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defined, and their existence proved. They are then characterized by the property of “f -

constrained Pareto efficiency” for finite coalitions. More general “private good” Nash–

Walrasian equilibria are characterized as private good constrained Pareto efficient. In-

troducing complete Pigou taxes or subsidies leads to equilibria that are characterized by
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nalities. But full efficiency requires resolving the public good problem of determining those

aggregate externalities or, equivalently, of setting appropriate Pigou prices.
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Widespread Externalities

1. Introduction and Outline

In economies with a continuum of individual agents, the papers by Kaneko and Wooders

(1986, 1989) and by Hammond, Kaneko and Wooders (1989, henceforth referred to HKW)

describe an externality as “widespread” if each individual agent has negligible power to in-

fluence its effect on other individuals. Obvious examples include familiar externalities such

as the emission of methane, carbon dioxide, or other greenhouse gases into the atmosphere,

as well as gases causing ozone depletion, and farming practices which eventually add to pes-

ticide residues in aquifers or in the oceans. But probably a majority of externalities can be

thought of as widespread. For example, traffic congestion in one city, or even in one part of

a city, appears to meet the definition. Clearly excluded, however, are “narrow” externalities

arising from small group interaction, such as within families or local clubs, as well as those

arising from (very) local public goods specific to a village or small neighbourhood.

In addition to the generally recognized forms of widespread externality discussed above,

similar issues arise whenever there are public goods whose provision depends on individual

action, or which are financed by well-defined fiscal rules that depend on the statistical

distribution of private actions. Also, widespread externalities are effectively created by

production decisions in the presence of fixed costs or other non-convexities that remain

significant even in the aggregate economy (see Dierker, 1986 and Vega-Redondo, 1987).

Basic research and technical knowledge are, of course, prime examples of global public

goods (see Nelson, 1959 and Arrow, 1962), and the widespread externalities arising in their

production lie at the heart of many recent models of “endogenous growth”. As a final class

of examples, suppose that the economic system pools risks in order to provide individual-

specific benefits such as health care, or compensation for victims of floods (Kydland and

Prescott, 1977) and earthquakes. Then widespread externalities are likely to arise in the

future from current “morally hazardous” activities such as smoking, or building houses in

areas subject to flooding or earthquakes. This is true whether the risk pooling is achieved

through private insurance markets or as a result of public policy. In this sense, even history,

or at least the statistical distribution of economically relevant personal histories, gives rise

to a widespread externality (Hammond, 1993b).
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Concepts similar to widespread externalities have been considered formally by Berg-

strom (1976, p. 123), less formally by many writers, including Hardin (1968), Schelling

(1978), and also Baumol and Oates (1988, especially the discussion on pp. 9–10). None

of these consider a continuum economy, however. Yet, just as the concept of a continuum

economy is needed to formalize the idea that individuals have no power to influence market

prices, so is it also needed to formalize the corresponding idea that individuals have no

power to affect widespread externalities.

The three earlier papers on widespread externalities cited above were mostly concerned

with a particular form of core which we called the “f -core”. This consists of allocations to a

continuum of agents that (except for agents in a null set) could not be blocked by any finite

coalition. In particular, we were able to demonstrate equivalence between the f -core and

a form of “Nash–Walrasian” equilibrium in which private goods were bought and sold on

complete perfectly competitive markets, but externalities were determined by individuals’

optimizing decisions taking as given the externalities created by all other individuals.1

Here, however, the focus will be on the welfare properties of such Nash–Walrasian

equilibria, as well as of alternative equilibria which arise when there is an attempt to reduce

or remove efficiency losses by setting up markets for the rights to create externalities. It

will turn out that such markets are equivalent to introducing Pigou taxes (or subsidies) on

the externalities. And that, contrary to how many economists seem to have interpreted

such standard works as Baumol and Oates (1973; 1988, especially ch. 3), in fact there

remains an important public good problem that has to be solved in other ways.2 At least

1 In fact, we chose to consider only a special case in which the aggregate widespread externality
could be expressed as the distribution generated by the allocation of private goods. This corre-
sponds to the special situation considered in Section 8 of this paper, where individual rights for all
externalities are traded at Pigou prices. Sometimes, however, such a restricted model can be de-
rived as a reduced form of the general model considered in this paper. This derivation would leave
externality vectors implicit while postulating that individuals choose them optimally given their
own respective net trade vectors and the aggregate externalities. This reduction will work provided
that the obvious mapping from each individual’s net trade vector and the aggregate externalities
to the optimal individual externality vector allows the aggregate externalities to be expressed in
equivalent form as the distribution generated by the allocation of private goods. Precise conditions
for this to be valid remain to be investigated, however.

2 Of course, the analysis by Baumol and Oates is formally correct. Under their assumptions
(which implicitly include differentiability and some sort of constraint qualification guaranteeing
existence of Kuhn–Tucker prices), Pareto efficiency is achievable, as they claim, by a combination
of competitive markets for private goods and appropriate Pigou taxes and subsidies for externalities.
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Bergstrom (1976, p. 124) and Starrett (1988, especially pp. 69–70) bring out this point fairly

clearly. See also the discussion by Arrow (1969), Starrett (1972), and Dasgupta and Heal

(1979, ch. 3) of the case when anybody’s consumption can create externalities for all other

individuals. And also Klevorick and Kramer’s (1973) interesting analysis of a particular

institutional approach to the public good problem for the case of water pollution in the

Ruhr region of North-West Germany. However, even these works do not explain how to

separate Pigou taxes from Lindahl prices in the way Section 6 suggests (see also Hammond,

1994).

Specifically, this paper considers different concepts of constrained Pareto efficiency that

characterize Nash–Walrasian equilibria, with or without Pigou taxes and subsidies, and then

with or without Lindahl pricing of public goods in the case when appropriate Pigou taxes

are instituted. These characterization results are somewhat similar to those of Grossman

(1977) and Repullo (1988) for equilibrium with incomplete markets.

In what follows, Section 2 will specify the basic general equilibrium model of an economy

with a continuum of agents, together with arbitrary finite numbers of exchangeable private

goods and widespread externalities. A Nash–Walrasian equilibrium with lump-sum transfers

(NWELT) will then be defined in Section 3. So will the less restrictive concept of private

good Walrasian equilibrium with lump-sum transfers (PNWELT), which differs from a

NWELT in that each agent’s choice of private good vector is not required to be coordinated

with the choice of externality vector.

Next, in Section 4 the set of PNWELT allocations will be characterized as “private

good” constrained Pareto efficient. In other words, the allocation of private goods will

be Pareto efficient, given all agents’ choices of what externalities to create. Thus, Pareto

improvements will not be possible unless inefficiencies arising from externality creation are

reduced. Conversely, take virtually any private good constrained Pareto efficient allocation

in which, given their choices of private good net trade vectors, individuals’ choices of ex-

But the Pigou taxes and subsidies have to be set at the right level. Or equivalently, the aggregate
supply of rights or duties to create externalities must be determined appropriately before being sold
on a competitive market. In fn. 17 on p. 45 of the second edition they do notice that a widespread
externality “is, essentially, a public good”. Also, on p. 131 they do briefly acknowledge that there
is likely to be a collective decision problem. Yet here they ascribe this, quite incorrectly, to the
presence of non-convexities, and also appear to confuse the first and second efficiency theorems of
welfare economics.
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ternalities are in Nash equilibrium. Generally, such an allocation is decentralizable by a

private good price vector and lump-sum transfers which make that allocation a PNWELT.

The form of constrained Pareto efficiency discussed in Section 4 has an obvious coun-

terpart even in economies with a finite number of agents. But for continuum economies,

Section 5 offers a different characterization of NWELTs. In fact, they correspond to alloca-

tions that are “f -constrained” Pareto efficient, in the sense that almost no finite coalition

can find an “f -constrained Pareto improvement”, in which its members reallocate their pri-

vate goods, while also changing the externalities they create as they please. In particular,

f -constrained Pareto efficient allocations are precisely those which cannot be improved by

Coasian bargaining within any finite coalition. Of course it is crucial that, in a continuum

economy, no finite coalition can affect the aggregate widespread externalities.

