Monte Carlo Simulation

of Macroeconomic Risk

with a Continuum of Agents:
The Symmetric Case*

Peter J. Hammond', Yeneng Sun??

! Department of Economics, Stanford University, Stanford, CA 94305-6072, U.S.A.
(e-mail: peter.hammond@stanford.edu)

2 Department of Mathematics, National University of Singapore, 2 Science Drive
2, Singapore 117543, Republic of Singapore (e-mail: matsuny@nus.edu.sg)

3 Institute for Mathematical Sciences, National University of Singapore, 3 Prince
George’s Park, Singapore 118402, Republic of Singapore

Stanford University Department of Economics Working Paper 01-015
October 2001

Abstract Suppose a large economy with individual risk is modeled by a
continuum of pairwise exchangeable random variables (i.i.d., in particular).
Then the relevant stochastic process is jointly measurable only in degenerate
cases. Yet in Monte Carlo simulation, the average of a large finite draw of the
random variables converges almost surely. Several necessary and sufficient
conditions for such “Monte Carlo convergence” are given. Also, conditioned
on the associated Monte Carlo g-algebra, which represents macroeconomic
risk, individual agents’ random shocks are independent. Furthermore, a con-
verse to one version of the classical law of large numbers is proved.

Key words Large economy, continuum of agents, law of large numbers,
exchangeability, joint measurability problem, de Finetti’s theorem, Monte
Carlo convergence, Monte Carlo o-algebra.

* Part of this work was done when Yeneng Sun was visiting SITE at Stanford
University in July 2001. An early version of some results was included in a pre-
sentation to Tom Sargent’s macro workshop at Stanford on July 12th. We are
grateful to him and Felix Kubler in particular for their comments. And also to
Marcos Lisboa for several discussions with Peter Hammond, during which the
basic idea of the paper began to take shape.



2 Peter J. Hammond, Yeneng Sun

1 Introduction

Consider an economy with a continuum of agents. Suppose all agents face
independent and identically distributed (i.i.d.) random shocks. In many eco-
nomic applications one would like to invoke an exact version of the law of
large numbers, and claim that the fraction who experience each possible
shock should almost surely equal the probability of that shock.! However,
as pointed out by Doob in [10] and [11], with further elaborations in [14],
[19] and [29], the usual construction of a process with a continuum of i.i.d.
random variables creates fundamental measurability difficulties. The first
concerns joint measurability — namely, except in some trivial cases, such a
process can never be jointly measurable with respect to the completion of
the usual product o-algebra on the joint space of parameters and samples.?
The second problem concerns sample measurability — as shown in Theorem
2.2 in [10], the collection of samples whose corresponding sample functions
are not Lebesgue measurable has outer measure one, so Lebesgue measure
offers no basis for a meaningful concept of the mean or the distribution of a
sample function. That is, the sample function giving each agent’s individual
shock may not be typically Lebesgue measurable, and thus the fraction of
agents associated with each shock may not be well-defined.

Ad hoc examples can be found in the literature to show that there is
no contradiction between the independence condition and the essential con-
stancy of sample distributions — i.e., between the condition and conclusion
in a natural statement of the exact law of large numbers.> However, the
conclusion of the exact law of large numbers can also fail badly in different
versions of such ad hoc examples.*

In [27]-[30], some rich product probability structures on the joint space
of parameters and of samples are used to make independence compatible
with joint measurability. Such enriched product probability spaces extend
the usual product probability spaces, retain the common Fubini property
of product probability measures, and also accommodate an abundance of
nontrivial independent processes. Both the sample and joint measurability
problems are automatically resolved by the required Fubini property. Also,
the desired exact law of large numbers holds if and only if the random
variables are independent almost surely.

! See [14] and [19], as well as [1], pp. 2198-2199 and [28], pp. 502-503 for some
well known references incorporating claims of this kind.

% See p. 57 in [11] and Proposition 1.1 in [29].

3 See [1], [14], [16] and [19].

* [30] contains some detailed comments on such ad hoc examples, and on the
difficulities of using a purely finitely additive measure-theoretic framework. In
addition, the standard Birkhoff example shows that a continuum of mutually
orthogonal random variables has Pettis integral equal to zero — see Example 5,
p.- 43 in [9] or Example 3.2.1, p. 33 in [31]. [20] discusses some of the economics
literature concerned with the Pettis integral.
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Consider a continuous parameter process with mutually independent
random variables that is not taken from a framework where the usual Fu-
bini property is already satisfied. As pointed out in Remark 3 of [17], it
may not be possible to ensure that such a process is measurable by extend-
ing the usual product o-algebra while retaining the usual “two-way” Fubini
property. However, it is shown in [17] that a natural “one-way Fubini” prop-
erty does guarantee a unique meaningful solution to the joint measurability
problem, even for processes with random variables that are independent in
a very weak sense.

The approach taken in this paper is inspired by the Monte Carlo method
that is sometimes used to find numerical approximations to an ordinary
multiple integral, especially when the integrand is of high dimension, or is
complicated in some other way — see, for example, [15] for a recent survey.
The basic Monte Carlo method computes the integral of a real-valued func-
tion by taking the average of the integrand evaluated at randomly selected
points. Our purpose here is to extend this method in order to simulate
macroeconomic uncertainty when many agents face individual risk which is
modeled by a process with a continuum of random variables. Indeed, sup-
pose that a sequence of the random variables is obtained by evaluating the
process at randomly selected points of the parameter space. If the average
of these random variables converges in the sense to be specified in Section
2 below, the process is said to be “Monte Carlo convergent”.

Note that if a continuum of random variables forms an i.i.d. process,
then any sequence taken from the continuum collection is obviously still
i.i.d. When the common mean exists, the classical law of large numbers says
that the arithmetic mean of the first n random variables in such a sequence
converges to the common mean almost surely as n tends to infinity. This
will trivially imply Monte Carlo convergence for the simple i.i.d. case.

The main purpose of this paper is to move beyond this obvious i.i.d.
case and to consider Monte Carlo convergence for a large economy modeled
by a continuum of (essentially) pairwise exchangeable random variables.’
As shown by Proposition 2 in Section 5.3 below, such a process cannot be
jointly measurable with respect to the usual product o-algebra unless it is
degenerate in the sense that almost all random variables are identical (and
thus almost all agents’ random shocks are perfectly correlated). However,
based on some techniques developed in [17] to study a “one-way Fubini”
extension of the relevant product probability space, several necessary and
sufficient conditions for Monte Carlo convergence can be formulated and
proved. We shall also define a corresponding Monte Carlo o-algebra. This
will be shown to simulate macroeconomic risk in the sense that individual
agents’ shocks, conditioned on this o-algebra, are independent. It follows
that the basic concept of stochastic independence will be characterized by
triviality of the Monte Carlo limit — see Proposition 1 below.

5 Systematic applications of exchangeability in economics are proposed in [24].
Other economic applications can be found in [6], [18] and [21].
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In the rest of the paper, Section 2 describes the basic formulation and
provides some essential definitions and assumptions. Then Section 3 de-
scribes some equivalence results in the basic i.i.d. case. Section 4 introduces
and studies the basic properties of several concepts related to symmetry,
pairwise exchangeability, and conditional independence. General results on
the equivalence of these basic concepts with some special form of Monte
Carlo convergence are presented in Section 5. Section 6 provides the proof
of Theorem 1. Finally, a concluding assessment appears in Section 7.

