), (40)

is satisfied.

Then capital markets have just two “imperfections”: first, those who want to borrow

large amounts may find their credit being rationed; second, there may be some default,

even though defaulters have their second period consumption reduced to zero.
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5.2. Demand Behaviour

In this special case, the utility-maximizing first period net demand correspondence of an

agent whose true second period endowment is e will be

D∗
1(r, x̄1; e) ≡ arg max

x1

{u(x1 + 1, max{ 0, e − (1 + r)x1 } ) | −1 ≤ x1 ≤ x̄1 } . (41)

Note that D∗
1(r, x̄1; e) will be equal to {x̄1}, with the agent facing zero consumption in the

second period, whenever both e < (1 + r) x̄1 — so that the credit ration does not prevent

the agent from ever borrowing more than can be repaid — and also the default utility

level u(x̄1 + 1, 0) exceeds the usual indirect utility

V W (r; e) := max
x1

{u(x1 + 1, x2 + e) | x1 + (1 + r)−1 x2 ≤ 0 } (42)

from optimizing subject to the Walrasian budget constraint. Of course, those agents

who are induced to borrow more than they can repay at the rate of interest r must be

among those who have their credit rationed, since otherwise their demands for first period

consumption would be unlimited.

Some typical properties of the first period net demand correspondence D∗
1 can be

illustrated by taking the specific utility function (33), for which

D∗
1(r, x̄1; e) ≡ arg max

x1

{√
x1 + 1 + max{ 0,

√
e − (1 + r) x1 } | −1 ≤ x1 ≤ x̄1

}
. (43)

Now, as the second period endowment e increases, with the first period endowment held

fixed at the level 1, the consumer’s wealth expansion path takes a form like that illustrated

in Figure 1. There are three distinct cases to consider.

The first (case D) occurs for very low levels of e. Then the consumer borrows as much

as possible — i.e., up to the credit ceiling x̄1 — and later defaults, thus choosing the point

D in Figure 1 at which D∗
1(r, x̄1; e) = {x̄1}.

As e increases, this default option eventually becomes sufficiently unattractive that

the individual switches discontinuously from borrowing to lending, and then starts moving

up the line segment between W1 and W2. This is the usual Walrasian case W, in which

the credit ceiling does not bind and the agent repays in full. Then D∗
1(r, x̄1; e) = {xW

1 },
where

xW
1 :=

e − (1 + r)2

(1 + r) (2 + r)
≤ x̄1 (44)
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Figure 1. A Typical Wealth Expansion Path

So, once case W occurs, the consumer is a lender for values of e up to (1 + r)2. But

he switches back to being a borrower thereafter, as e becomes large enough to make it

desirable to transfer some purchasing power from the future to the present even though

(unlike in case D), the loan will be repaid.

The indirect utility function for case W is

V W (r; e) :=
√

(2 + r) [1 + (1 + r)−1 e]. (45)

Accordingly, the borderline between cases D and W must occur when

e = (2 + r)−1 (1 + r) [x̄1 − (1 + r)] (46)

because then the Walrasian indirect utility V W (r; e) given by (45) is just equal to the

default utility
√

x̄1 + 1. Note how (46) implies that e < (1 + r) x̄1 so that, for all e below

this critical value, default is indeed bound to occur after the consumer has borrowed up

to the limit x̄1 in the first period.

Ultimately, however, at the point W2, the credit ceiling that was necessary to control

the default behavour of those with very low values of e begins to bind even for those

with very high values of e, who cannot be distinguished ex ante. This is true even though

individuals with very high values of e have no intention of defaulting. This is the third case

R, when the individual’s credit is rationed, but there is no default. Then D∗
1(r, x̄1; e) =
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{x̄1} and e − (1 + r) x̄1 ≥ 0. This case occurs when

e > (1 + r)2 + (1 + r) (2 + r) x̄1 (47)

because then (44) implies that the Walrasian net demand xW
1 exceeds the ceiling x̄1. Case

R corresponds to the last part of the wealth expansion path shown in Figure 1, represented

by the vertical line up from W2.

It should be noted finally that the intermediate Walrasian case W will occur on a

non-trivial interval of values of e whenever x̄1 + 1 > 0, because this is sufficient to ensure

that the lower limit determined by (46) is less than the upper limit determined by (47).

5.3. A Two Type Example

Let us now restrict this special example further by assuming that the set of possible

second period endowments E is just the pair { 0, e∗ }, and that e∗(> 0) is the endowment

of a proportion π of the population, while a proportion 1−π have a zero endowment. Then

the mean second period endowment is π e∗. So, according to (36), the unique Walrasian

equilibrium for this distribution λ has the interest rate r =
√

π e∗ − 1 and (in an obvious

notation) the allocation

x1(e∗) =
e∗ − π e∗

π e∗ +
√

π e∗
; x2(e∗) =

π e∗ − e∗√
π e∗ + 1

;

x1(0) =
−π e∗

π e∗ +
√

π e∗
; x2(0) =

π e∗√
π e∗ + 1

.

