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ABSTRACT. Behaviour norms are considered for decision trees which allow both objective probabilities
and uncertain states of the world with unknown probabilities. Terminal nodes have consequences in a given
domain. Behaviour is required to be consistent in subtrees. Consequentialist behaviour, by definition, reveals
a consequence choice function independent of the structure of the decision tree. It implies that behaviour
reveals a revealed preference ordering satisfying both the independence axiom and a novel form of sure-
thing principle. Continuous consequentialist behaviour must be expected utility maximizing. Other familiar
assumptions then imply additive utilities, subjective probabilities, and Bayes’ rule.



1. INTRODUCTION

An almost unquestioned hypothesis of modern normative decision theory is that acts are valued by their
consequences.1 Indeed, Savage (1954) defines an act as a function mapping uncertain of the world into a
domain of conceivable consequences, thus identifying an act with the state-contingent consequence function
which it generates.

Normative decision theory then erects a superstructure of various possible axiom systems upon this ba-
sic “consequentialist” hypothesis. The axioms and their implications are discussed at great length, without
general agreement as to their acceptability or not as principles of rational behaviour. This discussion is usu-
ally conducted in a “normal form” decision problem where, relying upon von Neumann and Morgenstern’s
(1944) reduction of extensive games, the agent is viewed as having to choose a decision strategy specify-
ing what decision to make in every conceivable set of circumstances. In a normal form decision problem,
consequentialism means that behaviour is judged to be acceptable if its consequences (or, more generally,
its risky and uncertain consequences) lie in the choice set corresponding to the feasible set of consequences
resulting from all possible decisions. In other words, consequentialism implies that behaviour should reveal
a consequence choice function. No other rationality postulates or axioms are implied by consequentialism
alone.

In decision trees, however, consequentialism has much more powerful implications. A decision tree
(Raiffa, 1968) amounts to a one person game in extensive form, in which there is perfect information because
uncertainty is deemed to be resolved only when the agent knows how it is resolved, and because of perfect
recall. A decision strategy in the normal form implies using consistent decision strategies in all possible
“continuation trees” — or “subtrees” which continue from any node of the decision tree. These consistent
decision strategies are just continuations of the original decision strategy. Consequentialism applies to these
continuation strategies in the continuation decision trees no less than to complete strategies in complete
decision trees. That, at least, is the fundamental hypothesis of this and several related papers.2 It would
be false if missed opportunities, regrets, sunk costs, etc. affected behaviour and yet were excluded from
the domain of consequences. As a normative principle, however, consequentialism requires everything which
should be allowed to affect decisions to count as a relevant consequence — behaviour is evaluated by its
consequences, and nothing else. If regrets, sunk costs, even the structure of the decision tree itself, are
relevant to normative behaviour, they are therefore already in the consequence domain. Indeed, the content of
a normative theory of behaviour is then largely a matter of what counts in practice as a relevant consequence,
rather than whether consequentialism and other abstract axioms are satisfied. For example, the standard
economists’ injunction to ignore sunk costs is a practical normative principle. Whereas expected utility
maximization is a principle which has no practical content (beyond continuity of behaviour with respect to
changes in probabilities) until the consequences which are the arguments of the utility function have been
specified.3 Another practical normative principle in economics, which I happen to find ethically unacceptable,
is to consider only aggregate consumption of each good and aggregate income, rather than the distribution
between rich and poor consumers.

Here, however, my subject is the implications of consequentialism for the structure of normative be-
haviour — in particular, the extent to which consequentialism implies that behaviour must maximize ex-
pected utility. Consequentialism per se is not about practical normative theories. Indeed, consequentialist
behaviour is very impractical, insofar as it requires consideration of the whole of a decision tree which may
be unmanageably complex. It may also result in very bad consequences even in rather simple trees, as long
as behaviour is explicable by those bad consequences.

Since the content of the consequence domain is really a subject for practical normative theory, I shall
avoid it by taking as fixed the state contingent consequence domains Ys (s ∈ E) for a fixed finite set E of
possible states of the world. For most of the paper, the domain Ys is allowed to depend on the state of the
world s so that decision problems involving life or death issues can be treated. Where at least one uncertain
state involves the agent’s accidental death, or the loss of a limb, that is incompatible with consequences such
as those which include playing cricket normally.
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The other key hypothesis, apart from that consequentialism applies both to complete and to continua-
tion decision trees, is that it applies to all logically possible finite decision trees whose terminal nodes have
consequences in the given domain. This is the assumption that there is an unrestricted domain of conse-
quential decision trees.4 The formal part of the paper commences with Section 2, in which consequential
decision trees are defined. In addition to decision, chance and terminal nodes as considered, for instance,
by Raiffa (1968), the definition allows “natural” nodes n at which “nature” refines the set S(n) ⊂ E of
possible states of the world into a partition {S(n′) | n′ ∈ N+1(n) }, where N+1(n) denotes the nodes which
immediately succeed the natural node n. Natural nodes differ from chance nodes in that chance nodes have
positive probabilities π(n′|n) (n′ ∈ N+1(n) ) attached to their immediate successors. The exclusion of zero
probabilities is important for reasons which will become clear in Section 6. The other difference from Raiffa
(1968) is that terminal nodes have attached to them consequences rather than payoffs. Indeed, the whole
aim of the paper is to give sufficient conditions for the existence of a payoff or utility function. At a terminal
node n where the set of possible states of the world is S(n), the attached consequence is taken to be a simple
(i.e. finitely supported) probability distribution ỹS(n) in the set Ỹ S(n) of all simple distributions on the
product set Y S(n) :=

∏
s∈S(n) Ys of “contingent consequence functions” yS(n) := (ys)s∈S(n).

Section 3 considers consistent behaviour norms for the set of consequential decision trees. A behaviour
norm is a correspondence specifying a non-empty subset of N+1(n) at every decision node n of every conse-
quential decision tree. Consistency is a natural requirement given that the norm should apply to continuation
trees as well as complete trees. Essentially, the norm must prescribe behaviour in any continuation tree which
is a restriction of the behaviour prescribed in the original tree. That is, the behaviour norms in the orig-
inal tree and in the continuation tree must specify the same subset of N+1(n) at any decision node of the
continuation tree. The potential addict example of Hammond (1976) is used to elucidate this consistency
condition.

In order to specify that the consequences of behaviour prescribed by the norm must depend only on
set of all consequences of possible behaviour, the consequences of behaviour must be derived. Section 4
begins by giving a method of doing this, starting at all the terminal nodes of the tree and then applying
backward recursion. In any tree T the sets Φβ(T, n), F (T, n) are constructed at all nodes n in turn, where
Φβ(T, n) denotes the set of consequences of behaviour described by β, and F (T, n) denotes the feasible set of
consequences. One has ∅ �= Φβ(T, n) ⊂ F (T, n). Section 4 spells out the crucial consequentialist hypothesis,
which is that F (T, n) = F (T ′, n) implies Φβ(T, n) = Φβ(T ′, n). Thus for every non-empty S ⊂ E, there
must exist a “revealed” consequence choice function CS

β such that, in every tree T and at every node n of
T , one has

∅ �= Φβ(T, n) = C
S(n)
β (F (T, n)) ⊂ F (T, n) ⊂ Ỹ S(n).

In fact, because behaviour is consistent in continuation trees, it is enough to have the above hold at the
initial node of any decision tree.

After the necessary preliminary definitions, Sections 5, 6, 7 and 8 give a complete characterization of a
consequentialist behaviour norm. Using the fact that such a norm must be consistent and consequentialist
in all continuous trees, Section 5 proves the existence, for every non-empty S ⊂ E, of a revealed preference
ordering RS

β (i.e. a complete, transitive, binary relation which the consequences of behaviour must maximize
at any decision node n of any consequential decision tree, provided that S(n) = S). Then Section 6 proves
that all these preference orderings must satisfy Samuelson’s (1952) independence axiom.5 Section 7 proves
that they must satisfy a new version of Savage’s (1954) sure-thing principle extended to allow independent
probabilities. Only independent probabilities, however — in particular, other extended versions of the
sure-thing principle, such as that due to Anscombe and Aumann (1963), are not implied. Finally, this
part of the paper concludes in Section 8 with a proof that the three necessary conditions just derived are
actually a complete characterization of consequentialist behaviour, because any collection RS (∅ �= S ⊂
E) of preference orderings satisfying the independence axiom and the sure-thing principle for independent
probabilities permits the construction of a corresponding consequentialist norm.

This complete characterization of consequentialist behaviour norms leaves open the possibility of lexi-
cographic preferences which violate expected utility maximization. For expected utility to be satisfied, an
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additional continuity or “Archimedean” axiom is clearly required. Section 9 states one for the behaviour
norm itself. As probabilities vary at the chance nodes of a consequential decision tree there is a correspon-
dence expressing the dependence of behaviour on probabilities. This correspondence is required to have a
closed graph. This implies that the preference orderings RS (∅ �= S ⊂ E) all satisfy Herstein and Milnor’s
(1953) continuity (or Archimedean) axiom, and that each corresponds to the expected value of each von
Neumann-Morgenstern utility function (NMUF) vS in a unique cardinal equivalence class.

Section 9 makes no use of the sure thing principle for independent probabilities. In Section 10 this
other implication of consequentialism is invoked to characterize further the structure of the NMUF’s vS for
different S ⊂ E. One possibility is that each vS can be expressed in the form of an additive evaluation function∑

s∈S vs, as in Wilson (1968) and Myerson (1979). But two other possibilities are that vS be expressible as a
product of either the form

∏
s∈S vs or the form −

∏
s∈S (−vs) where, in the first case each vs is positive, and

in the second case each vs is negative. These new possibilities arise because consequentialism only implies
the sure-thing principle for independent probabilities. Section 10 presents a complete characterization of
the set of continuous consequentialist behaviour norms — they must result in consequences which maximize
expected utility, with each NMUF vS being built up from the NMUF’s vs (s ∈ S) as in one of the three
cases mentioned above. Section 10 concludes by showing how which of these three cases occurs depends on
whether there is a preference to have uncertainty about which of the two events S1 or S2 holds resolved
before chance moves unravel, and that this preference depends upon whether the random consequences yS1

and yS2 have positively or negatively correlated utilities.

To this point the consequence domains Ys(s ∈ E) have been unrestricted. Section 11 finally introduces
the standard assumption of Savage (1954), Anscombe and Aumann (1963), Harsanyi (1978), Myerson (1979),
etc. that Ys is independent of s. As already suggested, the assumption is undesirable and the further
implications of relaxing it will be explored elsewhere. It is used to here to see how justified are standard
axiomatic formulations of subjective probabilities.

Section 11 also adapts another Savage (1954) assumption regarding “constant acts”. Here, it is required
that when decision trees have only constant (state-independent) consequences, the constant consequences of
behaviour should not depend upon the set of possible states of the world — that is, behaviour itself should
be “state-independent”. This is actually rather stronger than Savage’s assumption because it encompasses
probability distributions over constant consequences. These two new assumptions exclude the multiplicative
utility functions vS when the constant consequence domain Y has at least three distinct indifference classes.
Then vS ≡

∑
s∈S vs. But if Y has at most two distinct indifference classes, the two multiplicative cases

remain possible. Indeed one cannot then exclude the preferences associated with Ellsberg’s (1961) paradox,
as is shown in Section 12.

Reverting to the customary additive case, Section 13 shows how a consequentialist behaviour norm
satisfying all the assumptions so far mentioned must reveal unique conditional subjective probabilities p(s|S)
(s ∈ S ⊂ E), as well as unique cardinal equivalence class of state-independent NMUF’s defined on the
constant consequence domain Y . Subjective probabilities must satisfy Bayes’ rule, for reasons similar to
those considered by Weller (1978). Thus Section 13 justifies the Anscombe and Aumann (1963) approach. It
also contains a small surprise — null events are not allowed, and all subjective probabilities must be positive,
just like their objective counterparts.

Section 14 contains a brief summary and some concluding remarks.

2. CONSEQUENTIAL DECISION TREES

As discussed in the introduction, a fixed non-empty finite set E of possible states of the world is assumed.
For each state s in E, assume too that there is a fixed non-empty state contingent consequence domain Ys

whose members are the consequences which, if state s should occur, may result from behaviour in the domain
of decision problems being considered.

For any non-empty subset S of E, S is an event, and Y S :=
∏

s∈S Ys denotes the set of contingent
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consequence functions given that event. Each member yS of Y S is a mapping from the states in event S to
the appropriate state contingent consequence domain.

A simple probability distribution of contingent consequences — which will be called, for short, a “risky
consequence” or even just a “consequence” — is a function µ(yS), taking non-negative real values on its
domain Y S , for which there exists a finite support K ⊂ Y S satisfying both µ(yS) > 0 ⇐⇒ yS ∈ K and also∑

yS∈K µ(yS) = 1. For every event S, the set of all such risky consequences will be denoted by ∆(Y S) or
just by Ỹ S .

In the absence of uncertain states of the world, decision trees with chance, decision and terminal nodes
should be familiar from Raiffa’s (1968) lucid introductory lectures. Here, therefore, I merely introduce
notation and also adapt the definition to accommodate uncertain states of the world, by allowing “natural
nodes” at which a “move of nature” partitions the set of possible states. Also, every terminal node x of a
decision tree T will have attached to it a consequence γ(x) in the space Ỹ S(x) of risky contingent consequence
functions given the event S(x).