2 Basic formulation
2.1 Two probability spaces

Let (T,7,)) denote a probability space which is to be regarded as the
parameter space for a process. In the case of an economy with a continuum
of agents, it is usual to regard T as the set of agents, and to take (T,7,\)
as the Lebesgue unit interval — i.e., T' = [0, 1], while )\ is Lebesgue measure
applied to the complete o-field 7 obtained from the usual Borel o-field
by adding all sets which are sandwiched between two Borel sets of equal
Lebesgue measure. However, none of our results rely on (7,7, ) being this
Lebesgue unit interval — instead, it can be an entirely general non-atomic
probability space. Indeed, in statistical mechanics it might be natural to
label each particle by its position at any particular time, in which case
T should be a compact subset of IR® with its appropriate o-algebra, and
with a probability measure which is the appropriately normalized product
Lebesgue measure. In economies with a continuum of agents, or games with
a continuum of players, especially if there is incomplete information, one
could take T to be a metric space of agents’ or players’ possible types,
including some feature or label that uniquely identifies each agent or player.
Or T could be a hyperfinite Loeb space which is used to index the economic
agents, as discussed in [1].

Let (£2, A, P) be the sample probability space. For example, it can be
the product of a continuum of copies of some other basic probability space,
or some extension of this product, or some other space entirely. As usual in
probability theory, it is not necessary to specify in detail what the sample
probability space is provided some general existence issues are resolved. We
assume that the o-algebra A is complete in the sense that, if A € A with
P(A) =0, then A" € A forall A’ C A. Let (T x 2,7 ® A, A x P) denote
the usual product probability space. For simplicity, the completion of this
product space is denoted in the same way.

2.2 A Polish space

The variables of interest in a continuum economy usually describe agents’
allocations, or else their characteristics such as endowments, preferences or
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utility functions, or discount rates. In a game with a continuum of players,
the variables of interest usually describe strategies, or else characteristics
such as payoff functions. We assume that all such variables are members x
of some general metric space (X, d).

We shall assume that this metric space is complete in the sense that
Cauchy sequences satistying d(x,,,x,) — 0 as m,n — oo must converge
to some point in X, and also separable in the sense that X is the closure
of some countable subset. A topological space is called a Polish space if it
is homeomorphic to a complete separable metric space. Let B denote the
Borel o-algebra of the Polish space (X, d). Then B can be generated by a
countable collection of open sets in X. From now on, we usually ignore the
metric d and refer to (X, B) as a Polish space.

It should be remarked that many rich spaces are Polish. Examples in-
clude finite sets, finite-dimensional Euclidean spaces with their Euclidean
metric, and the space of real-valued continous functions on a bounded in-
terval with the usual supremum norm. One other important example is the
space of real-valued functions that are right continuous and have left-hand
limits — when this space is given its (metrizable) Skorohod topology —
see [4], for example. Thus, our theory will encompass most of the standard
models encountered in macroeconomics, with a continuum of agents all fac-
ing individual stochastic processes whose values lie in a suitable function
space. Such stochastic processes can be Markov chains, Brownian motion,
general Ito processes, Ito processes with random jumps, etc.

2.8 - and \-systems

Given any nonempty set Y, a w-system P is a family of subsets of Y that is
closed under finite intersections. Let D be a non-empty family of subsets of
Y, and let D™ denote the family of all finite intersections of sets in D. Then,
it is obvious that D™ is a w-system, and that D and D™ both generate the
same o-algebra o (D).

A family Q of subsets of Y is said to be a A-system if it satisfies: (i)
Y € Q; (ii) for A,B € Q with A C B, B\ A € Q; (iii) for any sequence
{A,,}52; of pairwise disjoint sets in Q, U, A, € Q.5

A result we use many times in this paper is:

Dynkin’s 1=\ Theorem: If P is a w-system and Q is a A\-system that contains
P, then Q must contain the o-algebra o(P) generated by P.”

This theorem allows one to infer that if any two finite signed measures
coincide on P U {Y}, then they must also coincide on o(P).

5 See, for example, [5], p. 41. This definition is easily seen to be equivalent to
that of Dynkin class, in which (iii) is replaced by the requirement that for any
sequence {A,}nz; of sets in Q with A, C An41 for all n, UpZ A, € Q. See, for
example, [8], p. 44.

" See, for example, [5], p. 42, or [8], p. 45.
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2.4 Countably generated and essentially countably generated o-algebras

Let D be a non-empty family of subsets of a space Y. If D is countable, then
the o-algebra o(D) generated by D is said to be countably generated.® Note
that D™ is still countable and also generates o(D). Thus, we can always
assume that a countably generated c-algebra is generated by a countable
m-system. In particular, if Y is a Polish space as in Section 2.2, then its
Borel g-algebra ) is countably generated from a countable 7-system O of
open sets in Y.

Consider any mapping f : 2 — Y. Let o(f) be the smallest o-algebra C
such that f is measurable w.r.t. C on {2 and Y on Y. This o-algebra o(f)
is called the o-algebra generated by f. Since o(f) is also generated by the
countable family {f~1(0) | O € O}, it is countably generated. On the other
hand, if a o-algebra C on 2 is countably generated, then there exists a Borel
measurable mapping 6 : 2 — [0, 1] such that C = o(0) — see [5], Ex. 20.1,
p. 270. In addition, if f is a random variable — i.e., f is measurable w.r.t.
the o-algebra A on {2 and the Borel o-algebra ) on Y, then it is obvious
that o(f) is a sub-o-algebra of A.

A sub-o-algebra C C A is said to be essentially countably generated if it
is the strong completion of some countably generated o-algebra C’, in the
sense that C = {A e A|JA €' : P(AA A’) = 0}. For simplicity, from
now on we describe a g-algebra as countably generated even when it is only
essentially countably generated. Of course, the extra sets in the essentially
countably generated o-algebra only differ from sets in the original countably
generated o-algebra by some null sets.

Let M(X,B) be the space of Borel probability measures on a Polish
space (X, B). We assume throughout that this space is equipped with the
topology of weak convergence of measures. Indeed, M (X, B) with this topol-
ogy is itself a Polish space — see, for example, [5], pp. 72-73. The following
result on the measurability of mappings taking values in M(X, B) is often
implicitly used in the literature. Since we are not able to find a precise
reference, we give a proof here for the sake of completeness.

Lemma 1 Let p be a mapping from (2 to the space M(X, B) endowed with
the topology of weak convergence of measures. Let C be the smallest o-algebra
on {2 such that for each B € B the mapping w — ., (B) is C-measurable
from 2 to the real line with its Borel o-algebra. Then C = o(u), the o-
algebra on {2 generated by p.

Proof Let F be the family of closed sets in X. As shown in [4], p. 236,
the specified topology of weak convergence on M (X, B) is generated by the
family of subsets {7 € M(X,B) : 7(F;) < p(F;) +¢,i =1,2,...,k}, where
e >0, p € M(X,B), and the sets F; are closed. It is also clear that w — p,,
is a measurable mapping into M (X, B) if and only if {w : p,(F) < p(F)+€}
is measurable for each € > 0, each p € M(X, B), and each closed set F'in X.

8 See the definition in [5], Ex. 2.11, p. 34.
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This is equivalent to the condition that w — pu,(F) is measurable for each
closed set F' in X. This implies that o(u) is equal to Cp, defined as the
smallest o-algebra such that for each F' € F the mapping w +— p, (F) is
Co-measurable. From this definition, it is easy to verify that Cy C C, and
hence o(p) C C.

