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GENERAL ASSET MARKETS, PRIVATE CAPITAL FORMATION,
AND THE EXISTENCE OF TEMPORARY WALRASIAN EQUILIBRIUM¥

by

Peter J. Hammond

1. Introduction

Econbmists have become accustomed by now to recognizing that the
set of markets on which trade can be carried out is incomplete. As
Arrow and Debreu have taught us, a complete system of-markets would
allow trade in all future commodities and, when there is uncertainty,
in all contingent commodities as well. It is patently obvious that the
marketsbin any actual economy are much less numerous than this. Acqord—
ingly, economic theorists have become interested in incomplete markets.
In particula:,_they have developed the theory of temporary equilibrium.

This theory is extensively described in Hicks' Value and Capital. More

recent contributions are admirably surveyed in Grandmont [1982].- There

are, it is assumed, complete markets in commodities for current delivery
at any one time. There may also be markets for transferring purchasing

power between periods, e.g., a money market, bond ﬁarkets, future

commodity markets.

*¥The 1977 version of this paper was presented to seminars at CORE, the
University of Cambridge, and to the European Meeting of the Econometric
Society in Vienna. This revision was prepared with the support of National
Science Foundation Grant No. SES-8201372 to the Institute of Mathematical
Studies in the Social Sciences Stanford University.

I owe an obvious and substantial debt to the published work of Green [1973]
especially and of Hart [1975] and Milne [1976]. I am also grateful to
Frank Milne for discussions which originally stimulated this work, and to
Roy Bailey, Volker Bahm, Jacques Dréze, Douglas Gale, Jean-Michel Grandmont,
Frank Hahn, Oliver Hart, Robert Kast, Mrudula Patel and Dale Stahl for their
further encouragement and help, some of which I have not still yet been

able to exploit as I would wish.



Existing studies of temporary equilibrium have tended to assume
a particular limited set of markets for transferring purchasiné pover.
Hicks himself, and later Grandmont [1974] assumed that there was a single
asset, be it money or bonds, which enabled purchasing power to be trans-
ferred forwards or backwards in time. Sondermann [19T4] allowed firms
to issue shares. Green [1973] has complete markets in future commodities.
Radner [1972] has a general system of incomplete contingent commodity
markets, together with stock markets, but assumes that agents have correct
expectations about prices in markets which are going to open in the future.
This assumption of correct expectations rules out the kind of speculation
which caﬁ occur in Green's economy, and which he had to deal with by his
"common expectations" assumption. Hart [1974] has a general set of asset
markets, but only in a one-commodity economy. Jordan [1976] has no asset
at all, only private capital formatipn. |

The main purpose of this paper, then, is to allow a rather general
system of assef or security markets. TFollowing Green [1973], we shall
find conditions on agents' expectations which will guarantee the exiétence
of a temporary competitiﬁe equilibrium. Green's model will, therefore,
be extended to allow what may seem to be a more realistic structure of

asset markets. In addition, I shall allow for exogenous uncertainty,

since agents cannot be sure what will be their future production possi-
bilities and endowments; Also the assumptions I shail present will allow
a somewhat more general form of consumption set than the nonnegative
orthant, including one which is consistent with certain domestic produc-

tion activities.



With general asset markets, an obstacle to the existence of s
Walrasian equilibrium is the absence of any natural bounds to traders'
aéset transactions. In particular, a trader can take an arbitrarily
large short position in any one asset market. Many papers circumvent
this problem by disallowing short sales. Though in practice institutions
may enforce limitations on a trader's short position, such limitations
are a form of rationing which 1s entirely foreign to the pure Walrasian
economy. One of the achievementé of Green's paper was to discover
gufficient conditions for such rationing to be unnecessary because there
- will exist a pure Walrasian equilibrium even when traders are allowed
to take up unlimited short positions. Essentially, in a Walrasian
equilibfium the relative prices of various assets must reflect what each
trader believes are possible relative returns to these assets: for this
to be possible at all, there must be soée measure of agreement between
all the traders concerning what are possible relative returns to different
assets. This is what will be meant here by "common expectations", a
notion to be made precise later in Assumption A.1ll of Section 3. This
condition, we shall see, enables us to put a lower bound on the return
to each trader's portfolio, in some eventualities at least. This lower
bound, moreover, still applies even as the current price vector tends
to one where a trader does want to undertake unbounded asset transactions,
"and, in particular, to have an unbounded short position in.some assets.
The condition is significantly weaker than Green's Assumption (4.2)
which would require in addition that traders should have expectations

which are not "too elastic" --specifically, there should be a fixed
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common set of future asset values which each trader regards as possible.
Further discussion of this'aspect of Green's contribution is given in
Appendix 1. |

I sﬁall now present the formal model of the economy which I shall
be using. The outline of the remainder of the paper is contained at the

end of the next section.

2. An Economy With General Asset Markets

2.A. Traders and Physical Commodities

The model of the economy is an extension of Green's [1973], and
I shall use corresponding notation as far as possible.
In period 1, there are ll physical commodities which are traded

in current markets. There are also: 12 assets--financial assets, or

future commodities, including possibly contingent commodities--which are

traded in period 1 as well. In addition, there are 23 kinds of physical

and human capital. If these are traded, they are also included in the
21 traded physical commodities. 1In period 2, there are m physical
commodities which are all traded in current markets in period 2.

The economy 1s an exchange economy with a finite set of traders.

In period 1, the typical trader buys and sells both physical commodities

L
and assets, to achieve a net demand vector xl € R 1 and a net holding

'3 L
of assets b € R 2. He also leaves himself with a stock vector k € R 3
of physical and human capital. Thus his action in period 1 is the triple

L1+Lo+L
a := (xl,b,k) €r?t 2 3.



Trade in period 1 takes place at a price vector p = (pl,pz) € Rz,

L
where & := ll + 22, pl €R 1 is the vector of prices of physical

commodities in period 1, and p2 (S R£2 is the asset price vector.
Assume, as usual, that p > 0, and normalize the price vector p so that
p € A, where Al = {p € RiIngé + Zapz = 1} (g denotes a typical good,
and a a typical asset). |

' Thus, the budget constraint the trader faces in pefiod 1 is:
plxl + p2b < 0.

Finally, let x*t denote the "real" feasible set of the trader

in period i --i.e. the set of possible triples (cl,xl,k) of consumption,
net demand and capital stock vectors, which are the "real" variables, as
opposed to the financial variables in b. It is assumed that there is
a fixed consumption set C:L C Rll which represents both the consumptioﬁ
requi?ements and the labour supply possibilities of the trader. In
addition, there is a private production set Yl C R’Ll X Ri3 conéisting
of pairs (yl,k) where yl is the net output of current physical
commodities and k is the (nonnegative) capital stock vector. Yl may
include an endowment ml of current physical commodities. (If there is
an endowment ko of capital goods, it serves to determine the production

possibility set Yl(ko) but has no other role). Then the trader's

feasible set Xl takes the form:

)
Xt = {(cl,xl,k)|3 yvveER?Y st ole ¢, (yhk) e Y

2
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In period 2 the trader has a production possibility set Yg(k,s) which
depends upon the capital stock vector k; but is also random, and so
depends on the state of the world s. Let S denote ﬁhe set of possible
states of the world. The trader's second period feasible set is then

X2(k,s) which is given by:

X (k,s) = {(<:2,x2)|c2 € ®(k,s) ana Jy° € Y2(k,sl) s.t.

2 2 2
x =c¢ -y}

Here C2(k,s) is the trader's (random) second period consumption set.
It is allowed to depend on k because k includes human capital

components, for instance.

2.B. Asset Valuation Functions

In addition to his physical goods, the trader also carries over
to period 2 the vector of net asset holdings beR22 which he was left
with after trade in period 1. The value of these assets depends upon
the nature of each asset. But, for a wide class of assets, including
bonds, money, contingent securities, future or contingent éommodities,
and even shares of firms, the value of asset a can be written as a
function ra(q,s) of q, the price vector in period 2, and of s, the
state of the world in period 2.

In fact, some examples of assets which can be described in this
way are the following:

a. Money: Here rmbney(q’s) = Ynoney



.

b. Riskless Bonds. For these rbond(q,s) = (1 + p)qmoney
where p 1is the coupon rate of interest. One could also have index-

linked bonds, with p a function p(I(q)) of a price index I(q).

‘¢c. Contingent Securities. If a security pays one unit of money

in the set of states of the world E, then:

money (if s €E)

0 (if s & E)

rsecurity(q’s) =

d. Future Commodities. If the asset a is one unit of good

g to be delivered in period 2, then:
r (a,s) = 1,

e. Futures Contracts with Delayed Payments. As Stahl [1981]

points out, the future commodities considered by Green [19Th] and others
as in (d) above are unrealistic insofar as they require immediate current
payment. It is more usual in practice to allow at least part of the
payment to be made later when the future commodity is actually delivered.
| Suppose that all of the payment can be put off until the sécond
period. Then formally the price of the contract in the first period is

zero. In the second period, the return to the futures contract is:

ra(q,s) = % T YoUoney

where g 1is the good to be delivered, and yg is the contract price of

the future commodity.



Such futures contracts cannot be accomodated‘directly within
my framework. They can however be accommodated indirectly, provided
that there is a market for riskless bonds as in (b) above. For then
a futures contract with a delayed payment is equivalent to one with
current ?ayment together with borrowing whatever is needed for the
current payment. If yg is the contract price as above, this is equivalent
to paying Yg/(l + p) now, borrowing (issuing a riskless bond for) this
amount, and then repaying the loan with interest at a cost of vy _.

f. Contingent future commodities. Just as contingent security is

contingent future money, we have here:

if s &€E
qg( )

r (q,s) =
a 0 (if s & E)

wvhere a is an asset which is one unit of good g to be delivered in

period 2 contingent upon event E occurring.

g. Shareg infirms. Suppose that the asset a is a share in a

firm f which pays a divident in period 2 on each share related to its
profit wf(q,s) in period 2. Assume that this profit on each share is
independent‘of the trade which is undertaken in period 1. Then
ra(q,s) = wf(q,s).

h. Options. Let a Dbe any asset whose valuation function is
ra(q,s). Then an option on the asset a can take one of two fofms——
a call option or a put option.

Take first a call option. This is the right to buy the asset a

at the start of the second period at a specified price T, say. The



option is then an asset a' whose valuation function ra,(q,s) takes

the form:

ra,(q,s) 1= max {ra(q,s) - r,0}

For, if the value of asset a falls below r, the owner of the option
will clearly not exercise his right to buy it at r, so the option is
worthless. But if ra(q,s) > T, theﬁ exercising the option and liquidating
the asset a yields a return of ra(q,s) - f on the optién.

A put option is the right to sell an asset a at a fixed price
r. So a put option for asset a is a new asset a' whose valuation

function ra,(q,s) takes the form:
ra,(q,s) := max {r - ra(q,s), 0}

So, let q € Am denote a possible normalized price vector. For
each g € A" and each s €S, let r(q,s) denote the vector of values
of the various assets, so that r(q,s) € R+2 ——assuming, as I do, that

£

no asset ever has a negative value. Then r: Am x S -+ R+2 is the asset

value function.

2.C. General Asset Markets

Although there are certainly many assets which can be described
by an asset valuation function ra(q,s) as described above, there are
also some which cannot. In practice, some assets will yield returns

which are unlikely to be known functions of the state of the world. A
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company may default on its bonds in a well-defined set of states of the
world. But this set is unlikely to be generally known by all agents.
Indeed, it may not be known by the company itsélf. More seriously still,
the occurrence of bankruptcy in the second period depends not only on
prices g and the state of the world s --it is also likely to depend
crucially on the financial transactions which the company undertook in
the first period. Thus, the economy described so far cannot handle
bankruptcy or related phenemona which affect the returns to various assets,
particularly financial ones. Moreover, an attempt to do so is likely
to be difficult, since bankruptcy tends to lead to nonconvex budget sets
vwhich destroy existence of a competitive equilibrium.

The difficulties which potential bankruptey creates will have to
be considered later. For the moment, I propose to allow somewhat more
general asset markets than those which can be described by asset valuation
functions. To do so, I shall follow a suggestion I owe to Jean-Michel
Grandmont and his comments on Hammond [1977]. I shall regard the vector
rE Riz_ of non-negative returns to each of the m assets as a random
variable and postulate 'a joint distribution or the set of triples (q,r,s)
of cbmmodity market prices, asset returns, and the state of the world.

The case wvhen q and s together suffice to determine r .is then Just

an important special case. Let e denote a typical triple (q,r,s).