Then Section 6 turns briefly toward a first-best remedy for the special case when

the widespread externalities depend on the mean vector of externality creation levels in the

population. Then, given complete information and enough convexity, a suitable combination

of Pigou taxes or subsidies with Lindahl prices is able to solve not only the problem of

distributing aggregate externalities between agents, but also, and simultaneously, the public

good problem posed by the need to have the appropriate levels of the aggregate externalities.

The first-best solution of Section 6 is not truly feasible when the benefits and costs

of widespread externalities remain known only to the affected individuals. Because of the

free-rider problem, the incentive constraints created by such privacy of information will

typically prevent the attainment of almost all first-best allocations. As implied by the

discussion in Hammond (1979), the only exceptions are those allocations for which it can

be arranged that individuals’ allowable total net expenditures on private goods and on

Pigou taxes combined are independent of their private information. For example, it would

be incentive compatible and first-best Pareto efficient to have public goods financed by poll

taxes, provided that it was commonly known that everybody really could afford to pay the

required poll tax. But even then it would not generally be distributively just. Nor is an

adequate poll tax feasible in practice, given that it is probably false, and is certainly not

common knowledge, that everybody really can afford it. What is more, as Starrett (1972)

and Starrett and Zeckhauser (1974) in particular have pointed out, externalities can easily
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give rise to fundamental aggregate non-convexities. These create additional difficulties in

using Lindahl pricing schemes for solving the associated public good problem.3

Thus, private information and aggregate non-convexities confront us with insuperable

incentive and other organizational constraints which, except in rare special cases, prevent

any satisfactory first-best Pareto efficient resolution of the public good problem. Accord-

ingly, for the case when the effect of externalities depends on the mean externality vector

in the population, Section 7 turns to alternative second-best “Pigou–Walras” allocations.

These result from competitive markets for both private goods and the rights (or duties) to

create widespread externalities. Such allocations are externality constrained Pareto efficient

in the sense that no Pareto improvement can result from simply reallocating either private

goods or the rights to create externalities; some changes in the aggregate levels of the vari-

ous widespread externalities are required. Pigou–Walras allocations are also characterized

by the corresponding property for finite coalitions of f -externality constrained Pareto ef-

ficiency. Finally, it is argued that Pigou prices on their own work equally well (or badly)

whether or not aggregate externalities are a source of non-convexity.

An appendix presents proofs of the “second f -efficiency” theorem and of the existence

of Nash–Walrasian equilibria.

2. A Continuum Economy with Widespread Externalities

2.1. Agents, Goods, and Widespread Externalities

Throughout the paper the setting will be an economy with a continuum of agents, as

formulated by Aumann (1964, 1966) and Hildenbrand (1974). In fact, the space of agents

will be (I,B, α) where I is the unit interval [0, 1] of the real line, the family B of measurable

sets is the Borel σ-algebra generated by the open sets, and α is Lebesgue measure defined

on those sets.

It will be assumed that there is a finite set G of exchangeable private goods, and a

disjoint finite set E of externalities. Each individual i ∈ I will have a net trade vector

xi ∈ �G of exchangeable goods, and create an externality vector ei ∈ �E . In addition,

3 As Baumol and Oates (1988, ch. 8) mention, others had also noticed difficulties with the usual
second-order conditions for local efficiency. Starrett’s key demonstration, however, is both simpler
and, because it goes beyond mere local second-order conditions, much more damaging.
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each agent i ∈ I in common is affected by everybody’s externality vectors. There are at

least three ways of representing this common effect. The first and most general way is to

consider the entire integrable or measurable mapping e : I → �E defined by the profile ei

(i ∈ I) of externality vectors. This is the case of general widespread externalities that was

treated in Hammond, Kaneko, and Wooders (1989). Somewhat less general but simpler is

the case of distributional widespread externalities, where only the statistical distribution or

measure on �E induced by e is relevant. This case is considered in Kaneko and Wooders

(1989).

Very often a third representation of the aggregate externality is possible. This case

of mean widespread externalities, the simplest of the three, occurs when measuring each

component of each individual’s typical externality vector ei ∈ �E in suitable units allows

e to be summarized by its mean, which is the vector in �E defined by the integral z =

ē =
∫

I
ei dα. For example, if the externality is a greenhouse gas such as methane, a very

relevant measure of methane emissions is the aggregate quantity expressed in kilograms

per head of world population. Other examples are presented in Kaneko and Wooders

(1994). This is the only case considered in this paper. But if, as in Hammond (1993b), the

widespread externality arises from the statistical distribution of personal histories, then this

representation by the mean is generally impossible. Or at least, it is not generally possible

in any finite-dimensional Euclidean space.

2.2. Individual Feasible Sets and Preferences

Each individual i ∈ I is assumed to have a feasible set F i ⊂ �G × �E × �E of triples

(xi, ei, z), over which is defined a (complete and transitive) preference ordering Ri.

Note that (xi, ei, z) Ri (xi, ei, z) ⇐⇒ (xi, ei, z) ∈ F i. It follows that F i and Ri can

both be represented simultaneously by the graph Gi of the complete ordering Ri in the

Cartesian product set (�G ×�E ×�E)2. For technical reasons, it will be assumed that the

correspondence i 	→→Gi from the space of agents I to the space of preference graphs itself

has a graph which is measurable subset of I × (�G × �E × �E)2 when this space is given

its usual product σ-algebra.
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2.3. Feasible and Pareto Superior Allocations

In this economy, a feasible allocation (x, e, z) consists of measurable mappings x : I → �G

and e : I → �E such that:

(i) (xi, ei, z) ∈ F i for almost all i ∈ I;

(ii) z =
∫

I
ei dα;

(iii)
∫

I
xi dα = 0.

Note especially how (iii) excludes free disposal at the aggregate level, as seems appropriate

when externalities are being discussed. In proving existence, however, free disposability by

individuals of private goods or even of their own externalities will be assumed.

Given two feasible allocations (x, e, z) and (x̃, ẽ, z̃), say that the first strictly Pareto

dominates the second if (xi, ei, z) P i (x̃i, ẽi, z̃) for almost all i ∈ I; and that the first Pareto

dominates the second if (xi, ei, z) Ri (x̃i, ẽi, z̃) for almost all i ∈ I, but for a set of agents

of positive α-measure, one has (xi, ei, z) P i (x̃i, ẽi, z̃).

A feasible allocation (x̂, ê, ẑ) is fully or first-best weakly Pareto efficient if it is not

strictly Pareto dominated by any other feasible allocation; it is fully or first-best Pareto

efficient if it is not Pareto dominated by any other feasible allocation.

2.4. Assumptions

The rest of the paper will report four different versions, or rather applications in different

contexts, of the two fundamental efficiency theorems of welfare economics, or else of the

theorems on the f -core presented in HKW. For the different versions of the first efficiency

theorem, on the weak Pareto efficiency of Walrasian equilibrium, no further assumptions

are needed. Ordinary Pareto efficiency, however, will not be true in general without the

additional assumption that preferences are locally non-satiated in private goods — i.e., that

given any point of an individual’s feasible set, any neighbourhood of that point contains a

preferred point in which only the vector of net trades in private goods is different. Following

Arrow (1951), and then Hildenbrand’s (1969, 1974) later results for continuum economies,

the proof of this first theorem is standard and elementary.