Counsider the family D := {B € B : w — pu,(B) is o(u)-measurable}. It
is easy to verify that this family is a A-system. We have just proved that D
contains the family F of closed sets in X. Because F is a m-system, Dynkin’s
m-X Theorem implies that o(F) C D. But o(F) = B by definition of the
Borel g-algebra. So D = B, implying that w — pu,(B) is o(u)-measurable
for each B € B. Hence C C o(u).

Combining the results of these two paragraphs shows that C = o(u), as
required. 0O

2.5 Conditional expectations and regular conditional distributions

For the convenience of the reader, this subsection recapitulates the standard
definitions of conditional expectation, conditional probability, and regular
conditional distribution.?

Let C be a sub-o-algebra of A, and f an integrable real-valued function
on (£2, A, P). An integrable real-valued function h on (£2, A, P) is said to be
the conditional expectation of f given C if h is C-measurable, and f g, JaP =
J 4 hdP for all A € C. This h is essentially unique and usually denoted by
E(fIC).

For a m-system C™ that contains {2 and generates C, if ¢ is a C-measurable
and P-integrable function on 2 that satisfies [, fdP = [, ¢dP for all
A € C™, then Dynkin’s 7—A Theorem implies that ¢ = E(f|C).

Let A be an event in A. The indicator function 14 : 2 — {0, 1} is defined
by 1a(w) =1ifw € A, and 14(w) = 0 otherwise. The conditional probability
P(A|C) of the event A given C is simply the conditional expectation E(14|C)
of this indicator function.

Let f be a random variable from 2 to a Polish space X with Borel
o-algebra B. A mapping u from 2 to M (X, B) is said to be a regular condi-
tional distribution (r.c.d.) for f given C if for each fixed B € B, the mapping
w — p(B) is a version of P(f~(B)|C) — ie., po(B) = E(14-1()C). A
classical result of Doob says that an r.c.d. exists if the mapping takes values
in a “nice” space, including any Polish space with its Borel o-algebra — see
[13], pp. 33 and 230. In particular, an r.c.d. exists for f given C, which is
denoted by P(f~1[C).

The following lemma is often used to compute conditional expectations
— see [7], p. 223.

® The reader can find more of their properties set out in Chapter 7 of [7] and
Chapter 4 of [13].
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Lemma 2 Suppose that f is a random variable from {2 to a Polish space X,
and that p = P(f~Y|C) is an r.c.d. for f given C. Let ¢ be any real-valued
function on X such that o(f) is integrable on (§2, A, P). Then E(o(f)|C) =

Jx (@) dpo ().

JFrom Dynkin’s 7=\ Theorem, it is easy to obtain the following useful
lemma.

Lemma 3 Suppose that f is a random variable from (2 to a Polish space
(X, B). Suppose that C is a sub-c-algebra of A which is generated by a 7-
system C™. Let B™ denote a countable w-system that generates B. Let i/ be an
r.c.d. for [ given C, and p a mapping from 2 to M(X,B) such that ., (B)
is C-measurable for each B € B™. Suppose finally that P(C N f~1(B)) =
fc tw(B)dP for each C € C™ and B € B™. Then u is also an r.c.d. for f
given C, and p, = p, for P-a.e. w € 0.

Proof For each C € C™ and B € B™, since p' is an r.c.d. for f given C, one
has

P(Cf(B)) = /C oy dP = /C 1, (B)dP,

Hence [, pw(B)dP = [, p,(B)dP. Because C™ is a m-system, it follows
that p, (B) = ul,(B) for P-a.e. w € 2. But B™ is a countable 7-system, so
we can group countably many P-null sets together to show that, for P-a.e.
w € $2, py,(B) = p,(B) holds simultaneously for all B € B™, and hence for
all B € B by Dynkin’s 7—A Theorem. 0O

2.6 A continuum of random variables

We assume throughout that the economic uncertainty of interest can be
modeled as a process g : T x 2 — X with the property that, for each t € T,
the component mapping w +— ¢;(w) is measurable, thus making every g¢; a
random variable defined on (£2,4, P). In this sense, provided that T has
the cardinality of the continuum, we have a continuum of random variables
g (teT).r

2.7 Pairuise measurable probability

For simplicity, we also assume throughout that the process g : T x 2 — X
has pairwise measurable probabilities in the sense that, for each A € A and
By, By € B, the mapping (t1,t2) — P(ANg;, (B1)Ng;," (B2)) is measurable
w.r.t. the product o-algebra 7 ® 7 on the set of pairs T' x T.

To motivate this assumption, consider what happens when the pair of
random variables ¢;, and g, is sampled by drawing (¢, t2) at random from

10 Actually, most of the results presented in this paper seem to require only that
g: is a random variable for almost all ¢.
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the product space (T,7,))? = (T x T,7 @ T, x \), before w is drawn
at random from (2, A, P). The pairwise measurable probability condition
implies that, for each A € A and By, By € B, there should be a well-defined
joint probability that w € A and that g, (w) € By, g1,(w) € Bz. Of course,
this joint probability is given by

P(AN g (B1) Ng;, (B2)) d(X x )
TxT
It is important to realize that this measurability condition does not
imply that, for P-a.e. fixed w, the mapping (t1,t2) — (gt (W), gr,(w)) is
measurable with respect to the product o-algebra 7 ® 7 on T x T, or even
that almost all sample functions ¢ — g, (¢) are measurable with respect to
the o-algebra 7 on T'.

2.8 Monte Carlo convergence and the Monte Carlo o-algebra

We assume that the process g, and the associated continuum of random
variables g; (t € T'), are intended to model an economy with many agents
who face individual random shocks. It is natural to try to understand this
process by considering what can be observed in a population formed by
taking a random sequential draw from the agent space 7. Such a general
procedure may be called “Monte Carlo simulation” because of its similarity
to the classical Monte Carlo method.

Take any set J in the product o-algebra 7 ® B on T x X. Given a typical
sequential draw t>° € T°°, one can consider the finite sample t1,ts,...,t,
for each n. A relevant question then is whether the proportion of these n
agents for whom the pair (¢, g(¢,w)) belongs to J will converge, as n — co.
This suggests the following:

Definition 1 The process g is said to be Monte Carlo convergent if there
is a mapping v : 2 — M(T x X, T ® B) such that, for each J € T @ B, the
mapping w — v, (J) is A-measurable, and for \>*-a.e. sequence t>° € T,

1 n
— Z Ly(ti, g(ti,w)) —— v (J).
n P—a.s.

In this case, we say that the measure-valued random variable 7y, is the Monte
Carlo limit of g.

For the processes considered in this paper, one only need consider the
convergence in Definition 1 for those J in the form of rectangles S x B
with S € T,B € B (see Theorem 1 below). In this case, the convergence
property simply holds for the fraction of the n randomly drawn random
variables whose index t and value z = g¢(¢,w) lie in the sets S and in B
respectively. This convergence property seems to be a minimal requirement
for Monte Carlo simulation of the process g to make any sense at all.

When g is Monte Carlo convergent, it is natural to consider all the
uncertainty as represented by the Monte Carlo limit.
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Definition 2 When the process g is Monte Carlo convergent, let C9 be the
smallest o-algebra such that the mapping w — 7, (J) is C9-measurable for
each J € T ® B. Then the sub-o-algebra C9 of A is called the Monte Carlo
o-algebra generated by g.

One important aim of this paper is to show that the Monte Carlo o-
algebra does simulate all the macroeconomic uncertainty in our setting.