2.D. Second Period Demands

The trader's budget constraint in period two can now be written

simply as:
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ﬁhere x2 € R© is the trader's net demand vector in period two, and
b € ng is the vector of net asset holdings carried over from period
one. Each trader has a utility function u(cl,k,cz,s) which depends
upon the consumption vectors cl, c2 in each of the two periods. It
also depends on capital k which includes human capital, it should be
remembered. Finally, utility also depends upon the state of the world
s 1in general. This is because the consumer's state of health, the ease
with which the consumer can supply variocus kinds of lébour services, and
the consumer's capacity to enjoy particular commodities, can all be
dffected by the state of the world. They can also be affected by the
consumer's holding of capital stocks, both human and non-human.

Suppose that the trader is in the second period after the first

1

period action a ;= (¢”,b,k) has already been chosen. Then the trader

is free to choose 02, x2 and y2 subject to the feasibility constraints:

c2 S Cz(k,s) , y2 IS Y2(k,s) , X =c¢ -y

as well as to the budget constraint:

which is equivalent to:

qc2 <rb + qy2

It follows that the trader will choose yz(q;k,s) in order to maximize

(net) profit qy2 subject to y2 € Y2(k,s); let ng(q;k,s) denote the
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resulting net profit. Then ‘the trader chooses c2 in order to
maximize u(cl,k,ce;s) with respect to 02, subject to the constraint

c2 € B(b,k; q,r,s) where:

2

B(b,k; q,r,s) := {c“ & Ce(k,s)lqc2 <rb +'w2(q; k,s)}

is the trader's second period (consumption) budget set given his previous
transactions b, k and given the outcome e = (q,r,s). The maximum
utility the trader can enjoy if his action in period one is a = ,b.k)

and if the price vector, asset returns, and state of the world in period

two turn out to be (q,r,s) is given by:

2 2
¢(aje) E_¢(cl,b,k;q,r,s):= max {u(cl,k,c ;s)|c® € B(v,k; q,r,s)}

2
c

The associated utility maximizing plan in period two consists of a triple

A2 A2 A2 A2 . . . . ~ . 3
(¢™,x",y") where Yy is chosen to maximize profit, 02 t0o maximize

utility and x2 = c2 - y2 is chosen to make up the difference. Write

2
£ (cl,b,k;q,r,s)z Eg(a; e) for the set of optimal choices of the net

demand vector x2 given (cl,b,k; q,r,s) --then EE( ) is the trader's

second period net demand correspondence.

2.E. First Period Constraint

In the first period the trader is typically uncertain about the
L
outcome e = (q,r,s) € Am X R+2 x 8§ =: E. This uncertainty is represented,
I assume, by a probability measure u. In fact S is taken to be a

metric space, so u 1is taken to be defined on the Borel sets of the
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prdduct space E . The probability measure u(p) will ve al;owed to
depend on the current price vector p € Ag because the prices of both
current physical commoditiés pl. and the prices of assets p2 are
assumed to convey to the trader some information about both likely future
commodity prices gq and future asset returns r. They may even condition
expectations about the state of the world s as well if different traders
are known to have different information concerning the likely state of

the world. Thus the probability measure for the ﬁradér is wu(p) where

u: At s M(E) is a mapping from the price simplex A to the set M(E)
of Borel probability measures on the space E.

Now, in period one the trader must be certain that, no matter what
happens in period two, with probability one he will be able to afford
some consumption vector c2 in his consumption set C2(k,s) given the
state of the world s and his earlier éhoice of capital stock k. Thus,
his net purchases of assets b and his holdings of capital k must be
such that, for almost every possible (aq,r,s), there exists some
c2(q,r,s) € Cg(k,s) which satisfies the budget constraint qc2 < rb
+ ng(q;k,s)——i.e., the set B(b,k; q,r,s) must be‘non-empty.

Define E(b,k) := {(q,r,s) € E|B(b,k; q,r,s) # ¢} as the set of
outcomes (q,r,s) which, given his earlier choices (b,k), allow the
trader to get inside his consumption set Ce(k,s). The condition which

the trader must meet can then be expressed as:

u(p)(E(p,k)) =1
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Thus, in period one, the trader faces the above constraint, as well as
the budget constraint, and the first period possibility constraints. His

budget set of possible actions a 1in period one is therefore:

1.1

t, u(p)(E(o,k)) = 1 and Ix .y

Alp) := {(ct,b,x)|ct €

s.t. (yl,k) €Y, Xt = ot - yl, plxl + p2b < 0}

The budget constraint can be rewritten as:

plcl + p2b < plyl

and so the trader will choose yl(pl;k) in order to maximize first

period net profit ply1 subject to (yl,k) € Yl, taking the investment

Lot k)

plan k as fixed. Let = (p 3k) denote the maximized net profit.

Then the set A(p) takes the form:

A(p) := {(cl,b,k-)lcl ect, u(p)(E(b,k)) =1 and

2.F. First Period Objective

For a given action a = (cl,b,k) in period one, the trader is

also uncertain what will be his eventual utility, since this is:

1 ,
¢(aye) = ¢(e”,b,k; q,r,s) = max N {u(cl,k,cggs)lc2 € B(b,k; q,r,s)}
e '

and so a function of the uncertain triple e = (q,r,s). Assume that the
trader's risk preferences are represented by the expected value of the

function wu{+,*,*;s) over the various possible outcomes e = (g,r,s).
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Thus u 1is taken to be the trader's state-dependent von Neumann-
Morgenstern utility function. Then, given the action a as well as the

price vector p, the trader's expected utility is:

- v(a,p) := [¢(a;e)an(p)
E

where the integration is performed with respect to the (Borel) brobability
measure u(p) on the metric space E of triples e = (q,r,s). v is
the trader's "Bellman function". In the first period, the trader will
choose an action ; in order to maximize v(a,p) subject to a € A(p),
where A(p) is the trader's budget set of possible actions as discussed
in 2.E. Let a(p) denote the set of such optimal actions--the trader's
"action correspondence’.

Given a = (cl,b,k), let 2z := (cl,b) denote the corresponding
pair of vectors which describes the trader's mafket transactions. Then
fhe trader's first period demand correspondence £(p) consists, for each

p € Al, of trade vectors z for which there exists a corresponding

~ 2 ~ ~ A
k € R+3 such that a := (z,k) maximizes v(a,p) subject to a € A(p).

2.G. OQutline of Paper

We shall proceed to study an exchange economy in period one in
which each trader maximizes his "Bellman" utility function v(a,p) subject
to the constraint a € A(p). In particular, we shall find conditions
which are sufficient to ensure the existence of a temporary Walrasian
equilibrium. Both assumptions and pr;)of are, for the most part, natural

extensions of Green's.
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The first step is to establish when the expected utility function
v(a,p) is continuous as a function of Both a and p. This is done in
Section 4. The second step is to establish for what values of p the
trader will be ablé to find an optimal action a which maximizes +v(a,p)
subject to a € A(p). A necessary and sufficient condition for such an
; to exist will be that A(p) is compact. This is done in Section 5.
The third step is to establish when and where the corresponderce
A: At s P(Rl) is continuous in the price vector p, so thaf, using.
Berge's maximum theorem we know that the trader's first period demand
£: Az > P(Rl) is upper hemi-continuous. This is done in Section 6.
Section 6 also establishes cértain properties of a trader's demand corre-
spondence as the price vector p tends to the boundary of points p
for which the A(p) is compact, and the demand set £&(p) is non-empty.
The existence of a Walrasian exchange temporary equilibrium is then proved
in Section T by adapting an argument due originally to Grandmont [1977].
Section 8 provides an example of non-existence which illustrates the role
of the assumptions regarding expectations. Section 9 considers overlapping
expectations as an alternative sufficient condition for existence.
Finally, Section 10 discusses possible extensions and limitations.

I shall mention the assumptions required for each result at the
appropriate point, so that the role of each separate assumption can be
highlighted. The'assumptions are first éollected together and discussed

in Section 3, which follows immediately.
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3. Summary and Discussion of the Assumptions

The first set of assumptions, from A.1 to A.4, concern the form

of the model, and most are reasonably standard and unexceptionable.

Assumption 1: The set S of states of the world is a compact

metric space.

A.1 does not exclude the possibility that S 1is finite, nor do

any of the later assumptions.

Assumption 2:

(a) In each state of the world s € S, any trader's first and

second period consumption sets Cl, Cg(k,s) are closed, convex and

bounded below. Moreover, each second period consumption set Cz(k,s)

L
is strietly convex. And the consumptien set C(s) := {(cl,k,cg) ERT
2
X R+3 x Rm]cl € Cl, 02 € Cg(k,s)} is convex.

(b) In each state of the world s € S, any trader's first and

second period production sets Yl, Yg(k,s) are compact and convex. The

overall production set for both periods:

o A3

Y(s) := {(y*,k,y°) €R T x R,> x K| (y',k) €Y' and

2 2(

v € Y (k,s)}

is also compact and convex, Yl admits free disposal of both commodities

and capital, while Y2(k,s) admits free disposal of commodities.
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2 3 m
(¢c) The correspondences C": R~ x S~ P(R") and

Yo Ri3 x 8 > P(R") are both jointly continuous in k and s. And
the correspondence Yl(k) = {yl € Rzll(yl,k) € Yl} is continuous
in k.

In part (a) of A.2, I have assumed that the second period con-
sumption set Cg(k,s) is always strictly convex, which means that if
‘c2, 52 both belong to Cz(k,s), ? # ;2, and A is a number such_that
0 <A <1, then Ac2 + (1 - A);2 € int 02(k,s). This will avoid discon-
tinuity problems on the lower boundary of the consumption set of a kind
I propose to discuss elsewhere. It would suffice instéad to have Cz(k,s)
as an orthant of the form {c2[c2 > EQ(k,s)} but such an assumption does
not seem realistic. After all, one can supply cne form of labour or
another, or combinations of the two, but one cannot have two completely

full-time occupations. More generally, what is really required is that

the minimum wealth correspondence:

vy(as k,s) := {62 S Ce(k,s)lc2 € Cg(k,s) implies qc2 > qcz}

should be single valued for all strictiy positive price vectors g.

Both strict convexity and having C2(k,s) in the form of an orthant do

suffice to ensure this, but so does having no linear segments to the lower

boundary of C2(k,s), except perhaps linear segments parallel to the axes.
In part (b) of A.2, the assumption that the sets Yl, Y2 (k,s)

and Y(s) are all compact and so, in particular, are bouﬁded, may seem

unduly restrictive. A partial justification may be offered as follows.
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In the first period, even if Yl is not bounded, we can first of all
follow Debreu ([1959], ch. 5) and make assumptions which suffice to ensure
that the set of attainable allocations of commodities in the first period

is bounded. Then it is no loss to assume that, for any trader, the set:

4. _ g
7z =y’ €R Ik €R3 s.t. (y'.x) € Y1

of feasible net commodity output vectors in the first period is bounded
t00, because the space of attainable allocations of commodities is bounded.
Second, we can go on to assume, as do Sondermann ([1974], p. 245, (T.3)),
Chetty and Dasgupta ([1978], p. 37, Assumption (T.1b)), that the trader

can only produce bounded outputs of capital k if the net output vector
'yl is restricted to a bounded set, aﬁd so if the inputs are bounded.
Diewert ([1978], p. 90, fn. 4) mentions a similar assumption but then goes
on to assume, as I do, that the production set is bounded--see Diewert
([1978], p. 90, Assumption 3.1(d)). In Hammond ([1975], p. 5, Assumption
(A.3)) I made the formally weaker assumption that fixed inputs allow only
bounded outputs. However, if we also assume that the production correspon-
dence mapping input vectors to feasible output vectors is upper hemi-
continuous, then it will also follow that bounded inputs allow bounded
outputs. |

Thus, if we assume both that the set of attainable allocations of

commodities in the first period is bounded, and that bounded inputs
prdduce boﬁnded outputs, it follows that it is no loss to assume that Yl

. 2
is bounded. But then the set of feasible capital stock vectors k € R+3
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is also bounded. Repeating our assumption that bounded inputs produce
bounded outputs it followé that each set Ye(k,s) is bounded and also
that the two-period production set Y(s) is bounded.

Let me conclude this discussion by remarking that it is not
sufficient to assume, as Radner [1972] does in effect, that the set of
actually attainable allocations is bounded. The reason is that, in a
general temporary equilibrium, when markets in the future may not clear,
the fact that attainable allocations are actually bounded does not suffice
to bound the allocations which different agents believe are attainable,
because their beliefs are likely to be inconsistent. Radner [1972], of
course, postulated "common expectations", so that markets in the future
did have to clear.

The next assumption concerns the traders' utility functions:

Assumption 3: In each state of the world s € § any trader has

2

a state-dependent von Neumann-Morgenstern utility function u(cl,k,c , S)

which is bounded and continuous. It is also concave as a function of
1 2 . . 1 2
(¢7,k,c”) for each s € S, and strictly monotone as a function of (e ,e°)
‘ 2
for each k € R+3 and each s € S, throughout its domain of definition,
which is the Cartesian product of the sets:

c(s) := {(cl,k,cz)lcl EvCl, e Ce(k,s)}

for each s € 8.