The second efficiency theorem claims that any Pareto efficient allocation can be decen-

tralized as a Walrasian equilibrium with lump-sum transfers. For this, it will be assumed as
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usual that preferences are not only locally non-satiated in private goods, but also continu-

ous. In addition, when discussing f -constrained Pareto efficient allocations in Sections 5 and

7, it will be assumed that preferences are locally non-satiated even when particular changes

in vectors are restricted to have all their coordinates be rational numbers. Specifically, if

QG denotes the subset of �G whose members are vectors with all rational coordinates, it

is required that, given any pair xi, x̂i ∈ �G such that (xi, ei, z), (x̂i, ei, z) ∈ F i, as well

as any neighbourhood N of xi in �G, there should exist x̃i ∈ N for which xi − x̂i ∈ QG

and (x̃i, ei, z) ∈ F i with (x̃i, ei, z) P i (xi, ei, z). This assumption will be called local non-

satiation w.r.t. rational vectors. It is satisfied whenever there is free disposal of private

goods and preferences for private goods are monotone, but is much more general.

In fact, for some results it will be assumed that each individual’s preference ordering Ri

on F i can be represented by an ordinal utility function U i(xi, ei, z) that is continuous as a

function of (xi, ei, z) and measurable as a function of (i, xi, ei, z) all together. Furthermore,

one particular relevant conditional feasible set for each individual should be convex. And,

as the first of two assumptions needed to exclude the “exceptional case” first discussed by

Arrow (1951), the integral of the consumers’ conditional feasible sets of private good net

trades should have the vector 0 as an interior point. These are general assumptions under

which the second efficiency theorem holds.

Given these general assumptions, appropriate versions of the second efficiency theorem

will then be true for particular non-oligarchic allocations, as defined in Hammond (1993a).

These have the property that there is no (extreme) “oligarchy” in the form of a set A of

agents, with measure strictly between 0 and 1, who are so well off already that they could

not all be made even better off if given unrestricted access to all the private goods that

agents outside A could possibly supply. Thus, non-oligarchic allocations have the property

that, no matter how I is partitioned into two disjoint non-null measurable subsets, the

agents in each subset have something desirable to offer the agents in the other subset. This

is the second of the two assumptions needed to exclude Arrow’s exceptional case.

The existence proof in Section A.2 of the appendix will introduce some additional

general assumptions. These will concern the integrable boundedness of the individuals’

feasible and budget sets, the continuity of correspondences based on appropriate sections of

the feasible set, the existence of cheaper points within almost all individuals’ budget sets,
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and the impossibility of having markets for private goods clear unless all prices are positive.

These more technical assumptions will be discussed only in the appendix.

3. Nash–Walrasian Equilibrium with Lump-Sum Transfers

3.1. Nash Equilibrium in a Generalized Game

Consider a non-zero price vector p ∈ �G at which exchangeable goods are traded, together

with a collection of lump-sum transfers represented by a measurable mapping m : I → �
satisfying

∫
I
mi dα = 0. The reason for introducing lump-sum transfers is so that most

points of each relevant constrained Pareto frontier can emerge as possible equilibria. Con-

sider too a given mean externality vector z ∈ �E . Then each individual i ∈ I is forced to

take this price vector, i’s own transfer mi, and z all as given. Thus, i faces the conditional

budget set

Bi
C(p, mi; z) := { (xi, ei) ∈ F i

C(z) | p xi ≤ mi } (1)

where F i
C(z) := { (xi, ei) ∈ �G × �E | (xi, ei, z) ∈ F i } is obvious notation for the set of

pairs that are conditionally feasible for i, given the mean externality z.

A Nash–Walrasian Equilibrium with lump-sum transfers (or NWELT) is then a collec-

tion (x̂, ê, ẑ, p,m) consisting of a feasible allocation (x̂, ê, ẑ), a price vector p, and transfers

m, such that for almost all i ∈ I, one has (x̂i, êi) ∈ Bi
C(p, mi; ẑ) and also p xi > mi

whenever (xi, ei, ẑ) P i (x̂i, êi, ẑ). Note that feasibility implies market clearing for private

goods. Also, the last part of the definition is equivalent to preference maximization over the

budget set Bi
C(p, mi; ẑ). Furthermore, each individual i chooses ei without any restriction

beyond individual feasibility, conditional on ẑ and the choice of an xi satisfying the budget

constraint p xi ≤ mi. In this sense, there is a Nash equilibrium in the (generalized) game

where each player i chooses (xi, ei) subject to (xi, ei) ∈ Bi
C(p, mi; ẑ).4

4 Following Debreu (1952), a generalized game is one with the property that some players’ strat-
egy choices may constrain what strategy choices are feasible for other players. It should be noted
as well that requiring x and e to be measurable also imposes restrictions on what groups of players
can choose, given the choices of neighbouring players, as has been pointed out by Greenberg, Mon-
derer, and Shitovitz (1993). One way to resolve this issue would be to consider joint distributions
over players’ labels i ∈ I and their strategies, as Mas-Colell (1984) has done, for instance. But
then the definition of Pareto improvement has to consider suitable joint distributions of allocations
before and after any reallocation, which also affects the definition of Pareto efficiency. In any case,
formally one can instead follow Schmeidler (1973), Dubey and Kaneko (1984) and Green (1984) in
considering continuum games where strategy choices are restricted to be measurable functions.
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3.2. Dominant Strategy Demand Revelation

Actually, there is a rather different game of demand revelation in which each individual has

a (weakly) dominant strategy leading to the equilibrium feasible allocation (x̂, ê, ẑ).5

Note that, though free disposal has not been assumed at the aggregate level, in the

existence theorem it has been at the individual level. In this case, any equilibrium price

vector must obviously be semi-positive. For the moment, assume that the same is true in

other cases as well. So let P denote the unit simplex in �G
+. Its members are normalized

price vectors, in effect.

In the demand revelation game, each player i ∈ I chooses a strategy in the form of a

revealed demand correspondence di : P × � × �E →→�G × �E . Whenever the conditional

budget set Bi
C(p, mi; z) is non-empty, this correspondence must select a non-empty set

di(p, mi; z) ⊂ Bi
C(p, mi; z) for each i ∈ I, and have a closed graph. In fact, this is equivalent

to having each individual i ∈ I choose as a graph of some demand correspondence di a closed

set Di. Moreover, Di must be a subset of the graph of the conditional budget correspondence

Bi
C : P × � × �E →→�G × �E , so a closed subset of P × � × �E × �G × �E , with the

property that the projection of Di onto P × �E is equal to the projection of the graph of

Bi
C . Furthermore, the correspondence D : I →→P ×�E ×�G ×�E from individuals to the

graphs Di of their respective demand correspondences must have a measurable graph.

The demand revelation game will also involve a lump-sum transfer system in the form

of functions mi : P × �E → � making each individual i’s transfer depend on both prices

and the mean externality vector. It is assumed that each individual i’s function mi(p, z)

is continuous in (p, z), and that the mapping (i, p, z) 	→ mi(p, z) is measurable, with∫
I
mi(p, z) dα = 0. In addition, the functions mi(p, z) must make the resulting reduced

budget correspondences B̂i(p, z) := Bi
C(p, mi(p, z); z) non-empty valued for almost all i ∈ I,

and in fact they should be what Grandmont and McFadden (1972) called sagacious in

ensuring that there always exists some (xi, ei, z) ∈ F i with p xi < mi.6

5 The highly appropriate term “demand revelation” was introduced by Tideman and Tullock
(1976, p. 1146) in a closely related context.

6 This will be possible under the assumption that the set
∫

I
Xi

G(z)dα has 0 as an interior point,

where Xi
G(z) is defined in (7) of Section 5.
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The outcome of this game is defined to be any Nash–Walrasian equilibrium

(x̂(D), ê(D), ẑ(D), p(D),m(p(D), z(D))) (2)

in what would be the true economy if D were the true profile of demand correspon-

dences. Furthermore, this outcome should be the same for the two profiles D and D′

whenever D = D′ for almost all i ∈ I. In this demand revelation game, it is then

a weakly dominant strategy for each individual i to announce the true preference maxi-

mizing demand correspondence di. For announcing any other demand correspondence d̃i

would make no difference to the profile D, and so no difference to the induced budget set

Bi(D) := B̂i(p(D), ẑ(D)) that individual i faces. Of course, because the outcome of the

game is a NWELT, the pair (xi(D), ei(D)) must be one of the best points of the budget set

Bi(D). But announcing any other d̃i would lead to i being forced to have some member

of the set d̃i(p(D), ẑ(D)). In general, members of this set are not optimal in Bi(δ). This

justifies the claim that announcing the true preference maximizing di is at least a weakly

dominant strategy.

