
Aspects of Rationalizable Behaviour

Peter J. Hammond

Department of Economics, Stanford University, CA 94305-6072, U.S.A.

December 1991; revised April, July, and September 1992. Chapter for Frontiers of

Game Theory edited by Ken Binmore, Alan Kirman, and Piero Tani (M.I.T. Press).

ABSTRACT

Equilibria in games involve common “rational” expectations, which are supposed to

be endogenous. Apart from being more plausible, and requiring less common knowledge,

rationalizable strategies may be better able than equilibria to capture the essential intuition

behind both correlated strategies and forward induction. A version of Pearce’s “cautious”

rationalizability allowing correlation between other players’ strategies is, moreover, equiva-

lent to an iterated procedure for removing all strictly, and some weakly dominated strategies.

Finally, as the effect of forward induction in subgames helps to show, the usual description

of a normal form game may be seriously inadequate, since other considerations may render

implausible some otherwise rationalizable strategies.
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1. Introduction

1.1. Common Expectations Equilibrium

For much of its history, game theory has been pursuing an enormously ambitious re-

search program. Its aim has been nothing less than to describe equilibrium outcomes for

every game. This involves not only a specification of each player’s behaviour or choice of

strategy, but also of what beliefs or expectations justify that behaviour. The crucial feature

of equilibrium expectations is that they correspond to a single common joint probability

distribution over all players’ strategy choices. This makes it natural to speak of common

expectations equilibrium. Moreover, these expectations must be rational in the sense that

each player is believed to play, with probability one, some optimal strategy given the con-

ditional joint probability of all the other players’ strategies. Indeed, this is the essential

idea behind Aumann’s (1987) notion of correlated equilibrium. If one also imposes stochas-

tic independence between the probability beliefs concerning strategy choices by different

players, then each common expectations or correlated equilibrium with this property is a

Nash equilibrium, and conversely. Thus, the crucial feature of both Nash and correlated

equilibrium is the existence of common “rational” expectations. In the case of games of im-

perfect information, the same is true of a Bayesian-Nash equilibrium with a common prior,

as considered by Harsanyi (1967–8). Refinements of Nash equilibrium, including subgame

perfect, trembling hand perfect, proper, sequential, and stable equilibria, all incorporate

the same common expectations hypothesis a fortiori .

1.2. Battle of the Sexes, and Holmes v. Moriarty

C

R

a b

A 2 0
1 0

B 0 1
0 2

Battle of the Sexes

The restrictiveness of such common expectations equilibrium can be illustrated by two

classic games. The first is “Battle of the Sexes”, as presented by Luce and Raiffa (1957)

1



and often considered since. As is well known, this game between the two players Row (R)

and Column (C) has three Nash equilibria in which:

(1) Row and Column play (A, a) and get (2, 1);

(2) Row and Column play (B, b) and get (1, 2);

(3) Row and Column play the mixed strategies (2
3 A + 1

3 B, 1
3 a + 2

3 b), and get expected

payoffs ( 2
3 , 2

3 ).

Knowing that these are the three Nash equilibria does little to help select among them.

Moreover, while observing the strategy choices (A, a) or (B, b) might help to reinforce our

belief in equilibrium theory, how are we to interpret an observation of (B, a) or of (A, b)? Did

these anomalous observations arise because the players followed the mixed strategies of the

third Nash equilibrium and experience misfortune on this occasion? Or if (A, b) is observed,

is that because R hoped that the equilibrium would be (A, a) whereas C hoped that it

would be (B, b)? And if (B, a) is observed, is that because R feared that the equilibrium

would be (B, b) while C feared it would be (A, a)?

A second classic game is von Neumann and Morgenstern’s (1953, pp. 176–8) simple

model of one small part of the story concerning Sherlock Holmes’ attempts to escape being

murdered by Professor Moriarty before he could get the professor and his criminal associates

arrested.1 According to this simple model Moriarty wants to catch Holmes, while Holmes

wants to escape to Dover and then to the Continent. As Holmes boards a train heading

from London to Dover, he sees Moriarty on the platform and sees that Moriarty sees him,

and sees him seeing Moriarty, etc.2 Holmes knows that Moriarty will hire a special train

to overtake him. The regular train has just one stop before Dover, in Canterbury. Given

the payoffs which von Neumann and Morgenstern chose in order to represent Holmes’ and

Moriarty’s preferences, this involves the two person zero-sum bimatrix game shown. Here

1 I am indebted to Kenneth Arrow for reminding me of this example which I had forgotten
long ago. For the full story, including Holmes’ finding himself in Florence sometime in May 1891,
see “The Final Problem” in Sir Arthur Conan Doyle’s Memoirs of Sherlock Holmes, followed
by “The Adventure of the Empty House” in the same author’s The Return of Sherlock Holmes.
Morgenstern seems to have been fond of this example, since he had already used it twice before —
see Morgenstern (1928, p. 98, and 1935, p. 343) [and note that the reference to the latter in von
Neumann and Morgenstern (1953, p. 176) is slightly inaccurate].

2 Actually, in “The Final Problem” it is not at all clear that Moriarty does see Holmes, who
had after all taken the precaution of disguising himself as “a venerable Italian priest” so effectively
as to fool his constant companion Dr. Watson. Nevertheless, Moriarty acted as though he knew
Holmes really was on the train, and he would surely expect to be seen by Holmes.
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M

H

c d

C -100 0
100 0

D 50 -100
-50 100

Holmes v. Moriarty

H denotes Holmes, M denotes Moriarty, and each has the strategy D or d of going on to

Dover, as well as the strategy C or c of stopping in Canterbury.

The unique equilibrium of this simplified game has Moriarty stop his special train in

Canterbury with probability 0.4, but go on to Dover with probability 0.6, while Holmes

should get off the ordinary train in Canterbury with probability 0.6 and go directly to

Dover with probability 0.4. In fact, Conan Doyle had Holmes (and Watson) get out at

Canterbury and take hiding as Moriarty’s special train rushed through the station on its

way to Dover. Von Neumann and Morgenstern observe that this is the closest pure strategy

profile to their mixed strategy Nash equilibrium, but that the latter gives Holmes only a

0.52 chance of escaping. In fact, who is to say that Holmes did not do better? He predicted

that Moriarty would head straight to Dover, thinking perhaps that he had to reach it at all

costs in time to intercept Holmes before he could escape quickly, while believing (correctly)

that he could still catch Holmes later even if Holmes did get off at Canterbury and proceed

more slowly to the Continent. What this shows, I suppose, is partly that von Neumann and

Morgenstern’s model is excessively simplified. But it also calls into question their advocacy

of mixed strategies in such complex situations. Though pursuit games can involve bluff,

just as poker does, there is much else to consider as well.