3 The independent case
3.1 Monte Carlo simulation in the i.i.d. case

Let f be a mapping from T x {2 to X with the property that, for each
t € T, the component mapping f; is a random variable defined on ({2, 4, P).
Suppose that the random variables f; (t € T) are i.i.d., with common dis-
tribution p. That is, for each n > 1 and each By, Bs,..., B, € B, one has
P(ﬂ?zlftjl(Bi)) = [T, u(B;) for any n points t1,ts,...,t, € T.

Now let ¢ : X — IR be any p-integrable function, with mean m =
Jx e(z)dp. Then the functions defined by hi(w) := @(fi(w)) (all t € T)
are also ii.d. random variables, with common mean m = [, p(z)dy =
S he(w)dP.

Take any sequence t>° = (¢1,ta, ..., ) from the countably infinite product
space (T, T,\)° = (T, T, \>°) with t; # t; for ¢ # j. Then it is obvious
that the sequence of random variables h;,, ¢ = 1,2,... is also i.i.d., with
common mean m. Since A is assumed to be non-atomic, the sequence hy, is
iid. for A*-a.e. t° € T°°. When they are i.i.d., of course, the usual strong
law of large numbers (see, for example, [13], Theorem 8.3 on p. 52) implies
that the obvious sample average = > 7" | hy,(w) converges P-a.s. to m as
n — oo.

An important special case occurs when ¢ is the indicator function 1pg
of some measurable set B € B. Then + 3" | 15(f;,(w)) is the fraction of
the n randomly drawn random variables whose value lies in B; this fraction
must converge P-a.s. to the mean [ 1p(z)du = p(B), which is the common
probability that each f;(w) lies in B.

Furthermore, take any S € 7. Then the usual strong law of large
numbers implies that for A*°-a.e. t*° € T, % " 1 1s(t;) converges to
A(S). Thus, for A®-a.e. t*° € T°°, the sequence 1g(t;)[15(fr,) — u(B)]
(i =1,2,...) of uniformly bounded random variables is independent with
mean zero. Another version of the law of large numbers (see [13], Theorem
8.2 on p. 52) therefore implies that the sequence 2 37" 15(t;)[15(fi, (w))—
u(B)] converges P-a.s. to 0 as n — oo. Hence, for A®-a.e. t>° € T,
LS 1s(ti)1p(fi,(w)) converges P-a.s. to A(S)u(B).* Of course, this
result is just a version of the classical law of large numbers. Much more

1" As noted in the equivalence of conditions (2) and (3) in Proposition 1, this
means that the process g is Monte Carlo convergent, with constant limit A x u.
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striking is the fact, shown below, that an “almost everywhere” or “essen-
tial” version of the i.i.d. condition is necessary for this convergence property
to hold.

3.2 Necessary and sufficient conditions

The family of random variables g; (t € T') is said to be essentially pairwise
independent if the two random variables ¢;, and g, are independent for
A X A-a.e. pair (t1,t2) € T x T.'2 If in addition there is a Borel probability
measure p on the Polish space (X, B) such that g; has distribution p for
A-a.e. t € T, then the process g is said to be essentially i.7.d., and p is the
essentially common distribution.

Remark 1 Let f be a mapping from T x 2 to X with the property that each
component function f; is a random variable defined on (2, A, P). When f
is i.i.d., then f has pairwise measurable probabilities.

Proof Let the mapping (t1,t2,w) — F((t1,t2),w) := (ft, (W), fi,(w)) de-
fine the process F : T? x 2 — X2 on the index space (T,7,))? instead
of on (T,7,)\). Because the random variables f; (¢ € T) are mutually
iid., it follows that the random variables F;, 1,)(w) ((t1,t2) € T?) must
be essentially pairwise independent. We treat this F' as the process g in
[17]. Take E = T? x A x (B; x By), where A € A and B;,By € B.
Part (1) of Theorem 1 in [17] implies that the mapping on 72 defined by
(tr,t2) = P(H{ ) (B, 1) = P(AN fiH(B1) N fi; " (Bz)) is A*-integrable,
so measurable w.r.t. 7 ® 7. O

The following result is an obvious implication of Theorems 1 and 2 in
Section 5 below. It states that an essentially i.i.d. process is characterized
by degeneracy of the Monte Carlo limit.

Proposition 1 The following three conditions are equivalent:
1. the process g is essentially i.i.d., with an essentially common distribu-

tion p;
2. for each S € T and B € B, one has, for A>*-a.e. sequence t*° € T,

3 st (gt ) — NS(B)

P—a.s.

3. the process g is Monte Carlo convergent to the fized product probability
measure A x p on (T x X, T @ B).

12 A condition of this type is called “almost sure pairwise independence” in [27]
and [28].
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In an extended framework where the process g is jointly measurable and
the usual Fubini property still holds, [27]-[30] show that essential pairwise
independence is necessary as well as sufficient for an exact law of large num-
bers to hold. Proposition 1 is a counterpart of this result in the sequential or
Monte Carlo setting considered in this paper. From another point of view,
(1) = (2) is simply an obvious version of the “classical” law of large num-
bers restated in the continuum setting, while (2) = (1) is a converse of
the classical law of large numbers in this setting.

4 Essential symmetry, pairwise exchangeability,
and conditional independence

4.1 Essentially symmetric processes

The main focus of this paper is on general essentially symmetric processes
g : T x {2 — X satisfying the condition that, for each A € A and B € B, the
probability P(A N g; *(B)) is A-a.e. independent of t. The following lemma
characterizes such processes.

Lemma 4 Let g be an essentially symmetric process. Then there exists a
measurable mapping w — p,, from (£2, A) to M(X,B) such that, for each
A€ A, B € B, one has

P(ANG (B) = [ p(B)ap
for M-a.e. teT.

Proof For each A € A and B € B, define ¢(A, B) as the common value of
P(ANg; '(B)), for M-a.e. t € T For each fixed B, the mapping A — ¢(A, B)
is a measure on ({2, A) which is absolutely continuous w.r.t. P. So there
exists an essentially unique Radon-Nikodym derivative w +— o (w) such
that ¢(A,B) = [, aP(w)dP for all A€ Aand B € B.

Let B™ be a countable m-system that contains X and generates B. Let
Cp be the countably generated sub-o-algebra of A generated by the family
of mappings af (B € B™). Let CT be a countable m-system that contains
{2 and generates Cy. By grouping countably many A-null sets together, we
can find a set Ty € 7 with A(Tp) = 1 such that, for each ¢ € Ty,

P(AN g\ (B)) = /A o (w) dP (1)

for all A € Cf,B € B™. Fix any ty € Tp. Let p be the regular conditional
distribution P(g,'|Co) of g4, given Co. This means that p is a measurable
mapping from (£2,Cy) to M(X, B) such that for each A € Cy, B € B,

/ 1-1(pydP = P(ANg.'(B)) = / to(B)dP. (2)
A 0 A
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Hence by Equations (1) and (2), we have

[ ot war = [ nmap (3)

for all A e Cf§, B € B”.

Since Cy is generated by the m-system C§, Dynkin’s 7—A Theorem implies
that Equation (3) is still valid for all A € Cy, B € B™. For each B € BT,
since both a®(w) and p,,(B) are Co-measurable, essential uniqueness of the
Radon-Nikodym derivative implies that a®(w) = pu,(B) for P-almost all
w € (2. This means that Equation (3) still holds for all A € A, B € B™, so

P(AN g7 4 (B)) = e(A, B) = /

an =
[ aPw)ap /A no(B)P  (4)

for A-a.e. t € T. Since B is generated by the m-system B™, Dynkin’s 7\
Theorem implies that for all A € A and B € B, equation (4) still holds for
Aae teT. O

4.2 Essential pairwise exchangeability

A collection of random variables is said to be pairwise exchangeable if there
is a common distribution 7 such that all pairs of random variables from the
collection have the same joint distribution w. A natural extension of this
definition is to say that the process g is essentially pairwise exchangeable
if there exists a common joint probability measure 7 on (X, B)? such that
almost all pairs of random variables in {g; : t € T} have the same joint
distribution m — i.e., for A x A-a.e. (t1,t2) € T x T, one has P(g;,"(B1) N
gt_Ql(Bg)) = 7T(Bl X Bg) = 7T(BQ X Bl) for all Bl,BQ cB.

