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1 Introduction

Conditional independence is a fundamental concept in probability theory.
For example, a Markov process can be defined as a stochastic process in
which the past and future are conditionally independent given the present.
A classical example due to Bernstein shows that there are three events which
are pairwise independent but not mutually independent (see [7, p. 126]).
Since independence is a trivial case of conditional independence, this also
means that pairwise conditional independence and its multivariate analog
is not equivalent for a finite collection of random variables. Despite the
fact that independence is a trivial version of conditional independence, very
simple examples can be constructed to show that two independent random
variables may lose their independence under conditioning (see [3, p. 217]).

The main aim of this paper is to show that if a large collection of random
variables is considered, then pairwise conditional independence is essentially
equivalent to its multivariate analog. It will also be shown that such a col-
lection of random variables will remain essentially conditionally independent
under further conditioning. In particular, a collection of independent ran-
dom variables will not lose its independence under conditioning (unlike in
the finite setting). In addition, the essential equivalence of pairwise and
multiple versions of exchangeability follows as a corollary. We prove these
results by generalizing Bledsoe and Morse’s completion of the product of
two measures in [2].

In this paper, a large collection of random variables is formalized as a
process indexed by points in an atomless probability space, which is simply
called a continuum of random variables. As discussed in [13] and some of
the work cited there, such processes occur in many economic models, espe-
cially those with essentially independent random variables. In particular, a
large literature in macroeconomics has relied on a version of the exact law of
large numbers for a continuum of independent random variables/stochastic
processes — see [14]. Note that an atomless probability index space pro-
vides a convenient idealization for economic models with a large but finite
number of agents. From a technical point of view, such an idealization is
often necessary for developing the relevant models of important economic
phenomena such as competitive markets.

Finally, our exact equivalence results in this paper also correspond to
some asymptotic results for a triangular array of random variables. Specifi-
cally, following Section 5 of [12] and Section 9 of [13], the routine procedure
of lifting, pushing down, and transfer can be applied to processes on a spe-
cial Loeb product probability space in order to demonstrate an appropriate
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form of asymptotic equivalence between pairwise and mutual conditional
independence for such an array.

The paper is organized as follows. Section 2 generalizes an idea of Bled-
soe and Morse on extending the product of two measures to the setting of
finite or infinite products of measure spaces. This is done by adding the
iterated null sets to the relevant product σ-algebras. Section 3 presents the
main results with some discussion of the literature. The proofs are given in
Section 4.

2 Extending the finite or infinite products of mea-
sure spaces

Let (Tk, Tk, λk), k ∈ N be a sequence of complete and countably additive
probability spaces. Then (

∏n
k=1 Tk,⊗n

k=1Tk,⊗n
k=1λk) is the product of the

first n probability spaces, whereas (
∏∞

k=1 Tk,⊗∞k=1Tk,⊗∞k=1λk) is the infinite
product of the entire sequence of probability spaces.

Though we can always assume that the above product probability spaces
are complete in the sense that subsets of measure zero are included as mea-
surable sets with zero measure, this completion is not enough for us to derive
our main result — namely, the essential equivalence of pairwise and mutual
conditional independence (see Remark 2 below). A stronger form of “iter-
ative” completion will be used for the products (

∏n
k=1 Tk,⊗n

k=1Tk,⊗n
k=1λk)

and (
∏∞

k=1 Tk,⊗∞k=1Tk,⊗∞k=1λk), involving those “iteratively null” sets whose
indicator functions have value zero for iterated integrals of all orders. The
following definition extends what Bledsoe and Morse [2] suggested for the
case of two measure spaces (see also [4, p. 108]).

Definition 1 A set E ⊆
∏n

k=1 Tk is said to be iteratively null if for every
permutation π on {1, . . . , n}, the iterated integral∫

tπ(1)∈Tπ(1)

. . .

∫
tπ(n)∈Tπ(n)

1E dλπ(n)(tπ(n)) . . . dλπ(1)(tπ(1)) (1)

is well-defined with value zero, where 1E is the indicator function of the
set E in

∏n
k=1 Tk; in other words, for λπ(1)-a.e. tπ(1) ∈ Tπ(1), λπ(2)-a.e.

tπ(2) ∈ Tπ(2), . . . , λπ(n)-a.e. tπ(n) ∈ Tπ(n), one has (t1, t2, . . . , tn) /∈ E.