In the first of these two games there is as yet no good story of how one of the three Nash

equilibria is to be reached. In the second, even though there is a single Nash equilibrium

in mixed strategies, it is by no means obvious that this describes the only possible set of

rational beliefs which the players might hold about each other.
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1.3. Rationalizable Strategic Behaviour

Fortunately, work on “rationalizable strategic behaviour” initiated during the early

1980’s by Bernheim (1984, 1986) and Pearce (1984) (and in their earlier respective Ph. D.

theses) offers us a way out of the predicament. Actually, their approach is quite closely

related to Farquharson’s (1969, ch. 8 and Appendix II) earlier idea (in his 1958 D. Phil.

thesis) that one should eliminate all (weakly) dominated strategies repeatedly, and consider

anything left over as a possible strategy choice. A partial link between these ideas will be

discussed in Section 3 below. In both Battle of the Sexes and Morgenstern’s version of

Holmes v. Moriarty, any pair of strategy choices by both players is rationalizable. However,

before we can say what is really rational, we have to say much more about players’ beliefs,

and about whether they are sensible. This seems entirely right. A Nash equilibrium is

indeed plausible when there is good reason for the players to have the particular common

expectations underlying that equilibrium. But if there is no particularly good reason for

them to have such common expectations, a Nash equilibrium has no more obvious claim

to our attention than does any other profile of rationalizable strategies with associated

divergent beliefs for the different players.

1.4. Outline of Paper

The rest of this paper will study some implications of relaxing the hypothesis that

expectations are held in common by all players, and so of allowing that any profile of

rationalizable strategies could occur. Section 2 begins by considering iteratively undom-

inated strategies. Thereafter, it provides a concise definition of rationalizable strategies,

and explains how they form a subset of those strategies that survive iterative deletion of

strictly dominated strategies. An example shows that this rationalizability is too weak a

criterion, however, because it allows players to use strategies which are strictly dominated

in subgames, but not in the whole game. Accordingly, Pearce’s more refined concept of

“cautious rationalizability” is recapitulated for later use. It is also shown how strategies

are cautiously rationalizable only if they survive a “cautious” version of iterative deletion

of weakly dominated strategies.

Thereafter, Section 3 will consider correlated strategies, and argue that there is more

scope for these in connection with divergent expectations than with the common expec-
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tations that underlie a correlated equilibrium. It is somewhat implausible for players to

believe, even in the absence of a correlation device, that their own strategies are correlated

with those of other players. But it is entirely reasonable for one player to believe that

strategies of other players are correlated with each other. The common expectations hy-

pothesis forces these two kinds of correlation to be synonymous, but in games with three or

more players the ideas are quite different when players’ expectations are allowed to diverge.

Moroever, the set of all correlated rationalizable strategies can be found by removing all

strictly dominated strategies for each player iteratively. And the set of all correlated cau-

tiously rationalizable strategies can be found by “cautiously” iterating the rule of removing

weakly dominated strategies.

Though rationalizability appears to be a coarsening instead of a refinement of Nash

equilibria, there are cases when it helps to establish a refined equilibrium, as both Bernheim

(1984, p. 1023) and Pearce (1984, p. 1044) pointed out. Indeed, as Section 4 argues, the

arguments behind forward induction make much more sense when players are allowed to be

uncertain about what happens in a subgame, instead of having in mind some definite Nash

or sequential equilibrium. The arguments that help sustain forward induction, however,

also point to a serious weakness of orthodox game theory. For it turns out that players’

expectations in a subgame may well be influenced by the opportunities which they know

other players have foregone in order to reach the subgame. Indeed, such is the essence of

forward induction. But then it follows that the subgame is not adequately described by the

strategy sets and payoff functions, or even by its extensive form tree structure. Important

information about what happened before the subgame started is missing from the usual

description of a game, and such information could also be relevant to the whole game, since

that is presumably a subgame of some larger game which started earlier.

Iterative removal of all weakly dominated strategies has often been criticized as leading

to implausible outcomes. Some of these objections are based on examples due to van

Damme (1989) and also to Ben-Porath and Dekel (1992) of how the opportunity to “burn

money” at the start of a game can significantly influence its outcome, even though that

opportunity is never actually used. Dekel and Fudenberg (1990) discuss another similar

example. Though cautious rationalizability is generally different from iterative removal of

all weakly dominated strategies, in these particular examples it actually leads to identical
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outcomes. Accordingly, Section 4 also provides a brief discussion of these examples. It is

claimed that appropriate forward induction arguments make the disputed outcomes less

implausible than has previously been suggested.

Section 5 offers some brief concluding remarks.

2. Iteratively Undominated and Rationalizable Strategies

2.1. Iteratively Undominated Strategies

Consider a normal form game (N, AN , vN ), where N is a finite set of players who each

have specified finite (action) strategy spaces Ai, and AN denotes the Cartesian product

space
∏

i∈N Ai of strategy profiles, while vN = (vi)i∈N is a list of all individuals’ payoff

functions vi : AN → � which depend on the strategy profile aN ∈ AN .

As general notation, given any measurable set T , let ∆(T ) denote the set of all possible

probability distributions over T .

Given any product set KN =
∏

i∈N Ki ⊂ AN of strategy profiles, any player i ∈ N ,

and any pure strategy a′
i ∈ Ki, say that a′

i is strictly dominated relative to KN if there

exists µi ∈ ∆(Ki) such that
∑

ai∈Ki
µi(ai) vi(ai, a−i) > vi(a′

i, a−i) for all combinations

a−i = (aj)j∈N\{i} ∈ K−i :=
∏

j∈N\{i} Kj of all the other players’ pure strategies. And

say that a′
i is weakly dominated relative to KN if there exists µi ∈ ∆(Ki) such that∑

ai∈Ki
µi(ai) vi(ai, a−i) ≥ vi(a′

i, a−i) for all a−i ∈ K−i, with strict inequality for at least

one such a−i. Then let Si(KN ) (resp. Wi(KN )) denote the members of Ki that are not

strictly (resp. weakly) dominated relative to KN . Also, let S(KN ) and W (KN ) denote the

respective product sets
∏

i∈N Si(KN ) and
∏

i∈N Wi(KN ).

Next, for each positive integer k = 1, 2, 3, . . ., let Sk(KN ) := S(Sk−1(KN )) be defined

recursively, starting from S0(KN ) := KN . In the case when KN = AN , write Sk for

Sk(AN ), and let Sk
i denote player i’s component of the product space Sk =

∏
i∈N Sk

i ; it is

the set of all i’s strategies that remain after k rounds of removing all the strictly dominated

strategies of every player. Evidently

∅ �= Sk
i ⊂ Sk−1

i ⊂ . . . ⊂ S1
i ⊂ S0

i = Ai (k = 3, 4, . . .).

6



Therefore, because each player’s Ai is a finite set, the limit set

S∞
i := lim

k→∞
Sk

i =
∞⋂

k=0

Sk
i

must be well defined and non-empty. Actually, there must exist some finite n for which

Sk
i = Sn

i for all i ∈ N and all integers k ≥ n. Moreover, the same arguments apply to the

sets W k
i of strategies that survive k rounds of removing all the weakly dominated strategies

of every player, and for the limit sets W∞
i .

Finally, to prepare the ground for the later discussion of cautious rationalizability,

another iterative rule for removing dominated strategies needs to be considered. This

involves the recursive definition that starts from (W S∞)0(AN ) := AN and continues with

(W S∞)k(AN ) := W (S∞((W S∞)k−1(AN ))) (k = 1, 2, 3, . . .),

where S∞(KN ) :=
⋂∞

k=0 Sk(KN ), of course. Also, (W S∞)k(AN ) can be written as the

Cartesian product
∏

i∈N (W S∞)k
i . Arguing as before, this recursion converges in a finite

number of steps, so that each player i ∈ N has a well defined non-empty limit set

(W S∞)∞i :=
∞⋂

k=0

(W S∞)k
i .