Formally, a consequential decision tree is a collection

T = 〈N, N∗, N0, N1, X, N+1(·), n0, π(·|·), S(·), γ(·)〉

whose ten component parts are described and interpreted as follows:
(i) N is a non-empty finite set of nodes of the tree T , which is partitioned into the four disjoint sets

N∗, N0, N1, and X described below;
(ii) N∗ is the (possibly empty) set of decision nodes;
(iii) N0 is the (possibly empty) set of chance nodes;
(iv) N1 is the (possibly empty) set of natural nodes;
(v) X is the non-empty set of terminal nodes;
(vi) N+1 : N �→→ N is the immediate successor correspondence satisfying:

(a) ∀n ∈ N : n /∈ N+1(n);
(b) ∀n ∈ N : N+1(n) = ∅ ⇐⇒ n ∈ X;
(c) ∀n, n′ ∈ N : N+1(n) ∩ N+1(n′) �= ∅ ⇐⇒ n = n′;

(vii) n0 is the unique initial node in N satisfying ∀n ∈ N : n0 /∈ N+1(n);
(viii) for each pair n ∈ N0 and n′ ∈ N+1(n), the positive real number π(n′|n) is the probability of the chance

move from n to n′, with ∑
n′∈N+1(n)

π(n′|n) = 1 (∀ n ∈ N0);

(ix) at each node n of N , S(n) is the event at n — the non-empty set of states of the world s that remain
possible after reaching n, with
(a) ∀n /∈ N1; ∀n′ ∈ N+1(n) : S(n′) = S(n);
(b) ∀n ∈ N1 : {S(n′) | n′ ∈ N+1(n)} is a partition of S(n);

(x) γ is the consequence mapping with domain X, satisfying γ(x) ∈ Ỹ S(x) for all x ∈ X, where γ(x) is the
consequence of reaching terminal node x.

In the above definition, (x) does not restrict consequences to “elementary” sure consequences in the
set Y := ∪s∈E Ys. Of course, if the consequence γ(x) at the terminal node x is not already an elementary
consequence, the tree could be extended so that all terminal nodes do have elementary consequences. For
one could replace x with a chance node n̂(x) which is succeeded immediately by the set

N+1(n̂(x)) = { n̂(yS(x)) | ∃yS(x) ∈ Y S(x) : γ(x, yS(x)) > 0 }

of natural nodes corresponding to each contingent consequence function yS(x) which occurs with positive
probability. At the chance node n̂(x) there should be transition probabilities given by π(n̂(yS(x))|n̂(x)) =
γ(x, yS(x)) which correspond to the relevant probability of each contingent consequence function yS(x).
Finally, each natural node n̂(yS(x)) of the set N+1(n̂(x)) should be succeeded by the terminal nodes in the
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set { x̂(s, yS(x)) | s ∈ S(x) }, each of which has an elementary consequence γ̂(x̂(s, yS(x))) = y
S(x)
s , in an

obvious notation. These extra nodes leading to elementary consequences will usually be omitted in order to
make it easier both to describe and visualize the decision trees used in proofs later on.

Restrictions (a), (b) and (c) of part (vi) are imposed so that T is indeed a tree. Then the set of nodes N
can in fact be constructed recursively from the correspondence N+1, starting with the initial node n0, then
proceeding to N+1(n0), then to

⋃
n∈N+1(n0)

N+1(n), etc. until terminal nodes are reached (after a finite
number of iterations, because N is assumed to be finite).

In part (viii), the transition probabilities π(n′|n) are restricted to be strictly positive for reasons which
will become apparent later in Section 6.

For each event S, write T (S) for the set of all possible consequential decision trees satisfying S(n0) = S
at the initial node, and let T denote ∪T (S) as S varies over all the non-empty subsets of E. Then T is the
domain of all possible finite consequential decision trees — or trees for short.

Where the tree T is variable, it will sometimes be included as an argument in expressions such as
N∗(T ), N+1(T, n), n0(T ), etc.

3. CONSISTENT BEHAVIOUR NORMS

A behaviour norm is a correspondence β with a domain consisting of all pairs T ∈ T and n ∈ N∗(T ). Its
value β(T, n) is a non-empty subset of the appropriate set N+1(T, n). Here, of course, N+1(T, n) is the set
of all decisions which are feasible at the decision node n of the tree T in the domain T of all consequential
decision trees. The value β(T, n) should be interpreted as the set of acceptable or recommended decisions
at this decision node. As usual in decision theory, the possibility of more than one decision being acceptable
is specifically allowed. But stochastic behaviour norms, in which the value β(T, n) consists of probability
distributions over N+1(T, n), are excluded — I plan to discuss them in later work.

Given any tree T = 〈N, N∗, N0, N1, X, N+1(·), n0, π(·|·), S(·), γ(·)〉 of T and any node n̄ of N , there is
a “subtree” or continuation tree

T̄ = 〈N̄ , N̄∗, N̄0, N̄1, X̄, N̄+1(·), n̄0, π̄(·|·), S̄(·), γ̄(·)〉

starting with initial node n̄0 = n̄. To define it explicitly, first let > be the binary successor relation on N
with the property that n′ > n if and only if there exists a chain n1, n2, ..., nk in N such that n1 = n, nk = n′

and nj+1 ∈ N+1(nj) for j = 1 to k− 1. Second, let N(n) := {n′ ∈ N | n′ > n or n′ = n } be the set of nodes
in N which either succeed or coincide with n. Now define :

(i) N̄ := N(n̄);
(ii) N̄∗ := N∗ ∩ N̄ ;
(iii) N̄0 := N0 ∩ N̄ ;
(iv) N̄1 := N1 ∩ N̄ ;
(v) X̄ := X ∩ N̄ ;
(vi) N̄+1 : N̄ �→→ N̄ as the restriction to N̄ of N+1 : N �→→ N which, because N̄ contains all the successors of

any of its members, must satisfy N̄+1(n) = N+1(n) ⊂ N̄ for all n ∈ N̄ ;
(vii) n̄0 = n̄ as the new initial node;
(viii) π̄(·|·) as the restriction to all pairs n ∈ N̄ , n′ ∈ N̄+1(n) = N+1(n) of the probabilities π(n′|n);
(ix) S̄(·) as the restriction to N̄ of the correspondence S : N �→→ E;
(x) γ̄(·) as the restriction to X̄ of the mapping γ with domain X.

From this definition it is obvious that T̄ is itself a consequential decision tree in T .

Henceforth, let T (n) denote the continuation from node n ∈ N(T ) of any tree T ∈ T .
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Let n be any decision node of a tree T in T . When the agent comes to make a decision at node n, the
decision problem is really described by the tree T (n) since all other nodes, branches, and consequences are
no longer possible. Whether the agent foresees it or not, behaviour at node n is described by β(T (n), n).
Thus, to be an accurate description of behaviour in the tree T , the behaviour norm β must be consistent in
the sense that β(T, n) = β(T (n), n) at all decision nodes n of every tree T of T . From now on only consistent
behaviour norms will be considered, and they will be called simply norms.

Many opponents of consequentialism have chosen to attack this consistency condition, arguing that the
agent does not just face tree T (n) at node n of the tree T . Instead, other aspects of T are regarded as
relevant, even though they are not included in the consequences. McClennen (1986, 1987), for example,
puts forward an interesting theory of “resoluteness”, in which the agent is expected to take account at n of
resolutions made at previous nodes of T . If such resolutions are indeed relevant, and are not to be counted as
consequences, this is actually a violation of consequentialism rather than of consistency because behaviour
has to be explained by resolutions as well as by its consequences.

In fact, to appreciate better the weakness of consistency and the strength of consequentialism, it
may be helpful to reconsider the “potential addict” of Hammond (1976). The agent faces a consequen-
tial decision tree T with two decision nodes n0, n1, and three terminal nodes xy (y ∈ {a, b, c}) as in Fig-
ure 3.1. There are no chance or natural nodes. The immediate successor correspondence N+1 satisfies
N+1(n0) = {xc, n1}, N+1(n1) = {xa, xb}. The consequence mapping satisfies γ(xy) = y for y ∈ {a, b, c}. The
three possible consequences a, b, c are given the following interpretations:

(i) a is enjoying some addictive activity for a while but then giving it up before any permanent damage to
health is caused;

(ii) b is becoming addicted and suffering permanent damage;
(iii) c is never exposing oneself to the possibility of addiction.

� n0

� n1 • xc

• xa • xb

Figure 3.1

The potential addict decides at n0 whether to embark on the addictive activity, and at n1 whether to
give up the activity after addiction has set in but before any other permanent damage has occurred. A näıve
potential addict plans to enjoy the consequence a and moves to n1, but moves on from there to xb because
addition has set in. A sophisticated potential addict predicts this behaviour and moves first to xc in order
to avoid addiction and the consequence b. Both types of behaviour are consistent in T because they both
satisfy

β(T, n1) = β(T (n1), n1) = {xb}.
In addition näıve behaviour has β(T, n0) = {n1} and sophisticated behaviour has β(T, n0) = {xc}. Thus
even näıve behaviour is actually consistent, though only unintentionally so. Näıve behaviour has consequence
b and sophisticated behaviour has consequence c.

� n′
0

� n′
1 • x′

c • x′
d

• x′
a • x′

b

Figure 3.2
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Though they are both consistent, neither näıve nor sophisticated behaviour is consequentialist. For
consider the decision tree T ′ of Figure 3.2 in which an extra option of commitment is available at n′

0, leading
to terminal node x′

d whose consequence is taken to be a. Now the näıve agent, who cannot see the need to
commit, has β(T ′, n′

0) = {n′
1, x

′
d} and the ultimate consequence of näıve behaviour is either a or b depending

on whether the first move is to x′
d or to n′

1. The sophisticated agent, however, takes full advantage of the
opportunity to commit by behaving according to β(T ′, n′

0) = {x′
d} with consequence a. Thus, although the

decision trees T, T ′ both offer the same range {a, b, c} of feasible consequences, the actual consequences of
näıve and sophisticated behaviour change as one changes the structure of the tree. This is a violation of the
consequentialist principle to be defined below.

In the face of the potential addict’s decision problem, sophisticated behaviour seems clearly the best,
despite its violation of consequentialism. This does not imply, however, that consequentialism is irrational.
Rather, the potential addict is really two (potential) persons, before and after addiction, and the decision
problem has to be analysed as a “game” between two “rational players”. This paper will consider only single
person decision theory and defer all questions regarding multi-person decisions for later analysis.

4. CONSEQUENTIALIST BEHAVIOUR

As explained in the introduction, consequentialism entails the behaviour norm β revealing, for every
event S, a a consequence choice function CS

β with the property that, for all trees T of T , and at all nodes
n ∈ N(T ),

Φβ(T, n) = C
S(n)
β (F (T, n)).

Here F (T, n) is the non-empty subset of Ỹ S(n) consisting of all the consequences of behaviour that are
still possible after reaching node n. And Φβ(T, n) is the non-empty subset of F (T, n) consisting of all the
consequences which could possibly result from following the behaviour norm β after reaching node n. Both
Φβ(T, n) and F (T, n) are easily calculated by backward recursion, and the calculation permits a formal proof
that indeed

∅ �= Φβ(T, n) ⊂ F (T, n) ⊂ Ỹ S(n)

for all nodes n in all trees T ∈ T . Obviously the backward recursion starts at the terminal nodes x ∈ X,
where one has

∅ �= Φβ(T, x) = F (T, x) = {γ(x)} ⊂ Ỹ S(x)

because only the one consequence γ(x) is possible. For the other nodes in N , there are three obvious cases
to consider

Case 1. Decision nodes n ∈ N∗. Here:

F (T, n) =
⋃

n′∈N+1(n)
F (T, n′); Φβ(T, n) =

⋃
n′∈β(T,n)

Φβ(T, n′).

Case 2. Chance nodes n ∈ N0. Here, given the probabilities π(n′|n) of the immediately succeeding nodes
n′ ∈ N+1(n), one has:

F (T, n) =
∑

n′∈N+1(n)
π(n′|n)F (T, n′);

Φβ(T, n) =
∑

n′∈N+1(n)
π(n′|n) Φβ(T, n′).

Case 3. Natural nodes n ∈ N1. Here, given the partition ∪n′∈N+1(n) S(T, n′) of S(T, n), one has:

F (T, n) =
∏

n′∈N+1(n)
F (T, n′); Φβ(T, n) =

∏
n′∈N+1(n)

Φβ(T, n′).

Thus F (T, n) is the set of all probability distributions µ ∈ Ỹ S(n) which:
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(i) in Case 1 are equal to a probability distribution µ(n′) ∈ F (T, n′) for at least one immediately succeeding
node n′ ∈ N+1(n);

(ii) in Case 2 can be expressed as the probability mixture
∑

n′∈N+1(n) π(n′|n) µ(n′) of probability distribu-
tions satisfying µ(n′) ∈ F (T, n′) for all immediately succeeding nodes n′ ∈ N+1(n);

(iii) in Case 3 can be expressed as the product joint distribution
∏

n′∈N+1(n) µ(n′) of the independent
probability distributions µ(n′) satisfying µ(n′) ∈ F (T, n′) for all immediately succeeding nodes n′ ∈
N+1(n).

The construction of Φβ(T, n) in each case is similar. The product set arises in Case 3 because the probabilities
at all the chance nodes of any decision tree are independent.