The next three assumptions concern the traders' expectation measures

u(p):
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Assumption L4: For every current price vector p € A2 trader's

beliefs about the possible values of the triple e = (q,r,s) of commodity
prices, asset returns and the state of the world in period two are
represented by a probability measure u(p) on the Borel sets of the
A
m 2

metric space E := A" X R+ x S. The probability that q > O is always

equal to one.

Notice that A.4 requires a trader to believe that the probability
of a physical commodity having a zero price in period 2 is zero--since
all traders have strictly monotone preferences, we know that any equili-
brium price vector in peribd 2 must be strictly positive, so this assump-
tion appears reasonable.

Define E¥* := int A" x Ri2 x S. Then A.4 requires that, for all
pE Az, u(p) € M(E*), the set of Borel measures on E*.

To prove continuity of expected utility, one extra assumption is

needed, which says that expectations must be continuous:

Assumption 5: The Borel probability measure u(p) on E is

weakly continuous as a function of p.

This is the standard continuity assumption of Grandmont (19721,
[1977], Green [1973], and Jordan [1977].
In order to prove that all assets are desirable, the following

assumption rules out assets which are clearly worthless:

Assumption 6: For every asset a, there is a positive probability

that r_ > O.
a
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Next, define the marginal probability measure ¢(p) on the space
Riz of asset returns r so that, for every Borel set F S_Ri2,
Y(p)(F) := u(p){(a,r,s) € E*¥|r € F}. Since it is relative security prices
which matter, define K(p) as the convex cone generated by the support
of the measure Y(p). So K(p) is the smallest élosed convex cone for
which r € K(p) with probability one.

Following Green's Assumption 2.3 (1) ([1973], p. 1105), but a little

weaker:

Assumption 7: For every p € int AQ, K(p) has a non-empty interior,

Lo
relative to R .

This rules out ﬁoint expectations, of course. It also implies
that for every p € int Az, no group of assets is stochastically linearly
dependent. In Section 5 it is shown that the above assumptions guarantee
that a trader's action correspondence ‘a(p) is non-empty valued if and

only if p € D, where:

D := {p € int A* p>0 and p2 € int K(p)}

p > 0 1is necessary because the consumer desires both physicai commodities -
and assets. The condition p2 € int K(p), in combination with A.1, A.2
and especially A.7, is both necessary and sufficient to rule out unbounded
speculative transactions in.the asset markets. Notice that‘ p2 € K(p)
means that the consumer regards asset prices r proportionzl to p2 as

"possible", roughly speaking.
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To ensure upper hemi-continuity of the action correspondence

a(p), the following assumptions will be made:

1

Assumption 8: There exist .c1 €C, and (y ,k) € Yl such that

~ ~

e < yl and then for each s € S, there exist c2(s) € C2(k,s) and

vy (s) € Y2(k,s) such that co(s) < 52(s).

This means that there is a strictly negative net trade
vector in each period and in each state of the world which still enables
the consumer to survive. It generalizes the usual assumption that endow-
ments are in the interior of the trader's consumption set, and is clearly
needed, unless one goes on to consider resource-relatedness and its .

generalizations as in McKenzie [1981].

Assumption 9: The correspondence Ssupp u: A2 + E 1is upper hemi-

continuous.

This assumption is somewhat obscure-—cf. Green ([1973], (3.2),
p. 1109). Example 6.5 may help to explain why it is needed.

The final assumptions apply to the group of %raders I as a whole,
rather than each trader i separately. They guarantee existence of a
temporary Walrasian equilibrium. The prefix i denotes an object

referring to trader 1i.

Assumption 10: The set P := N p is non-empty and convex.
i€T .

(where D 1is defined after A.T)
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It will become evident in Section 5 that trader i's demands for
assets are unbounded unless p € iD, which justifies the need to assumé
that P is non-empty. The assumption that P is convex, on the other
hand, is rather obscure. What is required really is that P be a set
on which we can apply a suitable fixpoint theorem such as Kakutani's.
Example 8.2 is offered as a Jjustification for this assumption, which
corresponds to Green's ([1973], Assumption 3.4, p. 1110). A perhaps more

transparent version of A.10 can be stated as:

Assumption 10*¥: P is non-empty. Also, whenever 1 € I and

M(1)p%(2) € supp 9(p(1)), A(2)67(2) € supp y(p(2)), while (p /p,)
= [(p,(1)/(p, (N2 (2))/(p (217" for some 6 satistying

0<6 <1 and for all g, h=1 to % +&,, then Ap2€supp *p(p).

1 2?

This is a kind of "log-convexity" which may be more meaningful insofar

as relative prices mean more than absolute prices.

Define K¥(p) := N *
i€l
K¥(p) is the convex cone generated by the set of relative asset

K(p).
values which, at price p, all traders in common believe are possible.
Notice that

p=1peint A*|p? € N int K(p)}
i€r

{p € int A%|p° € int K*(p)} .

Under A.9, the correspondence ~K(p) is upper hemi-continuous, and so

therefore is K*(p). As we shall see in Section 6 (Lemma 6.8) the set
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D is open, for each i € I. So therefore is P. So, if P € b4 P,
then §2 & int K*(p). But, because K*(p) is upper hemi-continuous,
52 € K*(p). Thus p €bd P if and only if 52 € bd K*(p). Then the

last assumption which has a counterpart in Green's work is:

Assumption 11: If € bd K*(p), then there exists p € P such

that p2 € int K*(p).

This is the "boundary expectations" assumption which is uéed to
prove existence in Section T~-see Theorem T7.2. It is an assumption which
is notably weaker than Green's, who requires some degree of "inelastic"
expectations as well. The counter-part of his Assumption (4.2) for the

general asset economy of this paper, is:

, '3
Assumption 11%: There exists a fixed open set C C R+2 such

that, for all p € a*, ¢ C K*(p).

The final assumption is an alternative to A.10 which then enables
~us to dispense completely with an assumption like A.11. It is an

assumption which I have called "overlapping expectations" (see Hammond

[1980]) and is the dual of Hart's existence condition [1974]).

Assumption 10' (overlapping expectations): For all p € Az, the

convex cone K¥(p) has a non-empty interior.

In fact it is obvious that A.10' is actually implied directly by
Green's '"common expectations” assumption A.11%, and so, incidentally,

it follows that A.11¥% is sufficient to prove existence of equilibrium



-26-

(in combination with Assumption A.l to A.9, of course) without any need
to assume A.10. In particular, as shown in Hammond [1980], A.10' implies
that P is non-empty (in combination with the earlier assumptions).

All of these lést assumptions, of course, require traders to have
common expectations only as regards relative asset values--they say nothing
about the value of assets relative to physical commodities, unless some

of the assets happen to be future physical commodities.

Ly, Continuity of Expected Utility

Green ([1973], Lemma 3.4, part (i), p. 1112) was able to assert,
quite correctly, that continuity of the expected utility function v(a,p)
could be demonstrated using the method of Grandmont‘[l972, 1974] or
Sondermann [197L4]. Yet Green's economy circumvents a major difficulty by
assuining that the consumption .set is the non-negative orthant. This means
that, even if the consumer chooses to be on the lower boundary of the
consumption set in the second period, the budget set B(b,k;q,r,s) will
still be lower hemi-continuous in (q,r,s) even where it collapses to
a single point. This, however, is just not true when there is a more
general consumption set. If B(b,k;q,r,s) consists only of boundary
points, then B may fail to be lower hemi-continuous. Norﬁally, in
demand theory, such cases are ruled out by assuming that the consumer's
endowment is in the interior of his consumption set. But, in the model
of temporary equilibrium, even if this assumption is made, the trader may
prefer first period consumption ehough to drive him to the léwer boundary

of his second period consumption set, and there bring him to a discontinuity.
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An example illustratiﬁg this possibility will be presented elsewhere.
Here, I have circumvented this problem by assuming that the second
period consumption set Cz(k,s) is strictly convex, though in fact I
still have to prove that this does guarantee continuity. This I propose
to do next.

3

Define E¥ := int A" x R+ x S5 and define the set T by:

L
I o:= {(b,k; q,r,s) €R,> x E*[B(b,k; q,r,8) # 6

Lemma 4.1: The budget correspondence f: T -» P(Rm) is continuous

and compact-valued under Assumptions 1 and 2.

Proof:

(1) Recall the definition of B+, which is:

» 2
B(b,k; q,r,s) := {02 EC (k,s)lqc2 <rb+ n2(q;k,s)}

where
w2(q;k,s) 1= max {qy2|y2 € Y2(k,s)}

23

L x5~ P(R®) is continuous and

Because the correspondence Y2: R
éompact valued, the function wz(.; .s.) is well-defined and continuous.
Because q > 0 throughout T, and because Cz(k,s) is bounded below,

2 .
B 1s compact valued. It also has a closed graph, because T is

continuous and so is the correspondence 02(.,.).
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(2) Let (8 ,k°;4q°,r ,s"), (v = 1,2,...) be any sequence in

I which converges to (b,E; q,r,5), also in T. Then define:
v v v
sS )

woi= rUpd o+ nz(dv;k , (v=1,2,...)

7 1= 0 + 1°(3; E,5)

2v €p(p ,k"; ¢ ,r’,s"), (v =1,2,...). To

(3) Suppose that ¢
prove upper hemi-continuity of R, it now suffices to show that c2v has
a convergent subsequence. In fact, because Cz(i,g) is bounded below
and 02 is a continuous correspondence, there exists c2 such th;t

c2v > 92 for all large v. So, for any good g =1 to m:

\Y v 2
wo- ] e
sz < Cz + hig
qg

Because wv > w and qy +q>0 as v > o it follows that, for any

e > 0:
— - 2
2 2 | h; *nh
cg < cg | —E |4 €
qg

for all large v. So the sequence c2v is bounded above and is also
bounded below by 32 for all large v. Therefore it certainly has a

convergent subsequence.
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(4) To prove lower hemi-continuity of B8, consider any

=2 - = = = —\. D - -
c- € B(b,k; q,r,s). Then qc2 < w . We must find a sequence

2v

e”’ € B(bv,kv;qv,rv,sv), (v =1,2,...) which converges to 52.

=

2 . . . .
(5) Because C°(.,.) is lower hemi-continuous, there exists

-2 -
= C2(kv,sv), (r =1,2,...) which converges to c2.

a seguence

(6) 1If 652 < w then, for large Vv, quzv < v and so

-2 V.V vV VvV Vv - -
e €g(b’,k";q ,r ,5 ), as required. So suppose that qc2 = w.

2v

V= v . -2V
Then, whenever gq ¢ < w we can again choose ¢~ € 8(bV,kV;q",rv,sv),

so we shall suppose that, after selection of a subsequence if necessary,

qvaev > wv for all wv.

(7) Because (vY,kV;q%,rV,sV) €r, (v=1,2,...) there is a

(v=1,2,...). If o=

~

sequence of points c2v € g(pV,x; q",r",s"),

converges to 52, this is the required sequence. So suppose that, for

2v . .
~every such sequence c¢ , there is always some subsequence which converges
s 2 4 =2 .
to a point ¢ # ¢~. From now on, we assume that the subsequence is the
sequence itself.

(8) Notice that ¢~ € g(b,k; q,r,s) because B has a closed

-~

graph. Thus both ¢ and 3° are members of ~C2(E,§) which is a strictly

convex set. Therefore the point (l/2)(c2 + 32) is in the interior of

Z(E,g)- But (l/2)i(c2 + 32) < w  because ¢® and G° both are members

A

C

~

of B(b,k;q,r,s). So there exists 2 < (l/2)(c2 + 52)\ such that

e Cz(E,E) and then 502 < w.

2 ~ - -
(9) Because C°(.,.) is lower hemi-continuous and 2 e C2(k,s),

there must exist a sequence cev = CQ(kv,sv), (v = 1,2,...) which converges

A2 —A - A
to ¢ . Then, as qc2 <w, it follows that _quQv < w for all large v.
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(10) Define AV := (qVE2v - w“)/(quQv - q“czv), (v =1,2,...).

Then 0 < x“ < 1. Also, because qv62v - wv -> iEz - =.0 and because
quQv - qv;2v -> §52 - §;2 =W - q;2 > 0 it follows that A° + O as
v o,

(11) ©Now construct c2v = A V22 4 (1 - Xv)Eev; (v=1,2,...).

Because Cz(kv,sv) is convex, it always includes cev. Because of the

2 .
definition of kv, qvc V= wv. Therefore C2v € B(bv,kv;qv,rv,sv).
Because AV 0, c2v > 52. So CEv is a sequence which converges to
52, contradicting (7). ~ Q.E.D.