As mentioned in [4, p. 113], Sierpiński constructed a subset A of [0, 1]2

whose ρ2-outer measure is one although its intersection with every line con-
sists of at most two points. It is obvious that the set A is iteratively null,
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implying that its ρ2-inner measure is zero. Thus, A is not in the usual prod-
uct Lebesgue σ-algebra. For the special class of atomless Loeb probability
spaces constructed in [11], it is shown in [1] that there is a continuum of
increasing Loeb product null sets with large gaps, in the sense that their set
differences have outer measure one under the usual product of two atomless
Loeb probability spaces. Since a Loeb product is an extension of the usual
product with the Fubini property, Loeb product null sets must be itera-
tively null. Hence, there is a large class of iteratively null sets that are not
measurable with respect to the completion of the usual product σ-algebra.

The following two propositions show that one can extend both the finite
and the infinite product probability spaces (

∏n
k=1 Tk,⊗n

k=1Tk,⊗n
k=1λk) and

(
∏∞

k=1 Tk,⊗∞k=1Tk,⊗∞k=1λk) respectively by including all the iteratively null
sets, and then forming the iterated completion.

Proposition 1 Given any n ∈ N, let En denote the family of all iteratively
null sets in

∏n
k=1 Tk. Then there exists a complete and countably additive

probability space (
∏n

k=1 Tk, ⊗̄n
k=1Tk, ⊗̄n

k=1λk) with

⊗̄n
k=1Tk := σ([⊗n

k=1Tk] ∪ En)
= [⊗n

k=1Tk]∆En := {B∆E : B ∈ ⊗n
k=1Tk, E ∈ En }

and [⊗̄n
k=1λk] (B∆E) = [⊗n

k=1λk] (B) whenever B ∈ ⊗n
k=1Tk, E ∈ En.

Proposition 2 There exists a countably additive probability space, denoted
by (

∏∞
k=1 Tk, ⊗̄∞k=1Tk, ⊗̄∞k=1λk), in which ⊗̄∞k=1Tk is the σ-algebra generated

by the union G := ∪∞n=1Gn of the families Gn of cylinder sets taking the
form A ×

∏∞
k=n+1 Tk for some A ∈ ⊗̄n

k=1Tk, whereas ⊗̄∞k=1λk is the unique
countably additive extension to this σ-algebra of the set function µ : G →
[0, 1] defined so that µ(A×

∏∞
k=n+1 Tk) := ⊗̄n

k=1λk(A) for all A ∈ ⊗̄n
k=1Tk.

Unlike in the finite product setting, the infinite product measure space
(
∏∞

k=1 Tk, ⊗̄∞k=1Tk, ⊗̄∞k=1λk) in Proposition 2 above may not be complete in
the usual sense. One can always complete it by the usual procedure (see,
for example, [4] pp. 78–79). We still use the same notation to denote that
completion.

The countably additive probability spaces (
∏n

k=1 Tk, ⊗̄n
k=1Tk, ⊗̄n

k=1λk)
and (

∏∞
k=1 Tk, ⊗̄∞k=1Tk, ⊗̄∞k=1λk) will be called the iterated completions of

(
∏n

k=1 Tk,⊗n
k=1Tk,⊗n

k=1λk) and of (
∏∞

k=1 Tk,⊗∞k=1Tk,⊗∞k=1λk), respectively.
Since the measure ⊗̄n

k=1λk only differs from the usual product measure
⊗n

k=1λk up to a set whose indicator functions has value zero for an iter-
ated integral of any order, it is obvious that these iterated completions for
the finite products still have the usual Fubini property.
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When all the probability spaces (Tk, Tk, λk) (k ∈ N) are copies of (T, T , λ),
let (Tn, T̄ n, λ̄n) and (T∞, T̄ ∞, λ̄∞) respectively denote the iterated comple-
tions of the n-fold and infinite product probability spaces.

3 Main results

The following definition introduces some basic concepts and notation.