Of course, for the game to be well-defined, a NWELT should exist for every allowable

profile D of demand correspondences. This is an implication, however, of the existence

theorem presented in the appendix.

3.3. Private Good Nash–Walrasian Equilibrium

Section 4 below will make use of a different and weaker concept of Nash–Walrasian equi-

librium. This has individuals act as if they are unable to coordinate their choices of pri-

vate good net trade and externality vectors with each other. Formally, given any pair

(ei, z) ∈ �E ×�E , define the private good budget set as

Bi
P (p, mi; ei, z) := {xi ∈ �G | (xi, ei, z) ∈ F i and p xi ≤ mi }. (3)

Then a private good Nash–Walrasian Equilibrium with lump-sum transfers (or PNWELT)

is a collection consisting of a feasible allocation (x̂, ê, ẑ), a price vector p �= 0, and transfers

m such that, for almost all i ∈ I:

(i) x̂i ∈ Bi
P (p, mi; êi, ẑ) and also p xi > mi whenever (xi, êi, ẑ) P i (x̂i, êi, ẑ);

(ii) (x̂i, êi, ẑ) Ri (x̂i, ei, ẑ) for all ei satisfying (x̂i, ei, ẑ) ∈ F i.
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The difference from the definition of a NWELT is that the preference ordering Ri is

not being maximized over Bi
C(p, mi; z) by simultaneous choices of xi and ei. Instead, x̂i

maximizes Ri w.r.t. xi over Bi
P (p, mi; êi, ẑ) with êi and ẑ both fixed, whereas êi is chosen so

that the triple (x̂i, êi, ẑ) maximizes Ri over F i by varying ei with x̂i and ẑ both fixed. Thus,

it is as if each individual were represented by two separate and uncoordinated agents who

choose the private good net trade and externality vectors independently, but with each of

the two agents anticipating the decision of the other. In fact any PNWELT is really a Nash

equilibrium in the (generalized) game where each individual i is represented by two such

agents, one controlling all the private goods, and the other controlling all the externalities.

4. Private Good Constrained Pareto Efficiency

It is rather obvious that widespread externalities typically make NWELT or PNWELT allo-

cations inefficient. A few particular examples of such inefficiency can be found, for example,

in Kaneko and Wooders (1994) or Hammond (1993b), but the literature contains many oth-

ers. Indeed, in the demand revelation game discussed in Section 3.2, a dominant strategy

for each individual i is to choose the externality vector ei without paying any attention to

the effect that all individuals choosing this way have on the widespread externality z. This

gives rise to situations such as those analysed by Schelling (1978). Indeed, as he writes

(p. 19): “How well each does for himself in adapting to his social environment is not the

same thing as how satisfactory a social environment they collectively create for themselves.”

Nevertheless, it is also rather obvious that PNWELT and so NWELT allocations do

have at least one constrained efficiency property. For, given any PNWELT (x̂, ê, ẑ, p,m),

consider the purely private good economy in which the profile ê of externality vectors, and

so their induced mean ẑ, are both fixed. In this economy, each individual i ∈ I has a

(conditional) private good feasible set

Xi
P (êi, ẑ) := {xi ∈ �G | (xi, êi, ẑ) ∈ F i } (4)

and a (conditional) private good preference ordering Ri
P (êi, ẑ) on Xi

P (êi, ẑ) satisfying

xi Ri
P (êi, ẑ) x̃i ⇐⇒ (xi, êi, ẑ) Ri (x̃i, êi, ẑ). (5)

This is an ordinary private good economy, in which (x̂, p,m) is a Walrasian equilibrium

with lump-sum transfers (or WELT). Each individual’s conditional budget set, as defined
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by (3), can be expressed alternatively as

Bi
P (p, mi; êi, ẑ) := {xi ∈ Xi

P (êi, ẑ) | p xi ≤ mi }. (6)

Hence, the usual first efficiency theorem of welfare economics (Arrow, 1951) implies that x̂

is weakly Pareto efficient in this constrained economy, and that it will be Pareto efficient if

preferences are locally non-satiated in private goods. This property will be called private

good constrained Pareto efficiency, for obvious reasons.

Conversely, consider any feasible allocation (x̂, ê, ẑ) in which the strategic choices of

externality vectors êi constitute a conditional Nash equilibrium because, for almost all i ∈ I,

one has (x̂i, êi, ẑ) Ri (x̂i, ei, ẑ) whenever (x̂i, ei, ẑ) ∈ F i. Impose the general assumptions

that each individual i’s private good feasible set Xi
P (êi, ẑ) is convex, and that i’s private good

preference ordering Ri
P (êi, ẑ) is both continuous on Xi

P (êi, ẑ) and locally non-satiated. Also

that 0 is an interior point of the aggregate feasible set
∫

I
Xi

P (êi, ẑ) dα. Suppose too that the

specific allocation (x̂, ê, ẑ) satisfies the non-oligarchy condition that, given any measurable

set A of individuals for which 0 < α(A) < 1, there exists an alternative feasible allocation x̃

of private goods such that x̃i P i
P (êi, ẑ) x̂i for almost all i ∈ A. Then a necessary condition

for (x̂, ê, ẑ) to be private good Pareto efficient is that there exist a non-zero price vector

p ∈ �G and transfers mi (= p x̂i) for almost all i ∈ I such that (x̂, ê, ẑ, p,m) is a PNWELT.

This result is obviously implied by the version of the second efficiency of welfare economics

that is presented in Hammond (1993a, especially Sections 3.3.2 and 6.2.2), extending the

work of Hildenbrand (1969, 1974).

The significance of this result is that Pareto improvements to any PNWELT allocation

are only possible by getting at least a positive proportion of individuals to alter their Nash

equilibrium externality vectors. Also, when the general assumptions of the second efficiency

theorem are satisfied, then almost any private good constrained Pareto efficient allocation,

no matter how severe the Nash constraints may be, can emerge as a PNWELT.
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5. f-Constrained Pareto Efficiency

In this section it will be assumed throughout that each individual i’s preference ordering

Ri on F i can be represented by a continuous ordinal utility function U i(xi, ei, z). Define

the new reduced conditional feasible set for private goods alone by

Xi
G(z) := {xi ∈ �G | ∃ei ∈ �E : (xi, ei, z) ∈ F i }. (7)

Thus Xi
G(z) consists of all private good net trade vectors xi which, given the mean exter-

nality z, are feasible for i given some suitable choice of i’s own externality vector ei. Then

define i’s reduced conditional utility function on Xi
G(z) as

U i
G(xi; z) := max

ei
{U i(xi, ei, z) | (xi, ei, z) ∈ F i }. (8)

This is the maximum utility available to i by choosing the externality vector ei optimally,

given the choice of net trade vector xi and the mean externality z. It is assumed that

this maximum always exists. Note that when, for each fixed pair (ei, z), it is assumed that

U i(xi, ei, z) is locally non-satiated in the private good vector xi, then U i
G(xi; z) certainly

has the same property.

A feasible allocation (x̂, ê, ẑ) is said to be f-constrained Pareto efficient if there is a

null set of exceptional agents N ⊂ I with α(N) = 0 such that no finite coalition C ⊂ I \N

outside this exceptional set can find an alternative allocation (xi, ei) ∈ F i
C(ẑ) (i ∈ C) to its

members that satisfies both
∑

i∈C xi =
∑

i∈C x̂i and (xi, ei, ẑ) P i (x̂i, êi, ẑ) for all i ∈ C.

