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Abstract In large random economies with heterogeneous agents, a standard
stochastic framework presumes a random macro state, combined with idiosyncratic
micro shocks. This can be formally represented by a random process consisting of a
continuum of random variables that are conditionally independent given the macro
state. However, this process satisfies a standard joint measurability condition only if
there is essentially no idiosyncratic risk at all. Based on iteratively complete product
measure spaces, we characterize the validity of the standard stochastic framework via
Monte Carlo simulation as well as event-wise measurable conditional probabilities.
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to exchangeability and independence.
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1 Introduction

Macroeconomic risks are the common random shocks that influence a significant
portion of the population. Reality suggests that these are supplemented by risks at the
individual level that influence a negligible portion of the population. Indeed, a standard
stochastic framework where many agents face interpersonally correlated risks pre-
sumes some kind of random macro state, combined with idiosyncratic micro shocks.1

Such a framework can be formally represented by a random process consisting of a
continuum of random variables that are conditionally independent given the macro
state. As shown in Proposition 4 below, however, this process satisfies a standard joint
measurability condition only if there is essentially no idiosyncratic risk at all.2 So, in
the absence of joint measurability, the question is whether one can still find reasonable
conditions which guarantee the existence of such a stochastic macro structure.

For the important special case when individual risks are symmetrically distrib-
uted, one way of justifying this standard framework is provided in Hammond and
Sun (2003) under a special assumption of pairwise measurable probabilities.3 Yet
often the agents in a macroeconomic model face risks whose probability distribu-
tions are affected by non-stochastic individual variables such as location or household
type. Then the symmetry assumption is clearly violated. The purpose of this paper is
therefore to characterize the validity of the standard stochastic framework for many
heterogeneous agents facing individual uncertainty.

As in Hammond and Sun (2003), the approach taken here is inspired by the Monte
Carlo method for finding numerical approximations to an ordinary multiple integral
by taking the average of the integrand evaluated at randomly selected points. We
extend this method in order to simulate macroeconomic uncertainty when many het-
erogeneous agents face both macroeconomic and individual risks. It is shown that
a corresponding Monte Carlo σ -algebra gives all the non-redundant macro states.
Indeed, our Theorem 1 and Proposition 3 show that, provided there is weak conver-
gence of the empirical distributions even for just one typical random draw from the
agent space, a stochastic macro structure exists.

The rest of the paper is organized as follows. Section 2 of the paper sets out the
basic framework. Then Sect. 3 gives formal statements of our main results. Section 4
focuses on two important special cases. The last Sect. 5 is an appendix containing all
the proofs. They rely on the iteratively complete product measure spaces introduced in
the recent paper Hammond and Sun (2006b). In particular, this allows us to remove the
special assumption of pairwise measurable probabilities that was used in Hammond
and Sun (2003).

1 See, for example, Hammond and Sun (2003), Sun and Yannelis (2007a,b) and their references.
2 Proposition 4 of this paper generalizes the type of non-measurability result shown for independent random
variables in Proposition 1 of Sun (1998b), and for exchangeable random variables in Proposition 2 of
Hammond and Sun (2003). See Doob (1937,1953), Hammond and Sun (2003), and Sun (1998a,2006) for
further discussions of the measurability issue.
3 See Footnote 9 below or Hammond and Sun (2003, p. 750) for a formal definition.
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2 Basic formulation

2.1 Countably generated sub-σ -algebras

Let (Ω,A, P) denote a probability space that models all the uncertainty in an
economy.

A set N ⊂ Ω is null if there exists A ∈ A with P(A) = 0 such that N ⊆ A. We
assume that (Ω,A, P) is complete—i.e., that the σ -algebra A includes all null sets.
For the rest of the paper, let C ⊆ A denote a sub-σ -algebra of A.

Countably generated sub-σ -algebras of A, which generalize finitely generated
σ -algebras, will play an important role in this paper because of their ability to represent
macroeconomic risk.

Definition 1 (1) The relative completion of C is the smallest σ -algebra that contains
both C and all the subsets of sets C ∈ C such that P(C) = 0. The completion of
C is the smallest σ -algebra that contains both C and all the null sets of (Ω,A, P).

(2) The sub-σ -algebra C ⊆ A is countably generated if there is a countable fam-
ily F ⊆ A such that C is contained in the completion of the σ -algebra σ(F)
generated by F .4

(3) Given two sub-σ -algebras C, C′ ⊆ A, say that C is a sub-σ -algebra of C′, and
write C ⊆ C′, if C is contained in the completion of C′.

2.2 Iteratively complete product spaces

Let (Tk, Tk, λk) (k ∈ N) be a sequence of probability spaces. Then

n∏

k=1

(Tk, Tk, λk) :=
(

n∏

k=1

Tk,⊗n
k=1Tk,⊗n

k=1λk

)
(1)

is the product of the first n probability spaces, whereas

∞∏

k=1

(Tk, Tk, λk) :=
( ∞∏

k=1

Tk,⊗∞
k=1Tk,⊗∞

k=1λk

)
(2)

is the infinite product of the entire sequence of probability spaces.
In order to state as simply as possible conditions which are necessary as well as

sufficient to ensure that macroeconomic risk can be simulated, a stronger form of
completion will be used for the products (1) and (2), involving more null sets. The
following definition extends what Bledsoe and Morse (1955) suggested for the case
of two measure spaces—see also Dudley (1989, p. 108).