Definition 2 Let (Ω,A, P ) be a complete, countably additive probability
space. Let C be a sub-σ-algebra of the σ-algebra A, and X a complete sep-
arable metric space with the Borel σ-algebra B. Let (T, T , λ) be a complete
atomless probability space. A process g is a mapping from T ×Ω to X such
that for all t ∈ T , the mapping gt(·) = g(t, ·) is A-measurable (i.e., gt is a
random variable).

1. Let n ∈ N with n ≥ 2. A finite sequence {fk}n
k=1 of X-valued random

variables is said to be mutually conditionally independent given C if,
for any Borel sets Bk ∈ B, k = 1, . . . , n, the conditional probabilities
satisfy

P (∩n
k=1f

−1
k (Bk)|C) =

n∏
k=1

P (f−1
k (Bk)|C). (2)

When n = 2 the two random variables f1, f2 satisfing Equation (2) are
said to be pairwise conditionally independent given C.

2. A sequence {fk}∞k=1 of X-valued random variables is said to be mutu-
ally conditionally independent given C if, for every n ≥ 2, the finite
sequence {fk}n

k=1 of X-valued random variables is mutually condition-
ally independent given C.

3. Let n ∈ N with n ≥ 2. The process g is said to be essentially n-wise mu-
tually conditionally independent given C if, for λ̄n-a.e. (t1, . . . , tn) ∈
Tn, the random variables gt1 , . . . gtn are mutually conditionally inde-
pendent given C. When n = 2, g is said to be essentially pairwise
conditionally independent given C.

4. The process g is said to be essentially mutually conditionally inde-
pendent given C if, for λ̄∞-a.e. {tk}∞k=1 ∈ T∞, the random variables
{gtk}∞k=1 ∈ T∞ are mutually conditionally independent given C.
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5. Given the process g : T × Ω → X and the σ-algebra C ⊆ A, the
T ⊗ C-measurable mapping µ : T ×Ω →M(X) is said to be an essen-
tially regular conditional distribution process if for λ-a.e. t ∈ T the
C-measurable mapping ω 7→ µtω is a regular conditional distribution
P (g−1

t |C) of the random variable gt.

6. The σ-algebra C is said to be countably generated if there is a countable
family F ⊆ C that generates C.

Let M(X) be the space of Borel probability measures on X endowed
with the topology of weak convergence of measures. It is easy to see that
the measurability of a mapping φ from a measurable space (I, I) to M(X)
with the Borel σ-algebra generated by the topology of weak convergence of
measures is equivalent to the I-measurability of all the mappings φ(·)(B)
for any B ∈ B (see, for example, [8, p. 748]). The following theorem shows
that essential pairwise conditional independence is equivalent to its finite or
infinite multivariate versions.

Theorem 1 Suppose that the process g from T ×Ω to X and the σ-algebra
C ⊆ A admit an essentially regular conditional distribution process µ. Pro-
vided that C is countably generated, the following are equivalent:

1. The process g is essentially pairwise conditionally independent given C.

2. For each fixed n ∈ N with n ≥ 2, the process g is essentially n-wise
mutually conditionally independent given C.

3. The process g is essentially mutually conditionally independent given C.

Because (unconditional) independence is a special case of conditional
independence given the trivial σ-algebra, the next result is an obvious im-
plication of Theorem 1.

Corollary 1 Let g be a process from T ×Ω to X such that the distribution
mapping Pg−1

t from T to M(X) is T -measurable. Then the following are
equivalent:

1. For λ̄2-a.e. (t1, t2) ∈ T 2, the random variables gt1 and gt2 are inde-
pendent.

2. For λ̄n-a.e. (t1, . . . , tn) ∈ Tn, the random variables gt1 , · · · , gtn are
mutually independent.
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3. For λ̄∞-a.e. {tk}∞k=1 ∈ T∞, the sequence {gtk}∞k=1 of random variables
is mutually independent.