This definition is similar to that of the f -core; indeed, it is equivalent to having x̂ be in the

f -core of an economy in which each individual i ∈ I has initial endowment x̂i instead of

0, and where individuals and finite coalitions are free to choose their externality vectors as

they please, subject only to (xi, ei) ∈ F i
C(ẑ).

Because (x̂, ê, ẑ) cannot be blocked or improved any by single agent i ∈ I \ N , this

definition of f -constrained Pareto efficiency requires that

êi ∈ arg max
ei

{U i(x̂i, ei, ẑ) | (x̂i, ei, ẑ) ∈ F i } (9)

for all such i. In particular, U i(x̂i, êi, ẑ) = U i
G(x̂i; ẑ). This obviously implies that no finite

coalition C ⊂ I \ N can find alternative net trade vectors xi ∈ Xi
G(ẑ) (i ∈ C) satisfying
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both
∑

i∈C xi =
∑

i∈C x̂i and U i
G(xi; ẑ) > U i

G(x̂i; ẑ) for all i ∈ C. Therefore, it turns out

that (x̂, ê, ẑ) is f -constrained Pareto efficient if and only if x̂ is in the f -core of the private

good economy with, for each i ∈ I, the feasible set Xi
G(ẑ), utility function U i

G(xi; ẑ) on

Xi
G(ẑ), and initial endowment x̂i.

Now, given any NWELT (x̂, ê, ẑ, p,m), the corresponding private good part (x̂, p,m)

must be a WELT in the private good economy with feasible sets Xi
G(ẑ) and utility functions

U i
G(xi; ẑ) (i ∈ C). By the usual easy argument, it is therefore in the f -core of this private

good economy when initial endowments are x̂, so it is also f -constrained Pareto efficient.

Conversely, let (x̂, ê, ẑ) be any f -constrained Pareto efficient allocation for which x̂ is

non-oligarchic in the private good exchange economy with individual feasible sets Xi
G(ẑ)

and utility functions U i
G(xi; ẑ) defined on Xi

G(ẑ). Suppose too that, corresponding to the

assumptions set out in the penultimate paragraph of Section 4, these feasible sets Xi
G(ẑ)

are convex, that the conditional preference orderings Ri
G(ẑ) represented by U i

G(xi; ẑ) are

continuous and locally non-satiated w.r.t. rational vectors, and that 0 is in the interior of∫
I
Xi

G(ẑ)dα. Suppose too that the correspondence from i to the graph of the preference

relation Ri
G(ẑ) has a measurable graph. Then it will be proved in Section A.1 of the

appendix that there must exist prices p �= 0 and transfers m for which (x̂, p,m) is a WELT,

given ẑ. Because (9) is true for almost every agent i ∈ I, it follows that (x̂, ê, ẑ, p,m) must

be a NWELT.

The last two paragraphs have shown that NWELT allocations are characterized by the

property of f -constrained Pareto efficiency in exactly the same way as WELT allocations

are characterized by orthodox Pareto efficiency.

6. Lindahl–Pigou Equilibria

The characterization results of Sections 4 and 5 extend fairly readily to distributional and

even to general widespread externalities, as defined in Section 3.1. In this section and the

next, however, it is crucial that only the mean externality vector z is relevant.

Now, Lindahl prices take the form of individualized price vectors qi ∈ �E (i ∈ I) for

the mean externality vector z with the property that the profile q : I → �E is a measurable

function. Corresponding Pigou taxes (or subsidies if the appropriate component is negative)

take the form of a collective price vector t ∈ �E with t = q̄ :=
∫

I
qidα. In other words,
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the Pigou tax on each externality should be set equal to the mean of the individualized

Lindahl prices for that externality. Given the private good price vector p, the Pigou tax

vector t, the profile of Lindahl price vectors q : I → �E , and the lump-sum transfers m,

each individual i ∈ I will be confronted with the budget constraint p xi + t ei − qi z ≤ mi.

The corresponding Lindahl–Pigou budget set is

Bi
LP (p, t, qi, mi) := { (xi, ei, z) ∈ F i | p xi + t ei − qi z ≤ mi }. (10)

Then (x̂, ê, ẑ, p, t,q,m) is a Lindahl–Pigou equilibrium with lump-sum transfers (or

LPELT) if it consists of a feasible allocation (x̂, ê, ẑ) together with prices (p, t,q) and lump-

sum transfers m such that, for almost all i ∈ I one has both (x̂i, êi, ẑ) ∈ Bi
LP (p, t, qi, mi)

and also p xi + t ei − qi z > mi whenever (xi, ei, z) ∈ F i with (xi, ei, z) P i (x̂i, êi, ẑ).

As explained by Foley (1970) and Milleron (1972), such an equilibrium is equivalent to

one in a purely private good economy where each individual is able to buy a personalized

copy zi of the mean externality vector z. In a continuum economy, the commodity space

then becomes an infinite-dimensional function space. Of course, market clearing requires

that zi = z for almost all i ∈ I. Also, each individual i ∈ I is prevented from trading

in the other individuals’ personalized copies of z, so is restricted to a finite-dimensional

subspace. Because of this natural equivalence, it is no surprise that any LPELT is weakly

Pareto efficient, without any constraints apart from physical feasibility. A very short direct

proof is given below, however.

Suppose that (x̂, ê, ẑ, p, t,q,m) is any LPELT. Let (x, e) define any measurable function

from I to �G × �E with the property that, for z =
∫

I
ei, one has both (xi, ei, z) ∈ F i and

(xi, ei, z) P i (x̂i, êi, ẑ) for almost all i ∈ I. Then p xi + t ei − qi z > mi for almost all i ∈ I,

and so

0 =
∫

I

midα <

∫
I

(p xi + t ei − qi z) dα = p

∫
I

xidα + t z −
(∫

I

qidα

)
z = p

∫
I

xidα, (11)

where the last equality holds because t =
∫

I
qidα. This is incompatible with

∫
I
xidα = 0, so

(x, e, z) cannot be a feasible allocation. Therefore (x̂, ê, ẑ) must be weakly Pareto efficient.

The corresponding proof of ordinary Pareto efficiency when preferences for private goods

are locally non-satiated is very similar; the key step is to realize that, for almost all i ∈ I,

one has p xi + t ei − qi z ≥ mi whenever (xi, ei, z) ∈ F i with (xi, ei, z) Ri (x̂i, êi, ẑ).
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In general the second efficiency theorem is considerably harder to prove in this setting,

because of the infinite-dimensional commodity space (cf. Roberts’ (1973) proof of existence

of Lindahl equilibrium in a continuum economy). For the case of symmetric allocations in

an economy with a finite number of different types of agent, finite-dimensional arguments

such as those in Hammond (1994) are applicable. Nevertheless, as is well known, Lindahl

equilibria generally give rise to free rider problems, even in continuum economies, as dis-

cussed in Hammond (1979). And there are also the fundamental non-convexities noticed

by Starrett (1972), which create further obstacles to Lindahl pricing. For these reasons, the

second efficiency theorem will not be discussed here any further.

Thus, the widespread externality problem can only be solved completely, and the econ-

omy made to reach a fully Pareto efficient allocation, if the price mechanism is extended to

include Lindahl prices for each component of the mean externality vector, as well as Pigou

taxes or subsidies. This is because each component of the mean externality vector is like

a public good (or bad). Further confirmation of this comes in the next Section from the

characterization results for externality constrained Pareto efficiency.

7. Pigou–Walrasian Equilibrium

Without Lindahl pricing, or some other more robust device for solving the public good

problem, full Pareto efficiency will generally be lost. This is true even if the rights and duties

to create externalities are distributed efficiently as a result of Pigou taxes or subsidies.