Definition 2 The set E ⊆ ∏n
k=1 Tk is said to be iteratively null if for every permuta-

tion π on {1, . . . , n} one has (t1, t2, . . . , tn) /∈ E for λπ(1)-a.e. tπ(1) ∈ Tπ(1), λπ(2)-a.e.

4 This modifies the terminology of Billingsley (1995) by allowing the σ -algebra generated by a countable
set to be completed by the addition of null sets.
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tπ(2) ∈ Tπ(2), …, λπ(n)-a.e. tπ(n) ∈ Tπ(n). That is, for each k = 1, . . . , n, the section
Etk ⊆ ∏

j �=k Tj is iteratively null (or null when n = 2) for λk-a.e. tk ∈ Tk .

The following two propositions concern product spaces that are completed to
include all iteratively null sets. Proofs can be found in Hammond and Sun (2006b).

Proposition 1 Given any n ∈ N, let En denote the family of all iteratively null
sets in

∏n
k=1 Tk. Then there exists an iteratively complete product probability space

(
∏n

k=1 Tk, ⊗̄n
k=1Tk, ⊗̄n

k=1λk) that satisfies the Fubini property, in which:

1. ⊗̄n
k=1Tk is the σ -algebra σ([⊗n

k=1Tk] ∪ En), which is equal to the collection[⊗n
k=1Tk

] 	 En := { B 	 E : B ∈ ⊗n
k=1Tk, E ∈ En };

2. ⊗̄n
k=1λk is the unique probability measure satisfying

[⊗̄n
k=1λk

]
(B 	 E) =[⊗n

k=1λk
]
(B) whenever B ∈ ⊗n

k=1Tk and E ∈ En.

Proposition 2 There exists an iteratively complete infinite product probability space
(
∏∞

k=1 Tk, ⊗̄∞
k=1Tk, ⊗̄∞

k=1λk) in which:

1. ⊗̄∞
k=1Tk is the σ -algebra generated by the union G := ∪∞

n=1Gn of the families Gn

of cylinder sets taking the form A×∏∞
k=n+1 Tk for some n ∈ N and A ∈ ⊗̄n

k=1Tk;
2. ⊗̄∞

k=1λk is the unique countably additive extension to this σ -algebra of the set
function µ : G → [0, 1] defined so that µ(A × ∏∞

k=n+1 Tk) := ⊗̄n
k=1λk(A) for

all A ∈ ⊗̄n
k=1Tk .

When each probability space (Tk, Tk, λk) (k ∈ N) is a copy of (T, T , λ), let
(T n, T̄ n, λ̄n) and (T ∞, T̄ ∞, λ̄∞), respectively, denote the iterative completions of
the n-fold and infinite product probability spaces, with typical members denoted by
tn and t∞.

2.3 A continuum of random variables

Let X be a Polish space (i.e., topologically homeomorphic to a complete separable met-
ric space) with Borel σ -algebra B. Recall that there must exist a countable π -system
Bπ = {Bm}∞m=1 ⊆ B (i.e., a family of sets that is closed under finite intersections) that
generates the σ -algebra B.

Let M(X,B) be the space of Borel probability measures on the Polish space (X,B),
equipped with the topology of weak convergence of measures. This makes M(X,B)
itself a Polish space—see, for example, Billingsley (1995, pp. 72–73). It is noted in
Lemma 1 of Hammond and Sun (2003) that a mappingµ(·) from a probability space to
M(X,B) is measurable if and only if for each B ∈ B, the real-valued mappingµ(·)(B)
is measurable function on the probability space. These two concepts of measurability
are therefore interchangeable.

Let (T, T , λ) be a complete atomless probability space, which we call the index
space or space of economic agents. We assume throughout that the economic uncer-
tainty of interest can be modeled as a process g : T × Ω → X with the prop-
erty that, for each t ∈ T , the component mapping ω �→ gt (ω) is measurable, thus
making every gt a random variable defined on (Ω,A, P) with distribution Pg−1

t on
(X,B) (where Pg−1

t (B) = P(g−1
t (B)) for each B ∈ B). Let M(T × X, T ⊗ B)
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be the space of probability measures on the measurable space (T × X, T ⊗ B). Let
(T ×Ω, T ⊗ A, λ⊗ P) be the usual product probability space.

3 General results

3.1 Monte Carlo convergence

As discussed earlier, the process g is intended to model an economy with many agents
who face random shocks at both the macroeconomic and individual level. For this
process it is natural to consider the convergence properties of the random variables
obtained by taking a random sequential draw from the agent space T . Such a general
procedure is called “Monte Carlo convergence” in Hammond and Sun (2003).

Given a typical sequential draw t∞ ∈ T ∞, consider the finite sample t1, t2, . . . , tn
for each n. The relevant question then is whether, as n → ∞, there is “Monte Carlo”
convergence of the proportion of these n agents for whom either g(t, ω) or the pair
[t, g(t, ω)] belongs to a particular family of sets. Depending on what family of sets
we consider, Definition 3 below provides several different versions of Monte Carlo
convergence. The first involves any set J in the product σ -algebra T ⊗ B on T × X .
The second only considers product sets S × B with S ∈ T and B ∈ B. Both concern
the pair [t, g(t, ω)]. Part (3) of Definition 3 is a very special case of parts (1) and
(2), whereas part (4) considers convergence in distribution of the random outcomes
g(t, ω) ∈ X .