The following lemma shows that essential pairwise exchangeability im-
plies essential symmetry.

Lemma 5 If the process g is essentially pairwise exchangeable, then it is
essentially symmetric.

Proof Fix any A € A and B € B. By definition of essential pairwise ex-
changeability, there exists a symmetric measure 7 on (X, B)? and a set T
with A\(77) = 1 such that, for each ¢’ € T3, one has

Plg; (B) N6 (B) = By )Ly ) = 7(BXB)  (5)
for A-a.e. t € T, and also
P(gil(B)):E(lg;,l(B)) =m(B x X) (6)

Consider the Hilbert space La(f2, A, P), and let L be the smallest closed
linear subspace which contains both the constant function 1 = 1, and
also the family of indicator functions {1 -1 [ ¢ € T1 }. Let the function
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h : 2 — R be the orthogonal projection of the indicator function 14 onto
L, with h' as its orthogonal complement. Then 14 = h + h* where, by
definition, h* is orthogonal to each member of L. That is, 0 = E(ht1) =
JohdP and also 0 = E(h*1, “1(p)) = [phtl 1,-1(B)dP for all t € Ti.
Because 14 = h + ht, it follows that E(14 1g;1(B)) E(h 1g;1(B)) for all
t €Ty, and also P(A) = Ely = E(141) = E(h1) = Eh.

Next, because h € L, there exists a sequence of functions

_rn1+zan1g;1(3) (n=1,2,..)

tn

with t¥ € Ty, as well as r,, and of (k =1,...,i,) all real constants, such
that h, — h in the norm of Ly (42, .A pP) — that is, [(hn —h)?dP — 0.

Let T* be the set of ¢ for which (5) holds when #' = t*. By hypothesis,
AM(TF) = 1 because each t& € Ty. Define T* := Ty N (N5, ﬁ“ L TF). Because
T is the intersection of a countable family of sets all havmg measure 1 w.r.t.
A, it follows that A(T™*) = 1. Also, for any t € T*, one has

P(Ang; Y(B)) = E(1a1 ooim) = Bhl1 ) = m E(hyl 1) (7)

n—oo

But (5) and (6) both hold whenever ¢t € T* and t' = ¥ so

. k
E(hnlyr i) =10 BE(Lyr ) + Yl B(ly15) Lo ()
k=1 n

m(Bx X)+ Y afm(BxB).
k=1
It follows that E(hnlgt—l(B)) is independent of ¢, for all ¢ € T*. But then

P(ANg; Y (B)) must have the same property, by (7). Since A(T*) = 1, this
completes the proof. 0O

4.3 Essential conditional independence

For a given sub-o-algebra C C A, two random variables fi, fo : 2 — X are
said to be conditionally independent given C if, for every pair of Borel sets
By, By € B, the conditional probabilities satisfy

P(fi ' (B1) N f M (Ba)[C) = P(f; 1(B1)IC) P(f5 H(B2)C) (8)

Lemma 6 Suppose that B™ is a countable w-system that generates B, and
that C is a sub-o-algebra of A. For any two random variables f1, fo : 2 — X,
the following are equivalent:
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1. the product r.c.d. P(f{*|C) x P(f5*(C) is an r.c.d. for (f1, f2) given C;
2. f1 and fay are conditionally independent given C;
3. equation (8) holds for all By, By € B™.

Proof (1) = (2) and (2) = (3) are obvious. (3) = (1) follows from
Lemma 3. O

The process g is said to be essentially conditionally independent given
C if, for (A x N)-a.e. (t1,t2) € T x T, the pair g,, g, is conditionally inde-
pendent given C. If, in addition, there is a mapping p from 2 to M(X, B)
such that p is an r.c.d. for g; given C for A-a.e. t € T, then g is said to be
essentially i.i.d. conditioned on C.

Lemma 7 Suppose that there exists a countably generated o-algebra C' such
that the process g is essentially i.i.d. conditioned on C'. Then g is essentially
pairwise exchangeable.

Proof By hypothesis, there is a C’-measurable mapping « from 2 to M (X, B)
which, for A-a.e. t € T, is a version of the regular conditional distribu-
tion of g; given C’. Since g is essentially i.i.d. conditioned on C’, one has
P((g,9¢)7YC") = a x a for (A x N)-a.e. (t,t'). Thus, for each V € B® B,

P((ge,9¢0) (V) = /ﬂ(ozw x ay,) (V) dP.

Hence P((gs,9¢)7 1) is equal to the symmetric probability measure 7 de-
fined by (V) := [,(ow x ay,)(V)dP for each Ve B& B. O

5 Main Results
5.1 First equivalence theorem

The first equivalence theorem is stated for a given measurable mapping p
from ({2, A) to the space M(X,B) of measures on the Polish space (X, B)
equipped with the Borel o-algebra corresponding to the topology of weak
convergence of measures. The proof of this theorem is through Lemmas 8,
10 and 11 in the next section.

Theorem 1 Suppose w +— p, is a measurable mapping from (£2,A) to
M(X,B). Let C be the o-algebra which is (countably) generated by this map-
ping. Then the following conditions are equivalent:
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1. for each A € A and B € B, one has P(AN g; '(B)) = J 4 1o(B) dP for
A-a.e.teT;

2. the process g is essentially i.i.d. conditioned on C, with P(g; '|C) =
for A-a.e. t €T}

3. for each S € T, B € B, and for A>*-a.e. sequence t>° € T, one has

1 n
L3 18t 1 (a(ti,w)) —— M(S) pu(B)
n — P—a.s.
4. the process g is Monte Carlo convergent, with Monte Carlo limit given
by the product probability measure A X u, on (T x X,T ® B).

5.2 Second equivalence theorem

The second equivalence theorem uses the first to give necessary and suf-
ficient conditions for the process to be essentially pairwise exchangeable.
The equivalence of Conditions 1 and 4 below is a version of the classical De
Finetti theorem which is appropriate in our setting, with a continuum of
random variables.

Theorem 2 The following four conditions are equivalent:

1. the process g is essentially pairwise exchangeable;

2. the process g is essentially symmetric;

3. there exists a measurable mapping p from (£2, A) to M(X, B), together
with the corresponding countably generated o-algebra C = o(u), such that
all four equivalent conditions of Theorem 1 are satisfied;

4. there exists a countably generated o-algebra C' such that the process g is
essentially i.i.d. conditioned on C'.

Proof (1) = (2) was shown in Lemma 5. By Lemma 4, (2) implies Con-
dition 1 in Theorem 1, so (2) = (3). Condition 2 in Theorem 1 trivially
implies (4), so (3) = (4). Finally, (4) = (1) was shown in Lemma 7. O

The following corollary follows easily from Theorems 1 and 2.

Corollary 1 Assume that the process g is essentially pairwise exchange-
able. Then

1. the Monte Carlo o-algebra C9 equals o(u), where p is the measurable
mapping from (2, A) to M(X,B), as in the statement of Theorem 1;
2. the process g is essentially i.i.d. conditioned on CY.