Formally, consider price systems of the form (p, t) ∈ �G ×�E and lump-sum transfers

mi (i ∈ I), where m : I → � is a measurable function. The corresponding budget constraint

of each individual i ∈ I is then p xi + t ei ≤ mi. Given the mean externality vector z, each

individual i ∈ I will be confronted with the (conditional) Pigou–Walrasian budget set

Bi
PW (p, t, mi; z) := { (xi, ei) ∈ F i

C(z) | p xi + t ei ≤ mi }. (12)

Then the combination (x̂, ê, ẑ, p, t,m) is a Pigou–Walrasian equilibrium with lump-sum

transfers (or PWELT) if (x̂, ê, ẑ) is a feasible allocation satisfying, for almost all i ∈ I,

both (x̂i, êi, ẑ) ∈ Bi
PW (p, t, mi; z) and also p xi + t ei > mi whenever (xi, ei) ∈ F i

C(ẑ) with

(xi, ei, ẑ) P i (x̂i, êi, ẑ). Thus, (x̂, ê, p, t,m) is effectively a WELT in the economy with com-

plete competitive markets in private goods and externalities, but with the mean externality

vector ẑ fixed.
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Not surprisingly, therefore, any PWELT allocation (x̂, ê, ẑ) must be externality con-

strained weakly Pareto efficient, in the sense that there is no strictly Pareto superior feasible

allocation (x, e, z) with z = ẑ. And, if preferences for private goods are locally non-satiated,

then (x̂, ê, ẑ) must be externality constrained Pareto efficient in the sense that there is no

Pareto superior feasible allocation (x, e, z) with z = ẑ. That is, a (strict) Pareto improve-

ment is impossible without altering the mean externality vector. In particular, this mean

externality vector must be distributed efficiently between different individuals.

The arguments of Section 5 apply equally well to PWELT allocations. Any PWELT

allocation (x̂, ê, ẑ) must therefore be f-externality constrained Pareto efficient. That is,

except for a null set of agents N ⊂ I, there can be no finite coalition C ⊂ I \ N with

net trade and externality vectors (xi, ei) (i ∈ C) satisfying both (xi, ei) ∈ F i
C(ẑ) and

(xi, ei, ẑ) P i (x̂i, êi, ẑ) for all i ∈ C, as well as
∑

i∈C xi =
∑

i∈C x̂i and
∑

i∈C ei =
∑

i∈C êi.

So, since finite coalitions lack the power to alter the mean externality vector, almost none of

them are able to find improvements by reallocating private goods and/or externality vectors

between their members.

Of course, the difference between ordinary f -constrained and f -externality constrained

Pareto efficient allocations is that the former still allow there to be f -Pareto improve-

ments involving finite coalitions who do not change their total externality vector, whereas

the latter excludes them. In fact, therefore, f -externality constrained Pareto efficiency

turns out to be less demanding, even though it requires aggregate externality vectors

to be distributed efficiently within each finite coalition. The point is that, given the

level of widespread externalities, an f -constrained Pareto efficient allocation effectively al-

lows both individuals and finite coalitions to choose their externality vectors optimally

without any further constraint, whereas an f -externality constrained Pareto efficient allo-

cation can fix individuals’ externality vectors arbitrarily, and allows any finite coalition

to change its members’ externality vectors only by redistributing the aggregate exter-

nality vector of that coalition. In fact, if the widespread externalities have their levels

fixed, then the rights to create them are distributed efficiently even if their price is zero.

Thus, the efficiency gains from using non-zero Pigou prices must come entirely from alter-

ing the levels of the widespread externalities; efficient distribution occurs even at a zero

price.
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These two versions of the first efficiency theorem apply to any PWELT, including one

for which the equilibrium Pigou tax/subsidy vector t = 0. But in this case a PWELT is

actually a NWELT, as considered in Sections 4 and 5. So, unless the public good problem is

given due attention, there is no guarantee that introducing markets for externalities will do

anything to improve efficiency; in fact, such markets could even produce a Pareto inferior

allocation. Note in particular that the standard gains from trade arguments do not apply

because opening up externality markets in order to reach a PWELT affects the widespread

externalities, and could make them worse.

Second efficiency theorems can be proved in the usual way for externality constrained

Pareto efficient allocations, and also for f -externality constrained Pareto efficient alloca-

tions. Indeed, let (x̂, ê, ẑ) be any externality constrained Pareto efficient allocation. Then

(x̂, ê) is certainly Pareto efficient in the economy with ẑ fixed. To apply previous proofs

that there exist price vectors (p, t) and lump-sum transfers m such that (x̂, ê, ẑ, p, t,m) is a

PWELT given ẑ, some slight variations in previous assumptions are required. Specifically,

one should make the general assumptions that the conditional feasible sets F i
C(ẑ) (i ∈ I)

are convex subsets of �G × �I , and that (0, ẑ) is an interior point of
∫

I
F i

C(ẑ)dα. Then

too, the usual proof requires the specific assumption that (x̂, ê) is non-oligarchic in the

economy where ẑ is fixed, but where both private goods and externality vectors can be re-

distributed. These conditions are enough to ensure that the externality constrained Pareto

efficient allocation can be decentralized as a PWELT, given ẑ.

Also, under the same assumptions as in the previous paragraph, for any non-oligarchic

f -externality constrained Pareto efficient allocation (x̂, ê, ẑ), there will exist price vectors

(p, t) and lump-sum transfers m such that (x̂, ê, ẑ, p, t,m) is a PWELT given ẑ.

These second efficiency theorems are especially important because they show how any

non-oligarchic externality constrained or f -externality constrained Pareto efficient alloca-

tion, even one in which the aggregate externality vector is actually very inefficient, can

emerge from perfect competitive markets for private goods and for the rights and duties to

create externalities. Actually, individuals’ preferences for mean externality vectors play no

role in establishing whether (x̂, ê, ẑ, p, t,m) is a PWELT; it is only conditional preferences

given ẑ that count. Thus externality markets, or the equivalent Pigou taxes and subsidies,

are certainly no panacea.
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To conclude, note how Starrett’s (1972) fundamental non-convexities actually create

no difficulties at all for these standard results concerning Pigou–Walrasian equilibria. This

is because of the way in which such non-convexities enter the feasible sets F i, and make

the utility functions U i(xi, ei, z) violate concavity. In fact, fundamental non-convexities are

quite compatible with each conditional feasible set F i
C(z) being convex and each utility func-

tion U i(xi, ei, z) concave as a conditional function of (xi, ei) alone. Indeed, in the case of an

external diseconomy, the appropriate component of the partial gradient vector U i
z(x

i, ei, z)

is negative, yet U i(xi, ei, z) may well be bounded below even as the corresponding com-

ponent of z grows infinitely large; this is incompatible with having the negative marginal

utility non-increasing as z increases, which is what concavity of U i(xi, ei, z) would require.

Appendix

A.1. The Second f -Constrained Efficiency Theorem

The following is the result promised in Section 5.

Theorem. Let (x̂, ê, ẑ) be any f -constrained Pareto efficient allocation which is non-

oligarchic in the private good exchange economy with individual feasible sets Xi
G(ẑ) defined

by (7), and utility functions U i
G(xi; ẑ) defined on Xi

G(ẑ) by (8). Suppose too that the sets

Xi
G(ẑ) are convex, that the conditional preference orderings Ri

G(ẑ) represented by U i
G(xi; ẑ)

are continuous and locally non-satiated w.r.t. rational vectors, and that 0 is in the interior

of
∫

I
Xi

G(ẑ) dα. Suppose too that the correspondence from i to the graph of the preference

relation Ri
G(ẑ) has a measurable graph. Then there exist prices p �= 0 and transfers m such

that (x̂, p,m) is a WELT, given ẑ, and so (x̂, ê, ẑ, p,m) is a NWELT.