The rest of the proof that the expected utility function v(a,p)
is jointly continuous in a and p 1is somewhat delicate. - Recall that

v(a,p) was defined in Section 2F as:

v(a,p) := f¢(a; q,r,s)du(p)
E
where:
. = 1 — 1 o )
¢(aje) = ¢(c ,b,k; q,r,s) := max {ule ,k,c%;s)|c” € B(b,k; q,r,s)} .

2
c

It follows that ¢ 1is only well defined for (cl,b,k,q,r,s) e Cl x T

where

L L
T := {(b,k,q,r,8) €R 2 x B3 x E*|8(0,k; q,r,8) # ¢}
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as before. Thus, for v(a,p) to be ﬁell-defined, we need to be sure

that:

u(p)(E*¥(b,k)) = 1
where

. - 2]2
E*(b,k) := E(b,k) NE*¥ = {(q,r,s) € int & x R x S[(b,k,q,r,s) €T}
= {(q’rQS) € E*!B(bgk; q’ras)# ¢}

Then

v(a,p) = f ¢(cl9b’k; Clsrss)dU(p) .

E*(b,k) :

Let B(p) := {(b,k) € Rzg x Ri3|u(p)(E*(b,k)) = 1}. Then v(a,p)
is well defined provided that a € X; x B(p) where Xl is gg defined in
Section 2.A. Notice that B(p) :is empty if u(p)(int A" x Rig x S) < 1;
AL rules out this possibility.

Because the domain of integration of the function ¢(cl,b,k; QsT,S)
ijs E*(b,k) which depends on b and k, it is not possible to apply
here the arguments of Grandmont [1972] to prove continuity of the function

v(a,p). If it were true that the expectations measure u(+) satisfied

the stronger continuity property:

Assumption 5%¥: For every Borel set F EEE, the measure u(P)(F)

. . . m
of F is a continuous function p on A .
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as postulated by Delbaen [19T4] and by Sondermann [1974], then it is
possible to demonstrate that v(a,p) is continuous, even though the
domain E*(b,k) is varying. This was done in Hammond [1977] . However,
given that the budget correspondence B8(b,k; q,r,s) is now continuous
(which it was not in Hammond [1977]), it is possible to use an ingenious
argument due to Jordan [1977] in order to prove that v(a,p) is
continuous even with the weaker A.5, that u(p) is continuous in the
topology of weak convergence of probability measures. Jordan suggests,
in the context of the present paper, considering the space of Borel

probability measures:

23'
M := M(R+ x R x E*)

L
on the product space of capital stock vectors k E'R+

consumption vectors c2 S Rm, and uncertain outcomes e = (q,r,s) € E¥,

3, second period

Taking into account the constraints imposed by the trader's consumption
set, the trader must choose a Borel probability measure

n EAKR+3 x rm x E¥) in order to satisfy the constraint:

n[{(k,c2; q,r,s)lc2 € Ce(k,s)}] =1 .

or else:

supp © C 02

-~

where C2 is the "extended" second period consumption set:
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- £
@ := {(k,cz; q,r,s) € R+3 x R x E*|02€ Ca(k,s)}

and supp ™ is the smallest set F which is closed relative to
L
R+3 x R® x E¥ and for which =(F) = 1.
The trader's objective function can now be expressed in the form:
U (cl,ﬂ) = u(cl,k,ce; s)dan
62

2

where the integration takes place over the fixed set €, which always

contains the support of the measure .

Lemma 4.2: Under A.3, the objective function U(cl,w) is jointly
continuous in the variables (cl,n), when the space M is given the

topology of weak convergence.

Proof: By A.3, the utility function u(el,k,c?; s) is continuous
and is also bounded for each s on the domain C1 X 02. This suffices
to establish that U is continuous--see, for example, Grandmont

([1972), Theorem A.3, p.56). Q.E.D. -

| The conditions for the Borel probability measure =% €M to be
feasible, given the first period action a = (cl,b,k), are essentially a
specialvcase of those discussed in Jordan ([1977], Section 2.5). First,
the marginal probability measure which = induces on E¥ must be the
same as u(p), so that, for all Borel sets F C E¥:

L

3
1r(R+

x B x F) = u(p)(F) .
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Second, ®» mst attach probability one to the points (k,c2; q,r,s)
which lie in the graph of the budget correspondence with b and k

fixed:

23

7[{(x,c2,q,r,8) € R, 2

x R® x E¥|k = k and c¢° € B8(b,k; q,r,s)}] = 1

or
. Dy
supp v C H (b,k)
where

L

#2(5,8) = {(k,c%,a,7,5) €R

2

x R* va*[k =k and c¢“ € 8(b,k; q,r,s)} .

2

Notice that HQ(B,E) S c so that the chosen measure w will certainly

lie in the extended consumption set provided that supp 7 C H2(B,E).

£2 23 )

For each (b,k,p) € R © x R, x A7, let M(b,k,p) denote the set
of all Borel probability measures = € M(Rzz x R™ x E*) which satisfy
these two conditions. Then 1i(b,k,p) is the trader's constraint set
when he comes to choose a probability measure w with his first period
action a = (c¢l,b,k) already determined. It is then evident‘that:

v(a,p) = V(cl,b,k,p) = mx {f ﬁ(cl,k,cz; s)dn|m € n(b,k,p)}

b C2

Lemma 4.3: Under assumptions Al, A2, A3, A4 and A5, the

L L
correspondence I: R 2 x R+3 .

)
x A¥ > p(u (R+3 x R® x E*)) defined

above is compact valued and continuous when the space of Borel measures

L
M(R+3 x RT x E*) is given the the weak topology.
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L, 2
Proof: Define the correspondence II¥: R 2 x R+3 x a¥ > P(MR™ x E*))

by

m*(b,k,p) = {ﬂ|w(Rm x F) = u(p)(F) for all Borel sets F CE*

and supp m € {(c2,e)|c2 € g(b,k,e)}} .

L
Then n(b,k,p) = {r € M(R 3 x E*)|Jn* € m#*#(b,k,p) such that

w{{k} x F] = m*(F) and w[K x F] = 0 unless k €K

2
+

for all Borel sets KC R S, F C R® x E¥} .

Thus I(b,k,p) = {k} x I*(b,k,p), in effect. It follows from
Hildenbrand ([1974], Prop. 4, p. 25 and Prop. 8, p. 27), for example,
that I will be compact valued and continuous provided that 0¥ is
compact valued and continuous. But Jordan ([1977], Lemmas 5.2 and 5.7)‘
effectively proves that T* is indeed compact valued and continuous, so

no further proof is necessary. Q.E.D.

Theorem 4.%: Under assumptions A.l, A.2, A.3, A.k and A.5 the

utility function v(a,p) is jointly continuous in a and p.

Proof: This follows readily from Berge's maximum theorem. The
objective U(cl,ﬂ) is continuous when the space of Borel measures is
given the topology of weak convergence, and so is the correspondence - Il.

Q.E.D.
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5. Existence of Expected Utility Maximizing Demands
In this section, we shall follow Green ([1973], Theorem 2.1, p.

% for which there

1107) and characterize those price vectors p € A
‘exists a non-empty set a(p) of first period actions a = (cl,b,k)
which maximize the expected utility function v{(a,p) over the budget

set A(p). First, notice that u(cl,k,c2; s) is strictly monotone in

(c1,e2), by A.3. Then, if A.6 is also assumed, obviously:

Lemma 5.1: Under assumptions A.2, A.3, A.5 and A.6, the expected

utility function v(a,p) = v(ct,b,k,p) is strictly monotone in (cl,b),

for every p € A‘Q’.

Equally obviously:

Corollary 5.2: If v(a,p) is strictly monotone in (c1,b), ana

if it has a maximum with respect to a over the budget set A(p), then
p>0. .

2
As in Section 3, for every Borel set F C R+2, define

W(p)(F) := ulp)(int A" x E x 8)

: L
as the marginal probability measure on R 2, and define X(p) as the

convex cone generated by the support of the measure ¥(p). Recall A.T,

which states that K(p) has a non-empty interior, for every p € A*.

Lemma 5.3: Under assumptions A.2, A.3, A.5, A.6 and A.T, if
p> 0 but pztfiint K(p), then v(a,p) has no maximum with respect

‘to a over the budget set A(p).
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Proof: The proof is close to that of Green ([1973], Lemma 2.5, p.

1108).

< £
(1) Because p° > 0 and p° & int K(p), there exists t €R 2

such that p°t < 0 and, for all y € int K(p), ¥yt > 0, while yt > 0
for all y €K(p).

(2) Suppose yt < 0 for all y €supp ¥(p). Then yt <0 for
all y €co supp ¥(p), and for all y €K(p). But there exists
y® € int K(p) by A.T, and then y%t > 0, by (1), which is a
contradiction. So there exists r* € supp ¥(p) such that r* > 0. It
follows that there is an open ball N(r¥) with centre r* such that

rt >0 forall r € N(r*).

(3) Suppose Y(p)(N(r*)) = 0. Let V, := supp V(p) N N(r#*),

V, = supp V(p)\N(r*¥). Then V, 1is clesed, and r* € supp 'P(P)\Vz.

Also w(p)(Vz) = 1. This contradicts the definition of supp ¥(p).
Therefore ¥(p)(N(r*)) > 0, which implies that w(p)(vl) > 0 because
‘P(P)(Vl) = v(p)(N(r*)).

(4) Define ¥ := {r €supp ¥(p)|rt > 0}. Then v, ¢ ¥ and so
¥(e)(¥) 2 ¥(p)(v)) > o.

(5) sSuppose it were true that a = (¢7,b,k) maximized v(a,p)
with respectto a subject to a € A(p). Choose a = (r:l,‘g + t,l:)
171

instead. Since, by (1), p2t 0, it follows that pec~ + p2(b + t)

A

~

< al(pl; k). Also, for all e = (q,r,s) € supp u(p), r € supp ¥(p),
and so, by (1), rt > 0. It follows that B(b + t,k; e) D B(b,k; e) for
all e € supp u(p), and in particular, that B(b + t,k,e) # ¢. So

a € Alp).
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(6) Finally, let V¥* := {e = (g,r,s) € supp ul(p)|rt > 0}.
Then u(p)(V*) = ¢(p)(V) > 0. Now the function ?s supp u(p) + -
can be chosen so that:
(1) c®(e) > c®(e)
, all e = (q,r,s) € supp ui(p)
(ii) qcz(e) < r{b + %) + w2(q; k,s)
(111) c2(e) > cZ(e), (all e €V*)

vhere c2(e) maximizes u(cl,k,cz; s) with respect to ¢° subject to
e B(b,k; e). This is true because rt > 0 for all e € supp u(p)
by (5), and rt > 0 for all e € V¥,

(7) Because u 1is strictly monotone and u(p)(Vv*) > 0:

v(a,p) = v(cl,b + t,k,p)

v

[ (et k,e%(e); s)aulp)
E*

[ ulet,k,c2(e); s)au(p)

%

v(a,p) , as required . Q.E.D.

Thus p > 0 and p> € int K(p) are necessary conditions for the
trader's expected utility function v(a,p) to have a maximum over the
set A(p) for a given price vector p€ Az. We shall prove that they
are also sufficient, because they ensure that the budget set A(p) is
compact. Rather than use Green's [1973] argumént involving sequeéences,
or Grandmont's [1977] suggestion of using asymptotic cones, I shall base

a proof on the following simple result:
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2
Lemma. 5.4: Suppose that T 1is any subset of R 2, and To is

any subset of T for which, for some ¢ > 0, Ne(To) C T, Then, for any

L
fixed scalars &, m, the set B(T,To) := {b €R 2|V reT: rb+8§>0

and Jr € TO: Fal) < m} is a bounded set.

Proof: Suppose Ne(To) CT and DbE B(T,To). Then, for some

a1}

ETO, ™ < m. Also, for all r €T, rb + § > 0. Since, for

a =1, 2, «es, &,, the vectors r + ee, and r - e, are members of
T (where e, 1is the ath unit vector), it follows that

(r + eea)b + 8> 0, (r - eea)b + § > 0. Recalling that Tb < m, we

have:

m+6+eba>0 ’ m+6-eba20 s

or m+ 8> eb > ~(m + §8), (a = 1,2,...,22). Therefore B(T,Ty) 1is

bounded. Q.E.D.

Lemma 5.5: Under assumptions A.l, A.2, A.4, for every

p €int A* such that p° € int K(p), A(p) C H(p) x B(p) x J where, for

1 1. M

some constants & and X > 0 and some ¥y , c” €R

H(p) := {c

N B(p,r)
r&o supp ¥(p)

B(p) :

L
B(p,r) := {b €R 2|pd < pr(F" - c'), rb + & > 0}

2 L
J := {k €R+3|3yl€ R 1 s.t. (yl,k) € v')
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Moreover, the sets H(p), B(p), J are all bounded, and so A(p) is

also bounded.