When a large economy with individual risk is modeled by an essentially
pairwise exchangeable process ¢, this result shows that the corresponding
Monte Carlo o-algebra CY9 does simulate macroeconomic uncertainty, in the
sense that individual agents’ random shocks are independent conditioned
on CY.
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5.8 Joint measurability implies perfect correlation

The following proposition shows that a process g satisfying the conditions
stated above cannot be jointly measurable except in the completely trivial
case when almost all the random variables g; equal some fixed random
variable, and so are perfectly correlated.

Proposition 2 Suppose that the process g is T @ A-measurable, and satis-
fies any of the equivalent conditions of Theorem 2. Then there is a random
variable a from 2 to X such that for A-a.e. t € T, gi(w) = a(w) for P-a.e.
w € £2.

Proof By Theorem 2, condition 1 of Theorem 1 must be satisfied. So there
exists a measurable mapping w — p,, from (£, 4) to M(X, B) such that,
for each A € A and B € B,

P(ANG (B) = [ p(B)ap
for A-a.e. t € T. Take any S € 7. Because ¢ is assumed to be 7 ® A-
measurable, one can use the Fubini theorem and integrate the above equa-
tion over S to obtain

/ 1,1 (s d(A x P) = / PANGT (B)dA= [ pu(B)d(\ x P).
SxA S SxA

Since all the measurable rectangles S x A form a w-system, Dynkin’s 7\
Theorem implies that for each B € B one has

/ 1y 1) d(A x P) = / 11 (B) d(A x P)
F F

for all FF € T ® A. So, by essential uniqueness of the Radon—-Nikodym
derivative, it follows that for each B € BB one has

1g*1(B)(taw) = pw(B) 9)

for A x P-a.e. (t,w) € T x §2.

Let d be a metric on X and {z,}32; a dense sequence in X. Let B™
be the countable collection of all the open balls B(z,,1/m) centered at
2, and with radius 1/m, for n,m > 1. By grouping together countably
many (A X P)-null sets, one can show that there exists a set D € 7 ® A
with (A x P)(D) = 1 such that for each ({,w) € D, equation (9) holds
simultaneously for all B € B”.

Consider any (t,w) € D. Suppose that ¢’ € T is such that g, (t') # g.(t).
Then there exists a ball By € B™ such that g,,(t) € By but g, (t') ¢ By. Our
hypotheses imply that

fo(Bo) =1 -1, (t) =1 # 1g;1(30)(t/) =0
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and so (¢',w) € D. On the other hand, therefore, if (t,w), (f',w) € D, then
9w (t) = gu(t'). Hence, for P-a.e. w € {2 there is a point a(w) € X such
that g(t,w) = a(w) for all (t,w) € D. Because (A x P)(D) = 1, the Fubini
Theorem implies that P(D;) = 1 for A-a.e. t € T. Hence, for A\-a.e. t € T,
one has ¢;(w) = a(w) for P-a.e. w € {2. Since g; is A-measurable for M-a.e.
t € T, the function o must also be A-measurable. O

6 Proof of Theorem 1
6.1 Proof that (1) = (2)

Lemma 8 Suppose that for each A € A and B € B, one has
P(ANG(B) = [ nuB)ap (10)

for A-a.e. t € T. Then the process g is essentially i.i.d. conditioned on C,
with P(g;*|C) = pe for M-a.e. t € T.

Proof Let C™ = {C,}2; and B™ = {B,,}5°_; be countable m-systems for
C and B respectively. For each pair (m,n), there exists a set T, with
ATmn) = 1 such that for all ¢ € T,,,, equation (10) holds with A = C,,
and B = By,. So for any t € T := N°_; NS Tinn, equation (10) holds
whenever A = C,, and B = B,,,, for all pairs (m,n) simultaneously. Then
Lemma 3 implies that j,, must be a version of P(g; '|C), for all ¢ € T*. Tt
is also clear that A\(T*) = 1.

Next, take any ¢’ € T, B’ € B and C € C. Because equation (10) holds
when A = C N g, ' (B'), it follows that

PG B0 (B) = [ 1,20 (B)P

for A-a.e. t € T. By Lemma 1, the mapping w +— pu,(B) is C-measurable.
Also, p,(B') = E(lg;l(B/)|C) for M-a.e. t' € T. So [, lg;/l(B,)uw(B)dP =
Jo b (B ) oy (B)dP for M-a.e. t’ € T. Thus, given any C' € C and any B, B’ €
B, for A-a.e. t € T, one has

P(C N (g1, g0) (B x B')) = /C (1o X u)(B x BY)dP (1)

for M-a.e. ¢ € T. By the hypothesis that the mapping (¢,t') — P(A N
g; (B) N g, (B') is T ® T-measurable for each A € A and B, B’ € B, it
follows that equation (11) must hold on a 7 ® 7-measurable set. But then
the Fubini Theorem implies that for each C' € C and B, B’ € B, equation
(11) must hold A x A-a.e.in T x T

In particular, for each triple (m,m’,n) of positive integers, there exists
a set Kpmm € 7 @ T with (A X A)(Kmmrn) = 1 such that for all (¢,t') €
K pmn, Equation (11) holds with C = C,,, B = B,;, and B’ = B,,,,. But then
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Equation (11) holds for all pairs (¢,t’) in the intersection K* := N_; N>, _,
N2, Kpmm/n, which is a set whose measure w.r.t. (A x A) is 1.

Hence, for each (t,¢') € K*, Equation (11) holds for all C € C™ and
B,B’ € B™. Since {B x B’ : B,B" € B™} is a m-system that generates
B ® B, Lemma 3 implies that ,, x y,, must be a version of P((g, g)!|C).
Putting B’ = X in (11) reduces it to P(C'N g; }(B)) = Jo 1w (B) dP, so
Lemma 3 implies similarly that p,, must be a version of P(g; *|C). The rest
follows from Lemma 6. 0O

6.2 Proof that (2) = (4)

Let f: T x X — IR be a 7 ® B-measurable function with the property
that the mapping ¢ — E(f?(g;)) defines an integrable function on T — i.e.,
J7 [ f7(9:(w)) dP dX exists. The following Lemma 10 proves a strengthened
version of Condition 3, with the indicator function 1; of any set J € 7 @ B
replaced by f. It is somewhat similar to the classical law of large num-
bers for a sequence of i.i.d. random variables taking values in a Banach
space — see [32] and the detailed references in [20]. Lemma 10, however,
involves a randomly selected sequence of real-valued square-integrable ran-
dom variables that converges almost surely on {2, whereas the conclusion
of the corresponding law of large numbers in a Banach space states only
convergence in the Banach space norm (the Lo-norm in this case).

The proof of Lemma 10 relies on the following elementary technical
result.

Lemma 9 Suppose that {a;}52, is a sequence of non-negative real numbers
for which * - Zz:l a; converges to the finite limit a as n — oo. Then the

. log? .
series Yy~ | an—25" is convergent.