Proof: Let x̂ be any feasible allocation in the private good exchange economy with indi-
vidual feasible sets Xi

G(ẑ). For each i ∈ I, define the strict preference set

T i := { t ∈ �G | t + x̂i P i
G(ẑ) x̂i }. (13)

Now, following the beginning of Aumann’s (1964, p. 45) and Hildenbrand’s (1982,
pp. 843–4) proof of core equivalence, first define QG as the set of vectors in �G with all
coordinates rational. Second, for every t ∈ QG, define the (measurable) set I(t) := { i ∈ I |
t ∈ T i }. Third, let

I ′ := I \
⋃

{ I(t) | t ∈ QG, α(I(t)) = 0 }. (14)
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Because QG is countable, the set I ′ is measurable and satisfies α(I ′) = 1. Finally, let
K := co

[⋃
i∈I′ (QG ∩ T i)

]
.

Suppose that 0 ∈ K. Then there exist individuals ik ∈ I ′, vectors tk ∈ QG ∩ T ik , and
rational convex weights rk (k = 1, . . . , m) such that tk and

∑m
k=1 rk tk = 0. By definition

of I ′, it follows that α(I(tk)) > 0 (k = 1, . . . , m). Because the convex weights are rational,
there exist natural numbers nk (k = 1, . . . , m) such that

∑m
k=1 nk tk = 0. Now define C

as any finite coalition consisting of nk members of each set I(tk), for k = 1, . . . , m. Also,
define xi := tk + x̂i for each i ∈ I(tk) ∩ C (k = 1, . . . , m). Then xi P i

G(ẑ) x̂i for all i ∈ C,
while ∑

i∈C
xi =

∑m

k=1
nk tk +

∑
i∈C

x̂i =
∑

i∈C
x̂i. (15)

Note that the coalition C can be selected to include any individual in the set ∪m
k=1I(tk) whose

measure is positive. This implies that (x̂, ê, ẑ) cannot be f -constrained Pareto efficient.

The previous paragraph shows that, if (x̂, ê, ẑ) is f -constrained Pareto efficient, then
0 �∈ K. So, by the separating hyperplane theorem, there exists p �= 0 such that p t ≥ 0 for all
t ∈ K. Now, given any i ∈ I ′ and any xi ∈ Xi

G(ẑ) satisfying xi P i
G(ẑ) x̂i, local non-satiation

w.r.t. rational vectors implies that there is an infinite sequence xi
m → xi with xi

m P i
G(ẑ) xi

and xi
m − x̂i ∈ QG (m = 1, 2, . . .). Thus, the vector xi − x̂i is the limit of points in QG ∩T i.

From this it follows that, for all i ∈ I ′ and so for almost all i ∈ I, one has p xi ≥ p x̂i whenever
xi P i

G(ẑ) x̂i. Because of ordinary local non-satiation, a standard argument then establishes
that for almost all i ∈ I, one has p xi ≥ p x̂i whenever xi Ri

G(ẑ) x̂i. In other words, (x̂, p,m)
must be a “compensated” Walrasian equilibrium given the lump-sum transfers mi := p x̂i

for all i ∈ I. But then, under the other hypotheses of the theorem, the proof in Hammond
(1993a) of the corresponding version of the second efficiency theorem (Prop. 6.2.2, p. 105)
establishes that (x̂, p,m) is a WELT in the conditional private good economy with ẑ given.
As argued in Section 5, this implies that (x̂, ê, ẑ, p,m) is a NWELT.

The second f -externality constrained efficiency theorem discussed in Section 7 is proved

in exactly the same way.

A.2. Existence of Nash–Walrasian Equilibrium

The following existence proof will assume that individuals’ feasible sets F i are closed,

the conditional feasible sets Xi
G(z) are convex, and that both preference orderings Ri and

Ri
G(z) are continuous and locally non-satiated. But it will also require the additional

assumption that the conditional feasible set correspondences F i
C(z) and Ei(xi, z) are con-

tinuous (i.e., both upper and lower hemi-continuous — u.h.c. and l.h.c.), where the latter
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correspondence is defined by

Ei(xi, z) := { ei ∈ �E | (xi, ei, z) ∈ F i } (16)

for all (xi, z) ∈ �G × �E . Note that, because z 	→→F i
C(z) is, by assumption, a l.h.c. corre-

spondence, a routine proof shows that z 	→→Xi
G(z) is also l.h.c.

Furthermore, the following boundedness assumption will be invoked. Suppose that

almost every i ∈ I has bounds xi, ei, ēi ∈ �G which are the values of measurable functions

on I whose integrals x :=
∫

I
xi dα, e :=

∫
I
ei dα, and ē :=

∫
I
ēi dα are all finite vectors. Let

Ei := { ei ∈ �E | ei <−− ei <−− ēi } and Z := { z ∈ �E | e <−− z <−− ē }. (17)

Also, define the individual externality correspondence

ηi(xi, z) := arg max
ei

{U i(xi, ei, z) | ei ∈ Ei(xi, z) }. (18)

Then the bounds xi, ei, ēi must be such that, for almost all i ∈ I, one has xi >−− xi whenever

(xi, ei, z) ∈ F i; also whenever z ∈ Z, there must exist an optimal externality vector êi ∈
Ei ∩ ηi(xi, z). By a direct application of Berge’s maximum theorem, continuity of the

correspondence Ei(xi, z) evidently implies that the restricted correspondence defined by

η̂i(xi, z) := ηi(xi, z)∩Ei is non-empty valued and u.h.c. In addition, because Ei is compact

and z 	→→F i
C(z) is a u.h.c. correspondence, a routine proof shows that z 	→→Xi

G(z) is also

u.h.c. So the latter is actually a continuous correspondence.

Next, define ∆ := { p ∈ �G
+ |

∑
g∈G pg = 1 }. Suppose that there are income distribu-

tion rules mi(p, z) defined for all i ∈ I, all p ∈ ∆, and all z ∈ Z, and that these rules are

homogeneous of degree one in p, continuous in (p, z) and measurable in (i, p, z). Suppose

these rules have the properties that, for all (p, z) ∈ ∆ × Z, both
∫

I
mi(p, z) dα = 0 and,

for almost all i ∈ I, there exists xi ∈ Xi
G(z) satisfying p xi < mi(p, z). Suppose too that,

for almost all i ∈ I, there exists an upper bound x̄i ∈ �G such that mi(p, z) ≤ p x̄i for

all (p, z) ∈ ∆ × Z, where i 	→ x̄i defines a measurable function x̄ : I → �G for which∫
I
maxg { x̄i

g − xi
g | g ∈ G } dα is finite.

Finally, for each good g ∈ G, let vg denote the corresponding unit vector in �G. Then

suppose that there is a non-null set Ig ⊂ I of individuals such that, whenever xi ∈ Xi
G(z)
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with p xi ≤ mi(p, z), there exists λ > 0 such that xi +λvg ∈ Xi
G(z) with xi +λvg P i

G(z) xi.

This assumption ensures that any equilibrium price vector must be strictly positive, because

otherwise the set Ig of individuals would have unlimited demands for good g. Of course, it

is implied by the usual free disposal and monotonicity assumptions, but is much weaker.

Theorem. Under all the assumptions stated above, a NWELT exists.

Proof: For each closed and convex feasible set XG ⊂ �G, continuous preference ordering
RG on XG, price vector p ∈ ∆, and income level m ∈ �, define the budget set

β(XG, RG, p, m) := {x ∈ XG | p x ≤ m }. (19)

Give the space of pairs (XG, RG) the topology of closed convergence. Then, arguing as in
Hildenbrand (1974, pp. 99–100), the correspondence β(XG, RG, p, m) has a closed graph,
and is l.h.c. wherever there exists x ∈ XG such that p x < m.

Now define the demand set

φ(XG, RG, p, m) := {x ∈ β(XG, RG, p, m) | x′ PG x =⇒ p x′ > m }. (20)

Because the preference ordering RG is continuous, this demand correspondence has non-
empty compact values and is also u.h.c. wherever β(XG, RG, p, m) is compact and contains
an x with p x < m.