Remark 1 Corollary 1 has been shown for processes on Loeb product spaces
in Theorem 3 and Proposition 3.4 of [12]. When g is essentially pairwise
independent, Proposition 1.1 in [12] shows that g is not measurable with
respect to the usual product σ-algebra T ⊗ A except in some trivial cases;
since the iterated completion of T ⊗ A only involves the addition of some
null sets, in general g is not measurable even with respect to the iterated
completion. Note that the framework of Loeb product spaces naturally allows
the Fubini property for functions of several variables that are not necessarily
measurable with respect to the usual product σ-algebras (or even their iterated
completions). These generalized Fubini properties are used extensively in the
proofs of Theorem 3 and Proposition 3.4 of [12]. Corollary 1 generalizes
the corresponding result to the general setting without any assumption on
generalized Fubini properties related to the process g. On the other hand,
in order to prove an exact law of large numbers in a meaningful analytic
framework, as in [14], one needs a suitable extension of the usual product
σ-algebras that retains the Fubini property.

The following proposition shows that essential pairwise conditional inde-
pendence is preserved under further conditioning (i.e. when the underlying
countably generated σ-algebra is enlarged).

Proposition 3 Suppose that the process g from T ×Ω to X and the count-
ably generated σ-algebra C ⊆ A admit an essentially regular conditional
distribution process µ. For any given countably generated sub-σ-algebra C′
of A that contains C, if the process g is essentially pairwise conditionally in-
dependent given C, then it is essentially pairwise conditionally independent
given C′.

As noted in the introduction, two independent random variables may
lose their independence under conditioning (see [3, p. 217]). However, the
following result, which is an obvious corollary of Proposition 3, shows that
a large collection of essentially independent random variables will not lose
their essential independence under conditioning.

Corollary 2 Let g be a process from T ×Ω to X such that the distribution
mapping Pg−1

t from T to M(X) is T -measurable. Suppose that for λ̄2-a.e.
(t1, t2) ∈ T 2, the random variables gt1 and gt2 are independent. Then, given
any countably generated sub-σ-algebra C of A, the process g is essentially
pairwise conditionally independent given C.
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Exchangeability is another fundamental concept in probability theory
with many applications; see, for example, the book [3] and the survey papers
[9] and [10]. Some work such as [6] also uses the weaker concept of pairwise
exchangeability. Theorem 4 and Proposition 3.5 of [12] show that essential
pairwise exchangeability is equivalent to its finite or infinite multivariate
versions for processes on Loeb product spaces. The following corollary ex-
tends these results to the general setting without assuming that the process
g satisfies any generalized Fubini property. The proof here is based on Theo-
rem 1 and on a de Finetti type result that essential pairwise exchangeability
is equivalent to essential pairwise conditional independence with identical
distributions.

Corollary 3 Let g be a process from T × Ω to X. Then the following are
equivalent.

1. The random variables gt are essentially pairwise exchangeable — i.e.,
there is a symmetric distribution ν2 on X2 such that for λ̄2-almost all
(t1, t2) ∈ T 2, gt1 and gt2 have a joint distribution ν2.

2. For n ≥ 2, the random variables gt are essentially n-wise exchangeable
— i.e., there is a symmetric distribution νn on Xn such that the joint
distribution of gt1 , . . . , gtn is νn for λ̄n-almost all (t1, . . . , tn) ∈ Tn.

3. For λ̄∞-a.e. {tk}∞k=1 ∈ T∞, {gtk}∞k=1 is an exchangeable sequence of
random variables.

4 The Proofs

4.1 Proof of the results in Section 2

Proof of Proposition 1: It is easy to see that En is a hereditary σ-ring
in the sense that D ∈ En whenever D ⊆ E ∈ En, whereas ∪∞m=1Dm ∈ En

for any sequence Dm (m ∈ N) of sets in En. The usual Fubini theorem
also implies that if E ∈ En ∩ ⊗n

k=1Tk, then ⊗n
k=1λk(E) = 0. By the usual

argument on completing a measure (see, for example, [4] pp. 78–79), the
σ-algebra generated by [⊗n

k=1Tk] ∪ En, which will be denoted by ⊗̄n
k=1Tk,

is the collection of all sets A of the form A = B∆E for B ∈ ⊗n
k=1Tk and

E ∈ En.
Now extend the product measure⊗n

k=1λk to a measure ⊗̄n
k=1λk on ⊗̄n

k=1Tk

by letting [⊗̄n
k=1λk](A) = ⊗n

k=1λk(B), which is a well-defined countably ad-
ditive measure on ⊗̄n

k=1Tk.
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If [⊗̄n
k=1λk](A) = 0, then ⊗n

k=1λk(B) = 0. By the usual Fubini the-
orem, B is also an iteratively null set, which means that A is also itera-
tively null. For any subset D of A, since all the measures λ1, . . . , λn are
complete, D is also iteratively null and thus belongs to ⊗̄n

k=1Tk. Hence
(
∏n

k=1 Tk, ⊗̄n
k=1Tk, ⊗̄n

k=1λk) is a complete measure space.