This backward recursion can be applied throughout the decision tree T until the initial node n0 is
reached, at which the feasible set is F (T ) := F (T, n0) and the revealed choice set is Φβ(T ) := Φβ(T, n0).
The existence of a consequence choice function CS

β for every event S evidently implies that whenever two
decision trees T, T ′ are consequentially equivalent6 in the sense that F (T ) = F (T ′), then behaviour in the
two trees must also be consequentially equivalent , in the sense that Φβ(T ) = Φβ(T ′). Thus the structure of
the decision tree must be irrelevant to the consequences of acceptable or recommended behaviour. Of course,
such consequential equivalence of the two trees T, T ′ requires that S(n0) = S′(n′

0) because F (T ) ⊂ Ỹ S(n0)

and F (T ′) ⊂ Ỹ S′(n′
0). This explains why there is a different revealed consequence choice function CS

β for
each different event S.

The domain of CS
β has not yet been specified. It is the complete collection of all non-empty finite subsets

of Ỹ S because of

THEOREM 4: For all non-empty S ⊂ E and non-empty finite Z ⊂ Ỹ S, there exists a consequential decision
tree T ∈ T (S) such that F (T ) = Z and ∅ �= CS

β (Z) = Φβ(T ) ⊂ Z.

Proof. Given any non-empty finite subsets S and Z as in the hypothesis of the theorem, there is a trivial
decision tree T with just one initial decision node n0 at which the set of immediate successors N+1(n0) is
equal to the set of terminal nodes, with one terminal node for each consequence in the finite set Z. Thus

N+1(n0) = X = {n(ζ) | ζ ∈ Z }, S(n0) = S(n(ζ)) = S (∀ζ ∈ Z),

and the consequence mapping γ : X �→ Ỹ S has γ(n(ζ)) = ζ (all ζ ∈ Z). So F (T, n0) = F (T ) = Z in this
tree T . Therefore:

CS
β (Z) = CS

β (F (T )) = Φβ(T ) = γ(β(T, n0)).

But then it must be true that CS
β (Z) is a non-empty subset of Z because β(T, n0) is a non-empty subset of

X.

Were the domain of the behaviour norm restricted to trivial trees such as that used to prove Theorem
4, then any consequence choice function would be consistent with consequentialism. With an unrestricted
(or less restricted) domain, however, the consistency property of Section 3 becomes important, and severely
restricts the set of consequentialist behaviour norms which are logically possible.

5. CONSEQUENTIALISM IMPLIES ORDINALITY

In this section it is shown that a consequentialist behaviour norm β reveals not only a consequence choice
function CS

β for each event S, but also a consequence preference ordering RS
β , assuming that the domain of

consequential decision trees is unrestricted. Recall that a preference ordering is a complete transitive binary
relation. Let RS

β be the binary preference relation revealed by choices among pairs — namely, the relation
defined, for all λ, µ ∈ Ỹ S , by

λ RS
β µ ⇐⇒ λ ∈ CS

β ({λ, µ}).
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Because of Theorem 4, CS
β ({λ, µ}) is non-empty for every pair λ, µ ∈ Ỹ S , so the relation RS

β is indeed
complete. It will be shown that CS

β maximizes RS
β , for all non-empty finite sets Z ⊂ Ỹ S , because

CS
β (Z) = {λ ∈ Z | µ ∈ Z ⇒ λRS

βµ}

and also that RS
β is transitive. The proof uses a series of lemmas, of which the first is based upon considering,

for any non-empty S ⊂ E, non-empty finite Z ⊂ Ỹ S , and pair λ, µ ∈ Z, the decision tree

T (λ, µ, Z) := 〈N, N∗, N0, N1, X, N+1(·), n0, π(·|·), S(·), γ(·)〉

� n0

. . . . . . . . . . . . . . . . . . . . . . .

� n1 • •︸ ︷︷ ︸
• n(λ) • n(µ) {n(ζ) | ζ ∈ Z \ {λ, µ } }

Figure 5.1. The Decision Tree T (λ, µ, Z)

illustrated in Figure 5.1 above. This is constructed as follows:

(i) N := {n0, n1 } ∪ {n(ζ) | ζ ∈ Z};
(ii) N∗ := {n0, n1};
(iii) N0 := ∅;
(iv) N1 := ∅;
(v) X := {n(ζ) | ζ ∈ Z};
(vi) N+1(n0) := {n1} ∪ {n(ζ)|ζ ∈ Z \ {λ, µ}}, and N+1(n1) := {n(λ), n(µ)};
(vii) n0 is the initial node;
(viii) conditional probabilities are undefined because N0 = ∅;
(ix) S(n) := S (all n ∈ N);
(x) γ(n(ζ)) := ζ (all ζ ∈ Z).

The tree T (λ, µ, Z) has F (T, n1) = {λ, µ} and F (T, n0) = Z.

LEMMA 5.1: For all non-empty S ⊂ E, non-empty finite Z ⊂ Ỹ S, and pairs λ, µ ∈ Z:

(a) λ ∈ CS
β (Z) ⇒ λ RS

β µ;

(b) µ ∈ CS
β (Z) & λ RS

β µ ⇒ λ ∈ CS
β (Z).

Proof.
(1) Construct T := T (λ, µ, Z) as above. Then, as F (T ) = Z, so

λ ∈ CS
β (Z) ⇐⇒ λ ∈ Φβ(T ) (by definition of CS

β )
⇐⇒ n1 ∈ β(T, n0) & λ ∈ Φβ(T, n1)

(by backward recursion)
⇐⇒ n1 ∈ β(T, n0) & n(λ) ∈ β(T, n1)

(because only n(λ) has γ(n(λ)) = λ).

(2) Consistency implies that β(T (n1), n1) = β(T, n1) and so

n(λ) ∈ β(T, n1) ⇐⇒ n(λ) ∈ β(T (n1), n1)) ⇐⇒ λ ∈ Φβ(T (n1)).

(3) Obviously F (T (n1)) = {λ, µ}, so consequentialism entails

λ ∈ Φβ(T (n1)) ⇐⇒ λ RS
β µ
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by definition of the binary relation RS
β .

(4) To complete the proof of part (a), observe that

λ ∈ CS
β (Z) ⇒ n(λ) ∈ β(T, n1) (by (1) )

⇒ λ ∈ Φβ(T (n1)) (by (2) )
⇒ λ RS

β µ (by (3) ).

(5) Replacing λ by µ in (1) above gives, in particular,

µ ∈ CS
β (Z) ⇒ n1 ∈ β(T, n0).

(6) Also
λ RS

β µ ⇒ λ ∈ Φβ(T (n1)) (by (3) )
⇒ n(λ) ∈ β(T, n1) (by (2) ).

(7) To complete the proof of part (b), observe finally that, by combining (5) and (6) and then using (1),

µ ∈ CS
β (Z) & λ RS

β µ ⇒ n1 ∈ β(T, n0) & n(λ) ∈ β(T, n1)

⇒ λ ∈ CS
β (Z).

LEMMA 5.2: For all non-empty S ⊂ E and non-empty finite Z ⊂ Ỹ S :

CS
β (Z) = {λ ∈ Z | µ ∈ Z ⇒ λRS

βµ}.

Proof.
(1) If λ ∈ CS

β (Z), then obviously λ ∈ Z. In addition, by part (a) of Lemma 5.1, λ RS
β µ for all µ ∈ Z.

(2) Conversely, by Theorem 4, CS
β (Z) must be non-empty, so suppose λ∗ ∈ CS

β (Z). Then, if λ ∈ Z and if
λ RS

β µ for all µ ∈ Z, it follows that λ RS
β λ∗ in particular, because λ∗ ∈ Z. So, by part (b) of Lemma

5.1, λ ∈ CS
β (Z).

LEMMA 5.3: For all non-empty S ⊂ E, the binary relation RS
β is transitive.

Proof. Suppose λ, µ, ν ∈ Ỹ S are such that λ RS
β µ and µ RS

β ν. Define Z as the set {λ, µ, ν }. By Theorem
4 CS

β (Z) is not empty. Three cases are then possible:

(1) If λ ∈ CS
β (Z) then, by part (a) of Lemma 5.1, λ RS

β ν.

(2) If µ ∈ CS
β (Z) then, because λ RS

β µ by hypothesis, it follows from part (b) of Lemma 5.1 that λ ∈ CS
β (Z).

So case (1) applies.

(3) If ν ∈ CS
β (Z) then, because µ RS

β ν by hypothesis, it follows from part (b) of Lemma 5.1 that µ ∈ CS
β (Z).

So case (2) applies.

Thus, in all three cases, λ RS
β ν.

So we have proved

THEOREM 5.4: If the consistent behaviour norm β is consequentialist for the unrestricted domain of all
consequential decision trees T ∈ T , then it reveals an ordinal choice function CS

β for every non-empty S ⊂ E,
with a corresponding revealed preference ordering RS

β .

Next I shall turn to properties of the orderings RS
β (S ⊂ E). From now on, the subscript β will be

omitted.
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6. CONSEQUENTIALISM IMPLIES INDEPENDENCE

The following independence axiom is due to Samuelson (1952). For all non-empty S ⊂ E, all λ, µ, ν ∈ Ỹ S ,
and all real numbers α with 0 < α < 1, one has

λ RS µ ⇐⇒ [αλ + (1 − α)ν] RS [αµ + (1 − α)ν].

This is another implication of consequentialism, as can be seen from the decision tree TS(α, λ, µ, ν) shown
in Figure 6.1, with Z := {λ, µ, ν} and:

◦ n0

α 1 − α

� n1 • n(ν)

• n(λ) • n(µ)

Figure 6.1. The Decision Tree TS(α, λ, µ, ν)

(i) N := {n0, n1 } ∪ {n(ζ) | ζ ∈ Z };
(ii) N∗ := {n1};
(iii) N0 := {n0};
(iv) N1 := ∅;
(v) X := {n(ζ) | ζ ∈ Z };
(vi) N+1(n0) := {n1, n(ν)} and N+1(n1) := {n(λ), n(µ) };
(vii) n0 the initial node;
(viii) π(n1|n0) := α, π(n(ν)|n0) := 1 − α;
(ix) S(n) := S (all n ∈ N);
(x) γ(n(ζ)) := ζ (all ζ ∈ Z).

THEOREM 6.1. If the consistent behaviour norm β is consequentialist for the unrestricted domain of all
consequential decision trees T ∈ T , then, for all non-empty S ⊂ E, the revealed preference ordering RS must
satisfy the independence axiom.

Proof. For any event S, construct the tree T := TS(α, λ, µ, ν) as in Figure 6.1. Then backward recursion
gives F (T, n1) = {λ, µ} = F (T (n1)) and:

F (T ) = α{λ, µ } + (1 − α){ν} = {αλ + (1 − α)ν , αµ + (1 − α)ν };
Φ(T ) = αΦ(T, n1) + (1 − α){ν}.

Now
[αλ + (1 − α)ν] RS [αµ + (1 − α)ν]

⇐⇒ [αλ + (1 − α)ν] ∈ Φ(T ) = αΦ(T, n1) + (1 − α){ν}
⇐⇒ λ ∈ Φ(T, n1) ⇐⇒ n(λ) ∈ β(T, n1) ⇐⇒ n(λ) ∈ β(T (n1), n1)
⇐⇒ λ ∈ Φ(T (n1)) ⇐⇒ λ RS µ.

Note that the probabilities π(n′|n) (n ∈ N0, n′ ∈ N+1(n)) in any finite consequential decision tree must
indeed be strictly positive, in general. For if not, the argument used to prove Theorem 6.1 remains valid
even when α = 0, and implies that ν RS ν ⇐⇒ λ RS µ for all λ, µ, ν ∈ Ỹ S . This would lead to the absurd
conclusion that all the random consequences in Ỹ S are indifferent, according to the preference ordering RS .
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7. THE SURE-THING PRINCIPLE
FOR INDEPENDENT PROBABILITIES

Originally, Savage (1954) stated his sure-thing principle regarding preferences for contingent consequence
functions in Y S (∅ �= S ⊂ E) rather than for probability distributions in Ỹ S . Savage’s sure-thing principle
requires that, for all non-empty disjoint S1, S2 ⊂ E, all yS1 , zS1 ∈ Y S1 , and all ȳS2 ∈ Y S2 ,

(yS1 , ȳS2) RS1∪S2 (zS1 , ȳS2) ⇐⇒ yS1 RS1 zS1 .

Since Anscombe and Aumann’s (1963) fundamental contribution, it has been customary to extend this
principle to all simple probability distributions λ, µ ∈ Ỹ S1 and ν ∈ Ỹ S2 so that

(λ, ν) RS1∪S2 (µ, ν) ⇐⇒ λ RS1 ν.

In the above statement, however, the joint distributions of the random vectors (yS1 , yS2) are left unspecified
— only the marginal distributions λ, µ, ν are given. Of course, Anscombe and Aumann (1963) assume in
effect that only these marginal distributions are relevant. As Drèze (1985, 1986, 1987) points out, this means
that the agent is indifferent whether the lotteries are resolved before or after the state of the world is known.
Rather than make the Anscombe and Aumann assumption, it seems preferable to derive it, if possible, from
consequentialism, and this will be done in due course under an extra structural condition. Meanwhile, the
precise form of the joint distribution of the random variables of the vector yS will be treated as a relevant
consequence for normative behaviour.