(48)

Thus those with zero second period endowment save by making loans to those with e∗ so

that both types of agent have positive consumption in both periods.

Also, according to (37), this unique Walrasian equilibrium is unsustainable in case

e∗ +
√

π e∗ >
√

π e∗
(√

π e∗ + 1
)2

, which is true iff π−1 − 2 >
√

π e∗ or iff π < 1
2 and

e∗ < (1−2 π)2 π−3. Recall that the unsustainability arises because agents with zero second

period endowment prefer the consumption stream which they can get by borrowing like an

agent with e∗ and then defaulting in the second period to the consumption stream which

they can get by being “honest.”

When this Walrasian allocation is unsustainable, we shall look for an alternative

allocation with a borrowing rate rB which is typically higher than the lending rate r. There

will also be a credit ceiling x̄1 imposed to prevent those with zero second period endowment

from borrowing with the intention to default. In addition, those agents who do not default
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in the second period will each receive a dividend d which is financed by the profits that

are earned from the difference between the borrowing and lending rates of interest. Those

with zero second period endowment will still be lending to those with e∗. And even though

the need to allow for default prevents attainment of the Walrasian allocation, there will

actually be no default in the new equilibrium. The need for differential borrowing and

lending rates will also be demonstrated, in the case when the Walrasian equilibrium is

unsustainable.

Since individuals with e = 0 are lending, the credit ceiling does not affect them at all

(except to deter borrowing with intent to default), and so their net borrowing is at the

Walrasian level given by

xW
1 (r, d; 0) =

d − (1 + r)2

(1 + r) (2 + r)
, (49)

after changing (44) above to take account of the dividend d in the second period, and then

putting e = 0. To ensure that xW
1 (r, d; 0) < 0, of course, requires that d < (1 + r)2. The

net repayment of each such individual, in the event of no default, is

xW
2 (r, d; 0) = d − (1 + r)xW

1 (r, d; 0) =
(d + 1 + r) (1 + r)

2 + r
. (50)

Thus these individuals are at the point E0 in Figure 2. The associated utility level is

uW (0) =

√
(d + 1 + r) (2 + r)

1 + r
. (51)

Figure 2. A Non-Walrasian Equilibrium
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On the other hand, in order to investigate whether there can be a non-Walrasian

equilibrium even when the borrowing and lending rates of interest are equal, it will be

assumed that individuals with second period endowment e∗ are credit constrained. So they

must be at the point E∗ in Figure 2, with x1(e∗) = x̄1 and x2(e∗) = x̄2 = d− (1 + rB) x̄1.

Then the market clearing conditions π xt(e∗)+(1−π)xt(0) = 0 in each of the two periods

t = 1 and t = 2 obviously require that

x̄t = −(1 − π)xW
t (r, d; 0)/π. (52)

But then the borrowing rate of interest must be given by

1 + rB =
d − x̄2

x̄1
= 1 + r +

(1 + r) (2 + r) d

(1 − π) [(1 + r)2 − d]
, (53)

as can be shown by routine manipulation. In particular, this shows that the borrowing rate

succeeds the lending rate if and only if the dividend d is positive. Also, rB must increase

whenever d increases because, as remarked above, it must be true that d < (1 + r)2.

Default will be deterred provided that the (indirect) utility (51) of those with e = 0

does not fall below
√

x̄1 + 1. So we must have

d ≥ d(r) :=
(1 + r)2 [1 − π (3 + r)]
1 + π (1 + r) (3 + r)

=
(1 + r) (2 + r)

1 + π (1 + r) (3 + r)
− (1 + r). (54)

Note that (1 + r)2 > d(r) and so this is consistent with allowing xW
1 (r, d; 0) < 0.

In order to have a non-Walrasian equilibrium, it must also be true that agents with

e = e∗ are borrowing no more than they wish. Thus their marginal rate of substitution

(1 + x̄1)−
1
2 /(e∗ + x̄2)−

1
2 at the consumption stream (1 + x̄1, e∗ + x̄2) cannot be less than

the borrowing interest factor 1 + rB . This is true iff

e∗ ≥ (1 + rB)2 (1 + x̄1) − x̄2 = (x̄1)−2 (d − x̄2)2 (1 + x̄1) − x̄2, (55)

where the last equality follows from (53). Now consumption expenditure in each period is

evidently a normal good, with xW
1 (r, d; 0) and xW

2 (r, d; 0) both increasing functions of d.