Proof:

1 oLy e consumpiion se as a lower boun
(1) By A.2, th ti t ¢l n 1 bound

c1 and the first-period production set Yl has an upper bound

- 2 L
(il,i) ERT x R+3. Because of A.l and because the correspondences

c2(k,s) and Y°(k,s) are both continuous, there exists a

uniform lower bound 32 for the second period consumption set

c2(k,s) and a uniform upper bound 72  for the second period profit
function we(q; k,s) as q varies over the compact set A" and (k,s)

vary over their compact sets of possible values.

(2) sSuppose e? e B(b,k; e). Then qgg < qc2 <rb + n2(q; k,s)

< rb + 7 and so rb + T2 qc2 >0 or rb+ §(q) > 0 where
8(q) := 7 . qgg. Letting & := max {8(q)|q € A"} it follows that

rb + & > 0 where § 1is independent of p or e.

(3) Define:

1 1o, 11, 2
Alp,e) = {(e7, k) |e™ €C7, pe” + 2o < vl(pt k), B(b,k,e) # )

1-1

1(pl',k) < py for all

Then A(p) = A(p,e). But, by (1), =

N
eSsupp u(p)

2
1 2 .
P € A7 and all possible k € R+3. And, by (2), B(b,k,e) # ¢ implies that

rb + § > 0. Therefore, A(p,e) C A*(p,r) where:

A*¥(p,r) := {(cl,b,k)]c1 € Cl, plc1 + p2b < plil, rb + & > 0}

(4) Notice that [rb + § >0 for all r €supp ¥(p)l is

equivalent to [rb + § > 0 for all r € co supp ¢(p)]. Therefore:
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Alp) = N A(p,e) ¢ N A*(p,r)
ecsuppu(p) resupp¥(p)
= N A*(p,r)

r&co supp u(p)

1

(5) If a = (cl,b,x) € A*(p,r), then c > Sl, because lect,

1-1 11 1.1
¢t <oy

and so p2b <Py -0p l).

-c It follows that b € B(p,r)
where B(p,r) is as defined in the statement of the lemma. Moreover,

if a € A(p), then b € N B(p,r), as required.
reco suppy(p)

(6) By hypothesis, p2 € int K(p) and so there exists A > 0
. 3 _
such that kpe € int co supp ¥(p). Therefore A(p) C A¥(p,»p°) and so,
i a = (e,b,k) € A(p), then a € A*(p,lpz) which implies that

et e Cl, plc1 + p2b < p1§1, and Ap2b+ § > 0. Therefore ctecl and:

It follows that ct € HY(p), as required.

(7) Tt is evident that kX € J 1is implied by a € A(p) Dbecause there

mist be some production plan (yl,k) which is feasible in the first period.

(8) Because Cl is bounded below and p > O, by hypothesis, it is

evident that H(p) is bounded.

(9) Because Y! 1is bounded by A.2, J in particular must be bounded.

(10) 1In the statement of Lemma 5.4, take T := co supp ¥(p), and

T, := {Apz} where A > 0 1is such that Apz € int co supp A(p). Take

m := Apl(i - Sl). Then there exists € > O such that Ne(TO) CT and so,

by Lemma 5.4, the set B(T,TO) = B(p) is bounded. Q.E.D.
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Define the set D := {p € Azlp >0 and p2 € int K(p)}.

Theorem 5.6: Under assumptions A.1, A.2, A.3, A4, A.5, A.6 and
A.T, the trader's first period action correspondence a(p) is non-empty
valued if and only if p € D. On the set D, a{p) 1is convex and compact

valued, and satisfies the budget exhaustion condition that, for all

(c1

~

- 171 27 1, 1
»b,k) € alp), pe” +pd =1 (p7; k).
Proof':
(1) By Corollary 5.2 and Lemma 5.3, a(p) = ¢ whenever p & D.

(2) But if p & D then, by Lemma 5.5, A(p) is bounded.

(3) Also, if p € D, the set

Alp) = fa = (10,0 et € ¢, plet + o < (ot x),

B(b,k,e) # ¢ for all e g supp u(p)}

is evidently closed because €l is closed, wl(pl; k) is continuous

in k, and the correspondence B 1is continuous and compact valued.

L 2 L

(L) It follows that A(p) is compact in R LyR2xR3 for

-
p € D.

(5) By Theorem L4.4, the trader's utility function v(a,p) is
certainly continuous in a. So a(p) 1is non-empty and compact valued
for p€&€ D, |

(6) Because the overall production set Y2(s) is convex for

each s € 5, it follows that the profit function “2(q; k,s) 1is concave

in k.
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(7) Then, because u is concave in (cl,k,c?) and because the

set C2(S) H {(Cl,k,02)|01'€ Cl,c2€E Cz(k,S)} is convex, by A.2, it

follows that the function ¢(a; e) which is given by:

¢(c1,b,k; q,r,s) = mx {u(cl,k,cz; s)lc2E502(k,s) .

2
e

qu < rbo+ ﬂ2(q; k,s)}

must be concave in (cl,b,k) = a throughout A(p). So therefore is

v(a,p) = [ ¢(a; e)du(p).
. w i o
(8) suppose that le B(b,k; e), 2e B(b,k; e). Let
b¥*
2

Ab + ub, k¥ := Xk + yk where A + u =1, A, u> 0. Then
rb + wz(q; k,s), qc2 <rb + wz(q; k,s) and so q()\c2 + uc2)

< rb* + Ane(

qe

A

a; k,s) + une(q; k,s) < rb* + wz(q; k*,s) because 72 is
concave in k, by (6). Also, because C(s) is convex and

2 2 € c®(x*,s).

¢2 € C2(k,s), c2 € ?(k,s), it follows that Xc + uc
Therefore a2 + u;2 € B(b*,k*; e).

(9) It follows that the first period budget set A(p) is convex
because, Yl being convex, the profit function wl(p; k) 1is concave
in k, and because of (8) above.

(10) Since v(a,p) is concave in a and A(f) is convex it
follows that a(p) is convex-valued.

(11) By Corollary 5.2, v(a,p) is strictly monotone in (cl,v)

and so, if (cl,b) € a(p) then evidently:

plcl + p2b = wl(pl;k) . - Q.E.D.
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6. Continuity Properties of a Trader's Demand Correspondence

In this section, upper hemi-continuity of the trader's demand
correspondence is proved. This follows in a standard ﬁay once it is
shown that the budget correspondence A(p) is continuocus. To show
that A(p) 1is continuous, a number of lemmas are proved. Two extra
assumptions are also needed. One (A.8) ensures that the trader can stay
away from the lower boundary of his consumption set. The second (A.9)
imposes a stronger continuity condition on expectations. An example
shows the need for A.9.

First, though, the following lemmas are useful:

Lemma 6.1: Under Assumption 5, the correspondence supp u{p) is

lower hemi-continuous in p.

Proof: (Green, Remark 3.1. p. 1110, proves a very similar

result).

If supp u(p) is not lower hemi-continuous at some P € Az,

L

there exists a sequence If)E A” such that pv + p, a point

€ € supp u(p), and an open neighbourhood N of &, such that

v ( .
N Nsupp u(p) = ¢ for v =1,2,ee0 But now EA N is a
relatively closed set, and u(p")[E¥\N] =1, (v= 1,2....). Because of
A.5, it follows that u(p)[E*\N] = 1. Therefore supp u(p) C E¥\N, which

contradicts e € N N supp u(p). Q.E.D.

Lemma 6.2: Let o0 be any convex valued correspondence which is
lower hemi-continuous at D. Suppose that p° + P as v + ® and that

r € int o(p). Then there exists € > 0 and V, such that, for all
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- - v
vV, N.(F) ¢ o(p").

(1) If this lemma is false, there is a sequence r’ + F such
that, for all v, ;vé 3(p”). Since 3pY) is convex, we can separate
¥ from o(p’) by a hyperplane. That is, we can find t° # O such
that r't" < Y for all r’€ §(p“). Moreover, we can take
[1t”]] = 1, and then assume too that t° » T, where [E]] = 1.

(2) Because Tr € int G(P), there exists r near T so that
;45 o(p) and ;f > €. Because § is lower hemi-continuous at
P, there is a sequence r’ such that r'e 3(p"), (v = 1,2,...) and
r’ > r. Then r%" < r"%”, by (1), and so, taking limits, o <tE, a

contradiction; ‘ Q.E.D.

Given a correspondence o(p) defined on D, say that o(p) is

locally bounded if, whenever p° € D, (k = 1,2,...), p° + P, and

[ -]

PED, then U o(pv) is a bounded set. Notice that a correspondence
v=]

is upper hemi-continuous if it is locally bounded and has a closed

graph.

Lemma 6.3: Under assumptions A.l, A.2, A.4 and A.5, the trader's

budget correspondence A(p) is locally bounded.

Proof':
(1) By Lemma 5.5, A(p) C H(p) x B(p) x J for all p € D.
Since J 1is constant and bounded, it suffices to prove that H(p)

and B(p) are both locally bounded on D.
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(2) Suppose that p € D, (v = 1,2,...), p’ + P, and p € D.
Because of A.5 and Lemma 6.1, supp u(p) is a lower hemi-continuous
correspondence, and so therefore is supp ¥(p), and also the

2 _ . -
correspondence co supp ¥(p). Now Ap~ € int co supp ¥(p), for some
A > 0. So, by Lemma 6.2, there exists € > 0 and v, such that, such

that, for all v > vo:

- v
N2e(lp2) C co supp ¥(p")
(3) In particular, there exists v; such that, for all v > v,,
Apg\’e int co supp ¥(p°) .

So, as in the proof of Lemma 5.5 we can take:

H(p\)) = {Cl € Cllpl\)cl E pl\’il + E}

A
where § and X are independent of v, and A > 0. Since plv >0
v -1 1 .
(v=1,2,e..), P +p €D, and, by A.2, C* 1is bounded below, a

standard argument establishes that U H(p®) is bounded.
v=1
(L) Also, B(p") = N v B(p’,r)
reco supp ¥(p )
- N o B(p,r) , for all v > vy
reN, (Ap7)

In Lemma 5.4, take T :

1 1
Nee(xﬁg), 0 = {p2Y |v > v}. Then, there

exists v, such that, for all v > v

v =2y _
o »NE(TO),g Nee(xp ) =T, and

2,
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\Y
so B(p") C B(T,T,) S:B(T,Toa), which is a bounded set independent of v.

Q.E.D.
Write z := (el,b) and pz := plel + p2v.

Lerma 6.4: Under assumptions A.l, A.2, A.4, A.5, and A.7, the

trader's budget correspondence A(p) has a closed graph on At

Proof:

(1) Suppose p € A'Q', and a¥€ A(p”) (v =1,2,...), and that

(p¥,2¥) + (P,3). We must show that & € A(p).

1 1l ARV lv,

Yec, p < (! kY, ¢t

(2) Because ¢ , C° 1is closed, and the

correspondence Yl(k) is continuous, nl is continuous too and so:

dtec, mcr(E; B .

(3) Suppose that € € supp u(P). Then, because supp ui{p) is a
lower hemi-continuous correspondence, by Lemma 6.1, there exists a
sequence e’ € supp u(pv)v (v=1,2...) such that e’ + &. Because
a’ e A(pv) it follows that there exists a sequence Ve 8(p",x"; %)
(v =1,2,...). Then, because the correspondence B 1is continuous and
- compact valued, by Lemma 4,1, it follows that a subsequence of .c2v
converges to a point 2 e B(5,kK; 8). | .

(4) Therefore B(5,k; &) is non-empty for all & € supp u(p).

(5) From (2) and (4) it follows that a € A(p). Q.E.D.

To prove lower hemi-continuity of the first period budget

correspondence, I shall invoke the interior point assumption A.8, and
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also A.9, which requires the correspondence supp u(p) to be upper
hemi;continuous. Only lower hemi-continuity of supp u(p) follows from
the weak continuity of u(p). The following example shows how

supp u(p) can fail to be upper hemi-continuous even if u(p) 1is not
only weakly continuous, but actuallj has the stronger property A.5¥% that

u(p)(F) be continuous in p for every Borel F C E¥.

Example 6.5: Suppose that 21 = 22 =m = 2, there is no capital

or exogenous uncertainty, and that we have complete future markets, so

that rl = qi, r2 = q2 with probability one. Suppose a trader has the

consumption set C1 x 02 where Cl = 02 = RE, and has fixed endowments
w = o = (1,1) in each period. Suppose the trader's expectations

v(p) on A2 correspond to a distribution function F(p2)(q1) defined

for 0<q; ¢ 1. Write
1 2 2 27 2 2
P * Py Py + P,

and suppose that this distribution function takes the following specific

form, as illustrated in Figure 1 (at the end of the paper):
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) (1 - 2m))q, ) (: <q < é) ] 1
J1-201+ 75 - q) 329 <3 b (m < 3)
(1 (%.s q < 1) J
0 (0 <aq <%—)T
F(n))(q,) = ﬁ {3(q, -3 (3<a <D (n =3
o (%:f q, < 1)
r0 (Of_q1<%)
Lfe -2 -3 1< <D (>3
- - Do) (gra <)

The trader now satisfies assumptions A.1, A.2, A.4, A.5, A.6, A.T and
A.8. Indeed, the strong form A.5*% of A.5 is satisfied because
F(wl)(ql) is continuous in m,. Notice however that 4.9 is not

satisfied because:

(4% N {q]o <a 5-% () < %
supp ¥(p) = { 4% N {ql-]j'—f 9 5% (ny =}2.
2 1 1

and this not upper hemi-continuous when pi = pg; in fact, the graph of
supp ¥(p) is not closed.