In general, consequentialism implies only a weakened form of Anscombe and Aumann’s version of the
sure-thing principle, in which the random vectors yS1 , yS2 must be independent. This weakened from, called
the sure-thing principle for independent probabilities, requires that for all non-empty disjoint S1, S2 ⊂ E and
all simple probability distributions λ, µ ∈ Ỹ S1 , ν ∈ Ỹ S2 :

(λ × ν) RS1∪S2 (µ × ν) ⇐⇒ λ RS1 µ.

The difference from Anscombe and Aumann is evident — only product distributions λ× ν, µ× ν satisfy the
condition. On the other hand, Savage’s original sure-thing principle is indeed an implication, when λ, µ, ν
are degenerate distributions attaching probability one to the consequences yS1 , zS1 and ȳS2 respectively.

The proof that consequentialism implies this principle relies upon constructing the decision tree
T (S1, S2, λ, µ, ν) as in Figure 7.1, for any pair of non-empty disjoint sets S1, S2 ⊂ E and any λ, µ ∈ Ỹ S1 , ν ∈
Ỹ S2 , with Z := {λ, µ, ν} and:

• n0

S1 S2

� n1 •n(ν)

• n(λ) • n(µ)

Figure 7.1. The Decision Tree T (S1, S2, λ, µ, ν)

(i) N := {n0, n1 } ∪ {n(ζ) | ζ ∈ Z };
(ii) N∗ := {n1};
(iii) N0 := ∅;
(iv) N1 := {n0};
(v) X := {n(ζ) | ζ ∈ Z };
(vi) N+1(n0) := {n1, n(ν) } and N+1(n1) := {n(λ), n(µ) };
(vii) n0 the initial node;

12



(viii) π(· | ·) undefined;
(ix) S(n0) := S1 ∪ S2, S(n1) := S(n(λ)) := S(n(µ)) := S1 and S(n(ν)) := S2;
(x) γ(n(ζ)) := ζ (all ζ ∈ Z).

THEOREM 7. If the consistent behaviour norm β is consequentialist for the unrestricted domain of all
consequential decision trees T ∈ T , then for all pairs of non-empty disjoint events S1, S2 ⊂ E, the revealed
preference orderings RS1 and RS1∪S2 must satisfy the sure-thing principle for independent probabilities.

Proof. Construct T := T (S1, S2, λ, µ, ν) as in Figure 7.1. Then

F (T, n1) = {λ, µ} = F (T (n1))
F (T ) = {λ, µ } × {ν} = {λ × ν, µ × ν }
Φ(T ) = Φ(T, n1) × {ν}

by backward recursion. Let S := S1 ∪ S2. Then

(λ × ν) RS (µ × ν) ⇐⇒ λ × ν ∈ Φ(T ) ⇐⇒ λ ∈ Φ(T, n1)
⇐⇒ n(λ) ∈ β(T, n1) ⇐⇒ n(λ) ∈ β(T (n1), n1)

⇐⇒ λ ∈ Φ(T (n1)) ⇐⇒ λ RS1 µ.

8. SUFFICIENCY OF ORDINALITY, INDEPENDENCE
AND THE SURE-THING PRINCIPLE

This section shows that the three necessary conditions for consequentialism which were derived in
Sections 5, 6 and 7 are also sufficient for the existence of a consequentialist norm.

THEOREM 8. Suppose there are preference orderings RS for all non-empty S ⊂ E satisfying the indepen-
dence axiom and the sure-thing principle for independent probabilities. Then there exists a consequentialist
consistent behaviour norm β, defined on the unrestricted domain T of all finite consequential decision trees,
for which the revealed preference orderings satisfy RS

β = RS for all non-empty S ⊂ E.

Proof.
(1) For the given collection of orderings RS (∅ �= S ⊂ E), construct the consequence choice function

CS(Z) = {λ∗ ∈ Z | λ ∈ Z ⇒ λ∗ RS λ }

which has a non-empty value for all non-empty finite Z ⊂ Ỹ S . Then, for all trees T ∈ T and for all
nodes n ∈ N(T ), construct the non-empty set

F ∗(T, n) := CS(F (T, n)) = {λ∗ ∈ F (T, n) | λ ∈ F (T, n) ⇒ λ∗ RS λ }.

(2) The construction by backward recursion of the sets F (T, n) in Section 4 obviously implies that, whenever
n̄ ∈ N and n ∈ N(n̄), then F (T, n) = F (T (n̄), n). So the above construction (1) implies also that

F ∗(T, n) = F ∗(T (n̄), n).

(3) Now, given any tree T ∈ T and any decision node n ∈ N∗(T ), define the behaviour set

β(T, n) := {n′ ∈ N+1(n) | F ∗(T, n) ∩ F (T, n′) �= ∅}.
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Because F (T, n) =
⋃

n′∈N+1(n) F (T, n′) and F ∗(T, n) is a non-empty subset of F (T, n), the set β(T, n)
is a non-empty subset of N+1(n). Thus β is a behaviour norm.

(4) When n̄ ∈ N and n ∈ N∗(n̄), then by (2) and (3) above

β(T, n) = {n′ ∈ N+1(n) | F ∗(T, n) ∩ F (T, n′) �= ∅}
= {n′ ∈ N+1(n) | F ∗(T (n̄), n) ∩ F (T (n̄), n′) �= ∅}
= β(T (n̄), n)

so that β is a consistent behaviour norm.

(5) It remains only to prove that
Φβ(T, n) = F ∗(T, n) (H)

at all nodes n of all trees T in T . For then the construction of F ∗ in (1) will imply that the consistent
behaviour norm β is indeed consequentialist, revealing the consequence choice functions CS

β = CS and
preference orderings RS

β = RS for all non-empty S ⊂ E. The proof that (H) is true will be by backward
induction.

(6) At every terminal node n of X one has

Φβ(T, n) = F ∗(T, n) = {γ(n)}

so that (H) is clearly satisfied.

(7) Suppose then, as the backward induction hypothesis, that (H) is satisfied at every node of N+1(n), for
some node n of a tree T in T . The proof requires considering three obvious cases:

Case A. n is a decision node in N∗.

(8) At any n ∈ N∗ the definition of Φβ , together with (3) and the induction hypothesis (7), implies that

Φβ(T, n) =
⋃

n′∈β(T,n)
Φβ(T, n′)

= {λ | ∃n′ ∈ N+1(n) : F ∗(T, n) ∩ F (T, n′) �= ∅ & λ ∈ F ∗(T, n′) }.

(9) If λ∗ ∈ Φβ(T, n) then (8) implies that there exists n∗ ∈ N+1(n) for which both λ∗ ∈ F ∗(T, n∗) and
F ∗(T, n) ∩ F (T, n∗) �= ∅. Let λ̂ be a member of F ∗(T, n) ∩ F (T, n∗). Then λ∗ RS(n∗) λ̂ by definition
of F ∗(T, n∗). But S(n∗) = S(n) because n is a decision node and n∗ ∈ N+1(n). Therefore λ∗ RS(n) λ̂.
But λ̂ ∈ F ∗(T, n) and so, for all λ ∈ F (T, n), λ̂ RS(n) λ which implies that λ∗ RS(n) λ because the
preference relation RS(n) is transitive, by hypothesis. So it follows that λ∗ ∈ F ∗(T, n) also.

(10) Conversely, suppose that λ∗ ∈ F ∗(T, n). Then there must exist n̂ ∈ N+1(n) for which λ∗ ∈ F (T, n̂)
because F ∗(T, n) ⊂ F (T, n) =

⋃
n′∈N+1(n) F (T, n′).

(11) For all λ ∈ F (T, n̂) one has λ ∈ F (T, n) because n̂ ∈ N+1(n) and n is a decision node. By the
hypothesis (10) and the definition of F ∗, it follows that λ∗ RS(n) λ. Again, because n is a decision node,
S(n̂) = S(n) and so λ∗ RS(n̂) λ for all λ ∈ F (T, n̂). Thus λ∗ ∈ F ∗(T, n̂).

(12) From (10) and (11), λ∗ ∈ F ∗(T, n)∩F (T, n̂), so (8) implies F ∗(T, n̂) ⊂ Φβ(T, n). But λ∗ ∈ F ∗(T, n̂) by
(11), so λ∗ ∈ Φβ(T, n).

(13) From (9), (10), (11) and (12) it follows that (H) is satisfied at n.

Case B. n is a chance node in N0.

(14) At any n ∈ N0 the definition of Φβ , together with the induction hypothesis (7), implies

Φβ(T, n) =
∑

n′∈N+1(n)
π(n′|n)Φβ(T, n′) =

∑
n′∈N+1(n)

π(n′|n)F ∗(T, n′).
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(15) Given λ, λ∗ ∈ F (T, n) write λ :=
∑

n′∈N+1(n) π(n′|n)λ(n′) where λ(n′) ∈ F (T, n′) (all n′ ∈ N+1(n))
and similarly for λ∗.

(16) If λ∗ ∈ Φβ(T, n) then, for all λ ∈ F (T, n) and all n′ ∈ N+1(n), one has λ∗(n′) ∈ F ∗(T, n′) and
λ(n′) ∈ F (T, n′), so λ∗(n′) RS(n′) λ(n′). Because n is a chance node, S(n′) = S(n) for all n′ ∈ N+1(n).
Repeated application of the independence axiom implies that, for all λ ∈ F (T, n),

λ∗ =
∑

n′∈N+1(n)
π(n′|n)λ∗(n′) RS(n)

∑
n′∈N+1(n)

π(n′|n)λ(n) = λ.

Therefore λ∗ ∈ F ∗(T, n) by definition of F ∗.

(17) Conversely, suppose λ∗ ∈ F ∗(T, n). Take any n̂ ∈ N+1(n) and any λ(n̂) ∈ F (T, n̂). Define λ̂ ∈ F (T, n)
by

λ̂ := π(n̂|n)λ(n̂) +
∑

n′∈N+1(n)\{n̂}
π(n′|n)λ∗(n′).

Then λ∗ RS(n) λ̂ by definition of F ∗. Since π(n̂|n) > 0 because of the assumption that all probabilities
are positive at all chance nodes, the independence axiom implies that λ∗(n̂) RS(n) λ(n̂). This is true for
any λ(n̂) ∈ F (T, n̂) and so λ∗(n̂) ∈ F ∗(T, n̂). Because this is true for all n̂ ∈ N+1(n), it follows from
(14) and (15) that λ∗ ∈ Φβ(T, n).

(18) From (16) and (17) it follows that (H) is satisfied at n.

Case C. n is a natural node in N1.

(19) At any n ∈ N1 the definition of Φβ , together with the induction hypothesis (7), implies

Φβ(T, n) =
∏

n′∈N+1(n)
Φβ(T, n′) =

∏
n′∈N+1(n)

F ∗(T, n′).

(20) Given λ, λ∗ ∈ F (T, n), write λ in the product form
∏

n′∈N+1(n) λ(n′) where λ(n′) ∈ F (T, n′) (all n′ ∈
N+1(n)), and similarly for λ∗.

(21) If λ∗ ∈ Φβ(T, n) then, for all λ ∈ F (T, n) and all n′ ∈ N+1(n), one has λ∗(n′) ∈ F ∗(T, n′) and
λ(n′) ∈ F (T, n′), so λ∗(n′) RS(n′) λ(n′). Because the collection {S(n′) | n′ ∈ N+1(n) } is a partition of
S(n), repeated application of the sure-thing principle for independent probabilities implies that, for all
λ ∈ F (T, n),

λ∗ =
∏

n′∈N+1(n)
λ∗(n′) RS(n)

∏
n′∈N+1(n)

λ(n′) = λ.

Therefore λ∗ ∈ F ∗(T, n).

(22) Conversely, suppose λ∗ ∈ F ∗(T, n). Take any n̂ ∈ N+1(n) and any λ(n̂) ∈ F (T, n̂). Now define
λ̂ ∈ F (T, n) by

λ̂ := λ(n̂) ×
{∏

n′∈N+1(n)\{n̂}
λ∗(n′)

}
.

Then λ∗ RS(n) λ̂ by definition of F ∗. By the sure-thing principle for independent probabilities, this
implies that λ∗(n̂) RS(n̂) λ(n̂). This is true for any λ(n̂) ∈ F (T, n̂) and so λ∗(n̂) ∈ F ∗(T, n̂). Since this
is true for all n̂ ∈ N+1(n), it follows from (19) and (20) that λ∗ ∈ Φβ(T, n).

(23) From (21) and (22) it follows that (H) is satisfied at n.

(24) Thus (H) is satisfied at all n, by backward induction.

In combination with the earlier results of Sections 5, 6 and 7, Theorem 8 gives a complete characterization
of consequentialist behaviour in finite consequential decision trees with all probabilities positive. The proof
relies on constructing β as in step (3). Obviously a form of dynamic programming is being used in which
each node n of the tree T is given a “value” in the sense of a set Φβ(T, n) = F ∗(T, n) of consequences which
are all indifferent according to the preference ordering RS(n).
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9. CONTINUITY AND CONDITIONAL EXPECTED UTILITY

The characterization of consequentialist behaviour in Theorem 8 allows general preference orderings
satisfying independence and the sure-thing principle for independent lotteries. Discontinuous preferences,
which only admit lexicographic expected utility representations, are not excluded — see Hausner (1954),
Chipman (1960), Skala (1975) and Fishburn (1982). In the spaces Ỹ S(S ⊂ E), such representations may
also generate lexicographic hierarchies of subjective probabilities, as considered recently by Blume (1986)
and Brandenburger and Dekel (1986). Here, however, such discontinuous preferences will be excluded by an
additional assumption. As in Herstein and Milnor’s (1953) simplification of the original von Neumann and
Morgenstern (1944) axioms, this could be the following

CONTINUITY ASSUMPTION: If ∅ �= S ⊂ E and λ, µ, ν ∈ Ỹ S with λ PS µ and µ PS ν, then there exist
α and β with 0 < α < β < 1 such that

[(1 − α)λ + αν] PS µ and µ PS [(1 − β)λ + βν].