In what follows, (W S∞)∞i will be described as the set of i’s strategies that survive cautious

iterative deletion of dominated strategies. Evidently, the construction of this limit set begins

with removing strictly dominated strategies iteratively, in order to arrive at S∞
i for each

player. But whenever the process of removing strictly dominated strategies gets stuck be-

cause there are no more to remove, the procedure passes on to the next stage which consists

of just one round of removing all the weakly dominated strategies of every player. After

this single round, it reverts immediately to removing strictly dominated strategies itera-

tively. Since the process can get stuck many times, in fact strategies that are only weakly

dominated may have to be removed repeatedly. But such weakly dominated strategies are

removed only “cautiously,” in the sense that they must remain inferior even after strictly

dominated strategies have been removed iteratively as far as possible.
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2.2. Definition and Basic Properties of Rationalizable Strategies

For any probability distribution πi ∈ ∆(A−i) which represents player i’s beliefs about

other players’ strategies a−i ∈ A−i, let

Ui(ai, πi) := IEπi vi(ai, a−i) :=
∑

a−i∈A−i

πi(a−i) vi(ai, a−i)

denote, for each ai ∈ Ai, the expected value of vi with respect to πi. Then i’s best response

correspondence is defined by

Bi(πi) := arg max
ai∈Ai

{Ui(ai, πi) }.

The sets Ri (i ∈ N) of rationalizable strategies are now constructed recursively as

follows (see Pearce, 1984, p. 1032, Definition 1, and compare Bernheim, 1984, p. 1015).

First, let R0
i := Ai for each player i. Then let

Rk
i := Bi

(∏
j∈N\{i}

∆(Rk−1
j )

)
(i ∈ N ; k = 1, 2, . . .).

Thus R1
i consists of all player i’s possible best responses, given the various beliefs that

i might have about the strategies chosen by the other players from the sets R0
j = Aj

(j �= i). Next, R2
i consists of all i’s possible best responses given the various beliefs about

the strategies chosen by other players from R1
j (j �= i), and so on. Evidently ∅ �= Rk

i ⊂ Rk−1
i

(k = 1, 2, . . .), as can readily be proved by induction on k. It follows that each player i ∈ N

has a well defined limit set

Ri := lim
k→∞

Rk
i =

∞⋂
k=0

Rk
i .

This completes the construction. Indeed, because each set Ai is finite, the limit Ri is

reached after a finite number of iterations, and is non-empty. Since there is a finite number

of players, moreover, there is a finite integer n, independent of i, for which k ≥ n implies

Ri = Rk
i (all i ∈ N). But then

Ri = Bi

(∏
j∈N\{i}

∆(Rj)
)

so that rationalizable strategies are best responses to possible beliefs about other players’

rationalizable strategies. The following result is also easy to prove:
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Theorem. Every strategy which is used with positive probability in some Nash equilibrium

must be rationalizable. That is, if E ⊂
∏

i∈N ∆(Ai) denotes the set of possible Nash

equilibrium beliefs that players can hold about each other, and if for any player i ∈ N , the

set Ei is defined as { ai ∈ Ai | ∃πN = (πi)i∈N ∈ E : πi(ai) > 0 }, then Ei ⊂ Ri.

Proof: Let π̄N =
∏

i∈N π̄i be any Nash equilibrium, where π̄i ∈ ∆(Āi) (all i ∈ N). Let
Āi := { ai ∈ Ai | π̄i(ai) > 0 } be the set of strategies used by i with positive probability
in this Nash equilibrium. Then Āi ⊂ Bi(π̄−i), where π̄−i :=

∏
j∈N\{i} π̄j . Since R0

i = Ai,
obviously Āi ⊂ R0

i (all i ∈ N). Now suppose that the induction hypothesis Āi ⊂ Rk−1
i (all

i ∈ N) is satisfied. Then

Āi ⊂ Bi(π̄−i) ⊂ Bi

(∏
j∈N\{i}

∆(Āj)
)
⊂ Bi

(∏
j∈N\{i}

∆(Rk−1
j )

)
= Rk

i .

Thus Āi ⊂ Rk
i for k = 1, 2, . . ., by induction on k, and so Āi ⊂ Ri as required.

So all Nash strategies are rationalizable. But, as Bernheim’s (1984, pp. 1024–5)

Cournot oligopoly example clearly shows, other non-Nash strategies are often rationaliz-

able too.

Since a strictly dominated strategy is never a best response, for k = 1, 2, . . . it must be

true that all strictly dominated strategies for player i are removed from Rk−1
i in reaching

Rk
i . It follows easily by induction on k that Rk

i is a subset of Sk
i , the set of i’s strategies that

survive k iterations of removing strictly dominated strategies. Taking the limit as k → ∞
implies that Ri must be a subset of S∞

i , the set of all i’s strategies that survive iterative

removal of strictly dominated strategies. Generally, however, Ri �= S∞
i , though the two sets

are always equal in two-person games (see Fudenberg and Tirole, 1991, pp. 50–52 and 63).

2.3. Refinements

I
A

−−−−→ II
a

−−−−→ (3, 2)�D

�d

(2, 0) (1, 3)

A Simple Extensive Form
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Rationalizability on its own fails to exclude some very implausible strategy choices. In

the example shown, d is evidently an optimal strategy for player II whenever the subgame is

reached. But D is player I’s best response to d, and a is one of player II’s best responses to D,

while A is player I’s best response to a. Thus all strategies are possible best responses and so

rationalizable in this game. In the normal form, moreover, there are no strictly dominated

strategies. Yet a is not a credible choice by Player II. In fact, a is strictly dominated in

the subgame which starts with Player II’s move. If only d is really rationalizable for II,

however, then only D is for player I, so the only really rationalizable choices are (D, d).

This illustrates subgame rationalizability (Bernheim, 1984, p. 1022).

The argument of the above paragraph exploited the extensive form structure of the

game. But there are similar normal form arguments such as that used by (Bernheim, 1984,

p. 1022) to discuss “perfect rationalizability”. This paper, however, will instead make use of

Pearce’s (1984) idea of refining rationalizable to “cautiously rationalizable” strategies. To

explain his construction, first let ∆0(T ) denote, for any finite set T , the interior of ∆(T ) —

i.e., the set of all probability distributions attaching positive probability to every member

of T . Also, given any subset A′
i ⊂ Ai, player i’s constrained best response correspondence is

defined by

Bi(πi | A′
i) := arg max

ai∈A′
i

{Ui(ai, πi) }

Now start with Â0
i = Ai, the set of all i’s possible strategies, and R̂0

i := Ri, the set of all

i’s rationalizable strategies. Then construct the sequences of sets P̂ k
i , Âk

i , R̂k
i (k = 1, 2, . . .)

recursively so that

P̂ k
i :=

∏
j∈N\{i}

∆0(R̂k−1
j ),

while R̂k
i is the set of rationalizable strategies in the restricted normal form game where

each player is i ∈ N is only allowed to choose some strategy ai in the set

Âk
i := Bi

(
P̂ k

i | R̂k−1
i

)
⊂ R̂k−1

i

of what Pearce called “cautious responses” within R̂k−1
i to expectations concerning other

players’ strategies in the sets R̂k−1
j (j �= i). Provided that the sets R̂k−1

i (i ∈ N) are

non-empty, the construction will continue to yield non-empty sets Âk
i , R̂k

i (i ∈ N) which,
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because of the definition of rationalizable strategies, must satisfy

R̂k
i = Bi

(
P̄ k

i | Âk
i

)
⊂ Âk

i where P̄ k
i :=

∏
j∈N\{i}

∆(R̂k−1
j ) = cl P̂ k

i .