2
Proof We group terms and write > -, anloi—Q” as Y. _, by, where each

m__ 2
b 1= 37 _om—1 @225, Clearly, it is enough to show that 3°°°_, by, con-
verges. But

2’7YL 1 27’71
log 2m _ _
by, < Z ngm= 1 <41 m(m10g2)22an:cmm22 m
n=2m-1 n=1

where
gm
o= 4 log? 2 (2_’” Z an> — 4a log?2
n=1

as m — oco. This is enough to guarantee that b,, < ¢27™/2 for a suitable
value of the constant ¢, so the series Zfrf:l b, does converge. O
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Lemma 10 Suppose that the process g is essentially i.i.d. conditioned on
C, with P(g; *|C) = pe for \-a.e. t € T. Let f: T x X — R be any T ® B-
measurable function with [[[, f2(g:(w)) dP]dX < co. Then, for A*-a.e.
sequence t° € T, one has

n

S fngtew) —— [ fendoxp). )

i1 P—-a.s. JTxx

Proof Given the specified function f, for each t € T and w € {2, define
Pr(w) = fi(ge(w)); o(t,w) 1=/ fr(@)dpe (2); hi(w) = Pr(w) — pr(w).
X

By hypothesis, 1), is P-square-integrable (and so P-integrable) for A-a.e. t €
T. Since P(g; *|C) = p, Lemma 2 implies that for A-a.e. t € T, E(¢;|C)(w) =
Jx fe(x)dpy(z) = o(t,w) for P-ae. w € 0.

Now we apply the conditional version of Jensen’s inequality for convex
functions — see, for example, Theorem 10.2.7 of [12], or p. 225 of [13]. This
inequality implies that E(¢?) = E[E(¢|C)]* < E(¢3?) for M\ae. t € T.
Because v, is square-integrable on (§2, A, P) for A-a.e. t € T, and E(¢?) is
integrable on (7,7, \), it is easy to see that ¢ and h; have the same two
properties. It follows from the joint measurability of f and the measurabil-
ity of w — p, € M(X,B) that ¢ is T ® A-measurable. Then, because 1 is
square-integrable on ({2, A, P) for A-a.e. t € T, and because E(¢7) is inte-
grable on (7,7, \), the Fubini Theorem implies that ¢ is square integrable
w.rt A x P.

Since g is essentially i.i.d. conditioned on C, we have P((g¢, gv) " 1|C)(w) =
e X p, for A x A-a.e. (t,t') € T x T. Using Lemma 2 again,

E@Wﬂmm:/

XxX

ft(x)ft’(y)d(,u‘u)(l')Xﬂw(y)):/Xftdﬂw/Xft/ dﬂw

From the definition of hy, it is easy to see that
E(hthy|C) = E(upy|C) — E(¢e|C)E(¢p|C) = 0

holds for A x A-a.e. (¢,t') € T'x T. Hence there exists a 7 ® 7 -measurable set
D such that (A x A)(D) =1 and E(h:hy) = 0 for all (¢,¢') € D. Now define
D* as the set of all sequences t>° = (¢;)52; € T such that (¢;,¢;) € D for
all 4,j € IN. An elementary argument shows that A>*°(D*) = 1. Hence, for
all £ € D*, the random variables (h¢,)$2; are mutually orthogonal.

Now, since fTE(hf)d)\ < 00, the usual strong law of large numbers
implies that for A>-a.e. t> € T°°, L 37" E(h? ) converges to [, E(h)dA
as n — oo. Because = """ | E(h?) converges, Lemma 9 implies that the
moment condition Y >, # loanE(hfn) < oo of the strong law of large
numbers in [11], Theorem 5.2, p. 158 is satisfied for A>-a.e. t*° € T.
That result therefore applies to the random variables (h:,)$2,, because they
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are mutually orthogonal for A*-a.e. t>° € T°°. It implies that for A>*-a.e
t> € T, one has

! > hi(w) — 0. (13)
n — P-a.s.

Because ¢ is square-integrable (and so integrable) on the product space
(T x 2, 7T ® A, A\ X P), the Fubini Theorem implies that ¢, is A-integrable
on T, for P-a.e. w € (2; the usual strong law of large numbers then implies
that for A>-a.e. t> € T>°, L 3" | o, (t;) converges to [, ¢u(t)dA(t). Using
the Fubini theorem yet again, the relevant null sets can be interchanged,

and so for A*°-a.e. t° € T,

—Ej% | 2u(D)AND). (14)

PaS

By Equations (13) and (14), we obtain that for A>-a.e. t>° € T,

S @) =2 3 by w) + Z% ) — [ puwane.  (19)
i=1 =1

a.s. Jop

But [, 0o (t)dA(t) = [1[[y fe(@)dpe(x)]dX = [, [t 2)d(X X ), so the
result follows from (15). DO

For each z € X, let 0, denote the degenerate probability measure at-
taching probability 1 to x. Then, for each single random draw t* € T
and each w € {2, each measure pjs , = I Ogtiw) (R =1,2,...) is the
empirical distribution of & given the n observations g(t;,w) (i = 1,2,...,n).
The following corollary says that p,, is identified as the (almost sure) weak
limit of pit

Corollary 2 For A\*°-a.e. sequence t>*° € T, the empirical distribution
His,, converges weakly to p,, for P-almost all w € (2.

Proof We apply Theorem 6.6 on p. 47 of [26]. Because X is a Polish space,
so in particular a separable metric space, this theorem implies that there
exist an equivalent metric on X and a sequence of bounded and uniformly
continuous functions ¢, : X — R (m = 1,2,...) with the property that, for

each t>° € T and each w € (2, the distribution pjs ,, converges weakly to

the, if and only if for each m = 1,2, ..., the mean [y @, (x) dufs,, converges
to [y om(x) dp, as n — oco.
For each fixed m = 1,2, ..., because ¢,, is measurable and bounded, the

definition of ' ,, and Lemma 10 together imply that for A>°-a.e. sequence
t>° e T,

L m(2) At = Z@m (tiyw)) — X‘Pm(x) dptg,- (16)

P—a.s.
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Because one can group together countably many A*°-null sets, there exists a
subset 77° of T°° with A*°(77°) = 1 such that for each sequence t* € T,
Equation (16) holds for all m simultaneously. Consider any sequence t*> €
Tr°. Again, because one can group together countably many P-null sets,
for P-almost all w € 2 one has [y o () duf , — [ om(x) dp, for all m
simultaneously. This implies that for each sequence t> € T7°, the sufficient
condition for pufs ,, to converge weakly to p,, is satisfied for P-almost all
well O

6.3 Proof that (4) = (1)

Of course, (4) = (3) is obvious. To complete the proof of Theorem 1,
therefore, we only need to prove the following lemma.

Lemma 11 Suppose that for each S € T, B € B, and for \*°-a.e. sequence
t>° € T, one has

—215 (g9(ts,w)) —— A(S) o (B) (17)

P—a.s.

Then for each A € A and B € B, one has P(AN g; *(B)) = [, ttw(B) dP
for X-a.e. t€T.

Proof Integrating (17) w.r.t. w over any measurable set A € A yields the
result that, for A*°-a.e. t>° € T one has

—le / (g(ti,w)) dP

:—le PANG (B) = XS) [ wBrar

A

Now, the hypothesis that probabilities are pairwise measurable clearly im-
plies that ¢ — P(ANg; ' (B)) is T-measurable. It follows that for any S € 7,
the mapping t — 1g(t) P(AN g; *(B)) is also T-measurable. By the usual
strong law of large numbers, therefore,

—215 P(Ang\( H/1S P(AN g7 (B))dA

_ / P(AN g (B))dA (19)
S

for A*°-a.e. t>° € T°. Because the two limits in (18) and (19) must be equal,

/SP(Amg;l(B))dA:A(S)/Auw(B)dP:/S [/AMW(B)dP} dA
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for all S € 7. By the essential uniqueness of the Radon—Nikodym derivative,
it follows that

P(ANg{(B)) = /A 1o (B) dP

for d-ae.teT. O

7 Concluding assessment

In mathematical economics, following the pioneering contributions of Vick-
rey [33] and Aumann [2], [3] respectively, it has become common to consider
continuous density functions of relevant consumer characteristics, or more
general economic models with a continuum of agents. These, of course, are
mathematical abstractions which cannot hold exactly in any actual econ-
omy, with a finite set of agents. Nevertheless, they provide convenient ap-
proximations when used with appropriate care.