As Herstein and Milnor show, this assumption, together with the fact that RS is a preference ordering
satisfying the independence axiom, implies that there is a real-valued von Neumann-Morgenstern utility
function (NMUF) vS on Y S such that, for all λ, µ ∈ Ỹ S ,

λ RS µ ⇐⇒ IEλ vS ≥ IEµ vS

where IEλ vS :=
∑

yS∈Y S λ(yS)vS(yS) denotes the expected value of vS with respect to λ, and similarly
IEµ vS .

The two NMUF’s vS , ṽS on Y S are said to be cardinally equivalent if there exist real numbers ρ > 0
and α such that ṽ(yS) ≡ α + ρv(yS) on Y S . Then, as is well known, there is a unique cardinal equivalence
class of NMUF’s whose expected values represent RS .

Rather than assume continuity of preferences, it is more in the spirit of this paper to postulate continuity
of behaviour, whether or not it is consequentialist. Consider a family of decision trees Tπ in which only the
probabilities π(n′|n) vary, for all n ∈ N0 and n′ ∈ N+1(n) — the other features of the decision tree are all
independent of π. Consider then each behaviour set β(Tπ, n) as π varies with n ∈ N∗ fixed. This gives a
correspondence whose graph, for each n ∈ N∗, is

Gβ(n) := { (π, n′) | n′ ∈ β(Tπ, n) }.
Since N0 is finite, the product set

∏
n∈N0 ∆(N+1(n)) of independent probability distributions π(·|n) (n ∈

N0) is evidently compact. Since the set N+1(n) is finite, the above correspondence will have a compact
graph, and so be upper hemi-continuous, provided Gβ(n) is a closed set for all n ∈ N∗. So the behaviour
norm β is said to be continuous provided that the graph Gβ(n) defined above is indeed closed, for every
T ∈ T and n ∈ N∗(T ).

This definition applies to general behaviour norms. There is a technical problem on the boundary of
the set

∏
n∈N0 ∆(N+1(n)) for consequentialist behaviour norms. If π(n′|n) becomes zero for some n ∈ N0

and n′ ∈ N+1(n), then Tπ is not properly in the domain of a consequentialist behaviour norm. But then,
in defining β(Tπ, n∗) at any decision node n∗ ∈ N∗ which is succeeded some time later by n and then
immediately thereafter by n′, one can replace Tπ by a decision tree with set of nodes N \ N(n′) — i.e., all
nodes which must occur with probability zero are simply removed from the tree.

A consequentialist continuous behaviour norm does indeed give rise to revealed preference orderings RS

satisfying the above continuity assumption. To see this, for any given non-empty E ⊂ S, and λ, µ, ν ∈ Ỹ S

with λ PS µ and µ PS ν, construct the family T δ(λ, µ, ν) (0 < δ < 1) of decision trees defined by

T δ := T δ(λ, µ, ν) := 〈N, N∗, N0, N1, X, N+1(·), n0, π
δ(·|·), S(·), γ(·)〉

as shown in Figure 9.1, where Z := {λ, µ, ν} and with:
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� n0

◦ n1 • n(µ)

1 − δ δ

• n(λ) • n(ν)

Figure 9.1. The Decision Tree T δ(λ, µ, ν)

(i) N := {n0, n1} ∪ {n(ζ) | ζ ∈ Z };
(ii) N∗ := {n0};
(iii) N0 := {n1};
(iv) N1 := ∅;
(v) X := {n(ζ) | ζ ∈ Z };
(vi) N+1(n0) := {n1, n(µ)} and N+1(n1) := {n(λ), n(ν)};
(vii) n0 the initial node;
(viii) πδ(n(λ)|n1) := 1 − δ and πδ(n(ν)|n1) := δ;
(ix) S(n) := S for all n ∈ N ;
(x) γ(n(ζ)) := ζ for all ζ ∈ Z.

When δ = 0 or 1, the node n(ν) or n(λ), respectively, is omitted from T δ. Because λ PS µ and µ PS ν,
the behaviour norm satisfies β(T 0, n0) = {n1} when δ = 0 and β(T 1, n0) = {n(µ)} when δ = 1. But, by
continuity, the behaviour correspondence β(T δ, n0) has a closed graph as δ varies. Thus the two sets :

D1 := { δ ∈ [0, 1] | n1 ∈ β(T δ, n0) }
D2 := { δ ∈ [0, 1] | n(µ) ∈ β(T δ, n0) }

are both closed subsets of [0, 1] with 0 ∈ D1 \ D2, 1 ∈ D2 \ D1, and D1 ∪ D2 = [0, 1]. So the two points
δ1 := max { δ | δ ∈ D1 } and δ2 := min { δ | δ ∈ D2 } are both well defined, with 0 < δ2 ≤ δ1 < 1. It follows
that there must exist α, β satisfying 0 < α < δ2 ≤ δ1 < β < 1. But then α ∈ D1 \ D2 and β ∈ D2 \ D1,
which implies that

[(1 − α)λ + αν] PS µ and µ PS [(1 − β)λ + βν],

so verifying that RS is continuous. To summarize

THEOREM 9. If a consistent behaviour norm β is both continuous and consequentialist for the domain of
all consequential decision trees T ∈ T , then for each non-empty S ⊂ E there is a unique cardinal equivalence
class of NMUF’s vS(·) : Y S → IR such that behaviour in any tree T ∈ T (S) maximizes conditional expected
utility IEvS.

10. EXPECTED UTILITY SUMS AND PRODUCTS

Theorem 9 just uses continuity, the existence of a preference ordering, and the independence axiom.
Another implication of consequentialism, the sure-thing principle for independent probabilities, relates the
NMUF’s vS for different events S to each other. Indeed, under the hypotheses of Theorem 9 it will be shown
that when vs : Ys → IR is defined as v{s} for each s ∈ E, then, for every non-empty S ⊂ E, vS can be
expressed in one of the following three forms, after suitable normalization:

(i) vS(yS) ≡
∑

s∈S vs(ys);
(ii) vS(yS) ≡

∏
s∈S vs(ys) (with vs(ys) > 0 everywhere);

(iii) vS(yS) ≡ −
∏

s∈S [−vs(ys)] (with vs(ys) < 0 everywhere).

Form (i) is familiar from existing work, as mentioned in the introduction, but forms (ii) and (iii) are novel.
Notice that all three forms are consistent with having v{s} = vs for all s ∈ E. Notice too that the products
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(ii) and (iii) allow the sure-thing principle to hold for independent probabilities, since then the expected
value of the utility product is equal to the product of expected utilities.

Some new notation will facilitate the argument. Write µS for the product
∏

s∈S µs, a typical member of
the product space

∏
s∈S Ỹs of independent probability distributions. Write UE(µE) for the expected utility

expression IEµE vE(yE). Choose any fixed µ̄E in
∏

s∈E Ỹs and then normalize vE , and so UE also, in order to
satisfy UE(µ̄E) = 0. Now define the function US , for any non-empty S ⊂ E, by US(µS) := UE(µS × µ̄E\S).
Of course US(µ̄S) = UE(µ̄S × µ̄E\S) = 0, by the normalization.

The proof will involve considering non-empty sets S ⊂ E which can be partitioned into m non-empty
disjoint sets Sj (j ∈ J := {1, 2, . . . , m}). For each j ∈ J , write µj for µSj and Uj(µj) for USj (µSj ). Also
write U(

∏
j∈J µj) for US(

∏
j∈J µSj ) and write U−j(

∏
k∈J\{j} µk) for US\Sj (

∏
k∈J\{j} µSk). Often, too, the

arguments µj etc. of the expected utility functions will be omitted.
LEMMA 10.1. When m = 2 there exists a constant ρ (positive, negative, or zero) such that U ≡ U1 + U2 +
ρU1U2.

Proof. Suppose {j, k} = {1, 2}. By Theorem 7 the sure-thing principle for independent probabilities is
satisfied. So both U(µj × µk) and Uj(µj) represent the same preference ordering RSj on the set

∏
s∈Sj

Ỹs

of independent probability distributions in Ỹ Sj , for any fixed µk ∈
∏

s∈Sk
Ỹs. So the two utility functions

U(µj × µk) and Uj(µj) are cardinally equivalent, for each such fixed µk. That implies the existence of
ρj(µk) > 0 and αj(µk), both independent of µj , for which

U(µj × µk) ≡ αj(µk) + ρj(µk)Uj(µj).

In particular, when µj = µ̄j , then Uj(µ̄j) = 0 by our normalization, and so αj(µk) ≡ U(µ̄j × µk) ≡ Uk(µk).
It follows that

U(µj × µk) ≡ Uk(µk) + ρj(µk)Uj(µj)
≡ Uj(µj) + ρk(µj)Uk(µk),

because j and k can be interchanged throughout the above argument. But then

[ρj(µk) − 1]Uj(µj) ≡ [ρk(µj) − 1]Uk(µk).

So, when both Uj(µj) and Uk(µk) are not zero, then

[ρk(µj) − 1]
Uj(µj)

≡ [ρj(µk) − 1]
Uk(µk)

≡ ρ

for some number ρ which is independent of both µj and µk, and which can be positive, negative, or zero.
This leads to

U(µj × µk) ≡ Uj(µj) + Uk(µk) + ρUj(µj)Uk(µk)

which is obviously true even when Uj(µj) = 0 (or Uk(µk) = 0), because then

U(µj × µk) = U(µ̄j × µk) = Uk(µk).

This completes the proof.

LEMMA 10.2. For all m there exists a constant ρ (positive, negative, or zero) such that

U ≡
∑

{K|∅�=K⊂J }
ρ#K−1

∏
k∈K

Uk.

18



Proof. The proof will be by induction on m, the number of members of the set J . When m = 1, the equation
becomes U ≡ U1 and is satisfied trivially. When m = 2 it becomes U = U1 + U2 + ρU1U2 which was proved
in Lemma 10.1. So, as an induction hypothesis, suppose it is true for m − 1. Then, for any j ∈ J , one has

U−j ≡
∑

{K|∅�=K⊂J\{j}}
(ρ−j)#K−1

∏
k∈K

Uk.

But also, applying Lemma 10.1 to the partition Sj ∪ S−j of S leads to

U ≡ Uj + U−j + ρjUjU−j .

Substituting for U−j from the previous formula gives

U ≡
∑

{K|∅�=K⊂J}
ρ∗K

∏
k∈K

Uk

where

ρ∗K :=




(ρ−j)#K−1 if K ⊂ J \ {j}
ρj(ρ−j)#K−2 if j ∈ K ⊂ J and #K ≥ 2
1 if K = {j}.

But the choice of j was arbitrary, so the above expression for ρ∗K must be independent of j. When K = {j, k}
this implies that ρ∗{j,k} = ρj = ρk for all pairs j, k ∈ J , and also that ρ∗{j,k} = ρ−� for all 0 ∈ J \ {j, k}. Thus
for all j ∈ J , ρj = ρ−j = ρ, independent of j. So ρ∗K = ρ#K−1 and the lemma is also true for m. This
completes the proof by induction on m.

A more convenient expression of U in terms of Uj(j ∈ J) is as follows. When ρ = 0 one has

U ≡
∑

j∈J
Uj

because 00 = 1 and 0m = 0 for m = 1, 2, . . .. When ρ �= 0 one has

1 + ρU ≡
∏

j∈J
(1 + ρUj),

as can be verified by direct expansion, or proved by induction on m = #J . Since E can be partitioned into
the subsets {{s} | s ∈ E}, one has:

UE(µE) ≡
∑

s∈E Us(µs) if ρ = 0;
1 + ρ UE(µE) ≡

∏
s∈E [1 + ρ Us(µs)] if ρ �= 0.

When µE\S = µ̄E\S and so Us(µs) = 0 (all s ∈ E \ S), one has:

US(µS) ≡
∑

s∈S Us(µs) if ρ = 0;
1 + ρ US(µS) ≡

∏
s∈S [1 + ρ Us(µs)] if ρ �= 0.

The forms stated at the head of this section can now be derived by renormalization of the utilities vS and
expected utilities US . Indeed, if ρ = 0, no renormalization is necessary, because US ≡

∑
s∈S Us leads

immediately to case (i), which is
vS(yS) ≡

∑
s∈S

vs(ys).

If ρ > 0, renormalize by taking, for all non-empty S ⊂ E:

ŨS ≡ 1 + ρUS ; ṽS ≡ 1 + ρvS .

Then, with a slight abuse of notation, the renormalized utilities satisfy case (ii), which is

vS(yS) ≡
∏

s∈S
vs(ys).
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Finally, if ρ < 0, renormalize by taking, for all non-empty S ⊂ E:

ŨS ≡ −1 − ρUS ; ṽS ≡ −1 − ρvS .