Then (52) implies that x̄1 and x̄2 are both decreasing functions of d. As x̄1 > 0, it follows

that the right hand side of (55) is an increasing function of d. So this inequality serves to

define an upper bound d̄(e∗, r) on allowable values of d. Of course, (55) also ensures that

e∗ + x̄2 ≥ 0, thus guaranteeing individual feasibility.
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So all non-Walrasian equilibrium allocations of this form are sustainable provided

that d satisfies d(r) ≤ d ≤ d̄(e∗, r) for the chosen lending rate r, and provided that the

credit ceiling and borrowing rate are then determined by (52) and (53) respectively. Some

tedious calculation shows that, whenever the sufficient condition π4 e∗ < 1 + π (1 − π)3 is

satisfied, then such a non-Walrasian equilibrium exists, with

1 + r = π (1 − π)

√
e∗

1 + π (1 − π)3
(< π−1 − 1)

and d =
(1 + r)2 [1 − π (2 + r)]
1 + π (1 + r) (2 + r)

(> max{ 0, d(r) }).
(56)

Moreover, the above sufficient condition is satisfied whenever e∗ is too low to allow the

Walrasian equilibrium to be sustained — i.e., whenever π < 1
2 and e∗ < (1 − 2 π)2 π−3.

It remains to be shown that, for any non-Walrasian equilibrium, the borrowing rate

must succeed the lending rate in the case when the Walrasian equilibrium is unsustainable.

Indeed, suppose it were true that d = 0 and so rB = r. Then (54) clearly implies that

0 ≥ 1 − π (3 + r) or that 1 + r ≥ max{ 0, π−1 − 2 }. But when d = 0, (55) reduces to

π e∗ ≥ (1 + r)2, and so an equilibrium of this particular form exists for interest rates in

the range satisfying

max{ 0, π−1 − 2 } ≤ 1 + r ≤
√

π e∗. (57)

In the case when π ≥ 1
2 , such equilibria exist for all positive values of e∗. But when π < 1

2 ,

such equilibria exist only if and only if e∗ ≥ (1−2 π)2 π−3, which is precisely the condition

for Walrasian equilibrium to be sustainable anyway. This proves the assertion: when the

Walrasian equilibrium is unsustainable, a non-Walrasian equilibrium with credit rationing

of the kind considered here can only be sustained by means of a positive gap between the

borrowing and lending rates of interest.
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6. Conclusion: Perfect Capital Markets are Generally Not Possible

This paper has considered borrowing and lending in the simplest of all possible models,

in which capital markets have the best chance of performing perfectly because there is a

continuum of agents. There are no jointly owned private producers and no uncertainty —

just an exchange economy lasting for only two periods with a single consumption good, in

which agents have the same utility function and the same known first period endowment.

It was also assumed that all agents know in the first period what their second period

endowment will be, but this is private information. Apart from the continuum of agents,

none of these features of the model is important except insofar as they help to concentrate

on essentials.

Of much more significance is the assumption that (32) is violated. This requires that

the consumers’ common utility function u(c1, c2) for two period consumption streams

satisfy the condition u(c′1, 0) > u(c1, c2) for some c′1 which is sufficiently large. So there

must be some indifference curves meeting the c1-axis. Then the threat of imposing zero

second period consumption may be ineffective. This is crucial to the specific simple model

used here. But not really to the need for credit rationing, because the familiar lifetime

budget constraints of more general models are clearly incredible. Indeed, even a lifetime

budget constraint is just a particular borrowing constraint which purports to prohibit

dying in debt.

So the model presented here illustrates rather starkly the fact that, when some infor-

mation about individuals is private, “perfect capital markets” may be impossible. If agents

have private information about their future endowments, then an allocation mechanism

which always selects a “perfect” Walrasian equilibrium in every economic environment is

generally manipulable by agents who plan deliberately to violate their Walrasian budget

constraints. By contrast, in a static continuum economy, such a mechanism is not manipu-

lable, provided only that default can be detected in time and defaulters punished by being

reduced to autarky or with some other sufficient deterrent. Thus the inevitable “market

failure” in these economic environments is due to the sequential nature of the economy

rather than to private information per se.

It appears that Stigler’s (1967) plea for a theory behind assumed capital market im-

perfections can now be answered. Or, if not, that our conception of what constitutes a

perfect capital market needs changing drastically to allow incentive constrained Pareto
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efficient allocations which generally require credit rationing, nonlinear pricing, and regu-

lated entry into and participation in credit markets. Indeed, in future work I would like

to consider “perfected” capital markets, with option contracts somewhat similar to those

introduced in Hammond (1989).

The model used here also has the virtue of bringing out the need to control fraud. It

should be remembered that U.S. banks have been said to lose eighteen times as much from

fraud as they do from robbery. And that the Federal Bureau of Investigation is reported

to have fifty agents working on bank fraud cases in Los Angeles alone.2
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1. For simplicity it will be assumed that this and other functions of i are measurable.

This is in common with almost all the rest of the literature on continuum economies

and games with a continuum of players — e.g., Green (1984). Yet it is not entirely

satisfactory because, for instance, a continuum of random variables almost never produces

a measurable function (cf. Gale 1979, Feldman and Gilles 1985, and Judd 1985). It fact

one should probably consider distributions rather than functions — e.g., the distribution

λ ∈ ∆(N × E) described in this section — without necessarily assuming that there is

a (measurable) function at all. To do so would complicate the notation even further,

however.

2. This is based on my own notes of a television documentary on the crisis in banking

which was shown on the KQED Public Broadcasting Service station in the San Francisco

Bay Area of California early in 1989.
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