In models where agents face individual risk, the joint and sample mea-
surability problems described in the introduction have made it difficult to
provide rigorous foundations for the intuitively appealing idea that, with a
continuum of agents, some version of the law of large numbers should hold
exactly rather than approximately. The earlier work in [27], [28] and [30]
shows that this obstacle can be overcome in an extended product measure-
theoretic framework with the usual Fubini property. The only known exam-
ples of such a framework involve Loeb product spaces.

As mentioned in the introduction, if one adopts the asymptotic point
of view by simply taking a randomly drawn sequence from a continuum
of i.i.d. random variables, then the classical law of large numbers trivially
applies to this sequence. This paper moves beyond this law to consider a
large economy modeled by a continuum of essentially pairwise exchangeable
random variables.'® Our parameter space (T,7,)\) can be any atomless
probability space, including the Lebesgue unit interval and hyperfinite Loeb
spaces. Proposition 2 shows that the joint measurability problem cannot be
avoided unless almost all agents’ shocks are identical and thus perfectly
correlated. Nevertheless, even without joint or sample measurability, it is
shown that the “almost everywhere” or “essential” versions of the symmetry,
pairwise exchangeability and conditional i.i.d. properties are all equivalent.

An important issue in macroeconomics is to devise a general mathe-
matical framework allowing individual agents to face random idiosyncratic
shocks which are independent when conditioned on suitably constructed
random macroeconomic states. Ideally, the macroeconomic states should
have a simple interpretation, and even be identifiable empirically. This pa-
per shows how Monte Carlo simulation can achieve that purpose, with the
macroeconomic states in the symmetric case being just the weak limit of

13 We believe that even this type of symmetry condition can be greatly relaxed,
as we plan to discuss in later work.
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the empirical distributions obtained from a single random draw t>*° € T,
as shown in Corollary 2.

This accords with many existing macroeconomic models, including nat-
ural extensions to a continuum of agents of the models involving simple
independently distributed stationary (SIDS) processes devised by Nielsen
[25], which appear in a particularly simple and appealing class of ratio-
nal belief equilibria of the kind considered by Mordecai Kurz and various
collaborators — see especially [22] and [23]. Indeed, in such a continuum
extension, a key part of the macroeconomic state would be the history of
what proportions of agents have optimistic or pessimistic beliefs of various
degrees at different times.

Finally, as a by-product of our work, we have shown that the fundamen-
tal probabilistic concept of (essential) independence constitutes a necessary
condition for the classical sequential law of large numbers to hold. This con-
verse result is entirely new in the extensive mathematical literature on the
subject.

References

1. Anderson, R.M.: Non-standard analysis with applications to economics. In:
Hildenbrand, W., Sonnenschein, H. (eds.) Handbook of mathematical eco-
nomics, Vol. IV, ch. 39, pp. 2145-2208. Amsterdam: North-Holland 1991

2. Aumann, R.J.: Markets with a continuum of traders. Econometrica 32, 39-50
(1964)

3. Aumann, R.J.: Existence of competitive equilibria in markets with a contin-
uum of traders. Econometrica 34, 1-17 (1966)

4. Billingsley, P.: Convergence of probability measures. New York: John Wiley
1968

5. Billingsley, P.: Probability and measure (3rd. edn.). New York: John Wiley
1995

6. Chamberlain, G.: Econometrics and decision theory. Journal of Econometrics
95, 255-283 (2000)

7. Chow, Y. S., Teicher, H.: Probability theory: Independence, interchangeabil-

ity, martingales (3rd. edn.) New York: Springer 1997

Cohn, D. L.: Measure theory. Boston: Birkhauser 1980

9. Diestel, J., Uhl, Jr., J. J.: Vector measures. Providence, Rhode Island: Amer-

ican Mathematical Society 1977

10. Doob, J.L.: Stochastic processes depending on a continuous parameter. Trans-
actions of the American Mathematical Society 42, 107-140 (1937)

11. Doob, J.L.: Stochastic processes. New York: John Wiley 1953

12. Dudley, R.M.: Real analysis and probability. New York: Chapman & Hall
1989

13. Durrett, R.: Probability: Theory and examples (2nd. edn.). Belmont, Califor-
nia: Wadsworth 1996

14. Feldman, M., Gilles, C.: An expository note on individual risk without aggre-
gate uncertainty. Journal of Economic Theory 35, 26-32 (1985)

15. Geweke, J.: Monte Carlo simulation and numerical integration. In: Amman,
H., Kendrick, D., Rust, J. (eds.) Handbook of computational economics, pp.
731-800. Amsterdam: North-Holland 1996

®



Simulating a Continuum of Random Variables 25

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Green, E.J.: Individual level randomness in a nonatomic population. Eco-
nomics Working Paper #ewp-ge/9402001 (1994)

Hammond, P.J., Sun, Y.N.: Joint measurability and the one-way Fubini prop-
erty for a continuum of independent random variables. Stanford University
Department of Economics Working Paper # 00-008 (2000)

Jackson, M.O., Kalai, E., Smorodinsky, R.: Bayesian representation of
stochastic processes under learning: de Finetti revisited. Econometrica 67,
875-893 (1999)

Judd, K.: The law of large numbers with a continuum of IID random variables.
Journal of Economic Theory 35, 19-25 (1985)

Khan, M.A., Sun, Y.N.: Weak measurability and characterizations of risk.
Economic Theory 13, 541-560 (1999)

Kohlberg, E., Reny, P.J.: Independence on relative probability spaces and
consistent assessments in game trees. Journal of Economic Theory 75, 280—
313 (1997)

Kurz, M.: Rational beliefs and endogenous uncertainty. Economic Theory 8,
383-397 (1996)

Kurz, M., Schneider, M.: Coordination and correlation in Markov rational
belief equilibria. Economic Theory 8, 489-520 (1996)

McCall, J.J.: Exchangeability and its economic applications. Journal of Eco-
nomic Dynamics and Control 15, 549-568 (1991)

Nielsen, C.K.: Rational belief structures and rational belief equilibria. Eco-
nomic Theory 8, 399-422 (1996)

Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York: Aca-
demic Press 1967

Sun, Y.N.: Hyperfinite law of large numbers. The Bulletin of Symbolic Logic
2, 189-198 (1996)

Sun, Y.N.: A theory of hyperfinite processes: The complete removal of indi-
vidual uncertainty via exact LLN. Journal of Mathematical Economics 29,
419-503 (1998)

Sun, Y.N.: The almost equivalence of pairwise and mutual independence and
the duality with exchangeability. Probability Theory and Related Fields 112,
425-456 (1998)

Sun, Y.N.: On the sample measurability problem in modeling individual risks.
Journal of Economic Theory, invited revision.

Talagrand, M.: Pettis Integral and Measure Theory. Providence: Memoirs of
the American Mathematical Society, No. 307, 1984

Talagrand, M.: The Glivenko-Cantelli problem. Annals of Probability 15, 837—
870 (1987)

Vickrey, W.S.: Measuring marginal utility by reactions to risk. Econometrica
13, 319-333 (1945)