Proof of Proposition 2: It is obvious that µ is a finitely additive measure
on the algebra G. The usual proof that an infinite-dimensional product
measure exists (see [3], p. 193) can be used here to show that µ is actually
countably additive. Note that this proof uses the Fubini property. But any
iterative completion of a finite product probability space also has the Fubini
property, so this does not create any problem. Therefore µ can be extended
to a countably additive measure on σ(G) by the Carathéodory Extension
Theorem.

4.2 Proof of the results in Section 3

Lemma 1 Let g be a process from T × Ω to X. Let C ⊆ A be a countably
generated σ-algebra on Ω and µ a T ⊗C-measurable mapping from T ×Ω to
M(X). Suppose that for λ̄2-a.e. (t1, t2) ∈ T 2, one has

P (g−1
t1

(B1) ∩ g−1
t2

(B2)|C) = µt1ω(B1)µt2ω(B2) whenever B1, B2 ∈ B. (3)

Then for all A ∈ A and B ∈ B one has P (A ∩ g−1
t (B)) =

∫
A µtω(B)dP for

λ-a.e. t ∈ T .

Proof: Consider the case when B2 in Equation (3) is the whole space Ω.
Then, for λ̄2-a.e. (t′, t) ∈ T 2, one has

P (g−1
t′ (B)|C) = P (g−1

t′ (B) ∩ g−1
t (Ω)|C) = µt′ω(B)µtω(Ω) = µt′ω(B)

for all B ∈ B, which implies that µt′ω is a version of the regular conditional
distribution P (g−1

t′ (·)|C) of gt′ conditioned on C.
Now fix B ∈ B. By hypothesis, there exists a fixed set T1 with λ(T1) = 1

such that, for each t′ ∈ T1, one has

P (g−1
t′ (B) ∩ g−1

t (B)|C) = E(1g−1
t′ (B)1g−1

t (B)|C) = µt′ω(B)µtω(B) (4)

for λ-a.e. t ∈ T , and also

P (g−1
t′ (B)|C) = E(1g−1

t′ (B)|C) = µt′ω(B). (5)
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Equations (4) and (5) imply in particular that for any t′, t ∈ T1, one has

P (g−1
t′ (B) ∩ g−1

t (B)) =
∫

Ω
P (g−1

t′ (B) ∩ g−1
t (B)|C)dP

=
∫

Ω
µt′ω(B)µtω(B)dP =

∫
Ω

E(1g−1
t′ (B)(ω)µtω(B)|C)dP

=
∫

Ω
1g−1

t′ (B)(ω)µtω(B)dP. (6)

Fix any A ∈ A. Consider the Hilbert space L2(Ω,A, P ), and let L
be the smallest closed linear subspace which contains both the family of
C-measurable functions {µt′ω(B) | t ∈ T1 } and the family of indicator func-
tions { 1g−1

t (B) | t ∈ T1 }. Let the function h : Ω → R be the orthogonal
projection of the indicator function 1A onto L, with h⊥ as its orthogonal
complement. By definition, 1A = h + h⊥ where h⊥ is orthogonal to each
member of L. So for all t ∈ T1, one has 0 = E(h⊥µtω(B)) =

∫
Ω h⊥µtω(B)dP

and 0 = E(h⊥1g−1
t (B)) =

∫
Ω h⊥1g−1

t
(B)dP . Because 1A = h + h⊥, it follows

that for all t ∈ T1,

E(1A µtω(B)) = E(h µtω(B)) and E(1A 1g−1
t (B)) = E(h 1g−1

t (B)). (7)

Next, because h ∈ L, there exists a sequence of functions

hn(ω) =
in∑

k=1

[
αkn µtknω(B) + βkn1g−1

tkn
(B)(ω)

]
(n = 1, 2, . . .)

with tkn ∈ T1, as well as αkn and βkn (k = 1, . . . , in) all real constants, such
that hn → h in the norm of L2(Ω,A, P ) — that is,

∫
Ω(hn − h)2dP → 0.