Definition 3 (1) The process g is said to be Monte Carlo convergent if there is a
function γ : Ω → M(T × X, T ⊗ B) such that, for each fixed set J ∈ T ⊗ B,
the mapping ω �→ γω(J ) is A-measurable, and for λ̄∞-a.e. sequence t∞ ∈ T ∞,
one has

1

n

n∑

i=1

1J (ti , g(ti , ω))−−→
P−a.s.

γω(J ).

In this case, we say that the mapping ω �→ γω is the Monte Carlo limit measure
of g.5

(2) The process g is said to be Monte Carlo convergent on product sets if there is a
Monte Carlo limit function γ : T × B ×Ω → [0, 1] such that, for each S ∈ T
and B ∈ B, and for λ̄∞-a.e. sequence t∞ ∈ T ∞, one has

1

n

n∑

i=1

1S(ti )1B(g(ti , ω))−−→
P−a.s.

γ (S, B, ω). (3)

Then the Monte Carlo σ -algebra Cg is defined as the smallest σ -algebra on Ω
w.r.t. which the family of Monte Carlo limit functions ω �→ γ (S, B, ω) (S ∈ T ,
B ∈ B) are all measurable.

5 We weaken the corresponding definition in Hammond and Sun (2003) by replacing λ∞ with λ̄∞.
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(3) The process g is said to be restricted Monte Carlo convergent if for each B ∈ B
and for λ̄∞-a.e. sequence t∞ ∈ T ∞, the sample average 1

n

∑n
i=1 1B(g(ti , ω))

converges P-a.s. as n → ∞.
(4) For each x ∈ X , let δx denote the degenerate probability measure attaching prob-

ability 1 to x . Then, given any single randomly drawn sequence t∞ ∈ T ∞ and any
ω ∈ Ω , for each n = 1, 2, . . . the measure defined by νn

t∞,ω := 1
n

∑n
i=1 δg(ti ,ω)

is the empirical distribution on (X,B) generated by the n observations g(ti , ω)
(i = 1, 2, . . . , n). The process g is said to be restricted Monte Carlo convergent
in distribution if there exists a random variable ω �→ τω taking values in the
space of Borel probability measures M(X,B) such that, for λ̄∞-a.e. sequence
t∞ ∈ T ∞, the empirical distribution νn

t∞,ω converges weakly P-a.s. to τω.

The following proposition, showing that all four different versions of Monte Carlo
convergence are equivalent, will be proved in Sect. 5.4.

Proposition 3 The following conditions are equivalent to each other.

1. The process g is Monte Carlo convergent.
2. The process g is Monte Carlo convergent on product sets.
3. The process g is restricted Monte Carlo convergent.
4. The process g is restricted Monte Carlo convergent in distribution.

3.2 Stochastic macro structure

Definition 4 Let C be a countably generated sub-σ -algebra of A.

(1) Two random variables φ and ψ from (Ω,A, P) to X are said to be condition-
ally independent given C if, for any Borel sets B1, B2 ∈ B, the conditional
probabilities satisfy

P(φ−1(B1) ∩ ψ−1(B2)|C) = P(φ−1(B1)|C)P(ψ−1(B2)|C). (4)

(2) The process g is said to be essentially pairwise conditionally independent given
C if, for λ̄2-a.e. (t1, t2) ∈ T 2, the random variables gt1 and gt2 are conditionally
independent given C.

(3) A T ⊗ C-measurable mapping µ from T × Ω to M(X,B) is said to be an
essentially regular conditional distribution process of g if, for λ-a.e. t ∈ T , the
C-measurable mapping ω �→ µtω is a regular conditional distribution P(g−1

t |C)
of the random variable gt .

(4) The process g is said to have a stochastic macro structure given C if g admits
an essentially regular conditional distribution process given C, and is essentially
pairwise conditionally independent given C. The process g is said to have a
stochastic macro structure if there exists a countably generated sub-σ -algebra
C ⊆ A such that g has a stochastic macro structure given C. When C is generated
by a random variable α from (Ω,A, P) to a Polish space W , the elements of
W are said to be macro states, and α is said to be a macro state function for the
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process g.6 We say that α is a non-redundant macro state function if σ(α) ⊆
σ(α′) for any macro state function α′.

(5) The process g is said to have event-wise measurable conditional probabilities if
for each event A ∈ A with P(A) > 0, the function on T that maps t to the condi-
tional probability P(g−1

t (B)|A) is T -measurable for each B ∈ B. This property
is obviously equivalent to the requirement that for all A ∈ A and B ∈ B the
mapping t �→ P(A ∩ g−1

t (B)) is T -measurable.

3.3 Main theorem

The following theorem shows that a process is Monte Carlo convergent if and only
if it has a stochastic macro structure, which is also equivalent to it having event-wise
measurable conditional probabilities. More specifically, it claims that Cg is count-
ably generated, and essentially the smallest σ -algebra such that, conditioned on the
information represented by Cg , the randomness faced by individual economic agents
is (essentially) independent. In this sense, the Monte Carlo σ -algebra Cg represents
all the relevant aggregate risk. The proof of the theorem will be given in Sect. 5.4,
together with that of Proposition 3.