Next, for each integer k = 1, 2, . . ., define

∆k := { p ∈ ∆ | ∀g ∈ G : pg ≥ 1/(#G + k) }. (21)

Now, if (p, z) ∈ ∆k × Z and xi ∈ Xi
G(z) with p xi ≤ mi(p, z), then boundedness implies

that xi >−− xi and also, because of the assumptions regarding the income distribution rule,
that

xi
g ≤ (1/pg)

[
mi(p, z) −

∑
h�=g

ph xi
h

]
≤ (1/pg)

[
p x̄i −

∑
h�=g

ph xi
h

]

= x̄i
g + (1/pg)

∑
h�=g

ph (x̄i
g − xi

h) ≤ x̄i
g + k max

g
{ x̄i

g − xi
g | g ∈ G }.

(22)

It follows that xi <−− x̄i
k where the hypotheses of the existence theorem imply that x̄i

k is
integrable and that x̄k :=

∫
I
x̄i

k dα is finite.

For all i ∈ I and all (p, z) ∈ ∆k × Z, define

βi
k(p, z) := β(Xi

G(z), Ri
G(z), p, mi(p, z))

ξi
k(p, z) := { (xi, ei) ∈ φ(Xi

G(z), Ri
G(z), p, mi(p, z)) × Ei | ei ∈ η̂i(xi, z) }.

(23)
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Then the assumptions regarding the income distribution rule imply that the budget set
βi

k(p, z) is everywhere compact and contains an x satisfying p x < mi(p, z). From this it
follows that the demand correspondence φ(XG, RG, p, m) has non-empty compact values
and is u.h.c. in (XG, RG, p, m) whenever (XG, RG, p, m) = (Xi

G(z), Ri
G(z), p, mi(p, z)) for

some (p, z) ∈ ∆k × Z.

To see that the correspondence ξi
k : ∆k × Z → �G × �E has a closed graph, consider

any infinite sequence (xi
m, ei

m, pm, zm) satisfying (xi
m, ei

m) ∈ ξi(pm, zm) (m = 1, 2, . . .) that
converges to (x̂i, êi, p̂, ẑ) as m → ∞. Then (Xi

G(zm), Ri
G(zm)) converges to (Xi

G(ẑ), Ri
G(ẑ))

in the topology of closed convergence. Also, xi
m ∈ φ(Xi

G(zm), Ri
G(zm), pm, mi(pm, zm)) and

ei
m ∈ η̂i(xi

m, zm) (m = 1, 2, . . .). So, because the correspondence φ(XG, RG, p, m) is u.h.c.
at (Xi

G(ẑ), Ri
G(ẑ), p̂, mi(p̂, ẑ)), it follows that x̂i ∈ φ(Xi

G(ẑ), Ri
G(ẑ), p̂, mi(p̂, ẑ)). In addition,

because the correspondence (xi, z) 	→→ η̂i(xi, z) is u.h.c., it follows that êi ∈ η̂i(x̂i, ẑ), and so
(x̂i, êi) ∈ ξi

k(p̂, ẑ). Therefore ξi
k(·) does have a closed graph.

Because the function i 	→ mi(p, z) and the correspondence i 	→→(Xi
G(z), Ri

G(z)) are both
measurable on I, so is the correspondence i 	→→ ξi

k(p, z). By the boundedness assumption
and the definition of Ei, the correspondence is also non-empty valued. Also, because of
local non-satiation, (xi, ei) ∈ ξi

k(p, z) implies p xi = mi(p, z). In addition, it must be true
that xi <−− xi <−− x̄i

k and ei <−− ei <−− ēi whenever (xi, ei) ∈ ξi
k(p, z) for any (p, z) ∈ ∆k × Z,

and so ξi
k(p, z) is integrably bounded on ∆k × Z. By Hildenbrand (1974, p. 73, Prop. 8),

it follows that the aggregate net demand correspondence ξk : ∆k × Z →→�G × �E with
ξk(p, z) :=

∫
I
ξi
k(p, z) dα is well defined and has a closed graph. Its values are non-empty

and, because the measure α is non-atomic, convex. Let Xk := {x ∈ �G | x<−−x<−− x̄k }. Then
ξk(p, z) ∈ Xk × Z for all (p, z) ∈ ∆k × Z.

Define the price adjustment correspondence ψP
k : Xk →→∆k by

ψP
k (x) := arg max

p̃
{ p̃ x | p̃ ∈ ∆k }. (24)

Evidently ψP
k has a closed graph and non-empty convex values. Then consider the corre-

spondence ψk : ∆k × Xk × Z →→∆k × Xk × Z defined by ψk(p, x, z) := ψP
k (x) × ξk(p, z).

As a product of closed graph correspondences with non-empty convex values, it too has a
closed graph and non-empty convex values. Moreover, the domain ∆k ×Xk ×Z is the prod-
uct of non-empty compact convex sets. So Kakutani’s fixed point theorem can be applied.
Each correspondence ψk therefore has a fixed point satisfying (pk, xk, zk) ∈ ψk(pk, xk, zk)
(k = 1, 2, . . .). So there exist infinite sequences of price vectors pk ∈ ∆k, quantity vectors
xk ∈ �G, aggregate externality vectors zk ∈ �E , together with integrably bounded and
measurable functions xk : I → �G and ek : I → �E , such that: (i) (xi

k, ei
k) ∈ ξi(pk, zk) a.e.

in I; (ii) xk =
∫

xi
k and zk =

∫
ei
k; (iii) p xk ≤ pk xk = 0 for all p ∈ ∆k. But then, because
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(1/#G) (1, 1, . . . , 1) ∈ ∆k, (iii) above implies that
∑

g∈G xkg ≤ 0 for all k. So the sequence
of fixed points (pk, xk, zk) always lies in the compact set ∆ × X × Z, where

X := {x ∈ �G | x >−− x and
∑

g∈G
xg ≤ 0 }. (25)

Hence there must exist some subsequence of (pk, xk, zk) (k = 1, 2, . . .) which converges to
a limit point (p∗, x∗, z∗) ∈ ∆ × X × Z. Moreover, Fatou’s Lemma in many dimensions
(see, for instance, Hildenbrand, 1974, p. 69) can now be applied to show that there exists a
subsequence k(m) (m = 1, 2, . . .), together with some p ∈ ∆ and some measurable functions
x : I → �G and e : I → �E such that: (iv)

∫
xi <−− x∗ and

∫
ei = z∗ (because each ei

k lies
in the integrably bounded set Ei); and also, in the limit as m → ∞, so: (v) pk(m) → p∗;
(vi)

∫
xi

k(m) = xk(m) → x∗ and
∫

ei
k(m) = zk(m) → z∗; (vii) xi

k(m) → xi and ei
k(m) → ei a.e.

in I.

Now, for any positive integers m and r such that k(m) ≥ r, (iii) implies that p
∫

xi
k(m) ≤

0 for all p ∈ ∆r ⊂ ∆k(m). Because of (vi), taking the limit as m → ∞ gives p x∗ ≤ 0
for all p ∈ ∆r. Since this is true for any positive integer r, one has p x∗ ≤ 0 for all
p ∈ ∆0 = ∪∞

r=1∆r. Hence x∗<−−0. Also, since (i) implies that (xi
k(m), e

i
k(m)) ∈ ξi(pk(m), zk(m))

a.e. in I, and since (v) and (vii) above are both true, the closed graph property of the
compensated demand correspondence implies that (xi, ei) ∈ ξi(p∗, z∗) a.e. in I.

Finally, if p∗g = 0 for some g ∈ G, then ξi(p∗, z∗) would be empty for all i in the non-null
set Ig, a contradiction. Therefore p∗ � 0. But

∫
xi <−− x∗ <−− 0. Also p∗ xi = mi(p∗, z∗) a.e.

in I, so p∗
∫

xi =
∫

mi(p∗, z∗) = 0. It follows that
∫

xi = x∗ = 0. Because
∫

ei = z∗, this
proves that (x, e, z∗, p∗,m(p∗, z∗)) is a NWELT.
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