It follows by induction on k that

∅ �= R̂k
i ⊂ Âk

i ⊂ R̂k−1
i ⊂ Âk−1

i ⊂ . . . ⊂ R̂0
i ⊂ Â0

i = Ai (k = 1, 2, . . .).

Now, repeating the argument used for rationalizable strategies shows that there must

be a finite integer n for which k ≥ n implies that Âk
i = Ân

i = R̂k
i = R̂n

i (all i ∈ N). The set

R̂i :=
∞⋂

k=0

R̂k
i = R̂n

i ⊂ R̂0
i = Ri

must therefore be a well defined and non-empty subset of Ri. Call R̂i the set of cautiously

rationalizable strategies for player i. Evidently Âk
i = R̂i for all k ≥ n, and so

R̂i = Bi(P̂i | R̂i) where P̂i :=
∏

j∈N\{i}
∆0(R̂j) (all i ∈ N).

Thus any player’s cautiously rationalizable strategies are indeed (cautious) best responses to

non-degenerate probability beliefs about other players’ cautiously rationalizable strategies.

But it is not required that all such best responses be included in the set of cautiously

rationalizable strategies.

Because only strategies that are best responses to interior probability distributions are

retained in passing from the sets R̂k−1
i to Âk

i , it follows that all weakly dominated strategies

in R̂k−1
i are eliminated. Thus Âk

i must be a subset of Wi(R̂k−1
i ), and the product set

Âk :=
∏

i∈N Âk
i must be a subset of W (R̂k−1), where R̂k−1 :=

∏
i∈N R̂k−1

i . Thereafter,

all strategies among W (R̂k−1) that would be removed by iterative strict dominance must

also be removed from Âk in order to arrive at strategies in the product set R̂k that are

rationalizable in the game where each player is i ∈ N is artificially restricted to choosing

some strategy in Âk
i . It follows that R̂k ⊂ S∞(Âk). So R̂k must be a subset of the

set S∞(W (R̂k−1)) of those strategies that survive the removal of all weakly dominated

strategies at the first stage, followed by iterated removal of all strictly dominated strategies

at each later stage. Ultimately, moreover, each R̂i must be a subset of the set (W S∞)∞i of

i’s strategies that survive cautious iterative removal of dominated strategies.3

3 Dekel and Fudenberg (1990) justify the strategy set S∞W (AN ) as the implication of modifying
iterative deletion of all weakly dominated strategies at each round so as to allow each player to be
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Note that, in the above construction of the sets R̂k
i , it is not enough to replace Âk

i by

the whole unrestricted best response set Ak
i := Bi(P̂ k−1

i ). This is because, even though

R̂k
j ⊂ R̂k−1

j it is not generally true that ∆0(R̂k
j ) ⊂ ∆0(R̂k−1

j ), and so this alternative

construction does not guarantee that Ak+1
i ⊂ Ak

i . Indeed, for the counterexample normal

form game shown, this it would result in a different sequence of sets R̃k
i given by

R̃k
I = Ak

I =

{
{U, D } if k is even;

{U} if k is odd;
R̃k

II = Ak
II =

{
{L, R } if k is even;

{L} if k is odd.

The difference is that, in the k-th step of Pearce’s construction of the sets R̂k
i , only cautious

responses among the sets Âk
i of surviving strategies are considered. Strategies which have

already been eliminated at a previous step as not cautiously rationalizable should never be

re-admitted into the set of cautiously rationalizable strategies.4

II

I

L R

U 1 1
1 1

D 1 0
1 0

A Counterexample

For similar reasons, the limit sets do not generally satisfy the condition R̂i = Bi(P̂i)

that was investigated by Börgers and Samuelson (1992, p. 20). In particular, whereas

Pearce’s definition, which is the one used here, ensures both existence and uniqueness of

the set of cautiously rationalizable strategies, neither is guaranteed with this alternative

condition.

a little uncertain about other players’ payoffs. Though the motivation would have to be different,
(W S∞)∞W (AN ) is a refinement of their concept, and is obviously related to a slightly different
version of Pearce’s notion of “cautious rationalizability.”

4 For this example I am indebted to Pierpaolo Battigalli. The games in examples 3 and 4 of
Börgers and Samuelson (1992) could both be used to make the same point.
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Nevertheless, in the appendix it will be shown that Bi(πi | Âk
i ) = Bi(πi) ∩ Âk

i for all

πi ∈ P̄ k
i . From this it follows that

Âk+1
i = Bi(P̂ k

i | R̂k
i ) = Bi(P̂ k

i | Bi(P̄ k
i | Âk

i ) ) = Bi(P̂ k
i | Âk

i )

= Bi(P̂ k
i ) ∩ Âk

i =
k⋂

q=0

Bi(P̂
q
i ) (k = 0, 1, 2, . . .)

where the last equality follows from recursion. In addition

R̂k+1
i = Bi(P̄ k

i | Âk
i ) = Bi(P̄ k

i ) ∩ Âk
i = Bi(P̄ k

i ) ∩
[

k−1⋂
q=0

Bi(P̂
q
i )

]
(k = 0, 1, 2, . . .).

Thus each set R̂k+1
i and Âk+1

i consists of unconstrained best responses, but only those which

remain “cautiously rationalizable” after k steps of the construction.

2.4. Rationalizable Expectations

In the following, I shall use the obvious notation

R−i :=
∏

j∈N\{i}
Rj ; R̂−i :=

∏
j∈N\{i}

R̂j

for the sets of all possible profiles of rationalizable (resp. cautiously rationalizable) strategies

that the players other than i are able to choose. Now, if a strategy si ∈ Ri is rationaliz-

able, it is because there exists a probability distribution πi ∈ ∆(R−i) over other players’

rationalizable strategies such that si ∈ Bi(πi). Similarly, if a strategy si ∈ R̂i is cautiously

rationalizable, it is because there exists an interior probability distribution πi ∈ ∆0(R̂−i)

over other players’ cautiously rationalizable strategies such that si ∈ Bi(πi). If player i has

a subjective probability distribution satisfying πi ∈ ∆(R−i), therefore, then i will be de-

scribed as having rationalizable expectations. This accords with the terminology introduced

by Bernheim (1984, p. 1025). Similarly, if in fact πi ∈ ∆0(R̂−i), then i will be described as

having cautiously rationalizable expectations. Moreover, given any πi ∈ ∆(R−i) for which

the strategy si ∈ Bi(πi) is a best response, the expectations πi will be described as ratio-

nalizing that strategy.
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3. Correlated Strategies

3.1. Background

Aumann (1987) has proposed an interesting extension to Nash equilibrium. A correlated

equilibrium is a joint probability distribution π̄ ∈ ∆(AN ), possibly with correlation between

different players’ strategies, with the property that, for all i ∈ N , whenever āN ∈ AN

satisfies π̄(āN ) > 0, then

āi ∈ arg max
ai∈Ai

{ IEπ(·|āi)vi(ai, a−i) }.