Theorem 1 The following conditions are equivalent to each other.

1. The process g has a stochastic macro structure.
2. The process g is Monte Carlo convergent.
3. The process g has event-wise measurable conditional probabilities.

Moreover, let C ⊆ A be any countably generated σ -algebra on Ω . Then the pro-
cess g has a stochastic macro structure given C if and only if C contains the Monte
Carlo σ -algebra Cg. It follows that any macro state function which generates Cg is
non-redundant.

3.4 Joint measurability implies no idiosyncratic risk

The following proposition shows that if a standard joint measurability condition is
imposed on a process g with a stochastic macro structure, then there is essentially no
idiosyncratic risk at all. The proof will be presented in Sect. 5.5 of the Appendix.

Proposition 4 If a process g has a stochastic macro structure and is jointly measur-
able with respect to the usual product σ -algebra T ⊗A, then gt is Cg-measurable for
λ-almost all t ∈ T .

The following remark illustrates a general way to construct processes that combine
nontrivial idiosyncratic with arbitrary macro risk.

6 It is well known that a countably generated σ -algebra is always generated by some random variable; see,
for example, Billingsley (1995), Example 20.1, p. 270.
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Remark 1 Let f be any process from T × Ω to R such that the random variables
ft , t ∈ T are essentially pairwise independent.7 Let C be a countably generated sub-
σ -algebra of A. It is well known that it can be generated by a real valued random
variable θ on (Ω,A, P); see Billingsley (1995), Example 20.1, p. 270. Let g be the
process from T ×Ω to R

2 such that g(t, ω) = (θ(ω), f (t, ω)) for each (t, ω) ∈ T ×Ω .
By Proposition 3 in Hammond and Sun (2006b), the random variables ft (·), t ∈ T
are also essentially pairwise conditionally independent given C; so too are the random
variables gt (·), t ∈ T , and their transformations ht (gt (·)), where h : T × R

2 → R is
jointly measurable.

4 Special cases

The proofs of the results in this section will be presented in Sect. 5.6 of the Appendix.

4.1 Independent risks

We first consider the case when Cg is the trivial σ -algebra {∅,Ω}, implying that there
is no macro risk.

The family of random variables gt (t ∈ T ) is said to be essentially pairwise indepen-
dent if for λ̄2-a.e. (t1, t2) ∈ T 2 the two random variables gt1 and gt2 are independent.8

In the essential i.i.d. setting, Proposition 1 in Hammond and Sun (2003) relies on
the special assumption of pairwise measurable probabilities—i.e., for each A ∈ A and
B1, B2 ∈ B, the mapping (t1, t2) �→ P(A ∩ g−1

t1 (B1) ∩ g−1
t2 (B2)) is measurable w.r.t.

the usual product σ -algebra T ⊗ T on the set of pairs T × T .9 The following result
generalizes that proposition to the general case of independence without assuming
pairwise measurable probabilities.

Proposition 5 Let µt be a measurable mapping from (T, T ) to M(X,B). The fol-
lowing three conditions are equivalent:

1. the process g is essentially pairwise independent withµt = Pg−1
t forλ-a.e. t ∈ T ;

2. for each S ∈ T and B ∈ B, and for λ̄∞-a.e. sequence t∞ ∈ T ∞, one has

1

n

n∑

i=1

1S(ti ) 1B(g(ti , ω))−−→
P−a.s.

∫

S

µt (B)dλ. (5)

7 By the classical Kolmogorov Extension (or Product) Theorem, there exists a collection of independent
random variables with a general index set; see, for example, Aliprantis and Border (1994), Billingsley
(1995) and Doob (1953).
8 A condition like this is called “almost sure pairwise independence” in Sun (1998a).
9 See Hammond and Sun (2003, p. 750). Note that “pairwise measurable probabilities” is a global condition
that was always assumed for the process g in Hammond and Sun (2003), whereas the similar condition
of “event-wise measurable conditional probabilities” used here is only one of the equivalent conditions in
Theorem 1.
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That is, g is Monte Carlo convergent on measurable product sets S × B, with
Monte Carlo limit function γ (S, B, ω) = ∫

S µt (B)dλ;
3. the process g is Monte Carlo convergent with Monte Carlo limit measure γ on

(T × X, T ⊗ B), defined by γ (J ) := ∫
T µt (Jt )dλ for each J ∈ T ⊗ B, where Jt

is t-section of J (i.e. Jt = {x ∈ X : (t, x) ∈ J }).
One can view the implication (1) �⇒ (2) in Proposition 5 as follows. Take any

S ∈ T and B ∈ B. Suppose the process g is essentially pairwise independent, with
µt = Pg−1

t for λ-a.e. t ∈ T . Then, for λ̄∞-a.e. t∞ ∈ T ∞, the sequence of random
variables gti (i = 1, 2, . . .) is mutually independent.10 Thus, forλ∞-a.e. t∞ ∈ T ∞, the
sequence 1S(ti )[1B(gti )−µti (B)] (i = 1, 2, . . .) of uniformly bounded random vari-
ables is mutually independent with mean zero; a version of the law of large numbers
(see Durrett 1996, Theorem 8.2 on p. 52) therefore implies that the sequence

1

n

n∑

i=1

1S(ti )[1B(gti (ω))− µti (B)] −−→
P−a.s.