Let Tkn be the intersection of the set of t for which Equation (4) holds
when t′ = tkn with the set of t′ for which Equation (5) holds. By hypothesis,
λ(Tkn) = 1 because each tkn ∈ T1. Define T ∗ := T1 ∩

(
∩∞n=1 ∩

in
k=1 Tkn

)
.

Because T ∗ is the intersection of a countable family of sets all having measure
1 w.r.t. λ, it follows that λ(T ∗) = 1. Also, for any t ∈ T ∗, Equation (7) and
the limiting property of the sequence hn imply that

P (A ∩ g−1
t (B)) = E(1A1g−1

t (B)) = E(h 1g−1
t (B)) = lim

n→∞
E(hn1g−1

t (B)) (8)

It follows from Equations (4)–(6) that

E(hn1g−1
t (B)) =

in∑
k=1

[
αkn E(µtknω(B) 1g−1

t (B)) + βknE(1g−1
tkn

(B) 1g−1
t (B))

]
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=
in∑

k=1

[
αkn E(µtknω(B) µtω(B)) + βknE(1g−1

tkn
(B) µtω(B))

]
= E(hn(ω)µtω(B)).

Taking the limit as n →∞ and using Equation (8), one infers that

P (A ∩ g−1
t (B)) = E(h1g−1

t (B)) = E(h(ω)µtω(B)) =
∫

A
µtω(B)dP,

where the last equality follows from Equation (7). Since λ(T ∗) = 1, this
completes the proof.

Lemma 2 Let g be a process from T × Ω to X. Let C ⊆ A be a countably
generated σ-algebra on Ω and µ a T ⊗C-measurable mapping from T ×Ω to
M(X). Assume that for each fixed A ∈ A and B ∈ B, one has

P (A ∩ g−1
t (B)) =

∫
A

µtω(B) dP (9)

for λ-a.e. t ∈ T . Then:

1. for λ-a.e. t ∈ T , µtω(·) is a regular conditional distribution P (g−1
t |C)

of the random variable gt;

2. for any fixed k ∈ N with k ≥ 2, the process g is essentially k-wise
mutually conditionally independent given C.

Proof: Let Cπ = {Cn}∞n=1 and Bπ = {Bπ
m}∞m=1 be countable π-systems

for C and B respectively. For each pair (m,n), there exists a set Tmn with
λ(Tmn) = 1 such that for all t ∈ Tmn, Equation (9) holds with A = Cn

and B = Bπ
m. So for any t ∈ T ∗ := ∩∞m=1 ∩∞n=1 Tmn, Equation (9) holds

whenever A = Cn and B = Bπ
m, for all pairs (m,n) simultaneously. Because

Cπ is a π-system that generates C, Dynkin’s π–λ theorem (see [5], p. 404)
implies that Equation (9) must hold whenever t ∈ T ∗, for all A ∈ C and all
B ∈ Bπ simultaneously. Finally, because Bπ is a π-system that generates B,
Equation (9) must hold whenever t ∈ T ∗, A ∈ C, and B ∈ B. In particular,
µtω must be a version of the regular conditional distribution P (g−1

t |C), for
all t ∈ T ∗.

After this preliminary step, we prove by induction on k that for λ̄k-a.e.
(t1, . . . , tk) ∈ T k, one has

E

(
k∏

i=1

1g−1
ti

(Bi)

∣∣∣∣∣ C
)

=
k∏

i=1

µtiω(Bi) (10)
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for all Bi ∈ Bπ (i = 1 to k). When k = 1, this is shown in the last paragraph.
As the induction hypothesis, suppose that (10) holds for k − 1 (where

k ≥ 2). That is, for λ̄k−1-a.e. (t1, . . . , tk−1) ∈ T k−1, one has

E

(
k−1∏
i=1

1g−1
ti

(Bi)

∣∣∣∣∣ C
)

=
k−1∏
i=1

µtiω(Bi) (11)

for all Bi ∈ Bπ (i = 1 to k − 1). Take any (t1, . . . , tk−1) ∈ T k−1 with the
above property.