Here π(·|āi) ∈ ∆(A−i) denotes the conditional distribution of other players’ strategies given

that player i chooses āi. As Aumann points out, this notion of correlated equilibrium is

consistent with the two players in Battle of the Sexes choosing (A, a) with probability half,

and (B, b) with probability half.

Though Aumann argues quite persuasively for this “coarsening” of the usual Nash

equilibrium concept, it does create some serious conceptual problems. For how can the

two players ensure that their strategy choices are perfectly correlated, as they must be in

the above correlated equilibrium of Battle of the Sexes? Effectively, after all, player R is

required to believe that whatever causes her to choose A also causes C to choose a, and

vice versa. Similarly for B and b. These beliefs appear highly implausible in the absence

of a correlation device. Of course, if there really is a correlation device, such as traffic

lights at a busy cross-roads, then that should be modelled as an explicit feature of the

game, so that players’ strategies can be conditioned by the information provided by the

correlation device. Brandenburger and Dekel (1987) do suggest that it is legitimate to

consider correlated strategies even where it is understood only implicitly that there may be

a correlation device which is not explicitly modelled within the game. This, however, seems

unsatisfactory because it is not clear how much correlation is really possible on the basis of

the unmodelled device.

Actually, the beliefs behind correlated equilibria are somewhat reminiscent of those

that underlie “causal decision theory”, as discussed by Nozick (1969) and others — see

Campbell and Sowden (1985) as well as Gärdenfors and Sahlin (1988, Part V). There is,

however, an important difference between correlated equilibrium and causal decision theory.

In Newcomb’s problem, for instance, it is assumed that one player’s choice can somehow
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cause the choice of a second player to change, even though the second player has to move

before observing the first player’s choice. If such causation were really possible, it would

obviously be rational for players to take it into account. Therefore, causal decision theory

suggests that each player i ∈ N should choose an āi to maximize IEπ(·|ai)vi(ai, a−i) with

respect to ai, instead of maximizing IEπ(·|āi)vi(ai, a−i) as the above definition of correlated

equilibrium would require. The difference is whether the relevant expectations are described

by π(·|ai), which the action ai causes to vary, or by π(·|āi) instead, which remains fixed

even as ai varies within the set Ai.

3.2. Correlated Rationalizability

II

I

l r

U 1 0
1 0

1 0

D 0 1
0 1

0 1

II

α
←−−−− III

β
−−−−→ I

l r

U 1 0
1 0

0 1

D 0 1
0 1

1 0

Correlated Rationalizability

Neither causal decision theory nor correlated equilibrium makes much sense to me, at

least. Still, as Pearce (1984, p. 1048), Bernheim (1986) and many others have realized,

that does not rule out the possibility of each player’s strategy choice being rationalized by

correlated beliefs about all the other players’ strategies. Indeed, consider the game shown,

in which player III’s intial choice of strategy α or β determines whether the left or the right

tri-matrix will occur. In this game, it makes very good sense for player III to take a view

regarding how likely it is that players I and II can co-ordinate their strategies and choose

either (U, l) or (D, r) with high probability. A player III who thinks this is likely will want

to choose α and go to the left hand tri-matrix; but one who thinks it unlikely will want to

choose β and go to the right hand tri-matrix instead. Constraining III’s beliefs to exclude

any such possibility of correlation does not seem reasonable, since player III may believe

that there really is some common causation behind I and II’s behaviour, even if there is no

correlation device or other means of communication. For instance, I and II may be identical
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twins, who are always observed to make matching choices. Or player III may know that I

and II were able to communicate at some time in the past, before the start of this game.5

The important point to realize is this. With common expectations, if any two players

i, j ∈ N have correlated strategy choices, then i must believe that the likelihood of j’s choice

is conditioned on i’s own choice. Without common expectations, however, any two players

can believe that what they choose is independent of the other’s strategy, even though

any third player may regard their choices as stochastically dependent. As an example,

identical twins probably feel that they are always choosing independently, even though

outside observers and third players only see them making identical choices. And suppose

there is a group of people who, because they have agreed in the past about what to do

in a game which confronts them later, are believed by outsiders to be playing correlated

strategies. Nevertheless, this group will not actually be able to correlate their choices in

that game, unless its structure explicitly allows further communication.

Allowing correlated beliefs about the strategies of others makes more strategies rational-

izable, of course. Indeed, it weakens rationalizability so that it becomes what Brandenbuger

and Dekel (1987) called correlated rationalizability . It has become well known that this is

equivalent to iterated removal of strictly dominated strategies — see, for example, Fuden-

berg and Tirole (1991, p. 52). In other words, the set Ri of rationalizable strategies expands

to become equal to S∞
i . Allowing correlated beliefs also weakens cautious rationalizability

so that R̂i becomes equal to (W S∞)∞i — as can be seen from the fact (Pearce, 1984, p.

1049, Lemma 4) that a strategy is not weakly dominated iff it is a cautious best response.

Pearce proves this only for two-person games, but remarks how the same proof would work

for n-person games if correlated beliefs about other players’ strategies were allowed.

To summarize, therefore, we have the following characterization:

5 In fact, as Pierpaolo Battigalli has pointed out to me, in this game where each player has only
two strategies, the sets of rationalizable and correlated rationalizable strategies must be identical.
So must the the sets of cautiously rationalizable and correlated cautiously rationalizable strategies.
The reason is that, whenever a player has only two strategies, one of those strategies is never a
best response iff it is strictly dominated by the other (and is never a cautious best response iff
it is weakly dominated by the other). So the process of successively eliminating never (cautious)
best responses is equivalent to that of iterative deletion of dominated strategies. In view of the
theorem stated below, this establishes the claim. Yet the discussion in the main text concerns only
the expectations regarding other players’ strategies that may rationalize a particular rationalizable
strategy. The set of such expectations is obviously expanded by allowing correlation.
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Theorem. A strategy is correlated rationalizable if and only if it survives iterative removal

of strictly dominated strategies, and is cautiously correlated rationalizable if and only if it

survives cautious iterative removal of dominated strategies.

4. Forward Induction and Conditional Rationalizability

Forward induction was first introduced by Kohlberg and Mertens (1986). The dis-

cussion here begins, therefore, with a special case of the example they present in Figure

3 on p. 1008. I have taken x = 0 to make the example into a “team decision problem”

(Marschak and Radner, 1972) with both players sharing the same payoffs. An earlier ex-

ample by Kohlberg with some of the same features (though not a team decision problem)

was discussed by Kreps and Wilson (1982, p. 885), Bernheim (1984, p. 1023), Pearce (1984,

p. 1044) and McClennan (1985).