0

as n → ∞. On the other hand, the function 1S(t)µt (B) is T -measurable, so the usual
strong law of large numbers implies that for λ∞-a.e. t∞ ∈ T ∞, 1

n

∑n
i=1 1S(ti )µti (B)

converges to
∫

S µt (B)dλ. Hence, for λ̄∞-a.e. sequence t∞ ∈ T ∞,

1

n

n∑

i=1

1S(ti ) 1B(g(ti , ω))−−→
P−a.s.

∫

S

µt (B)dλ.

Thus, the implication (1) �⇒ (2) in Proposition 5 is simply an obvious version of
the “classical” law of large numbers restated in the continuum setting. What is sur-
prising is that essential pairwise independence is also necessary for this convergence
property to hold in this setting—i.e., (2) �⇒ (1), as a converse of the classical law of
large numbers.11

4.2 Exchangeable risks

The second special case arises when the random variables gt are symmetric or
exchangeable in the sense that P(A ∩ g−1

t (B)) is essentially constant for each A ∈ A
and B ∈ B. The following proposition demonstrates that Theorem 1 in Hammond and
Sun (2003) is still valid for a general symmetric process g, even without the assumption
made there of pairwise measurable probabilities.

10 See Proposition 3.4 of Sun (1998b) and Corollary 1 of Hammond and Sun (2006b).
11 In an extended framework where the process g is jointly measurable with respect to a Fubini extension
of the usual product measure-theoretic framework on T ×Ω , Theorem 7.6 of Sun (1998a), Proposition 3.1
of Sun (1998b), and Theorem 2.8 in Sun (2006) show that essential pairwise independence is necessary as
well as sufficient for an exact law of large numbers to hold. Proposition 5 here is a counterpart of that result
in the sequential or Monte Carlo setting considered in this paper.
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Proposition 6 Supposeω �→ µω is a measurable mapping from (Ω,A) to M(X,B).
Let C be the σ -algebra on Ω which is (countably) generated by this mapping. Then
the following conditions are equivalent:

1. for each A ∈ A and B ∈ B, one has P(A ∩ g−1
t (B)) = ∫

A µω(B) dP for λ-a.e.
t ∈ T ;

2. the process g is essentially i.i.d. conditioned on C, with P(g−1
t |C) = µω for λ-a.e.

t ∈ T ;
3. for each S ∈ T , B ∈ B, and for λ̄∞-a.e. sequence t∞ ∈ T ∞, one has

1

n

n∑

i=1

1S(ti ) 1B(g(ti , ω))−−→
P−a.s.

λ(S) µω(B);

4. the process g is Monte Carlo convergent, with Monte Carlo limit given by the
product probability measure λ⊗ µω on (T × X, T ⊗ B).

For the reader’s convenience we recall some basic definitions from Hammond and
Sun (2003).

Definition 5 (1) The process g is said to be essentially pairwise exchangeable if
there exists a common joint probability measure π on (X × X,B ⊗ B) such
that almost all pairs of random variables in {gt : t ∈ T } have the same joint
distribution π—i.e., for λ̄2-a.e. (t1, t2) ∈ T 2, one has

P(g−1
t1 (B1) ∩ g−1

t2 (B2)) = π(B1 × B2) = π(B2 × B1)

for all B1, B2 ∈ B.12

(2) The process g is said to be essentially symmetric if, for each A ∈ A and B ∈ B,
the probability P(A ∩ g−1

t (B)) is essentially constant (or in other words, λ-a.e.
independent of t).

(3) Let C be a countably generated sub-σ -algebra of A, and let µ be a C-measurable
mapping from Ω to M(X,B). The process g is said to be essentially i.i.d. con-
ditioned on C if g is essentially conditionally independent given C, and for λ-a.e.
t ∈ T , the C-measurable mapping ω �→ µω is a regular conditional distribution
P(g−1

t |C) of the random variable gt .

The next proposition generalizes Theorem 2 in Hammond and Sun (2003) by drop-
ping the special assumption of pairwise measurable probabilities.

Proposition 7 The following conditions are equivalent:

1. the process g is essentially pairwise exchangeable;
2. the process g is essentially symmetric;
3. there exists a measurable mapping ω �→ µω from (Ω,A) to M(X,B), together

with the corresponding countably generated σ -algebra C = σ(µ), such that all
four equivalent conditions of Proposition 6 are satisfied;

12 Since we do not assume pairwise measurable probabilities as in Hammond and Sun (2003), we use the
iteratively complete product measure λ̄2 instead of the usual λ2.
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4. there exists a countably generated σ -algebra C′ such that the process g is
essentially i.i.d. conditioned on C′.

5 Appendix: Proofs

The Appendix is organized as follows. Section 5.1 generalizes a result of Talagrand in
order to derive an appropriate measurability property from Monte Carlo convergence.
Then the properties of a measure-valued mapping µtω from T ×Ω to M(X,B) are
systematically studied in Sect. 5.2. The main purpose of that subsection is to obtain
a countably generated sub-σ -algebra of A that relates to some particular integrals
based on µtω. These will be used to identify the stochastic macro structure of g with
the Monte Carlo σ -algebra Cg . Preliminary properties of the process g are shown in a
series of lemmas in Sect. 5.3. The proofs of Proposition 3 and Theorem 1 are presented
in Sect. 5.4. The last two subsections present, respectively, the proof of Proposition 4
and of the results in Sect. 4.