The trader's budget set A(p) is now:
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Alp) = {(ct,p) € Rf x B |pre’ + p°b < prut,b € B(p))
where

B(p) = {v e.Rzls(b,q) # ¢ for all q € supp ¥(p)}
and

8(b,q) = {c? EIREIQCQ < q(? + )} .

In this example:

B(p) = {v € Rzlqb +1>0 forall q € supp v(p)}

and so:

. 2 l
{b €R°|b, +13>0, 20, +b, +3>0} (r) <5
‘B(p)=B(ﬂ)=<{b€R2|b +2b, +3>0,2b +b, +3>0} (m =3) .
1 2 722, 2 - 1772
{b €R°|b, +2b_ +3 >0, b, +1> 0} (. > 2)
. 1 2 = - 172
This is not lower hemi-continuous at “1 =1/2 - forAexample:

(—%,0) € B(n) for =

nf =
®

1
5 but not for LAY >

A

1

(O,-l%) € B(wn) for =

v
N} =
-

% , but not for w <

1 1

Nor, therefore, is A(p) lower hemi-continuous. It is .also possible to
find a utility function ﬁ(cl,ce) such that b(nl) + (-1,1) as

-~ 1 .
LR (1/2)- and b(nl) > (O,—l§) as m, » (1/2)+. Since
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nlbl'(wl) + 1r2b2(1r1) is discontinuous, so also is consumption

expenditure plc1 + ;p]'c1 and the vector (cl,cl)..
171 272 2

Lemma 6.6: Under assumptions A.1, A.2, A.L, A.5, A.T, A.8 and A.9
the trader's budget correspondence A(p) is lower hemi-continuous over
Alo

Proof':

2

(1) Suppose p° €A (v =1,2,...) is a sequence of points

which converges to p, and a € A(pP). We must find a sequence of

actions a’ €A(p”) (v =1,2,...) such that a’ » a.
(2) By A.8, there exist cl, y-l, xl and 02(5), ye(s) (s € 8)
such that c: € Cl, (yl,kl) € Yl, el < y1 and, for each s € S,

e?(s) € CP(k,s), y2(s) € Y3(k,s), c%(s) < y(s).
(3) Let a := (cl,O,k). Then evidently ac€ A(p) for all
P E Az, and in particular, a € A(p).

() For any real A such that 0 < A < 1, define:
a(A) := 2@ + (1 - \)a

so that cX(A) = St + (1 = A)el,b(A) = AB, k(1) = Ak + (1 - A)k.
" (5) Evidently c(2) ect because ! is convex.
(6) Because a € A(p), 5181 + 52‘5 < wl(le; E). Also

I)lcl < f)lyl < wl(f)l; k). It follows that, whenever 0 < A < 1:

$1e1(0) + 526(0) < Art(Eh; B) + (1 - MOntE s K)

< (3 k(1)
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1 1

because Y! is convex and so T is concave in k. Because T is
continuous in p it follows that, for each A, there exists vl(k)

such that, whenever v > vl(l), then:

pel(a) + pzvb(k) < ™5 k() .

(7) Define the minimm wealth function:

2

_y_z(q; k,s) := min {qc2|c € Cz(k,s)}

2
c

This is well defined for all q € A® because Cz(k,s) is bounded
below. E? is also continuous because qc2 is continuous in q and
the correspondence Cz(k,s) is continuous by A.2. 1In addition, 32 is

a convex function of k because the overall consumption set is convex,

by A.2.

(8) Define the function:
2 2
f(b,k; e) :=rb + n°(q; k,s) - w(q; k,s)

Notice that it is continuous because ﬂ2 and E? are both continuous,

and that it is concave in (b,k) because 7° is concave in k and

v’ is convex in k. Notice too that B(b,k; e) # ¢ if and only if

£(v,k; e) >0 and so that a € A(p) only if f£(b,k; e) >0 for all
e € supp u(p).
(9) Let 'supp u(p) denote the closure in E of supp u(p) CE*

25 25

m x R, xS and E* = int A" x R,“ x S. Notice that

where E = A
£f(b,k; e) is well defined and continuous for all e € E. Also, if

a € A(p), then f(b,k; e) >0 for all e € supp u(p) and so the
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function:

g(p; b,k) := min {f(b,k; e)|e € supp ul(p)}
e

is well-defined. g 1is also continuous because, by Lemma 6.1 and A.5,
supp u{p) is a continuous correspondence and so therefore is
supp u{p). And g 1is concave in (b,k) because f is.

(10) Because a € A(p) it follows that g(p; B,K) > 0.

(11) Because c2(s) < ye(s) for all s € S, so, for all e € E:

£(0,k; e) ﬂz(q; k,s) - 3?(q; k,s)

q[§2(s) - (s)] >0

tv

Therefore g(p; 0,k) > 0 from (9) above.

(12) Because g is concave in (b,k), it follows that:
g(p; b(1),k(1)) > ag(p; B,K) + (1 - A)glp; 0,k) >0

whenever O < A< 1. Thén, because g 1is continuous, it also follows
'that? for each A (O < A < 1) +there exists vz(i) such that, whenever
v > vy(1), then g(p’; b(A),k(})) > o. |

(13) Combining (5), (6) and (12) with (8), it follows that

a(r) € A(pv) whenever v > v(A) := max {v,(1),v.(A)}.

- 1 2
(14) 1Let A (n = 0,1,2,e..) be any strictly increasing
sequence of nonnegative real numbers such that An > i as n + o,

Define the sequence vn (n = 0,1,2,...) of positive integers

recursively by vd := 1 and:
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+1,9(x )}

vV = max {v
{ n-1 n

n

where v(An) is given by (13). Then define the sequence

a\) (\’ = 0,1,2,00.) by:

v - —
8 = a(xn) (v = v, to v, -1lyn= 0,1,2,00¢0) &

Since v > v(xn) it follows that a’ € A(pY) for v =0,1,2,... .

v

Because An + 1 and vn +® as n +» it follows that a =+ a as

Vv > o, ' Q.E.D.

Theorem 6.7: Under assumptions A.1 to A.9 the trader's first
period action correspondence a(p) is non-empty, convex and compact

valued, as well as upper hemi-continuous, on the restricted domain:

D:={pe Azlp > 0,p2 € int XK(p)}

171 2,

Also, pc + p°b = ﬂl(plg k) for all a = (cl,b,k) € a(p) whenever

p € D.

Proof: To Theorem 5.6 I have added just upper hemi-continuity of
a. This follows from Theorem 4.4 which ensures continuity of the utility ]
function v(a,p) and from Lemmas 6.3, 6.4 and 6.6 which ensure continuity
of the correspondence A(p). (Notice that A(p) is compact valued on D

by part (4) of the proof of Theorem 5.6). Q.E.D.

This is the main theorem of Section 6, but the next three results

will be useful for the existence proof in Section 7.

Lemma 6.8: Under A-5, the set D := {p € Allp > O,p2 € int K(p)}

is open (Green [1973], Lemma 3.8, p. 1112)).
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Proof':

(1) Define D* := {p € A*[p®€ int K(p)}. Since D = D*N int a*

. is open, it suffices to prove that D* 1is open.

(2) Suppose p € A* and 5265 int K(P). Then, for some € > 0,

and int A

W, (5°) CK(F). Also, ir pe N_(5%), and pZe N_(p%), then
p°€ K(5). That is, if 7€ N (%), then W_(p?) C K(5).
(3) Because the correspondence supp u(p) is lower hemi-

continuous (Lemma 6.1), so are the correspondences supp u(p),
co supp ¥(p), and K(p) in turn. So there exists &% > 0 such that,
if pe Nsl(i), then K(P) C N€/2(K(p)).

(4) Choose § := min {61,3}. Suppose p € Ns(ﬁ). Then
Ng(Pz) C X(5) C NE/2(K(p)). Because K(p) 1is a convex set, it follows
from Green ([1973], Lemma 3.7, p. 1112) that N€/2(p2) C K(p). Thus,
if pe N6(§), then p2€5 int X(p). This proves that D* is open.

Q.E.D.

Lemma 6.9: Under assumptions A.1l to A.9, if p’ €D, a’ € a(p")

(v=1,2,...), 0" >5 and F€bdD, then ||a"]] + «.

Proof: Suppose ||a’|| remains bounded. Then we may as well

V3. Now ave AlpY) andfgby Lemma. 6.4, the

assume that a
correspondence A(p) has a closed graph on ,Az, so a € A(p). Also,

because, v(a,p) is continuous (Theorem k.h), v(@v,pY) » v(Z,5).

Teke any a € A(P). By Lemma 6.6, the correspondence A(p) is

L

~V
lower hemi-continuous on A", and so there is a sequence a’ such

that a’ € A(p"), (v = 1,2,.4.) and o’ +a. Since a’ € al(p"),
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v(a,p") > v(a’,p"). Using continuity of v again, v(&,5) > v(a,B).
So a e€a(p). Yet, by Theorem 5.6, a(P) is empty, because D is opén

and D € bd D. This is the required contradiction. Q.E.D.

Lemma 6.10: Under assumptions A.l, and A.3 to A.9, if pv €D
(v=1,2,...) and p° » P, then, for each F €int K(§), there exist

€>0, >0, 8 and v_ such that, for all v > v  andall r EENE(F):

b + 8§ > 0 vhenever a € A(p") .

Proof: Suppose ¥ € int X(P). Then, for some X > O,
AT € int co supp ¥(P). By Lemma 6.2, and because it follows from Lerma
6.1 that co supp ¥(p) 1is a lower hemi-continuous correspondence, there
exist €>0 and v  such that, for all v > v, NXe(AF) C co supp ¥(p”).

Now, if r € NE(F), then Ar € NAE(AF) and so, for all

v > v, Ar € co supp ¥(p°). By Lemma 5.5, it follows that, for all

)
r e Ne(r) and all v > v,

L
B(p") CB(p",Ar) C (b E R Z|Arb + § > O}.

Thus, if a € A(p’), then by Lemma 5.5, Arb + & > 0. Q.E.D.

Te Existence of a Temporary Walrasian'Eqﬁilibrium

So far, we have been dealing with a single trader in isolation.
Now consider an economy with a finite set I of traders. Let each
i€ I have a consumption set iC(s), production set “Y(s), von

Neumann-Morgenstern utility function 1u(icl,llk,lce,s), expected utility
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‘function ‘v('a,p), probability measures *u(p) on E* and ‘y(p)

2 . .
on R 2, budget correspondence A(p), action correspondence 1a(p)

, etce.
Define the aggregate excess demand correspondence g(p) := Ziic(p), where
ic(p) :={(i<‘:\l,i{)\)| 3 il‘; S.t. (igl,ig,i];)e ia(p)}- “We shall assume
that Assumptions 1 to 9 apply to each trader i € I. To prove

existence, we shall also need the following assumptions, which were

discussed in Section 3.

Assumption 10: Let D := {p € Azlp > 0 and p2 € int 'K(p)}.

Assume that the set P := N lD is non-empty and convex.
iel

Assumption 11: If p € bd P, then there exists p € P such that

p2 e n int k(7).
iel

To prove -existence of a temporary Walrasian equilibrium, we shall
use the following general existence lemma, which generalizes that of

Grandmont ({1977}, Lemma 1, p. 543).

Lemma T.1l: Let P be an open convex subset of Al. For each
ieI, let i;(p) be a demand correspondence defined on P which is
compact and convex vaiued, as well as upper hemi-continuous and
satisfying budget exhaustion pi;(p) =0 (ali p € P). Suppose that
the following boundedness assumptions are satisfied, whenever pv eP
(v =1,2,...), pv +p and p € bd P:

B.l: For some J €I, if 3V e J;(pv)‘ (v=1,2,0e.), then

1192°]] > =

B.2: There arean open set P¥ C P and lower bounds ly (i € 1)
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such that, whenever v 1is large and 'z € iz;(pv), then piz > 1y
for all p € P,
Then there exists an equilibrium price vector p* such that

0 e t(p*).