I
B

−−−−→ I

II

L R

U 3 0
3 0

D 0 1
0 1

�A

(2, 2)

II

I

L R

A 2 2
2 2

U 3 0
3 0

D 0 1
0 1

A Team Version of Kohlberg’s Example

In this example, the obvious strategy choices (U, L) form one Nash equilibrium, but

(A, R) is another. Indeed, both (U, L) and (A, R) are sequential equilibria. The strategies

A, U for I and L, R for II are therefore rationalizable. Now, for player I strategy D is

strictly dominated by A. Yet, after the strictly dominated strategy D has been eliminated, R

becomes a weakly dominated strategy for player II, and so an incautious best response. After

it has been eliminated next, then A becomes a strictly dominated strategy for player I. So

iterative deletion of all weakly dominated strategies among those that remain rationalizable

leads ultimately to (U, L) as the only possible outcome. By our previous theorem, this is

also the only cautiously rationalizable outcome.
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The forward induction argument of Kohlberg and Mertens (1986, p. 1013), however,

seems quite different, at least to begin with. They write that “a subgame should not be

treated as a separate game, because it was preceded by a very specific form of preplay

communication — the play leading to the subgame.” Yet, according to the standard view

of Nash equilibrium and, more particularly, of sequential equilibrium, there is no reason

for such preplay communication to be relevant at all. Indeed, the sequential equilibrium

which the players are supposed to be following prescribes beliefs in every possible subgame,

and as long as these fulfil all the requirements of sequential equilibrium, there is nothing

more that equilibrium theory can say.6 In fact, Kohlberg and Mertens expect player II,

when required to move, to be influenced by the fact that player I has given up an oppor-

tunity to get a payoff of 2. Though their argument is rather sketchy, it seems that we are

expected to conclude that it is reasonable for player II, faced with the move, to believe

that player I was expecting to get at least 2 in the subgame. Yet, according to sequential

equilibrium theory, there really is no reason for player II to abandon the beliefs that sustain

(A, R) as the anticipated sequential equilibrium; instead, I’s playing B is seen as a mere

“tremble”.

It seems to me, therefore, that this kind of forward induction argument makes much

more sense when we think of rationalizable strategies. The same point, in fact, was suggested

by Bernheim and Pearce themselves, and also appears more recently in Battigalli (1991).

The theory of rationalizability allows us to recognize that player II may not be certain after

all what will happen in the subgame where there is a move to make, and will be looking for

clues concerning what is likely to happen. In the subgame all strategies are rationalizable,

and so II has no information within the subgame itself which helps decide whether I is more

likely to play U or D. However, there is crucial information from outside the subgame —

namely, the fact that I has chosen B rather than A, so giving up the opportunity to get

2 for sure. In the framework of rationalizability, the above quotation from Kohlberg and

Mertens makes excellent sense — much more, it seems to me, than if one considers only

sequential equilibria, where it is presumed that players already have equilibrium beliefs, and

so cannot possibly be influenced by any form of “preplay communication.” In fact, knowing

6 It should be emphasized that neither Kreps and Wilson (1982) nor McClennan (1985) really
contradict this, since they use the earlier version of Kohlberg’s example only to argue that it may
be desirable to impose additional restrictions on players’ sequential equilibrium beliefs.
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that player I has foregone the opportunity to get a payoff of 2, it is plausible for player

II to believe that player I is expecting a payoff of at least 2 in the subgame. This is only

possible, however, if player I expects to play U in the subgame, regarding it as sufficiently

likely that player II will play L. So player II, also expecting I to play U in the subgame,

should play L.

The conclusion is that, once the subgame has been reached, only (U, L) is “conditionally

rationalizable,” in the obvious sense that it is rationalized by rationalizable expectations

satisfying the condition that player I’s expected payoff in the subgame should be at least 2.

Of course, if player I foresees that this will be the outcome of the subgame, then player I

will indeed choose to play B and then U , and so the “sensible” outcome is indeed achieved.

II
B

−−−−→ I

II

L R

U 3 0
1 0

D 0 1
0 3

�A

(2, 2)

II

I

A L R

U 2 3 0
2 1 0

D 2 0 1
2 0 3

Battle of the Sexes with a Correlation Option

Another rather similar example is a slight variation on one that was first discussed by

van Damme (1989, p. 479).7 The game can be regarded as an extension of Battle of the

Sexes in which player II is given the option of setting up beforehand a correlation device

that will ensure the symmetric correlated equilibrium payoffs (2, 2). For this example, the

set of cautiously rationalizable strategies can be found by iteratively deleting dominated

strategies as follows. First, A strictly dominates L for player II. But this is the only strict

dominance relation, so U, D remain as rationalizable strategies for player I, as do A, R for

player II. However, after L has been eliminated, D weakly dominates U for player I; again,

this is the only dominance relation at this stage. Finally, after U has also been eliminated,

7 The only difference is that van Damme lets player II have a payoff of 5 instead of 2 if player
I chooses the strategy A. It is easy to see that this makes no difference to the argument presented
below for this particular game.

19



R strictly dominates A for player II, and so we are left with (D, R) as the only possible

outcome.

In this example, the forward induction argument leads to the same result. If player II

foregoes the correlation option and chooses B, this can only be rationalized by the belief

that II expects to get a payoff of at least 2 in the subgame. Thus player II must be intending

to play R in the belief that, with probability at least 2
3 , player I will choose D. This leads to

(D, R) as the only possible conditionally rationalizable outcome in the subgame. So player

II is induced to enter the subgame and play Battle of the Sexes without a correlation device

in the expectation of achieving this preferred outcome.

The same game can be used to illustrate the inconsistency of this kind of forward in-

duction or iterated elimination of dominated strategies with Harsanyi and Selten’s theory

of equilibrium selection8 — see Harsanyi and Selten (1988, Section 10.8) and van Damme

(1990) for other examples making a similar point. For their theory imposes symmetry

upon the (unique) solution to all symmetric games such as Battle of the Sexes. It follows

that the only Harsanyi-Selten equilibrium in the subgame is the mixed strategy symmet-

ric equilibrium (3
4U + 1

4D, 1
4L + 3

4R) yielding expected payoffs (3
4 , 3

4 ). In the full game

with a correlation option this would encourage player I to choose A, and so lead to the

(mixed strategy) equilibrium (A, 1
4L+ 3

4R). This contradicts the conclusion of the previous

paragraph, of course, and so demonstrates the claimed inconsistency.

The game we have just been discussing is actually a subgame of another, considered by

Dekel and Fudenberg (1990, Fig. 7.1, pp. 265–6), which can be regarded as a version of Battle

of the Sexes allowing two correlation options. Indeed, compared with the previous example,

player I has now also been given the option of using a correlation device, but a somewhat

costly one, since using it reduces the payoffs to (1.5, 1.5). As is easy to check, cautious

iterated deletion of dominated strategies now leads to (X, R) as the unique cautiously

rationalizable outcome. There is one other Nash equilibrium (U, A) that also happens to

be subgame perfect.