5.1 A generalization of Talagrand’s result

The following lemma generalizes Lemma 2.1 in Hoffmann–Jørgensen (1985, p. 304)
to the more general setting of iteratively complete product spaces. We follow the
notation in Sect. 2.2.

Lemma 1 For each n ∈ N, let Sn be a subset of Tn with λn-outer measure one. Then
the ⊗̄∞

k=1λk-outer measure of
∏∞

k=1 Sk is also one.

Proof Let Sn denote the σ -algebra Sn ∩ Tn = {Sn ∩ A | A ∈ Tn}. Since the outer
measure λ∗

n(Sn) = 1, one can define a countably additive probability measure νn

on (Sn,Sn) by letting νn(Sn ∩ A) := λn(A) for all A ∈ Tn . For the sequence
of probability spaces (Sn,Sn, νn), one can construct the usual product probability
spaces and then their iterative completions to obtain (

∏n
k=1 Sk, ⊗̄n

k=1Sk, ⊗̄n
k=1νk) and

(
∏∞

k=1 Sk, ⊗̄∞
k=1Sk, ⊗̄∞

k=1νk).

For any n ∈ N, it is clear that the identity

⊗̄n
k=1νk

(
F ∩

n∏

k=1

Sk

)
= ⊗̄n

k=1λk(F) (6)

holds for any measurable rectangle F = ∏n
k=1 Ak with Ak ∈ Tk for k = 1, 2, . . . , n. It

is obvious that the family Fn of sets F ∈ ⊗̄n
k=1Tk that satisfy Eq. (6) is a λ-class—i.e.,

it contains
∏n

k=1 Tk , as well as all complements and all countable disjoint unions of
its members. Since the family of measurable rectangles is a π -system, the classical
Dynkinπ–λ theorem implies that ⊗n

k=1Tk ⊆ Fn—see, for example, Billingsley (1995,
p. 42). Now take any iteratively null set E ∈ En as in Proposition 1. It is clear that the
subset E ∩∏n

k=1 Sk is iteratively null w.r.t. the probability measures νk (k = 1, . . . , n).
Hence Fn = ⊗̄n

k=1Tk .
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Next, consider the infinite product version of Eq. (6)—namely

⊗̄∞
k=1νk

(
F ∩

∞∏

k=1

Sk

)
= ⊗̄∞

k=1λk(F). (7)

The previous paragraph shows that Eq. (7) holds for every set F in the union
G = ∪∞

n=1Gn of the families Gn of cylinder sets, as defined in Proposition 2. By the
same Dynkin π–λ argument as above, Eq. (7) holds for any set F ∈ σ(G) = ⊗̄∞

k=1Tk .
Hence, for any F ∈ ⊗̄∞

k=1Tk with
∏∞

k=1 Sk ⊆ F , Eq. (7) implies that ⊗̄∞
k=1λk(F) = 1,

which shows that the ⊗̄∞
k=1λk-outer measure of

∏∞
k=1 Sk is one. ��

The following lemma will be used to derive event-wise measurable conditional
probabilities from different versions of Monte Carlo convergence in Sect. 5.4.
It generalizes to iteratively complete products one part of Theorem 2.4 in
Hoffmann-Jørgensen (1985, p. 310), due to M. Talagrand. Exactly the same proof
works here provided that one replaces the use of Lemma 2.1 in Hoffmann-Jørgensen
(1985) by Lemma 1 above.

Lemma 2 Let g be a real-valued function on T . Suppose there is a constant c which,
for λ̄∞-a.e. sequence t∞ = {tn}∞n=1 ∈ T ∞, satisfies c = limn→∞ 1

n [g(t1) + · · · +
g(tn)]. Then g is an integrable function on (T, T , λ).

5.2 Measure-valued mappings on a product space

The results in this subsection concern any T ⊗ A-measurable mapping (t, ω) �→ µtω

from T ×Ω to M(X,B). Let Bπ = {Bm}∞m=1 ⊆ B denote a fixed countable π -system
that generates the Borel σ -algebra B on X .

The following lemma shows that there is a countably generated sub-σ -algebra C′
of A such that µtω is T ⊗ C′-measurable.

Lemma 3 There exists a countable π -system Cπ in A such that, given the completed
σ -algebra C′ generated by Cπ , for each set B ∈ B the mapping (t, ω) �→ µtω(B) is
T ⊗ C′-measurable.

Proof For each set Bm of the countable π -system Bπ , the mapping (t, ω) �→ µtω(Bm)

is T ⊗ A-measurable. Because T ⊗ A is generated by the family { S × A | S ∈ T ,
A ∈ A } of measurable rectangles, it follows that each mapping (t, ω) �→ µtω(Bm)

is measurable w.r.t. the σ -algebra generated by the family { 1S×A | S ∈ T , A ∈ A }
of indicator functions. By Theorem 5 in Chow and Teicher (1997, p. 17), each map-
ping (t, ω) �→ µtω(Bm) must therefore be measurable w.r.t. the σ -algebra generated
by some countable subfamily {1Smk×Amk }∞k=1 of these indicator functions, and so by
the corresponding countable subfamily {Smk × Amk}∞k=1 of measurable rectangles.
Thus, every mapping (t, ω) �→ µtω(Bm) (m = 1, 2, . . .) must be measurable w.r.t.
the common σ -algebra generated by {Smk × Amk}∞m,k=1.