Proof':
-]

(1) As in Grandmont [1977] or Green [1973], we have P = AglP

n

where each P! is closed and convex, and pl c p2 C ... c P. Also, for
each n, we can show that there exist pn e p? and 2" € ;(pn) such
that p'2® =0 > pz" for all p € P® —- cf. Debreu ([1959], p. 82).
Let 2z = Ziizn where 1zt € iC(Pn), (n=1,2,...), (a1l i €1).

(2) Since p" €P and P 1is a subset of the compact set Al, we

can assume that pn + p¥ e Al as n * o,

(3) Suppose p* € bd P. By B.2, there is an open set P¥ CP
such that pizn > iy for all i€ I, all p € P* Aand all large n.

(4) Fix any D € P*¥. Then for large n, p € P* and so pz° < 0.
By B.1, ||Jzn|[ + o for some J € I. But ﬁjzn f.-Eiijﬁizn < -Xi¢j§iy.
Also pjzn > JY for all p e P¥, As in Lemma 5.4, this shows that
jZn lies in a bounded set, because P* is open and. P € P¥. This

contradicts B.1l. So p* € P,

(5) since z(p) is upper hemi-continuous on P, we can now also
assume that z" » z* where z* e r(p*). Since p"2" = 0, for all n,

it follows that p¥z* = Q.
(6) Take any pe&€ P. For large n, pe P? and so pzn < 0. 1t

follows that pz¥* <0 for all p&€ P. Since P is open, this implies

that z* = 0, i.e., 0 € g(p*).  Q.E.D.
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Theorem T.2: Under Assumptions 1 to 11, there exists a temporary

Walrasian equilibrium.

(1) It is only necessary to verify the conditions of Lemma T.1l.
Aparf from B.1l and>B.2, these are all obvious consequences of Assumption
10, Theorem 6.7 and Lemma 6.8. It remains to use Lemmas 6.9, 6.10 and
A.11 to verify B.l1l and B.2.

(2) Suppose p'€P (v=1,2,...), P°*>P and P E bd P.

(3) Then, for some j €I, T €bd 9D. Now, if Ja¥ e dalpY)
(v = 1,2,..4), ||jav|| + » by Lemma 6.9. But the set of feasible k

is bounded, so I]szll + o, This verifies B.l.

~

(4) By A.11, there exists p € P such that, for all 1 €1

s

P° € int K(P). By Lemma 6.10, since I is a finite set, there exist

€>0, 'A>0, 6 (i€1) and v, such that, for all v > v , all i€,
and all r € Ne(pz),lkrlb + 18 >0 vhenever a € *aA(pY). Also, if
1 icl 1 ic1 where icl is a lower bound to

*a € *a(p"), then »p > p

lcl. Define P¥ := {p € P|p2 = Ns(pg)}, an open set with p as a member.

Then for all p € P¥, if ‘s € lA(pV) then pl lcl > pl lgl and, for

5 3 . i
large enough v, p- b > ts/(n MA). so, for all large v,

. . i
D 1Z N p1 1c1 _ §
- 1

na

whenever la € iA(pv). Since (pl,p2) € a* ana Il is fixed, p1 i1
is bounded below, and so therefore is piz. This confirms B.2.

QoE-Do
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8. Two Examples

The following two examples illustrate the role played by the
Assumption in A.10 that the set P 1is convex, and by the boundary
condition A.11, in ensuring the existence of a temporary Walrasian
equilibrium. Both examples involve an economy in which there are no
consumption or capital goods in the first period, but only financial
assets. There is only a single consumption good in the second period,
moreover, and each agent's objective is simply to maximize his expected
wealth in terms of this second period consumption good. Also, each

agent has a fixed endowment w2 = 1 of the second period consumption

2

good, and a fixed second period consumption set C° = R+ = {c2|c2 > 0}.

Example 8.1: There are two agents and two assets. Fach of the

two traders, 1 = 1, 2, chooses his net demands for financial assets

b = (1b1,1b2) in order to maximize his expected wealth in the second

5
period:
i

[(rpy + Tb,)d ¥(p)
subject to the budget constraint:

plbl + p2b2 < 0
and subject to the feasibility constraint:

i
r.bo +#rb, +1>0 forall r € supp vip) .

2

Take p € A and write (pl,po) = (w, 1 - 7). Also, assume that
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r ea? always and write (rl,rz) = (p, 1 = p) where O < p< 1.
Assume that the traders' expectations are such that the supports of
lw(p), 2¢(p) and so the cones 1K(p), 2K(p) correspond to the intervals

0<p< (n) p(n) < p <1 respectively defined as follows:

(1 1
T (0 <m<s3
1 )1 1 2
p(n) =qg (61 - 1) (<7 <3)
3 2
L% 3<m<l)
and 2p(1r) =qa {0 <m< 1). (as illustrated below).
N
p
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Define the expected values of p as:

15(n) := fealulp) , (1

1,2) .

It is simpler if we assume that 13(n) <T® for all = > %- and that
2B(n) > for all = < %w Consider first consumer 1, who maximizes

WB(n)b, + (1 -Y5(m))b, subject to b, + (1 - m)by <0, by + 1> 0

2
and:

1 3 1

A R (0_<_1r5-3—)

F6T -1 + 5 -6mb, 4120 Gencd)
3 1 2
E—b1+Eb2+l_>_0(-§-fwfl) .

Consumer 1, then, has a linear programming problem. If
(1/4) <m< (1/2), there is no solution: consumer 1 wants to make bs
very large and b; very smll - the same is also true if = > (3/4).
This leaves two cases:

(a) %—< ™ < %u Now (67 - 1)/4 > w, and it is easy to see that

consumer 1 wants to satisfy the following two constraints with equality:

m, + (1 - m)b, <0, 111-(6“ - 1)b, + 7f-(s - 6m)b, + 120

SO

L - -4(1 - 7) 1b b

1 o7 - 1 o T o7 - 1

(B) %-f T < %« Now consumer 1 wants to satisfy the following two

constraints with equality:
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1rb1+(1-1r)b2§O,-h—b +Eb,+120

and so

Consumer 2 will maximize 2B(ﬂ)bl + (1 - ZB(W))bg subject to

T, + (1 - W)bp <0,b, +1>0, b, + (1 - a)b2 + 1> 0. So consumer 2

1

also has a linear programming problem. If 7 < a there is no solution:

consumer 2 then wants to mke bl very large and b2 very small. But

if a<w< 3/4  then (since 2E(w) > ) consumer 2 will want to satisfy
the following two constraints with equality:

™, + (1 - w)b? < 0, ab

1 +(1-a)b2+130

1

Thus “b, = (1 - m)/(r - a), 2b2 = /(7 - a).

¥ow a number of cases are possible, depending upon the value of a.

(1) -% < a< %u Now the set P corresponds to values of = in
the interval (1/2,3/4). 7w = 1/2 1is a boundary point, and at this
boundary boint, although the interval (a,1/2) correqunds to the

interior of K%¥(1/2,1/2), no point of P is in the interior. In fact,

there is also no equilibrium, because lbl + 2bl < 0 and lb2 + 2b2 >0
for every p € P, as is easily checked. Notice that A.11 is violated.
(2) %-< a < %w Now P corresponds to values of « in the

- interval (a,3/4). 7 = a is a boundary point, and there is a point
of P in the interior of K*(a, 1 - a), as well as in X*(3/4,1/4). So
A.11 is satisfied, and we expect there to be an equilibrium. In fact,

it is easy to check that the equilibrium value of is given by:
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1 1 7
20-3 (geacq)
™* =

%(a +13;) ({-gga<%)

(3) acx< %w Now P corresponds to values of = 1in the interval

(a,1/4). A1l is clearly satisfied. It follows that an equilibriunm

will exist in this case too.

Example 8.2: The second example illustrates the need to assume

that the set P 1is convex, as in A.10. Notice that if there are only
two assets, then.each cone iK(p), when asset values are normalized,
becomes a subset of A2 - Ri, in effect. Then, since p2€E A2 as well,
we see that P is either convex or else the union of disconnected
convex sets, namely intervals. Then it is possible to apply the
boundary condition A.11 to each interval of the set P separately. In

fact, it seems that there will always be some interval of P on which

A.11 is satisfied and so a temporary Walrasian equilibrium will exist.

Accordingly, to produce an example of non-existence, I shall
assume that there aré three assets. I shall also maintain symmetry in
the example by assuming that there are also three agents, each of whom
has more restrictive beliefs about the possibvle vélue of one of the

assets in which he is a "specialist".

Fach agent, i = 1, 2, 3, chooses his net demand vector for

:A

financial assets b = (1b1,1b2,1b3) in order to maximize expected

wealth in the second period:

J(r b

11

i
+ r2b2 + r3b3)d v(p)
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subject to the budget constraint:
plbl + p2b2 + p3b3 <0
and subject to the feasibility constraint:

i
rlb1 + r2b2 + r3b3 +1>0 forall r € supp oip) .

Assume that r &€ A3 always and that each agent's expectations measure

1w(p) is a uniform distribution on the triangular support of lw(p)

which is given by:
i 3
¥(p) = {reslolp) <ry <1} (4= 1,2,3)
where p(p) is the same function for each agent, and is given by:
p(p) := 18p.p,p, (all p € Ad) .
) 172%3

This function p(p) achives a unique maximum over the triangle A3 at

the mid-point p, =p, = p, = 1/3, where its value is 2/3. The
1 3

2
condition for p € P 1is that p(p) < 1 (i = 1,2,3).  Assume, without

loss of generality (given the symmetry of the example) that

A

P; <P, < Ps. Then p € P if and only if 18p2p3 < 1. The constraints

pl < p2 < p3 and 18p2p3 < 1 can be satisfied simultaneously 1if and
only if 0 < Py < (3 - ¥5)/12. So P consists of points which are near
the edge of A3; points in a neighbourhood of the mid-point
(1/3,1/3,1/3) are excluded from P. Thus P is non-empty but it is

not convex nor is it contractible or even simply connected.
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Consider trader 1's demands first; the others' are derived by an
obvious permitation. Trader 1l's triangﬁlar support of 1q;(p) has
corners at - (1,0,0), (p, 1 - p, 0) and (p,0, 1 - p) (where I have

‘used p to abbreviate the notation p(p)). His expected wealth is:
U1 + 2p)b, + (1 - p)b, + (1 = p)b_)
3 1 2 PI03

which he seeks to maximize subject to the budget constraint:

PPy + Py, + pgbgy <0

and the feasibility constraints:

b1 + 1 > 0

pb. + (1L - p)b. +1>0

1 2

pb1 + {1 - p)b3 +1>0

(It suffices to consider feasibilify at only the extreme points of
supp 1w(p) because the constraints are linear).
This linear programming problem has a solution provided that

P, > P, SO that p € 1

D. It solution depends on which is the smllest
of the three numbers pl - P, P2, p3.> In fact, the mean return to asset
1 is (1/3){(1 + 2p) - P,» vhereas the mean return to assets 2 and 3 are

(1/3)(L - o) - p,, (1/3)(1 - p) - p, and what matters is which asset has
2 3

the highest return.
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Case A. P, - p< min {pg,p3}

Now asset 1 has the highest return, and the trader holds a
positive amount of it, choosing the corner (1 - pl,-pl,-pl)/(pl - p)

of the set IA(p) of feasible actions. (Recall that Py + Dy = 1 - pl).

Case B. p, < min {pl-p,p3}

Now asset 2 haé the highest return and the trader chooses the

corner (-1,-1 +-%—,-1) of 1A(p) with 1b > 0.

5 2

Gase C. p, < min {pl - P5D,}

Now the trader chooses the corner (-1,-1,-1 + (l/p3)) of
alp).
In intermediate cases, where the minimum of the set {pl - p,p2,p3}

is not unique, the demands are suitable convex combinations of two

corners of 1A(p).

Trader 2's and trader 3's demands are derived by an obvious cyclic
permtation.

I shall show that this economy has no temporary Walrasian
equilibrium by disposing of a number of possible types of potential
equilibria.

First, however,rif we continue to assume that p1 < p2 < p3, then
pl -p <-pl < p2 < p3 whenever p € int A3 and so trader 1 is always

in Case A.

Iype I. Py - P <P <Py <Py

Then p2 -p < p1 a fortiori, and so each trader has demands as in Case

A, with trader i buying asset i and selling the other two. The
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aggregate demands of the three traders together are given by:

1-3p 1-3p, 1- 3p3
LT 2 TR BTR T
1 2 2

So, if there were an equilibrium of type I, it would have to be at the
mid-point P =P, =Py = (1/3), but there p > (1/3) and so in fact no
trader has a well-defined demand. Thus there is no equilibrium of Type

I.

TypeII. p2—05P1<P3"papl$p2<p3

Now trader 2 is in Case A (or possibly Case C, buying asset 1, if
P, - P = pl) as well as trader 1, but trader 3 is in Case B and buys
asset 1 (or possibly asset 2 if pl = p2). Every trader sells asset 3

and so there is no equilibrium, because equilibrium prices all have to

be positive which is inconsistent with excess supply of any asset.