Yet Dekel and Fudenberg claim that (D, A) is also reasonable in this example. The

reason they give is that, “if player II accepts the [ (X, R) ] solution (which is based on the

8 Such inconsistencies were kindly pointed out to me by Giacomo Costa, but with a different
example similar to the one used by Harsanyi and Selten themselves.
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I
Y

−−−−→ II
B

−−−−→ I

II

L R

U 3 0
1 0

D 0 1
0 3

�X

�A

(1.5, 1.5) (2, 2)

II

I

A L R

X 1.5 1.5 1.5
1.5 1.5 1.5

U 2 3 0
2 1 0

D 2 0 1
2 0 3

Battle of the Sexes with Two Correlation Options

intuition of forwards induction) and then is given the opportunity to play, II must conclude

that ‘something basic has changed,’ and II might conclude that I’s payoffs will lead I to

violate the [ (D, R) ] outcome in the subgame.” In fact, there is a really interesting tension

here between I’s attempt, by playing Y , to convince II that player I expects a payoff of at

least 1.5, and II’s attempt, by playing B, to convince player I that II expects a payoff of

at least 2. Without a correlation device, there is simply no way to fulfill both expectations

simultaneously. Quite a likely outcome of the second subgame is that player I will choose U

while II plays R, each thinking it likely that the other will play the alternative strategy, and

each expecting a higher payoff than what would result from their foregone opportunities to

play X and A respectively.

Nevertheless, the outcome in which I plays X still makes the most sense to me. After

choosing Y first, will player I really proceed with U if II plays B? Or is player I more

likely to realize at the last minute that II really must be intending R, and so play D in

the end? It seems that II has an advantage in the first subgame from having the last move

before the second subgame starts.9 Anyway, compared to standard equilibrium theory,

9 Ben-Porath and Dekel (1992, p. 46) have an example which displays a similar “vulnerability
to counter-signals.”
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II

I

LB RB

U 3 -2
1 0

D -2 -1
0 5

II

B
←−−−− I

N
−−−−→ I

LN RN

U 5 0
1 0

D 0 1
0 5

II

I

LBLN LBRN RBLN RBRN

BU 3 3 -2 -2
1 1 0 0

BD -2 -2 -1 -1
0 0 5 5

NU 5 0 5 0
1 0 1 0

ND 0 1 0 1
0 5 0 5

Ben-Porath and Dekel’s “Money Burning” Example

rationalizability clearly allows a much richer discussion of what players can reasonably

expect of each other.

In the examples discussed so far, it was easy to find a forward induction argument

yielding the same unique outcome as iterated elimination of all weakly dominated strategies.

This will not be so easy in the next example. In the form given here, this is originally due

to Ben-Porath and Dekel (1992), though it is based on an idea due to van Damme (1989,

pp. 488–90) that is also discussed by Myerson (1991, pp. 194–5); see also Fudenberg and

Tirole (1991, pp. 461–4).10 The game begins with player I having a choice between B, to

be interpreted as “burning money” which leads to a loss of 2 units of utility for player I,

and N , to be interpreted as not burning money. After N the basic payoffs are given by the

right-hand bi-matrix, which is a modified form of Battle of the Sexes. After B the payoffs

are given by the left-hand bi-matrix. Compared with the right-hand bi-matrix, I’s payoffs

have all been reduced by 2, but II’s payoffs are exactly the same.

10 Actually, one of the payoffs given in Ben-Porath and Dekel (1992, Fig. 1.2) is a 4, when a 5 is
clearly intended. The change is irrelevant to the argument, however.
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In the corresponding normal form of this game, BU, BD, NU, ND are the four strate-

gies for player I, while LBLN , LBRN , RBLN , RBRN are the four strategies for player II. Of

I’s strategies, ND strictly dominates BD and so BD can be eliminated, but all other strate-

gies of both players remain rationalizable. After BD has been eliminated, LBLN weakly

dominates RBLN for player II, and LBRN weakly dominates RBRN . So RBLN and RBRN

are eliminated, leaving LBLN and LBRN . Once it is known that player II will choose LB ,

however, BU strictly dominates ND for player I and so ND can be eliminated. This leaves

only BU and NU as possible cautiously rationalizable strategies for player I. However, of

player II’s remaining strategies, LBLN weakly dominates LBRN , leaving LBLN as player

II’s only cautiously rationalizable strategy. This leaves NU as player I’s only cautiously ra-

tionalizable strategy, and (NU, LBLN ) as the only cautiously rationalizable outcome, with

(9, 6) as the resulting payoffs.

To establish (NU, LBLN ) as the only conditionally rationalizable outcome in this game,

the corresponding forward induction argument has to pass backwards and forwards between

the two different possible subgames which can occur after I’s first move. Notice first how,

by choosing ND, player I can guarantee a payoff of at least 0. So if player I were to play

B, it could only be in the expectation of obtaining at least 0 in the left-hand subgame.

With conditionally rationalizable strategies, this is only possible if player I were to choose

U expecting II to play LB . Thus, if player I were to choose B, it would be in the expectation

of getting a payoff of 3. Now, however, if player I were to choose N instead, this could only

be rationalized if player I were expecting a payoff of at least 3 in the right hand subgame

following that first move. This, however, is only possible if I intends to play U and expects II

to choose LN with a sufficiently high probability. Conditional rationalizability then requires

player II to choose LN , so yielding (NU, LBLN ) as the only possible outcome of forward

induction.

It should be pointed out that Ben-Porath and Dekel regard it as surprising that giving

player I the opportunity to “burn money” in this way should confer an advantage in the

subgame that occurs after no money has been burnt. They also consider a large class of

games in which a similar phenomenon arises. But is this really any more surprising than

the possibility which Schelling (1960, p. 24) noticed — namely, that the potential buyers of

a house could influence the outcome of a bargaining process with the sellers by first making
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a large enough bet with an outside party that they would not pay more than a specified

price? Of course, the (foregone) opportunity to burn money does only affect conditionally

rationalizable beliefs, whereas Schelling’s house buyers’ bet affects payoffs directly. Yet both

affect expected payoffs, which are what rationalize behaviour.

I
Y

−−−−→ II
B

−−−−→ I

II

L R

U 9 0
0 1

D 1 1
0 8

�X

�A

(2, 0) (2, 7)

II

I

A BL BR

X 2 2 2
0 0 0

Y U 2 9 0
7 0 1

Y D 2 1 1
7 0 8

Myerson’s Example

My last example is due to Myerson (1991, pp. 192–3). It illustrates that there is as yet

no generally accepted concept of forward induction. To quote (with some changes to reflect

different notation):

Unfortunately, some natural forward-induction arguments may be incompatible with
other natural backward-induction arguments. [In the example shown, a] forward-
induction argument might suggest that, because Y D is a weakly dominated strategy
for player I, player II would expect player I to choose U [in the last subgame] if he
chose Y [originally]; so player II should choose A. On the other hand, backward in-
duction determines a unique subgame-perfect equilibrium (XD, BR) in which player
II would choose B [for his first move]. . . . Forward induction corresponds to inter-
atively eliminating weakly dominated strategies in the order: first Y D for player I,
then BL and BR for player II, leaving the equilibria (X, A) and (Y U, A).

