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Abstract: This paper partially extends the f -core equivalence theorem of Hammond,

Kaneko and Wooders (1989) for continuum economies with widespread externalities —

i.e., those over which each individual has negligible control. Externalities need not result

directly from trading activities. Neither free disposal of divisible goods nor monotone

preferences are assumed. Instead, a slightly strengthened form of local non-satiation suffices.

However, in general it is proved only that any f -core allocation is a compensated Nash–

Walrasian equilibrium. Finally, the proof uses an elementary argument which does not rely

on Lyapunov’s theorem or convexity of the integral of a correspondence w.r.t. a non-atomic

measure.
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f-Core Equivalence

1. Introduction

The earlier paper by Hammond, Kaneko and Wooders (1989) (henceforth referred to as

HKW) presented a particular model of an economy with a continuum of individual agents

and widespread externalities. The externalities were assumed to result directly from trading

activities. That paper considered the “f -core” consisting of allocations that could not be

blocked or improved by any finite coalition outside a null set. The main result (Theorem 1)

concerned the equivalence of the f -core and the set of Walrasian equilibrium allocations.

The main purpose of this note is to extend this equivalence result to a broader class

of economic environments, as described in Section 2. This class includes those considered

in Kaneko and Wooders (1994) and in Hammond (1995, 1998) — see also the work cited

in Section 7 of Khan, Rath and Sun (1997). The widespread externalities need not result

directly from trading activities. In addition, rather than fixed endowments, individuals

will be assumed to have feasible sets of net trades that may allow for domestic production.

Moreover, these feasible sets may not allow free disposal even of divisible goods, and prefer-

ences are required only to satisfy a slightly strengthened form of local non-satiation instead

of monotonicity.

The cost of these generalizations will be a somewhat weaker result, showing only that

any f -core allocation must be a compensated Nash–Walrasian equilibrium, as defined in

Section 3. That is, the individuals’ choices of net trade vectors must be a compensated

Walrasian equilibrium in the sense of Khan and Yamazaki (1981), while their choices of

externalities must be a Nash equilibrium. The final transition to a Nash–Walrasian equi-

librium is then possible under extra assumptions such as those presented in HKW, or in

Yamazaki (1978, 1981), Hammond (1993), or Coles and Hammond (1995).

Section 4 adapts Hildenbrand’s (1982) proof of the classical core equivalence theorem,

which is based upon Aumann’s (1964) original ingenious argument. In fact, unlike the

classical theorem or the argument used in HKW, the proof here is more elementary because

it does not rely on Lyapunov’s theorem concerning the convexity of the range of an �n-

valued non-atomic measure, even in the case when n = 1. Nor does it use the important
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implication due to Richter (1963) that the integral of a correspondence w.r.t. a non-atomic

measure is a convex set (see Hildenbrand (1974), Theorem 3, p. 62).

The final Section 5 contains concluding remarks.

2. A Continuum Economy with Widespread Externalities

Throughout the paper the setting will be an economy with a continuum of agents, as

originally formulated by Aumann (1964, 1966). See also Hildenbrand (1974). In fact, using

the notation of HKW, let the space of agents be (A,A, µ), where A can be regarded as the

interval [0, 1] of the real line, with A as the Borel σ-algebra and µ Lebesgue measure.

Let T be the finite set of traded goods, with corresponding commodity space �T .

Let E denote the measurable space whose points represent all possible combinations e of

externality creating activities. Note that E could be a finite or infinite dimensional linear

space, or it could even be a space that is not linear. It is only required to have a σ-algebra

of measurable sets.

Write L(A, E) for the set of all measurable functions e : A → E, whose values will be

denoted by ea for each a ∈ A. Here e and ē will be treated as equivalent if ea = ēa a.e. in

A. These functions represent the widespread externalities. Then the commodity/externality

space will be the Cartesian product �T × E × L(A, E).

Assume that, for each fixed e ∈ L(A, E), every agent a ∈ A has a conditionally feasible

set F a(e) of pairs (xa, ea) ∈ �T × E and a binary irreflexive conditional strict preference

relation �a (e) defined on F a(e). Note that the conditional strict preference relation is

not necessarily transitive, and the corresponding weak preference relation is not necessarily

complete or transitive.