Then, again with a slight abuse of notation, the renormalized utilities satisfy case (iii), which is

vS(yS) ≡ −
∏

s∈S
[−vs(ys)].

By the sure-thing principle for independent lotteries, the product
∏

s∈S vs must be increasing in each vs in
case (ii), and the negative product −

∏
s∈S (−vs) must be increasing in each vs in case (iii). This requires

that vs(ys) > 0 everywhere in case (ii), and that vs(ys) < 0 everywhere in case (iii).

The above sums and products depend upon appropriate normalizations of each utility function vS . If
each vS is replaced by the cardinally equivalent

ṽS(yS) ≡ αS + ρSvS(yS)

with ρS > 0 , one has

ṽS(yS) ≡ αS + ρS
∑

s∈S
vs(ys) ≡ αS + ρS

∑
s∈S

[ṽs(ys) − αs]/ρs

in case (i), so the simple summation ṽS(yS) ≡
∑

s∈S ṽs(ys) remains valid only if both ρS = ρ and αS =∑
s∈S αs for all non-empty S ⊂ E. In case (ii) one has

ṽS(yS) ≡ αS + ρS
∏

s∈S
[ṽs(ys) − αs]/ρs ,

so the simple product ṽS(yS) ≡
∏

s∈S ṽs(ys) remains valid only if both αS = 0 and ρS =
∏

s∈S ρs for all
non-empty S ⊂ E. Case (iii) is like case (ii).

THEOREM 10.3. Suppose that a consistent behaviour norm β is continuous and consequentialist for the
domain of all consequential decision trees T ∈ T . Then, for each non-empty S ⊂ E and each s ∈ E, there
are NMUF’s vS : Y S → IR and vs : Ys → IR such that behaviour in any T ∈ T (S) maximizes conditional
expected utility IEvS, and such that one of the following three cases is true:
(i) vS(yS) ≡

∑
s∈S vs(ys) and the NMUF’s vs(·) in all states s ∈ E are unique up to co-cardinal transfor-

mations of the form
ṽs(ys) ≡ αs + ρvs(ys)

with ρ > 0 independent of s;

(ii) vS(yS) ≡
∏

s∈S vs(ys), where each vs(·) takes only positive values, and the NMUF’s vs(·) in all states
s ∈ E are unique up to independent unit transformations of the form

ṽs(ys) ≡ ρsvs(ys)

with ρs > 0 for all s ∈ S;

(iii) vS(yS) ≡ −
∏

s∈S [−vs(ys)], where each vs(·) takes only negative values, and the NMUF’s vs(·) in all
states s ∈ E are unique up to the same equivalence class as in (ii).

This gives a complete characterization of continuous consequentialist behaviour norms because an anal-
ogy to Theorem 8 can be proved. The dynamic programming rules used to prove that result become very
much simpler because each node n of a consequential decision tree T can be given an expected utility value
w(T, n), using backward induction. Indeed, at any terminal node n ∈ X,

w(T, n) = IEγ(n) vS(n)(yS(n)).
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Then, at any decision node n ∈ N∗,

w(T, n) =
β(T, n) = arg

}
max

n′
{w(T, n′) | n′ ∈ N+1(n) }.

At any chance node n ∈ N0,
w(T, n) =

∑
n′∈N+1(n)

π(n′|n)w(T, n′).

At any natural node n ∈ N1, the rule for calculating the value w(T, n) from the list 〈w(T, n′)〉n′∈N+1(n)

depends upon which of the three possible cases applies:

w(T, n) =




∑
n′∈N+1(n) w(T, n′) in case (i);∏
n′∈N+1(n) w(T, n′) in case (ii);

−
∏

n′∈N+1(n) [−w(T, n′)] in case (iii).

Now one has

THEOREM 10.4. Suppose there are preference orderings RS for all non-empty S ⊂ E which are represented
by expected utilities IEvS satisfying one of the three cases of Theorem 10.3. Then there exists a consistent
consequentialist continuous behaviour norm β, defined on the domain T of all consequential decision trees,
for which RS

β = RS (all S ⊂ E).

Proof. As in the proof of Theorem 8 it is easily shown that, when β is constructed as above to maximize
w(T, n′) over n′ ∈ N+1(n) at each decision node n ∈ N∗, then, for every n ∈ N ,

w(T, n) =
Φβ(T, n) = arg

}
max

λ
{ IEλ vS(n) | λ ∈ F (T, n) }.

The proof does, of course, rely on the fact that the sure-thing principle for independent lotteries is satisfied.
This is true, however, because if λ, µ ∈ Ỹ S1 , ν ∈ Ỹ S2 , S1 ∩ S2 = ∅, and S1 ∪ S2 = S, then

λ RS1 µ ⇐⇒ IEλ vS1 ≥ IEµ vS1

(λ × ν) RS (µ × ν) ⇐⇒ IEλ×ν vS ≥ IEµ×ν vS

Also, in case (i), when vS = vS1 + vS2 , then

IEλ vS1 ≥ IEµ vS1 ⇐⇒ IEλ vS1 + IEν vS2 ≥ IEµ vS1 + IEν vS2

⇐⇒ IEλ×ν (vS1 + vS2) ≥ IEµ×ν (vS1 + vS2)

⇐⇒ IEλ×ν vS ≥ IEµ×ν vS .

In case (ii), when vS = vS1vS2 with vS1 and vS2 both positive, then

IEλ vS1 ≥ IEµ vS1 ⇐⇒ [IEλ vS1 ][IEν vS2 ] ≥ [IEµ vS1 ][IEν vS2 ]

⇐⇒ IEλ×ν vS1vS2 ≥ IEµ×ν vS1vS2

⇐⇒ IEλ×ν vS ≥ IEµ×ν vS .

In case (iii), when vS = −[−vS1 ][−vS2 ] with vS1 and vS2 both negative, then

IEλ vS1 ≥ IEµ vS1 ⇐⇒ −[IEλ (−vS1)][IEν (−vS2)] ≥ −[IEµ (−vS1)][IEν (−vS2)]

⇐⇒ −IEλ×ν (−vS1) (−vS2) ≥ −IEµ×ν (−vS1) (−vS2)

⇐⇒ IEλ×ν vS ≥ IEµ×ν vS .
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Thus in all three cases λ RS1 µ ⇐⇒ (λ × ν) RS (µ × ν) as in the sure-thing principle for independent
probabilities. As for continuity, it is easy to check by backward induction that the utilities w(T, n) and the
behaviour sets β(T, n) (n ∈ N∗) all vary continuously with probabilities.

Finally, Anscombe and Aumann (1963) derived additive utility from the assumption that it did not
matter whether states of the world were determined before chance moves, or vice versa. One might therefore
surmise that multiplicative probabilities arise when the agent definitely prefers that states be resolved before
chance moves, or vice versa, and that the two multiplicative cases can be distinguished by their preferences
regarding when uncertainty is resolved. This is indeed true when uncertainty simply concerns which of the
two events S1, S2 occurs, where {S1, S2} is a partition of the given non-empty S ⊂ E. For if chance moves
are resolved first, the consequence can be any λ ∈ Ỹ S . But if uncertainty regarding S1 or S2 is resolved first,
λ must be replaced by the corresponding consequence λ∗ = λ∗

1 × λ∗
2 where, whenever the set {j, k} = {1, 2},

then λ∗
j ∈ Ỹ Sj is the marginal probability distribution given by

λ∗
j (y

Sj ) = λ
(
{ (ySj , ȳSk) | ȳSk ∈ Y Sk }

)
.

Now consider the three possible forms for vS in terms of vS1 and vS2 . In the additive case (i), one has

IEλ∗ vS = IEλ∗
1
vS1 + IEλ∗

2
vS2 = IEλ (vS1 + vS2) = IEλ vS

so that λ∗ and λ are indeed indifferent. In the multiplicative case (ii) with positive utilities, independence
of the two distributions λ∗

j (j = 1, 2) implies

IEλ∗ vS = IEλ∗ (vS1 × vS2) = [IEλ∗
1
vS1 ] [IEλ∗

2
vS2 ]

= [IEλ vS1 ] [IEλ vS2 ] >< IEλ (vS1 × vS2) = IEλ vS

according as the random variables yS1 , yS2 have negatively or positively correlated utilities. In particular,
if yS1 and yS2 are perfectly correlated, then λ is preferred to λ∗, and the agent would rather not have
uncertainty about S1 or S2 resolved before any chance moves occur. In the multiplicative case (iii), with
negative utilities, the products all carry a minus sign, so the inequalities are reversed, and IEλ∗ vS >< IEλ vS

according as the random variables yS1 , yS2 have positively or negatively correlated utilities. In particular, if
yS1 and yS2 are perfectly correlated, then λ∗ is preferred to λ, and the agent would like to have uncertainty
about S1 or S2 resolved before any chance moves occur. Later, in Section 12, the three cases will also be
distinguished by the preferences they imply in Ellsberg’s paradox.

11. CONSTANT CONSEQUENCES AND STATE INDEPENDENCE

Up to here the consequence domains Ys (s ∈ S) have been entirely general. From now on, following
Savage (1954), it will be assumed that there is a constant consequence domain Y with Ys = Y (all s ∈ E).
Then yS is said to be a constant consequence if there exists y ∈ Y with yS

s = y (all s ∈ S). In this case yS

is written as y1S . The set of all constant consequences is written as Y1S .

Let T be any consequential decision tree in T which has no chance nodes. Suppose that every con-
sequence in F (T ) is a constant consequence. Then all possible behaviour also has constant consequences.
It is as if there were no uncertainty at all because each constant consequence y1S is effectively the same,
no matter what the state of the world s may be. The same is true if T has chance nodes but no natural
nodes, and if γ(n) is a constant consequence for every terminal node n ∈ X. Only F (T ) will then consist of
probability distributions λ ∈ Ỹ S with the property that constant consequences occur with probability one
— i.e., consequences in different states are perfectly correlated. Thus F (T ) will be a subset of Ỹ 1S , where
λ ∈ Ỹ 1S if and only if there exists a probability distribution λ∗ ∈ Ỹ = ∆(Y ) for which λ = λ∗1S in the
sense that

λ(yS) =
{

λ∗(y) if yS = y1S for some y ∈ Y

0 if yS /∈ Y 1S .
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These informal arguments motivate extending the definition of consequential equivalence in Section 4
as follows. When the tree T and the behaviour norm β are such that F (T ) ⊂ Φβ(T ) ⊂ Ỹ 1S , then let

F ∗(T ) :={λ∗ ∈ Ỹ | λ∗1S ∈ F (T ) }
Φ∗

β(T ) :={λ∗ ∈ Ỹ | λ∗1S ∈ Φβ(T ) }

be respectively the set of feasible consequences and the set of consequences of behaviour, where now states
of the world are ignored as having no bearing on the distribution of consequences. Notice especially that
consequences are required to be perfectly correlated : it is not enough to have the same marginal distribution
in all states of the world. An extended notion of consequential equivalence then requires the two trees
T ∈ T (S) and T ′ ∈ T (S′) to be regarded as equivalent whenever F ∗(T ) = F ∗(T ′), even if S �= S′ so that
they are not equivalent under the earlier definition. And requires behaviour in the two trees to be regarded
as consequentially equivalent whenever Φ∗

β(T ) = Φ∗
β(T ′). An extended notion of consequentialism then

demands that Φ∗
β(T ) = Φ∗

β(T ′) wheneverF ∗(T ) = F ∗(T ′). Such consequentialist behaviour will be called
state independent to reflect the fact that, when only constant consequences are possible, the states of the
world have no influence on behaviour.

When behaviour is state independent as well as consequentialist, consider any decision tree T ∈ T (S)
of the following trivial form, for any non-empty S ⊂ E. There is an initial decision node n0 ∈ N∗ followed
by two terminal nodes n1, n2 with γ(n1) = λ1S , γ(n2) = µ1S . Then n1 ∈ β(T, n0) ⇐⇒ λ1SRSµ1S , by
definition of RS . By state independence, this must be true for all non-empty S ⊂ E. So there exists a single
state-independent binary relation R∗ on Ỹ such that, for all λ, µ ∈ Ỹ and all non-empty S ⊂ E, one has

λ R∗ µ ⇐⇒ λ1S RS µ1S .

Because each RS is a complete and transitive preference ordering, so is R∗, and continuity of behaviour
implies that R∗ inherits continuity from each RS . The relation R∗ also satisfies the independence axiom
because each RS satisfies that axiom. So there exists a unique cardinal equivalence class of state-independent
NMUF’s v∗ : Y → IR such that, for all λ, µ ∈ Ỹ , one has

λR∗µ ⇐⇒ IEλ v∗ ≥ IEµ v∗.

But RS is represented on Ỹ 1S by the expected value of vS(y1S) mapping Y into IR. So, for every non-empty
S ⊂ E and every λ, µ ∈ Ỹ , one has

IEλ v∗(y) ≥ IEµ v∗(y) ⇐⇒ λ R∗ µ ⇐⇒ λ1S RS µ1S

⇐⇒ IEλ vS(y1S) ≥ IEµ vS(y1S).

This implies that the utility functions vS(y1S) on Y 1S and v∗(y) on Y must be cardinally equivalent functions
of y. So, for all non-empty S ⊂ E, there exist constants ρS > 0 and αS such that

vS(y1S) ≡ αS + ρSv∗(y).