In fact (X, A) is the unique cautiously rationalizable outcome. For in the game as a

whole there are no strictly dominated strategies, so all strategies are rationalizable. There-

after, on the first round of eliminating weakly dominated strategies, both Y D for player I

and BL for player II get eliminated. This leaves (U, R) as the only possible outcome of the

last subgame. Then there are still no strictly dominated strategies. But both Y U for player

I and BR for player II get eliminated on the second round of eliminating weakly dominated

strategies, leaving (X, A) as the only possibility.
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As for Myerson’s alternative outcome (Y U, A), however, it is really only credible as an

outcome of this game if more reliance is placed on the logic of forward induction on the

basis of player I’s first move than on that of either subgame rationalizability or forward

induction on the basis of player II’s first move. For R strictly dominates L in the last

subgame, so subgame rationalizability leaves (D, R) as the only possible outcome of the

last subgame. Only if player II believes rather strongly that player I is likely to choose U in

the subgame, presumably expecting II to play the dominated strategy L, will II choose A

over B. Moroever, the logic of forward induction allows player I to infer from the choice of

B that II’s expected payoff in the subgame is at least 7, so reinforcing the claim that only

(D, R) is really rationalizable in the last subgame. This leads me to claim that (XD, BR)

is the only convincing outcome of this game. Of course, this outcome both differs from and

makes more sense than the unique cautiously rationalizable outcome (X, A). So forward

induction can suggest different strategy combinations from cautious rationalizability, even

though the consequences of (XD, BR) and (X, A) are, of course, entirely the same in this

example.

That concludes the series of examples which make up this section. They show how

powerful forward induction arguments can be, but they still need to be formalized for

general extensive and normal form games before any of their general implications can be

deduced. As yet I know of no general theorems relating forward induction to cautious

rationalizable. Nor do I know of an accepted definition of forward induction, even though

Hillas (1990, p. 1368), for example, offers one that works well enough for his purposes.

One clear conclusion does emerge, however. In each of the subgames discussed in

this section, what is conditionally rationalizable after applying forward induction depends

on which options and what resulting payoffs the players in the subgame had renounced

beforehand. An adequate description of the subgame therefore requires specifying these

foregone options, as well as the usual extensive form of the subgame. By itself that may

not be too controversial even though, as van Damme (1989) points out, it amounts to

admitting that phenomena like “sunk costs” may be relevant after all in subgames. Notice,

however, that a subgame is itself a game. The fact that the extensive form is an inadequate

description of a subgame therefore suggests that it may not be an adequate description of

a full game either. Indeed, faced with a particular game in extensive form to analyse, the
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examples of this section suggest that the game theorist should at least be asking what outside

options the players may have given up in the past, before the game even started, since these

will influence players’ (conditionally) rationalizable expectations concerning what should

happen in the course of the game itself. Of course, foregone options are only one of a host

of extraneous features which may help to determine rationalizable expectations in the game.

One of the benefits of replacing equilibrium analysis with considerations of rationalizability

is precisely that such considerations, which do seem to influence the outcomes of actual

games, can be brought into the game-theoretic analysis. The obvious disadvantage is that

much less precise conclusions are possible, yet such precision should not replace realism.

5. Conclusions

Harsanyi and Selten (1988, pp. 342–3), amongst others, clearly point out how equi-

librium theory sets itself the worthy goal of determining both what actions and also what

“rational” or equilibrium expectations should arise in general non-cooperative games. Usu-

ally, this goal is not achievable, even in games with unique Nash equilibria (Bernheim,

1986). Instead, the less demanding requirement of rationalizability seems much more rea-

sonable, since it permits each player to be uncertain about what other players believe,

unlike the strait-jacket of equilibrium. Besides, it is just enough to allow individual players

to have appropriate “rationalizable” expectations concerning everything about which they

are uncertain in the game, including both the strategies and the expectations of all the

other players (see Tan and Werlang, 1988). Correlated strategies and forward induction

also appear to make more sense in the context of rationalizable rather than rational expec-

tations. In addition, when each player is allowed to have correlated expectations regarding

the strategies of all the other players, then rationalizable strategies are precisely those which

survive iterated removal of strictly dominated strategies, whereas “cautiously” rationaliz-

able strategies are those which survive “cautious” iterated removal of dominated strategies.

And the intuition of forward induction seems to be well captured in a form of “conditional

rationalizability” that excludes all beliefs giving a lower expected payoff to any player than

the best outside option which that player is known to have passed up beforehand.

Rationalizability therefore removes some difficulties that equilibrium theory has created

unnecessarily. Several anomalies remain, however. For example, the prevalence of tit-for-
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tat in finite repetitions of prisoners’ dilemma is no more consistent with rationalizability

than with equilibrium theory. This and other related anomalies may well need explaining

by some “bounded” version of rationalizability instead, recognizing players’ inability to

formulate excessively complicated models of the game they are playing (cf. Hammond,

1990). In particular, it is once again easier to contemplate bounds on rationalizable models

rather than on rational or equilibrium models that represent each player’s expectations

concerning the game. As always, however, there is much work left to do, partly on bounded

rationalizability, but also on unbounded rationalizability which was the subject of this paper.

Appendix

Lemma. Bi(πi | Âk
i ) = Bi(πi) ∩ Âk

i for all πi ∈ P̄ k
i .

Proof: By induction on k. For k = 0 one has Bi(πi | Â0
i ) = Bi(πi)∩ Â0

i = Bi(πi) because
Â0

i = Ai. As the induction hypothesis, suppose that Bi(π̃i | Âk−1
i ) = Bi(π̃i) ∩ Âk−1

i for all
π̃i ∈ P̄ k−1

i .

Suppose now that πi ∈ P̄ k
i and âi ∈ Âk

i \ Bi(πi). Then there exist ε > 0 and ai ∈ Ai

such that
Ui(ai, πi) > Ui(âi, πi) + 2ε.

Because P̄ k
i is a subset of the closure of P̂ k−1

i , there exists a sequence 〈πν
i 〉∞ν=1 in P̂ k−1

i

which converges to πi ∈ P̄ k
i . Construct a corresponding sequence

aν
i ∈ Bi(πν

i | Âk−1
i ) = Bi(πν

i ) ∩ Âk−1
i (ν = 1, 2, . . .),

where the equality follows from the induction hypothesis. After choosing an appropriate
subsequence if necessary, there will exist a∗

i ∈ Âk−1
i such that aν

i = a∗
i for all large ν, while

πν
i → πi as ν →∞.

For all large ν, since aν
i ∈ Bi(πν

i ), one has

Ui(a∗
i , π

ν
i ) = Ui(aν

i , πν
i ) ≥ Ui(ai, π

ν
i ) > Ui(âi, π

ν
i ) + ε.

Taking the limit as ν →∞ implies that Ui(a∗
i , πi) ≥ Ui(âi, πi) + ε. Since

a∗
i = aν

i ∈ Bi(πν
i | Âk−1

i ) ⊂ Bi(P̂ k−1
i | Âk−1

i ) = Âk
i

for all large ν, it follows that âi �∈ Bi(πi | Âk
i ).

So, for all πi ∈ P̄ k
i , it has been proved that âi ∈ Âk

i \ Bi(πi) implies âi �∈ Bi(πi | Âk
i ).

Hence Bi(πi | Âk
i ) ⊂ Bi(πi) ∩ Âk

i . Since it is trivially true that Bi(πi) ∩ Âk
i ⊂ Bi(πi | Âk

i )
even when the former set is empty, it follows that Bi(πi | Âk

i ) = Bi(πi)∩ Âk
i for all πi ∈ P̄ k

i .
The proof by induction is complete.
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