Take as Cπ the countableπ -system {An}∞n=1 constructed by taking all possible finite
intersections of the sets in {Amk}∞m,k=1. Let C′ be the completed σ -algebra generated
by Cπ . For each Bm ∈ Bπ , the mapping (t, ω) �→ µtω(Bm) is T ⊗ C′-measurable.
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Define B′ as the family of Borel sets B ∈ B such that the mapping (t, ω) �→ µtω(B)
is T ⊗ C′-measurable. This family is a λ-class that contains the π -system Bπ . By
Dynkin’s π–λ theorem, the family B′ is the σ -algebra generated by Bπ , which is
precisely B. ��

The rest of this subsection obtains a countably generated sub-σ -algebra Cµ of A
which is generated by integrals of

∫
S µtωdλ for suitable measurable sets S ∈ T . Such

a construction will allow us to identify the stochastic macro structure of g with the
Monte Carlo σ -algebra Cg in Sect. 5.4.

Lemma 4 Let T ′ and A′ be sub-σ -algebras of T and of A, respectively, such that, for
each set B ∈ B, the mapping (t, ω) �→ µtω(B) is T ′ ⊗ A′-measurable. Suppose A′

π

is a π -system that generates A′. Let T ′′ be the smallest σ -algebra on T such that, for
every A′ ∈ A′

π and B ∈ Bπ , the mapping t �→ ∫
A′ µtω(B) dP is measurable. Then

T ′′ is a sub-σ -algebra of T ′, and for each set B ∈ B, the mapping (t, ω) �→ µtω(B)
is T ′′ ⊗ A′-measurable.

Proof First, fix any A′ ∈ A′
π and B ∈ Bπ . Since the mapping (t, ω) �→ µtω(B) is

T ′⊗A′-measurable, the Fubini property implies that the mapping t �→ ∫
A′ µtω(B)dP

is T ′-measurable. Hence, T ′′ is a sub-σ -algebra of T ′.
Next, we observe that the collection of those A′ ∈ A′ such that the mapping

t �→ ∫
A′ µtω(B) dP is T ′′-measurable for every set B ∈ Bπ forms a λ-class that

contains the π -system A′
π . So the collection is A′ itself. Therefore, for every A′ ∈ A′

and B ∈ Bπ , the mapping t �→ ∫
A′ µtω(B) dP is T ′′-measurable.

Now fix any B ∈ Bπ , and define h as the conditional expectation of µtω(B) w.r.t.
T ′′ ⊗ A′—i.e., h(t, ω) := E(µtω(B)|T ′′ ⊗ A′). Fix any A′ ∈ A′. Then the mapping
t �→ ∫

A′ µtω(B) dP is T ′′-measurable. Because h is T ′′ ⊗ A′-measurable, the Fubini
theorem implies that

∫
A′ h(t, ω) dP is T ′′-measurable. Next, let k(t, ω) := h(t, ω)−

µtω(B). For any S′′ ∈ T ′′, the definition of conditional expectation implies that

∫

S′′

⎡

⎣
∫

A′
k(t, ω)dP

⎤

⎦ dλ =
∫

S′′×A′
k(t, ω) dλ⊗ P = 0. (8)

Since
∫

A′ k(t, ω) dP is T ′′-measurable, Eq. (8) and the arbitrary choice of S′′ ∈ T ′′
imply that

∫
A′ k(t, ω)dP = 0 for λ-a.e. t ∈ T . Therefore, for any S′ ∈ T ′, we have

∫

S′×A′
k(t, ω) dλ⊗ P =

∫

S′

⎡

⎣
∫

A′
k(t, ω)dP

⎤

⎦ dλ = 0. (9)

Since T ′′ ⊆ T ′, it is clear that h is T ′ ⊗ A′-measurable. So therefore is k. Equa-
tion (9) and the arbitrary choices of S′ ∈ T ′, A′ ∈ A′ then imply that k(t, ω) = 0 and
so h(t, ω) = µtω(B) for λ⊗ P-almost all (t, ω).

In particular, the collection B′ of those B ∈ B for which the mapping (t, ω) �→
µtω(B) is T ′′ ⊗A′-measurable contains the π -system Bπ . But B′ also forms a λ-class.
By Dynkin’s π–λ theorem, it follows that B′ = B. ��
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By symmetry, we can obtain the following result as in Lemma 4.

Lemma 5 Let T ′ and A′ be sub-σ -algebras of T and A respectively such that for
each set B ∈ B, the mapping (t, ω) �→ µtω(B) is T ′ ⊗ A′-measurable. Suppose T ′

π

is a π -system that generates T ′. Let A′′ be the smallest σ -algebra onΩ such that the
mapping ω �→ ∫

S′ µtω(B)dλ is measurable for every S′ ∈ T ′
π and B ∈ Bπ . Then A′′

is a sub-σ -algebra of A′, and for each set B ∈ B the mapping (t, ω) �→ µtω(B) is
T ′ ⊗ A′′-measurable.