Of course, individuals typically have preferences that extend to the set of all triples

(xa, ea, e) satisfying (xa, ea) ∈ F a(e). These preferences are relevant for any efficiency or

other welfare properties. The preferences for widespread externalities e, however, have no

effect on the equilibrium or f -core allocations considered in this paper.

The projection F a
T (e) = proj�T F a(e) of F a(e) onto �T is the conditionally feasible set

of net trade vectors. Note that endowments of traded goods have been netted out. Nor are

such endowments necessarily fixed vectors because agents may be endowed with production

possibility sets instead, as in Rader (1964).
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In HKW we considered a special case of the model presented here. We assumed that

E = �T , so externalities were equivalent to net trade vectors. Furthermore, T was parti-

tioned into the two sets D of divisible goods and I of indivisible goods. Also, for each agent

a ∈ A, the conditionally feasible set was assumed to be independent of e, and given by

F a = { (xa, ea) ∈ �T × E | xa = ea and xa + ωa ∈ ZI
+ ×�D

+ },

where ωa denotes agent a’s fixed endowment vector, and ZI
+ is the set of possible non-

negative vectors of indivisible goods, with integer coordinates.

Let Q ⊂ � denote the set of rational numbers. Let QT denote the subset of �T

whose members are vectors with all their coordinates in Q. The conditional feasible set

F ⊂ �T × E and strict preference relation � on F are said to be locally non-satiated in

rational net trade vectors if, for any (x, e) ∈ F and any neighbourhood N of x in �T , there

exist x′ ∈ N ∩ QT and e′ ∈ E such that (x′, e′) ∈ F with (x′, e′) � (x, e). The same

pair F and � on F are said to be continuously non-satiated in rational net trade vectors

if, for every pair (x, e), (x′, e′) ∈ F with (x′, e′) � (x, e) or (x′, e′) = (x, e) and for every

neighbourhood N ′ of x′ in �T , there exist x′′ ∈ N ∩QT and e′′ ∈ E such that (x′′, e′′) ∈ F

with (x′′, e′′) � (x, e).

Continuous non-satiation in rational net trade vectors, as defined above, trivially im-

plies local non-satiation in rational net trade vectors. Also, the two conditions are logically

equivalent when the relation � is transitive, or even if it is intransitive but instead satisfies a

standard continuity condition on �T . Furthermore, both conditions are satisfied whenever

preferences for traded goods satisfy any of the usual monotonicity conditions. None of these

properties is assumed here, however, so the second stronger assumption is required for the

main theorem.

A feasible allocation is a measurable mapping (x, e) : A → �T ×E for which (xa, ea) ∈
F a(e) a.e. in A, and also

∫
A

xa dµ = 0. Given any such feasible allocation and any agent

a ∈ A, define the set

P a(xa, ea; e) := {x ∈ �T | ∃e ∈ E : (x, e) ∈ F a(e) and (x, e) �a(e) (xa, ea) }

of net trade vectors that, when combined with suitable individual externality vectors, are

conditionally strictly preferred by a to (xa, ea). Following Aumann [1] assume that, given
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any feasible allocation (x, e), the set

A(t) := { a ∈ A | t ∈ P a(xa, ea; e) }

is measurable for every fixed t ∈ �T .

3. Nash–Walrasian Equilibrium Allocations and the f-Core

Say that the finite coalition S ⊂ A can improve the feasible allocation (x̂, ê) if, for all

a ∈ S, there exists an alternative xa ∈ P a(x̂a, êa; ê) such that
∑

a∈S xa = 0. Note that any

finite coalition has measure zero, so its choice of externalities leaves ê essentially unaffected.

The feasible allocation (x̂, ê) is said to be in the f-core iff there is a full set of agents

A1 ⊂ A (with µ(A1) = 1) such that no finite coalition S ⊂ A1 can improve (x̂, ê). That is,

after excluding a null set of agents if necessary, it must be impossible to form any improving

or blocking finite coalition S.

It seems evident that finite coalitions lack the power to improve any allocation in the

f -core. But do they also really have the power to improve any allocation outside the f -

core? Instead of answering this question directly, I offer the following apparently stronger

definition of “discernible improvements,” which leads to an apparently larger set of “weak”

f -core allocations.