- - < - Do d
Then pl p < p2 < p3 and pl < p2 p < p3 o) Now every trader
demands asset 1 and so no equilibrium can exist.
This exhausts the types where no trader is on the boundary between

two cases. Now we must deal with some remaining boundary cases.

Type IV. p2-p§p3-p=plfp2<p3

Traders 1 and 2 remain in Case A but now trader 3 is on the boundary

between Case A and Case B, with demands given by convex combinations of

the form:
— A (paepas 1 -p) + (1 - A)(<1 +L-1,-1) with 0 < A < 1.
P3 - p 3 F3* 3 pi b4 ) = =

]
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Aggregate demands are given by:

l1-p P A
1 2 Py
b, = 1
— - - + (1 = AN (= -

and so X = (p3 - p)/(p2 - p) > 1, a contradiction. So there is no

equilibrium of Type IV.

Type V. P2‘9=P1=P3-p,pl<p2=p3

Trader 1 is in Case A, as always. But now both traders 2 and 3 are on
the boundary between their own respective Case A and the case where they

demand Asset 1. Trader 2's demands are convex combinations of the form:

A A 1
'_—_——E(—pza 1l - p29-p2) + (1 - A)(5— - 19‘19-1)

Py - 1
and trader 3's demands are convex combinations of the form:

¥ (.- - oW —1,-1,-
5, - b (-py»-Pgs 1 - P3) + (1 u)(Pl 1,-1,-1)

where 0 < A <1 and O < u < 1. Aggregate demands are:

l-7 Ap up
bl.—.p_})- 2 .23 (2 - r - wE-1)
1 . -p2 p p3 - p Pl
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-p A(1 - p,) up
b, = LN — 2 _3 - (2 -x-wy)
P, - P Py-P Py-b
-Pp Ap w(l - p)
b, =— 2t 2 3 _(2-ar-w)

and so A = u Dbecause p2 =D

But

p
b, = u(1 - p) - Ap - 1 -2 =0 1in equilibrium .
3 P3 - P p2 - P pl -

So, recognizing that p2 = p3 and that X = y, it follows that:

Py P, - P (3pl - 2p)(p2 - p)

Ar=u=(2+ By - p) T<-2p (1= 2p)(p1 -0

But P, =Py =p + o and p +p, +py =1, so that

_1-2p l1+p
Py =3 > Pp =Py = —x— -

Therefore

1-b4 1-20_1-Ukp

M vEr T T TS5, ST o5

> 1

because p > 0 for all p € int A3. This is a contradiction and shows

there can be no equilibrium of type V either.
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This exhausts all the possible types with Py <'p2 < p3, which is
an assumption that loses no generality because of the symmetry of the

example. Therefore there is no temporary Walrasian equilibrium.

9. Overlapping Expectations

I claim that an alternative sufficient condition for existence of
temporary Walrasian equilibrium, in place of A.10 and A.11, is the

following overlapping expecations condition:

Assumption 10': For all p € Az, the interior of K#*(p) :=

ig& k(p) is non-empty.

This condition is effectively dual to Hart's ([1974], Theorem 3.3)
sufficient condition for existence of equilibrium in a securities model,
as I pointed out in Hammond [1980]. Here I propose to show that it is
sufficient for existence in the more general economy with many physical
commodities and private capital formation. Before doing so, however,
let me note that there are certainly economies in which agents’
expectations do not overlap for all p € Az and yeﬁ there exists a
temporary Walrasian equilibrium. In Example 8.1, for instance, an
equilibrium exists in the case when 1/2 < a < 3/4 and then the set P
corresponds to values of 7 in the open interval (a,3/4). But if

1

m < 1/3, for instance, then ~“K(p) corresponds to the interval [0,1/k)

2
and “K(p) corresponds to the interval [a,1], and these two intervals

certainly fail to overlap.
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It follows that A.10 and A.11 togeﬁher can certainly be weaker
than the overlapping expectations Assumption A.10'. The question then
arises whether it is sufficient to have overlapping expectations (with
int K¥(p) non-empty) holding on some subset of Al, such as the
closure of P, or some neighbourhood of the closure of P. Example 8.1
with 1/b < a < 1/2 shows that it is not sufficient, because expectations
overlap throughout the set (kLo + 1)/6 < 7 < 1 vhose relative interior
includes the closure of the interval (1/2.3/4) which corresponds
to P.

Now the promised sufficiency result:

Theorem 9.1. If Assumptions A.l to A.9 are all satisfied, and if,
in addition, the overlapping expectations condition A.10' is met at

every p € Az, then there exists a temporary Walrasian equilibrium,

Proof:
(1) Recall the definition of the budget set iA(p), for each

L

i€I and each p € A", as in Section 2.E. For each 1i€I1 and each

positive integer t, define the restricted budget set:

i i14i i i i
A (p) := {Ta",", k) € *a(p)| b > —(t,t,t,000,t)}

(2) Then, for each finite t, the budget set IA(p) is bounded
below because the first period consumption set ig .is bounded below.
So, by the usual arguments--e.g., Debreu [1959]--in the restricted
economy there exists a temporary Walrasian equilibrium price vector

L

. i‘ i‘ ~ ~ >
pP,€ A" for each t and associated actions a, = ( c%,ibt, kt)E loz(pt)
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which maximize each agent i's expected utility function iv(la,pt) over

the restricted budget set lAt(pt)’ and which satisfy Ziigt < 0 where

it i%1 12
z, = ( Cis bt)'

(3) By Lemma 5.1, all agents' utility functions lv(la,pt) are
strictly monotone in (*c,™®) € R' and so it must be true that

p, >0 (a11 t).

(4) Suppose that, for some finite t, i€t> -(ﬁ,t,t,.,.,t) for
all i €1 and yet Py 1is not a temporary Walrasian equilibrium price
vector (for the unrestricted economy). Then there exists J&€ 1 and
dar e 3A(pt) such that Jv(Ja*,pt) > JV(J;t,pt).

(5) For any ) Dbetween 0 and 1, define the strict convex -
combination |

Ja(n) = dax v (1 o da -

Because JA(pt) is convex, Ja(n) € JA(pt). Because Jv(Ja,pt) is

-~

concave in Ja, JV(Ja(k),pt) > JV(Jat,pt).

(6) When X 1is small and positive, so that .Ja(k) is close to
J;t’ then Jb(k) = Ap* (1 - A)Jgt > =(t,t,t,e..,t) and so
Jar) € Ia lp,).

(7) Together (5) and (6) contradict the fact that 9a, maximizes

t
‘Jv(Ja,pt) subject to Ja € JAt(pt)’ and so it must be trge after all

that Py 1is a temporary Walrasian equilibrium price vector for the

unrestricted econony.
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(8) It remains to be shown that there exists some finite t such
that ibt > ~(t,t,t,...,t) for all i € I. Suppose not. Then for

Jia
each t, there exists J, € I such that tbt $ -(t,t,t,000,t) and in

Jea
|]°®

particular btll > t, so that )

Jeilljbtll : t.
2

(9) Because Py 1is a sequence in the compact set A » and

because, for each i €1, izt/zjezlljzt|| is in the compact unit ball

of Rz, we can assume,after taking appropriate subsequences, that Py

converges to p* and that, for all i ¢ I, 1a / Jz converges
t’4el t

*

(icl

,1b*;lk*) = (lz*,ik*) where ik* = 0 because 1kt is

to la* =

bounded, and !ljgtll > ||J€t|| *

(10) Because of market clearing, XiEJiZt =0 forall t and so
. i

* = .
zﬂEI z 0 also

(11) For every i €I and every t(t=1,2,...) we know that

s~ s~ 2 .~ - .
there exist Tct e Igl and k€ R+3 such that (lcl,O,ik) e *Alp

t)
because of A.8.

(12) Take any scalar A > 0. Tt follows from (8) above that,

whenever t > X, then:
LIz 002 S 1190 01>t > .
Jel Jer

i

(13) Define ™a := (1c1,0,lk) (al1 i€T1) and, for each

t =1, 2, ¢ss, let

i~ . -
.~ A Ta i
R T AR
I 119211 1 119z, 1
Jel Jex
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(14) Because lA(pt) is convex we see that i;t € iA(pt) for
all ¢t > A, and so, taking limits as t + o it follows. that, for all

A>0 and all i€ I:

‘a + Ata* € A(pr)

s~

i i~ i
because a, converges to Ta + A'a* and because the correspondence

*A(+) has a closed graph by Lemma 6.h.

(15) Because Ia + a'a* € la(p*) and Ix¥ =0, b =0 it
follows that for all e € supp iu(p*) there exists icz(e) € iCe(ilz,s)
for which qice(e) < ralo 4 i1r2(q; ilz,s). But qicg(e) - inz(q; i};,s)
is uniformly bounded below over E* and so Arib* is uniformly bounded
below, for all A > 0. This is only possible if rib* > 0 for all
r € supp i\p(p*) and so for all r ¢ iK(p*).v

(16) By Assumption A.10' (overlapping exectations), the set
K*¥(p) := ig&iK(p*) is non-empty and has a non-empty interior. Then, by
(15), r'v* > 0 for all i €T andall re K*(p*). But, by (10),

i

. : i . .
ziei b* = 0 and so ZiEIr b* = 0 for all r € K*(p*) This is only

possible if rib* =0 forall i €I and all r € K*(p*). Because

i

K*(p*) has a non-empty interior, this in turn implies that b* = 0 for
all 1 e1.
(17) So, from (9), (1L4) and (16) it follows that Ta + A'a* € iA(p*)

ip =0 ana Yo =0, k¢ = 0.

Thus, because 101 is bounded below, and 1c1 + Aic*l € 1Cl

forall ie€I and all A > 0 where
for all

A >0, it follows that lc*#! > 0 forall ie I. But by (10),

ziaiC*l = Q. Therefore ic*l =0 for all i e 1. S0 IZ* = (lc*l,lb*) =0
for all i € I. This contradicts (9), because ~z /¥, 19z I -1
i tiejer Tt

A

and so:
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i“
Z
0= 5 rz#1 = 14m J—a=1,
@ TR
Jel” "t

which establishes the contradiction.
(18) Therefore there does exist some t such that ulbtﬁ <t
for all 1 € I, which implies existence of a temporary Walrasian

equilibrium price vector, from (4) and (8) above. Q.E.D.

10. Possible Extensions and Limitations

The paper has set out a model of an economy with rather geﬂeral
asset markets and private capital formation, and has proved existence of
a temporary Walrasian equilibrium under certain assumptions, notably on
agents' expectations. Thus, Green's existence results continue to hold
in much more_general market situations. Nevertheless, there are some
serious limitations. One is the absence of production by Joint stock
companies. Another is the absence of any monetary policy of the kind
coﬁsidered by Grandmont and Laroque [1975], for example.

Yet another serious limitation is that the set of asset markets
has been taken as both exogenous and fixed. 1In practice, however,
markets are set up only if it appears likely that the benefits from
trading on them outweigh the transaction costs. Now, both the anti-
cipated benefits and also the transactions costs will depehd upon the
price vector p in the markets which are already functioning. So a
complete theory would have to allow for markets opening and closing in
response to price changes. Quite apart from the additional
complications this would cause, it leads fairly evidently to another

problem with nonconvexities.
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Appendix

My claim that assumption A.11 in combination with the other
assumptions is sufficient_for an equilibrium to exist is a clear
contradiction of Green [1973], who asserted that his example 5.2 (pp.
1119-21) showed that the kind of weaker common expectations assumption I
 have used is insufficient to ensure existence of a Walrasian
equilibrium, even in an economy with a single trader. Green's example,
however, violates part (i) of his assumption (2.3) (p. 1105), and my
Assumption 7. Normalizing so that 9 =1, pi = 1, the measure u(p)
‘Green used in his example is the uniform distribution for Q5> over the
interval [el(pg),el(pg) +1]. o

1
2 2 2 o
0P, <1-1log2. For p;>1 - log 2, 8,(p;) satisfies the

here is taken to be 1 for

differential equation

1_1 2
_2‘5(2"361*61) .
dp2

The solution to this equation satisfies:

1+ 0, > 5
2[log (55— - log (§)] =p,~-1+1log2
1

So 91 + ® as Pg +1-1og 2 + 2 log %w Thus, renormalizing so that
qE A2, wve see that
. > 3
supp ¥(p) = {(0,1)} when P, =1-1log2+2logs .

This is a crucial violation of Green's assumption (2.3), or my A.T. 1In

fact, el(pg) is not even defined when pg >1 - log 2+ 2 log 3/2.
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Because A.10' is automatically implied by A.7 in any economy with
a single consumer, it is actually impossible to produce any example of

non-existence in a single consumer economy satisfying assumptions A.l1 to

A-9.
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