Fix any C ∈ Cπ, and any family Bi (i = 1, . . . , k) from the countable
π-system Bπ. Because (9) holds in particular when A = C ∩ [∩k−1

i=1 g−1
ti

(Bi)],
it follows that for λ-a.e. tk ∈ T ∗,∫

C

k∏
i=1

1g−1
ti

(Bi)
dP = P

(
C ∩

[
∩k

i=1g
−1
ti

(Bi)
])

=
∫

C∩
h
∩k−1

i=1 g−1
ti

(Bi)
i µtkω(Bk)dP =

∫
C

k−1∏
i=1

1g−1
ti

(Bi)
µtkω(Bk)dP. (12)

Since µtkω(·) = P (g−1
tk

(·)|C) for tk ∈ T ∗,

E

(
k−1∏
i=1

1g−1
ti

(Bi)
(ω) µtkω(Bk)

∣∣∣∣∣ C
)

= µtkω(Bk)E

(
k−1∏
i=1

1g−1
ti

(Bi)

∣∣∣∣∣ C
)

=
k∏

i=1

µtiω(Bi) (13)

by Equation (11). Hence Equations (12) and (13) imply that∫
C

k∏
i=1

1g−1
ti

(Bi)
dP =

∫
C

k∏
i=1

µtiω(Bi) dP. (14)

Summarizing, given any fixed C ∈ Cπ and any fixed family Bi (i =
1, . . . , k) from the countable π-system Bπ, we have shown that Equation
(14) holds for λ̄k−1-a.e. (t1, . . . , tk−1) ∈ T k−1 and for λ-a.e. tk ∈ T . Let D
be the set of all (t1, . . . , tk) ∈ T k such that Equation (14) fails. Then, we
know that the iterated integral∫

t1∈T1

. . .

∫
tk∈Tk

1D dλ(tk) . . . dλ(t1)

11



is zero. But the symmetry of Equation (14) implies that D is symmetric
— i.e., for any permutation π on {1, . . . , k} and any (t1, . . . , tk) ∈ T k, one
has (t1, . . . , tk) ∈ D if and only if (tπ(1), . . . , tπ(q)) ∈ T k. For this reason, all
the iterated integrals of 1D in any other order are also zero, which means
that D is iteratively null. This proves that Equation (14) holds for λ̄k-a.e.
(t1, . . . , tk) ∈ T k.

For each n ∈ N and each list mk = (mi)k
i=1 ∈ Nk, let T k(n, mk) denote

the set of all (t1, . . . , tk) ∈ T k such that Equation (14) holds for the sets Cn

and Bπ
mi

(i = 1 to k) of the countable π-systems Cπ and Bπ respectively.
We have just proved that λ̄k(T k(n, mk)) = 1. Define the set

T̂ k := (T ∗)k ∩ ∩∞n=1 ∩∞m1=1 · · · ∩∞mk=1 T k(n, mk)

where (T ∗)k denotes the k fold Cartesian product of the set T ∗. Then
λ̄k(T̂ k) = 1. For all (t1, . . . , tk) ∈ T̂ k and all Bi ∈ Bπ (i = 1 to k), Equation
(14) holds for all C ∈ Cπ. Because Cπ is a π-system for C, it follows that
Equation (10) holds for all (t1, . . . , tk) ∈ T̂ k, and all Bi ∈ Bπ (i = 1 to k).
This proves the induction step.

Finally, since Bπ is a π-system for B, for each (t1, . . . , tk) ∈ T̂ k Equation
(10) holds for all Bi ∈ B (i = 1 to k), and also P (g−1

ti
|C) = µtiω. Hence, the

random variables gt1 , . . . gtk are mutually conditionally independent given C.
The rest is clear.

Remark 2 We have only shown that the set D where Equation (14) fails
is iteratively null. In general it will not be T k-measurable. That is why we
need the concept of iterated completion.