Specifically, say that the finite family of m non-null measurable sets Sk ∈ A (k =

1, 2, . . . , m) (with µ(Sk) > 0, and not necessarily disjoint), can discernibly improve the

feasible allocation (x̂, ê) if there exist corresponding natural numbers nk such that every

finite coalition made up of exactly nk agents from each set Sk in the finite family, but no

other agents, can improve this allocation. The feasible allocation (x̂, ê) is said to be in the

weak f-core iff no finite family of measurable sets can discernibly improve the allocation.

Evidently, if some finite family Sk (k = 1, 2, . . . , m) can discernibly improve an allocation,

then any full set of agents A1 must include improving finite coalitions with an appropriate

number of members selected from each of the non-null sets A1 ∩ Sk. So the f -core is a

subset of the weak f -core.

Because neither free disposal of traded goods nor monotonicity of preferences has been

assumed, any equilibrium price vector p ∈ �T could have some negative components. Ac-

cordingly, say that any feasible allocation (x̂, ê) and price vector p 
= 0 together constitute
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a Nash–Walrasian equilibrium if, a.e. in A, both p x̂a = 0 and also any xa ∈ P a(x̂a, êa; ê)

satisfies p xa > 0. This is a Walrasian equilibrium insofar as almost all agents choose private

good net trade vectors in order to maximize preferences subject to their budget constraints.

It is a Nash equilibrium insofar as almost all agents choose externalities and private goods

simultaneously in order to maximize preferences given the widespread externalities chosen

by almost everybody else. Because of the assumption that there is a continuum of agents,

these externalities are described by ê up to an irrelevant null set of agents. Moreover, no

individual agent has the power to change ê. Finally, note that in Nash–Walrasian equi-

librium only traded goods in the set T are rationed by price; each agent is free to choose

any combination e of externality creating activities in the space E at will, subject only to

individual feasibility.

Finally, say that the feasible allocation (x̂, ê) and price vector p 
= 0 together constitute

a compensated Nash–Walrasian equilibrium if, a.e. in A, both p x̂a = 0 and also any xa in

the closure of P a(x̂a, êa; ê) satisfies p xa ≥ 0. This is an obvious adaptation of the standard

concept of compensated Walrasian equilibrium (or quasi-equilibrium).

Suppose that each agent a ∈ A has a closed convex conditional feasible set F a
T (ê) and a

conditional strict preference relation �a(ê) whose graph is open relative to F a(ê) × F a(ê).

Suppose too that preferences are continuously non-satiated in rational vectors, and so locally

non-satiated a fortiori. Then a well known sufficient condition for the compensated Nash–

Walrasian equilibrium (x̂, ê, p) to be a (full) Nash–Walrasian equilibrium is that almost

every agent a ∈ A has a cheaper point xa ∈ F a
T (ê) with p xa < 0. Sufficient conditions

for individuals to have such cheaper points are discussed in Hammond (1993). So are

somewhat weaker hypotheses than convexity of F a
T (ê) under which, in an economy without

externalities, a compensated Walrasian equilibrium is still a Walrasian equilibrium. Where

these hypotheses are satisfied, there is exact equivalence between the f -core and the set of

Nash–Walrasian (or Walrasian) equilibrium allocations.
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4. f-Core Equivalence

A standard rather easy proof shows that any Nash–Walrasian equilibrium allocation is

in the f -core. Conversely:

Weak Equivalence Theorem. Suppose that preferences are continuously non-satiated

w.r.t. rational vectors. For any allocation (x̂, ê) in the weak f -core, there exists a price

vector p 
= 0 such that (x̂, ê, p) is a compensated Nash–Walrasian equilibrium.

Proof: Let (x̂, ê) be any feasible allocation, not necessarily in the weak f -core. Then,
following the beginning of Aumann’s (1964, p. 45) and Hildenbrand’s (1982, pp. 843–4)
proof of core equivalence, for every t ∈ QT , define the set

Â(t) := { a ∈ A | t ∈ P a(x̂a, êa; ê) }

By our earlier assumption, the set Â(t) must be measurable. Then let

A′ := A \
[⋃

{ Â(t) | t ∈ QT , µ(Â(t)) = 0 }
]
.