In particular, when S = {s} with s ∈ E, then

vs(y) ≡ αs + ρsv
∗(y).

The implications now depend on how each vS depends on vs(s ∈ S), as in the three cases set out in Section
10. First, in the additive case (i),

vS(y1S) ≡ αS + ρSv∗(y) ≡
∑

s∈S
vs(y) ≡

∑
s∈S

[αs + ρsv
∗(y)]

and so:
αS =

∑
s∈S

αs; ρS =
∑

s∈S
ρs.

23



Then, for general yS ∈ Y S , one has

vS(yS) ≡
∑

s∈S
vs(ys) ≡

∑
s∈S

[αs + ρsv
∗(ys)].

Further implications of this case are discussed in Section 13.

Next, in case (ii) with multiplicative positive utilities,

vS(y1S) ≡ αS + ρSv∗(y) ≡
∏

s∈S
vs(y) ≡

∏
s∈S

[αs + ρsv
∗(y)].

To explore this further, take the simple case when S = {s1, s2} and write αj , ρj for αsj
, ρsj

(j = 1, 2). Then,
for all y ∈ Y , one has

αS + ρSv∗(y) = [α1 + ρ1v
∗(y)][α2 + ρ2v

∗(y)].

For any pair y′, y′′ ∈ Y , subtracting the version of the above equation for y = y′′ from that for y = y′ gives

ρS [v∗(y′) − v∗(y′′)] = (α1ρ2 + ρ1α2)[v∗(y′) − v∗(y′′)] + ρ1ρ2{[v∗(y′)]2 − [v∗(y′′)]2}.

Thus, for any pair y′, y′′ ∈ Y with v∗(y′) �= v∗(y′′), one has

ρS = α1ρ2 + ρ1α2 + ρ1ρ2[v∗(y′) + v∗(y′′)].

Therefore v∗(y′) + v∗(y′′) must be a constant, independent of the choice of the pair y′, y′′ ∈ Y with v∗(y′) �=
v∗(y′′). This implies that the range v∗(Y ) of the NMUF can have at most two different values. But if indeed
v∗(Y ) = {v∗1 , v∗2} with v∗1 > v∗2 > 0, then one can satisfy the two equations

αS + ρSv∗j =
∏

s∈S
(αs + ρsv

∗
j ) =: vS

j (j = 1, 2)

for any non-empty S ⊂ E by taking:

ρS = (vS
1 − vS

2 )/(v∗1 − v∗2) > 0; αS = (v∗1vS
2 − v∗2vS

1 )/(v∗1 − v∗2).

Then vS ≡ αS + ρSv∗ on Y , as required for state-independent behaviour.

A similar argument applies in case (iii), with multiplicative negative utility. Only the signs of certain
expressions change. So

THEOREM 11.1. Suppose that there is a constant consequence domain Y . Suppose that the consistent
behaviour norm β is continuous and consequentialist for the domain T of all consequential decision trees,
and that β also satisfies state-independence whenever there are only constant consequences. Then there exists
a unique cardinal equivalence class of NMUF’s v∗ : Y → IR and, for each such NMUF, and each state s ∈ E,
there exist constants αs and ρs (with ρs > 0), such that, when vs : Y → IR is defined by vs(y) ≡ αs +ρsv

∗(y),
then behaviour in every decision tree T ∈ T (S) (with ∅ �= S ⊂ E) maximizes the expected utility function
IEvS, where vS is given by:

(i) the utility sum
vS(yS) ≡

∑
s∈S

vs(ys) ≡
∑

s∈S
[αs + ρsv

∗(y)],

where the constants αs (s ∈ E) are arbitrary, and the positive constants ρs (s ∈ E) are unique up to a
common unit transformation ρ̃s = ρ̃ρs for some ρ̃ > 0 which is independent of s;

or, provided that the range v∗(Y ) of possible values of the NMUF v∗ has at most two distinct members, one
of the following two other possibilities:
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(ii) the product of positive utilities

vS(yS) ≡
∏

s∈S
vs(ys) ≡

∏
s∈S

[αs + ρsv
∗(y)],

where the sets of constants αs and ρs (s ∈ E) are both arbitrary up to common state-dependent unit
transformations of the form α̃s = ξsαs and ρ̃s = ξsρs for some ξs > 0, and where vs(y) > 0 for all
y ∈ Y and all s ∈ E;

(iii) minus the product of negative utilities

vS(yS) ≡ −
∏

s∈S
[−vs(ys)] ≡ −

∏
s∈S

[−αs − ρsv
∗(y)],

where the constants αs and ρs (s ∈ E) can be transformed as in (ii), and where vs(y) < 0 for all y ∈ Y
and all s ∈ E.

The conclusion of Theorem 11.1 gives a complete characterization of the set of consequentialist behaviour
norms satisfying the hypotheses of the theorem, because of the following obvious counterpart to the earlier
Theorems 8 and 10.4

THEOREM 11.2. Suppose that a unique cardinal equivalence class V ∗ of NMUF’s v∗ : Y → IR is specified,
together with constants αs and ρs (ρs > 0) for all s ∈ E. Suppose that, for any NMUF v∗ ∈ V ∗, the
equivalence class V S of functions vS : Y S → IR is constructed, for all non-empty S ⊂ E, as in the conclusion
of Theorem 11.1. Then the behaviour norm whose consequences maximize IEvS over F (T ) in every decision
tree T of T (S), for all non-empty S ⊂ E and all vS ∈ V S, is a continuous consequentialist consistent
behaviour norm which satisfies state-independence whenever F (T ) contains only constant consequences.

12. ELLSBERG’S PARADOX

An important implication of Theorem 11.1 is that only the additive case is possible when #v∗(Y ) ≥ 3
— i.e. when Y contains at least three separate indifferent classes of consequences. This certainly justifies the
almost exclusive attention that has been paid in the past to the additive case. Nevertheless the multiplicative
case helps shed some light on the following example, which Ellsberg (1961) claimed as a violation of Savage’s
sure-thing principle, although it is more exactly described as a violation of Anscombe and Aumann’s (1963)
extension of that principle to allow some objective probabilities.

Lottery Red Black Yellow
a 1 0 0
b 0 1 0
c 1 0 1
d 0 1 1

Table 12.1. Ellsberg’s Four Lotteries

An urn is known to contain 90 balls, of which exactly 30 are red and the remaining 60 are either black
or yellow without the exact numbers of black or yellow balls being known. One of the balls is drawn at
random; all 90 balls are equally likely to be drawn. There are four lotteries a, b, c, d having consequences 0 or
1 which depend on the colour of the ball drawn, as set out in Table 12.1, where 0 represents “no prize” and
1 represents a fixed “prize” (in Ellsberg’s article, it was $ 100 — at 1961 prices in the U.S., presumably).
Typically, experimental subjects stated a preference for a over b, perhaps because they preferred a definite
1
3 probability of winning to an unknown probability. But they also stated a preference for d over c, perhaps
because they preferred a definite 2

3 probability of winning to an unknown probability (cf. the discussion by
Gärdenfors and Sahlin, 1982). Yet Anscombe and Aumann’s extension of the Savage sure-thing principle
requires that

a P b ⇐⇒ c P d
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because, for each pair, winning or losing a prize when a yellow ball is drawn is a “sure-thing”. In addition, if
only the marginal probabilities in each state of the world matter, then the probability mixtures 1

2a+ 1
2d and

1
2b+ 1

2c have identical consequences (as pointed out by Raiffa, 1961, p. 694) because there is a 50–50 chance
of winning the prize no matter what colour ball is drawn from the urn. Thus state-independence requires
1
2a + 1

2d and 1
2b + 1

2c to be indifferent, which violates the Anscombe and Aumann sure-thing principle if
a P b and d P c.

Nevertheless the preferences a P b and d P c are entirely consistent with consequentialism when there
are just the two consequences 0 or 1, because then consequentialism allows maximization of an expected
utility product. Indeed, there are really 61 different states of the world, q = 0 to 60, where q is the unknown
number of black balls in the urn and 60−q is the number of yellow balls. Suppose that S := { q | q = 0 to 60 }
and that, in an obvious notation, vS( 〈yq〉60q=0 ) takes the positive multiplicative form

∏60
q=0 vq(yq). Because

all the 90 balls actually in the urn are equally likely to be drawn, the expected utilities of the four lotteries
are respectively:

U(a) =
∏60

q=0
{[30vq(1) + 60vq(0)] / 90};

U(b) =
∏60

q=0
{[qvq(1) + (90 − q)vq(0)] / 90};

U(c) =
∏60

q=0
{[(90 − q)vq(1) + qvq(0)] / 90};

U(d) =
∏60

q=0
{[60vq(1) + 30vq(0)] / 90}.

Many specifications of vq(0), vq(1) (q = 0 to 60) are consistent with a P b and d P c. For example, suppose
that for q = 0 to 60 there are positive constants kq for which:

vq(0) := kq; vq(1) := 2kq. (V )

Let K be the positive constant
∏60

q=0 (kq/90). Then the expected utilities of the four lotteries become:

U(a) = K (120)61;

U(b) = K
∏60

q=0
(90 + q);

U(c) = K
∏60

q=0
(180 − q);

U(d) = K (150)61.

Because the respective arithmetic means 120, 150 of the two sequences 90 + q, 180 − q (q = 0 to 60) exceed
the geometric means [

∏60
q=0 (90+ q)]1/61 and [

∏60
q=0 (180− q)]1/61, it must be true that a P b and d P c. On

the other hand, when vS( 〈yq〉60q=0 ) takes the negative multiplicative form −
∏60

q=0 [−vq(yq)] with vq(·) given
by (V ) above, then preferences must be “anti-Ellsberg” in the sense that b P a and c P d.

13. REVEALED SUBJECTIVE PROBABILITIES AND BAYES’ RULE

Decision theorists have naturally concentrated on the additive case, which is the only possible one
when there is a common consequence domain Y , when dynamically consistent behaviour is continuous,
consequentialist, and state independent for constant consequences, and when v∗(Y ) has at least three distinct
members. In the additive case, whenever ∅ �= S ⊂ E behaviour in any tree of T (S) will have consequences
which maximize IE

∑
s∈S [αs + ρsv

∗(ys)], where the constants αs (s ∈ E) are arbitrary and the positive
constants ρs (s ∈ E) are unique up to a common unit transformation of the form ρ̃s = ρρs (all s ∈ E)
with ρ > 0 independent of s. Then, given any non-empty set S ⊂ E, one can drop the additive constants,
and normalize the multiplicative constants ρs (s ∈ S) in order to satisfy

∑
s∈S ρs = 1. This yields a

unique collection 〈p(s|S)〉s∈S⊂E of positive constants with
∑

s∈S p(s|S) = 1 such that the agent maximizes
IE

∑
s∈S p(s|S)v∗(ys) in any tree of the set T (S).
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These positive constants p(s|S) (s ∈ S ⊂ E) are conditional subjective probabilities revealed by conse-
quentialist behaviour. All the Anscombe and Aumann (1963) axioms for subjective probabilities have been
derived from consequentialism together with the standard additional assumptions stated above. Actually,
consequentialism implies even more because the probabilities p(s|S) are all positive; null events must be
excluded from decision trees, just as zero probability events were excluded in Section 6 by the strengthened
form of independence which consequentialism implies.

These “revealed” subjective probabilities are not only probabilities in the technical sense. They are also
the unique set of probabilities for which the maximand IEλ

∑
s∈S p(s|S) v∗(ys) represents expected utility

with respect to the objective probability distribution λ ∈ Ỹ S combined with the subjective probabilities
p(s|S) (s ∈ S). This reflects the fact that subjective probabilities also function as objective probabilities in
the following sense. Suppose that every natural node n ∈ N1 of every decision tree T ∈ T (S) were replaced
with a chance node with probabilities specified by

π(n′|n) =
∑

s∈S(n′)
p(s|S(n))

for every n′ ∈ N+1(n). Suppose too that the terminal nodes n ∈ X with consequences γ(n) ∈ Ỹ S(n) were
instead given consequences γ∗(n) ∈ Ỹ defined by

γ∗(n)(y) =
∑

s∈S(n)
p(s|S(n)) γ(n)({ yS | ys = y }).

Then the backward recursions of Section 4 would replace Φβ(T, n) and F (T, n) with Φ∗
β(T, n) and F ∗(T, n)

whose members λ∗ ∈ Ỹ would be derived from λ ∈ Ỹ S(n) just as γ∗(n) was derived from γ(n) above. This
can be proved by backward induction. And the expected utility values derived in Section 10 would satisfy

w(T, n) = max
λ

{ IEλ vS(n) | λ ∈ F (T, n) }

= max
λ∗

{ IEλ∗ v∗ | λ∗ ∈ F ∗(T, n) }

= max
λ

{ IEλ

∑
s∈S(n)

p(s|S(n))v∗ | λ ∈ F (T, n) }

of course, because of expected utility maximization. This shows that subjective probabilities indeed function
as objective probabilities which can be attached to natural nodes in any consequential decision tree.

Another implication of consequentialism is that revealed subjective probabilities must satisfy Bayes’
rule. Since Bayes’ rule has recently come under critical scrutiny by philosophers such as Brown (1976),
Hacking (1967) and Teller (1973) and by statisticians such as Shafer (1976) and Diaconis (1978), this will
be reassuring to Bayesians.