Proof of Theorem 1: (1) =⇒ (2) follows from Lemmas 1 and 2.
Next consider (2) =⇒ (3). For k ≥ 2, let Ek be the collection of all the

(t1, . . . , tk) ∈ T k such that gt1 , . . . , gtk are mutually conditionally indepen-
dent given C, and let Dk = Ek × T∞. By (2) λ̄∞(Dk) = λ̄k(Ek) = 1. Let
D = ∩∞k=2Dk. It is clear that λ̄∞(D) = 1, and that for any (t1, t2, . . .) ∈ D,
the random variables in the sequence {gtk}∞k=1 are mutually conditionally
independent given C.

(3) =⇒ (1) is obvious.

We use the following corollary in the remaining proofs. It is an obvious
implication of Lemmas 1 and 2.

Corollary 4 Let g be a process from T ×Ω to X. Let C ⊆ A be a countably
generated σ-algebra on Ω and µ a T ⊗C-measurable mapping from T ×Ω to
M(X). Then the following two conditions are equivalent.

12



1. For all A ∈ A and B ∈ B one has P (A ∩ g−1
t (B)) =

∫
A µtω(B)dP for

λ-a.e. t ∈ T .

2. Given C, the process g has an essentially regular conditional distribu-
tion process µ, and is essentially pairwise conditionally independent
given C.

Proof of Proposition 3: Since µtω(·) is a regular conditional distribution
P (g−1

t |C) of the random variable gt for λ-a.e. t ∈ T , if the process g is essen-
tially pairwise conditionally independent given C, then Part 2 of Corollary
4 is satisfied, which implies Part 1 of Corollary 4.

Since C ⊆ C′ and the mapping µ is T ⊗C-measurable, it is automatically
T ⊗ C′-measurable. Because µ satisfies Part 1 of Corollary 4, we can apply
Corollary 4 with C replaced by C′ to show that for λ̄2-a.e. (t1, t2) ∈ T 2, gt1

and gt1 are conditionally independent given C′.

Proof of Corollary 3: It is obvious that (3) =⇒ (1). The proof that (2)
=⇒ (3) is similar to the corresponding part in the proof of Theorem 1. It
remains only to prove that (1) =⇒ (2).

If the random variables gt are essentially pairwise exchangeable, then
Lemmas 4 and 5 in [8] imply that there is a measurable mapping ω 7→ µω

from (Ω,A) to M(X) such that for each A ∈ A and B ∈ B, and for λ-
a.e. t ∈ T , one has P (A ∩ g−1

t (B)) =
∫
A µω(B) dP . (Note that the proofs of

Lemmas 4 and 5 in [8] still carry through without the additional assumption
of pairwise measurable probabilities that is made in [8]. Nor does it matter
that the earlier paper uses the classical rather than the iterative definition of
a product null set.) Let C be the sub-σ-algebra of A generated by µω, which
is countably generated. This means that Part 1 of Corollary 4 is satisfied.
By the equivalence in Corollary 4, we obtain that for λ-a.e. t ∈ T , µω(·) is a
regular conditional distribution P (g−1

t |C) of the random variable gt, and for
λ̄2-a.e. (t1, t2) ∈ T 2, gt1 and gt2 are conditionally independent given C. By
Theorem 1, for λ̄k-a.e. (t1, . . . , tk) ∈ T k the random variables gt1 , . . . gtk are
mutually conditionally independent given C with essentially identical regular
conditional distributions. In particular, for λ̄k-a.e. (t1, . . . , tk) ∈ T k and for
any Bi ∈ B (i = 1 to k),

P
(
∩k

i=1g
−1
ti

(Bi)
∣∣∣ C) = E

(
k∏

i=1

1g−1
ti

(Bi)

∣∣∣∣∣ C
)

=
k∏

i=1

µk
ω(Bi),

13



which implies that

P

(
(gt1 , . . . gtk)−1

(
k∏

i=1

Bi

))
=
∫

Ω
µk

ω

(
k∏

i=1

Bi

)
dP.

But the family of k-fold Cartesian product sets
∏k

i=1 Bi with Bi ∈ B (i =
1, . . . , k) is a π-system for the k-fold product σ-algebra Bk. So for λ̄k-a.e.
(t1, . . . , tk) ∈ T k, it follows that

P ((gt1 , . . . gtk)−1(V )) =
∫

Ω
µk

ω(V )dP

for all V ∈ Bk. Hence, the random variables gt are essentially k-wise ex-
changeable.
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