Because QT is countable, the set A′ is also measurable and satisfies µ(A′) = µ(A) = 1.
Finally, define the convex hull

K := co

{ ⋃
a∈A′

[QT ∩ P a(x̂a, êa; ê)]

}

Suppose that 0 ∈ K. Then there exist m agents ak ∈ A′ with conditionally preferred
rational net trade vectors tk ∈ QT ∩ P ak(x̂ak , êak ; ê) and positive convex weights rk ∈ �+

(k = 1, . . . , m), such that
∑m

k=1 rk = 1 and
∑m

k=1 rk tk = 0. These equations combine
to give a single matrix equation of the form r′T = e0, where T is the (1 + #T ) × m

matrix whose kth column has 1 in the first row followed by the vector tk, whereas e0 is the
unit vector (1, 0, . . . , 0) ∈ � × �T . This matrix equation can be solved by elementary row
operations. Because each vector tk ∈ QT has rational co-ordinates, the result will be a row
vector r′ of non-negative convex weights which are rational numbers rk ∈ Q+. So there
exist natural numbers nk (k = 1, . . . , m) such that

∑m
k=1 nk tk = 0.

Because ak ∈ A′, there is no t ∈ QT such that ak ∈ Â(t) and µ(Â(t)) = 0. Because
tk ∈ QT ∩ P ak(x̂ak , êak ; ê) and so ak ∈ Â(tk), it follows that µ(Â(tk)) > 0 (k = 1, . . . , m).
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Now define S as any finite coalition consisting of nk members from each of the m sets
Â(tk) (k = 1 to m). Also, for k = 1, . . . , m, define xa := tk for each a ∈ Â(tk) ∩ S. Then∑

a∈S xa =
∑m

k=1 nk tk = 0. Furthermore, for all a ∈ S, one has xa ∈ P a(x̂a, êa; ê). This
shows that the finite family Â(tk) (k = 1 to m) can discernibly improve the allocation (x̂, ê).
Therefore (x̂, ê) is not in the weak f -core.

On the other hand, if (x̂, ê) does belong to the weak f -core, the preceding three para-
graphs have shown that 0 
∈ K. Because K is convex, the separating hyperplane theorem
then implies that there must exist p 
= 0 for which p t ≥ 0 for all t ∈ K.

Consider any a ∈ A′ and any x in the closure of P a(x̂a, êa; ê). Then continuous non-
satiation in rational net trade vectors implies that there must exist an infinite sequence
(xm, em) ∈ F a(ê)∩ (QT ×E) such that (xm, em) �a(ê) (x̂a, êa) (m = 1, 2, . . .) and xm → x

as m → ∞. Therefore xm ∈ QT ∩ P a(x̂a, êa; ê) ⊂ K for all m, implying that p xm ≥ 0 and
so p x ≥ 0 in the limit.

Next, given any a ∈ A′, the assumption of local non-satiation in rational net trade
vectors implies the existence of an infinite sequence (x′

m, e′m) ∈ F a(ê) ∩ (QT × E) such
that (x′

m, e′m) �a(ê) (x̂a, êa) (m = 1, 2, . . .) and also x′
m → x̂a as m → ∞. It follows that

x′
m ∈ QT ∩ P a(x̂a, êa; ê) ⊂ K (m = 1, 2, . . .), hence p x′

m ≥ 0 and so p x̂a ≥ 0 in the limit.
But feasibility implies that

∫
A

x̂a dµ = 0, so
∫

A
p x̂a dµ = 0. Because µ(A′) = 1 and p x̂a ≥ 0

for all a ∈ A′, it follows that p x̂a = 0 a.e. in A′, and so a.e. in A.

The results of the last two paragraphs confirm that (x̂, ê, p) is a compensated Nash–
Walrasian equilibrium.

5. Concluding Remarks

As discussed in Section 3, the main result of Section 4 is not in itself a full equivalence

theorem for the f -core. Like the usual equivalence theorem for the core, however, there will

be full equivalence whenever a compensated Nash–Walrasian equilibrium is also an ordinary

Nash–Walrasian equilibrium.

One limitation of the paper is the absence of any existence result such as those discussed

by Khan, Rath and Sun (1997) or, if mixed strategies are allowed, by Balder (1996), as well

as in earlier work cited in those articles. It remains to be seen how far such existence results

extend to economies with private traded goods and widespread externalities.
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