First, if S′ ⊂ S, write p(S′|S) :=
∑

s∈S′ p(s|S). Now suppose s ∈ S′ ⊂ S. Consider a decision tree T
with a natural node n ∈ N1 followed immediately by a succeeding natural node n′ ∈ N+1(n)∩N1 such that
S(n) = S, S(n′) = S′. Suppose that n′′ ∈ N+1(n′) and S(n′) = {s}. Because the collection

{S(n̄′) | n̄′ ∈ N+1(n′) } ∪ {S(n̄) | n̄ ∈ N+1(n) \ {n′} }

is a partition of S(n), this decision tree is consequentially equivalent to a tree T ′ in which the only change
is that node n′ is omitted, and replaced in N+1(n) by all the nodes of N+1(n′), so that N ′

+1(n) = N+1(n) ∪
N+1(n′) \ {n′}. But the natural nodes n and n′ in T can be replaced by chance nodes with probabilities:

π(n′|n) = p(S(n′)|S(n)) = p(S′|S);
π(n′′|n′) = p(S(n′′)|S(n′)) = p(s|S′).

The probability of reaching n′′ from n is then p(s|S′) p(S′|S). When n is replaced by a chance node in the
equivalent tree T ′, the corresponding probability is

π(n′′|n′) = p(s|S(n)) = p(s|S).
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Because of consequential equivalence, the probabilities of reaching node n′′ from n must be equal in these
two trees, so

p(s|S) = p(s|S′) p(S′|S).

Alternatively, and perhaps more simply, one can use Weller’s (1978) argument regarding consistency of
expected utility maximizing behaviour in decision trees.

When S′′ ⊂ S′ ⊂ S, summing the last equation over s ∈ S′′ gives

p(S′′|S) = p(S′′|S′) p(S′|S).

When S′ is not a subset of S, one can define, obviously

p(S′|S) := p(S ∩ S′|S).

Now consider any prior “hypothesis” s ∈ H0 ⊂ E, together with an “observation” that s ∈ G ⊂ E and any
posterior “hypothesis” s ∈ H ⊂ E. Then one has

p(G ∩ H ∩ H0|H0) = p(G ∩ H ∩ H0|G ∩ H0) p(G ∩ H0|H0)
= p(G ∩ H ∩ H0|H ∩ H0) p(H ∩ H0|H0),

so that p(H|G ∩ H0) = p(G|H ∩ H0) p(H|H0)/p(G|H0). In particular, given any two posterior hypotheses
H1, H2, the likelihood ratio is

p(H1|G ∩ H0)
p(H2|G ∩ H0)

=
p(G|H1 ∩ H0)
p(G|H2 ∩ H0)

p(H1|H0)
p(H2|H0)

.

That is, the posterior likelihood ratio is equal to the product of the conditional likelihood ratio and the prior
likelihood ratio. This is the usual formula in Bayesian statistics, of course. So

THEOREM 13.1. Suppose that the consistent behaviour norm β is continuous and consequentialist for
the domain T of all consequential decision trees, and that β also satisfies state-independence whenever
there are only constant consequences. Suppose also that there is a constant consequence domain Y with at
least three distinct indifference classes. Then there exists a unique cardinal equivalence class of NMUF’s
v∗ : Y → IR and there exist unique positive subjective probabilities p(s|S) (s ∈ S ⊂ E) satisfying Bayes’
Rule p(S′′|S) = p(S′′|S′) p(S′|S) (all S′′ ⊂ S′ ⊂ S), such that the consequences of β in any decision tree
T ∈ T (S) maximize subjectively expected utility IE

∑
s∈S p(s|S) v∗(ys).

Yet again, this is an alternative complete characterization of those consequentialist behaviour norms
which satisfy the hypotheses of Theorem 11.1, because of the following obvious counterpart to the earlier
Theorems 8, 10.4 and 11.2

THEOREM 13.2. Suppose that a cardinal equivalence class V ∗ of NMUF’s v∗ : Y → IR is specified, together
with strictly positive subjective probabilities p(s|E) (s ∈ E). Suppose that for every non-empty S ⊂ E,
the conditional probabilities p(s|S) := p(s|E)/

∑
s′∈S p(s′|E) are constructed, together with the cardinal

equivalence class V S of NMUF’s vS : Y S → IR which satisfy

vS(yS) ≡
∑

s∈S
p(s|S)v∗(ys)

for some v∗ ∈ V ∗. Then there is a unique behaviour norm whose consequences maximize IEvS over F (T ) in
every decision tree T of T (S), for all non-empty S ⊂ E and all vS ∈ V S, and this behaviour norm is dy-
namically consistent, continuous, consequentialist, and satisfies state independence whenever F (T ) contains
only constant consequences.
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14. SUMMARY AND CONCLUDING REMARKS

Normative decision theory has usually considered the “reduced form” of a decision problem, in which the
problem is reduced to that of choosing a single decision strategy. Axioms are then introduced which concern
behaviour in this normal form. Here a different approach has been taken, which retains the “extensive form”
of the decision problem — that is, the decision tree — and requires behaviour in each decision tree to be
consistent, as defined in Section 3. Now, in reduced form decision theory, an axiom which is so fundamental
that it is often left implicit is that decision strategies are evaluated by their consequences. Savage (1954)
indeed even defines an act as a mapping from the uncertain states of the world to consequences. Here
this axiom is called consequentialism and is applied in an obvious way to dynamically consistent behaviour
norms which are definied on the domain of all possible consequential finite decision trees with strictly
positive probabilities at each chance node, as explained in Section 4. Indeed consequentialism is precisely
the assumption which justifies considering only the reduced form of a decision problem.

The implications of this “consequentialist” approach to normative decision theory are quite striking.
Many of the standard axioms, which before only had an “intuitive” justification that was often highly ques-
tionable and frequently questioned, now become logical implications of the consequentialist “pre-axiom”. In
particular, consequentialism implies the existence of a (complete and transitive) revealed preference order-
ing. It also implies that preferences must satisfy Samuelson’s (1952) controversial independence axiom, and
a new version of the sure-thing principle which is intermediate between Savage’s (1954) original version —
which applies in the absence of objective probabilities — and Anscombe and Aumann’s (1963) extension
— which applies to all probability distributions over state-contingent consequence functions. Consequen-
tialism implies that the sure-thing principle must apply just to independent probability distributions of
state-contingent consequences — a version of the principle which appears never to have been considered
previously.

Consequentialism does fall somewhat short of being a complete justification of subjective expected
utility maximization. For example, even in the complete absence of uncertain states of the world it does not
imply expected utility because consequentialist behaviour could be discontinuous as objective probabilities
vary. Imposing continuity, however, leads naturally to expected utility maximization. But not to subjective
probability. For this, additional assumptions are required, even if one imposes the standard hypothesis of
a constant (state-independent) consequence domain, as has been usual since Savage’s and Anscombe and
Aumann’s derivations of revealed subjective probabilities. Following Savage (1954), Section 11 required that
when behaviour can only have constant consequences, independent of the state, then the set of possible
states of the world should be irrelevant. Even then, if there are no more than two indifference classes in
the constant consequence domain, expected utility could be multiplicatively rather than additively separable
across different states of the world. In this special case consequentialism is entirely consistent with the
pattern of preferences most frequently observed by experimental subjects who are confronted with Ellsberg’s
(1961) example. When there is state independence this is really just a curiosum which is excluded by
consequentialism as soon as there are at least three distinct indifference classes among the domain of constant
consequences. When there are no consequences which are common to any pair of different states, however,
as is implicitly the case when state-dependent utility functions are considered, then there is no justification
which consequentialism can offer for restricting attention to additively rather than multiplicatively separable
expected utility functions.

Consequentialism has another implication that goes beyond orthodox normative decision theory. To
avoid inconsistencies of behaviour, there can be no zero probabilities at any chance node of a decision tree,
nor any null states of the world whose subjective probability would have to be zero. In single person decision
theory and for finite decision trees, this is not a problem because one can argue that zero probability or null
events should be excluded from all decision trees. When the set of possible states of the world is a continuum,
or when one considers games in which one cannot restrict attention to completely mixed strategies, this
implication of consequentialism is serious and suggests that a rather richer space of probabilities needs to be
considered.
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From Section 11 on, this paper invoked the standard hypothesis that the domain of possible consequences
is independent of the state. The work of Drèze (1958, 1961, 1962, 1985, 1986, 1987) — see also Dehez and
Drèze (1982) — and of some notable successors shows that this hypothesis is completely unacceptable when
states of the world may include such calamities as accidental death or injury. In later work I hope to
characterize continuous consequentialist consistent behaviour norms which do satisfy state independence in
those decision trees for which only constant consequences of the form y1S can result from behaviour, but
without invoking the unacceptable hypothesis that such constant consequences are always possible for all
simple consequences y ∈ Y and all non-empty sets S ⊂ E. Any such characterization will be considerably
more complicated than results such as Theorems 10.1, 10.2, 11.1, 11.2, 13.1, and 13.2 in this paper, and will
require an approach such as that of Karni, Schmeidler and Vind (1983) if subjective probabilities are to be
derived in more than rather special cases.

This paper has also considered just single person decision theory. The implications of consequentialism
for behaviour in extensive games remain to be explored in further work. The implications for social choice
theory have already been touched on in Hammond (1977, 1983, 1986, 1987a). Indeed, the last three of these
papers build upon results presented here.

ENDNOTES

1. In ethics, where the term “consequentialism” was first used by Anscombe (1958), the hypothesis is not
only questioned, but often regarded as untenable. See especially Williams (1973, 1985) and Sen and Williams
(eds.) (1982). Some of the issues are incompletely discussed in Hammond (1986a).

2. See Hammond (1977, 1983, 1985, 1986, 1987a, b), Karni and Safra (1986) and McClennen (1986, 1987).
Of these, the first paper discusses “metastatic choice”, which is a less fortunate description of the same idea.

3. See Section 7 of Hammond (1987b) for a discussion of how even such apparent non-expected utility
maximizing behaviour as that discussed by Allais (1953, 1979) and Machina (1982) is really expected utility
maximizing when the utility function is allowed to include more arguments. For related discussion, see also
Markovitz (1970), Morrison (1967), Mossin (1969) and Broome (1986).

In a recent interesting paper Sen (1985) has considered what he claims to be three counter-examples
to the “strong” independence axiom which is an implication of expected utility theory. The first example,
the “no-letter response”, has an agent react enirely rationally to the anticipation of what a particular letter
would have contained had it been sent - e.g., to the absence of good news on the one hand, and of bad news
on the other. This instance of “psychological sensitivity”, along with the closely related “Bergen paradox”
of Drèze (1987, pp. 14–15), can surely be handled by including psychological mood in the description of
each consequence in the relevant domain.

The second example, the “doctor’s dilemma”, may simply be an ethically irrelevant and possibly irra-
tional instance of moral cowardice in the face of the agonizing decision as to which of two patients’ lives to
save when only one can be. The claim is that the example illustrates the relevance of “agency sensitivity”:
my counterclaim is that if such sensitivity to “agency” — in the sense of responsibility for a life-and-death
decision of this kind — is indeed relevant, then it too can be captured with a suitable extension of the
consequence domain.

Sen’s third example has Ayesha choose a different career, as a civil rights lawyer, because in the event
that she is not deported from the U.K., her experience of having faced possible deportation will serve as
useful experience. At first this seems easy to treat consequentially too, since experience and information are
clearly relevant consequences in such decision problems concerning the choice of a career. The difficulty is
that Ayesha is apparently “boundedly rational” to the extent that she seems unable to imagine the complete
experience of facing possible deportation unless she has faced it personally. Consequentialism is not yet well
adapted to deal with bounded rationality, yet often it is rational to admit that one’s rationality is bounded.

Thus, while I wholeheartedly agree with Sen (1985, p. 123) that “rationality deserves a less mechanical
approach” than mere expected utility maximization, such an approach will have to come, in my view, from
specifying what consequences should be relevant for rational behaviour — i.e., what should count as an
argument of a rational agent’s utility function — and what restrictions rationality puts on the form of that
utility function.
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4. Johnsen and Donaldson (1985) appear to deny the validity of some of my results. However, they
effectively consider a restricted domain of decision trees so that the implications of consequentialism become
muted — in particular, expected utility maximization is no longer implied. Karni and Safra (1986) also relax
this unrestricted domain assumption, but show how, even so, consequentialism implies the independence
axiom for a restricted domain of decision trees corresponding to English auctions. Pope’s (1985) discussion
also rests on their being a restricted domain. Indeed, the unrestricted domain assumption may be restrictive.
Of course, a decision tree can hardly include, as part of a consequence, regret at missing an opportunity to
have consequence y, unless there was an opportunity in the past to have had y. But the decision tree may
be a continuation of an earlier tree in which this opportunity existed, but has now gone. So how restrictive
the assumption is remains unclear to me at the time of writing.

5. A somewhat related justification of the independence axiom has recently been provided by Lavalle and
Wapman (1986).

6. A thorough exploration of a related notion of consequential equivalence has recently been provided by
Lavalle and Fishburn (1987).
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Drèze, J.H.: 1986, “Moral expectation with moral hazard”, in Contributions to Mathematical Economics
in Honor of Gerard Debreu, W. Hildenbrand and A. Mas-Colell (eds.), ch. 11, 187–204. Amsterdam:
North-Holland.
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