Definition 6 Given the two π -systems Bπ = {Bm}∞m=1 ⊆ B and Cπ = {An}∞n=1 ⊆ C′

as in Lemma 3, let Sµ := σ
(
{∫An

µtω(Bm)dP}∞m,n=1

)
be the smallest σ -algebra on

T such that each mapping t �→ ∫
An
µtω(Bm)dP (m, n = 1, 2, . . .) is measurable.

Since Sµ is countably generated, there is a countable π -system Sµπ = {Sn}∞n=1 ⊆
Sµ that generates Sµ.

Definition 7 Given the two π -systems {Sn}∞n=1 in T and Bπ = {Bm}∞m=1 in B, let

Cµ := σ
(
{∫Sn

µtω(Bm)dλ}∞m,n=1

)
be the smallest σ -algebra on Ω such that each

mapping ω �→ ∫
Sn
µtω(Bm)dλ (m, n = 1, 2, . . .) is measurable.

Lemma 6 Fix any B ∈ B.

(1) The mapping (t, ω) �→ µtω(B) is Sµ ⊗ Cµ-measurable.
(2) The mapping ω �→ ∫

S µtω(B)dλ is Cµ-measurable for each S ∈ T .

Proof (1) Because of Lemma 3, we can apply Lemma 4 with T ′ = T , A′ = C′ and
A′
π = Cπ ; then T ′′ = Sµ. By the Fubini property and the above definition, Sµ is

a sub-σ -algebra of T . Also, for each set B ∈ B, the mapping (t, ω) �→ µtω(B)
is Sµ ⊗ C′-measurable.
Next, apply Lemma 5 with T ′ = Sµ, T ′

π = Sµπ and A′ = C′; then A′′ = Cµ.
The above paragraph and Lemma 5 imply that Cµ is a sub-σ -algebra of C′, and
for each set B ∈ B the mapping (t, ω) �→ µtω(B) is Sµ ⊗ Cµ-measurable.

(2) Because of (1), the mapping (t, ω) �→ µtω(B) is T ⊗ Cµ-measurable. So the
Fubini property implies thatω �→ ∫

S µtω(B)dλ is Cµ-measurable for any S ∈ T .
��

Lemma 7 (1) For P-almost every ω ∈ Ω , there is a well-defined probability mea-
sure γ µω on (T × X, T ⊗B) given by γ µω (J ) := ∫

T µtω(Jt )dλ for all J ∈ T ⊗B.
(2) For each J ∈ T ⊗ B, the mapping ω �→ γ

µ
ω (J ) is Cµ-measurable.

Proof (1) As discussed in Sect. 2.3, for each B ∈ B the mapping (t, ω) �→ µtω(B)
is T ⊗A-measurable. The generalized Fubini property in the appendix to Ham-
mond and Sun (2006a) implies that γ µω is a well-defined probability measure.

(2) Let J denote the family of sets J ∈ T ⊗B such that ω �→ γ
µ
ω (J ) is Cµ-measur-

able. By Eq. (2) in Lemma 6, one has S × B ∈ J for any S ∈ T and B ∈ B. But
J is obviously a λ-class which contains the π -system {S × B : S ∈ T , B ∈ B}.
By Dynkin’sπ–λ theorem, J is theσ -algebra generated by thisπ -system, which
implies that J = T ⊗ B. ��
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5.3 Preliminary properties of the process

The following lemma uses the assumption of event-wise measurable conditional prob-
abilities to derive a measure-valued mapping µtω from T ×Ω to M(X,B), to which
the results of Sect. 5.2 can therefore be applied.

Lemma 8 Assume that for all A ∈ A and B ∈ B, the mapping t �→ P(A ∩ g−1
t (B))

is T -measurable. Then there is a T ⊗ A-measurable mapping (t, ω) �→ µtω from
T ×Ω to M(X,B) such that, for all A ∈ A and B ∈ B,

P(A ∩ g−1
t (B)) =

∫

A

µtω(B)dP for λ-almost all t ∈ T . (10)

Moreover any other T ⊗ A-measurable mapping µ′ : T ×Ω → M(X,B) with the
same property must satisfy µ′

tω = µtω for (λ⊗ P)-a.e. (t, ω) ∈ T ×Ω .

Proof By the Borel Isormorphism Theorem, because X is a Polish space, there is
a Borel bijection φ between X and a Borel subset φ(X) of R—see Dudley (1989,
Sect. 13.1), for example. Consider the real-valued process f = φ ◦ g. Then it is clear
that for all A ∈ A and all Borel subsets B of R, the mapping t �→ P(A ∩ f −1

t (B)) is
T -measurable.

Fix any Borel subset B of R. By the usual π–λ argument, the mapping t �→
P(Et ∩ f −1

t (B)), which is T -measurable whenever E is a measurable rectangle S× A
with S ∈ T and A ∈ A, is also T -measurable for every E ∈ T ⊗ A. Evidently the
mapping E �→ νB(E) := ∫

T P(Et ∩ f −1
t (B))dλ is a countably additive measure on

(T × Ω, T ⊗ A). Evidently νB(E) = 0 whenever (λ ⊗ P)(E) = 0 because then
P(Et ) = 0 for λ-a.e. t ∈ T . By the Radon–Nikodym theorem, there is a T ⊗ A-
measurable function hB from T ×Ω to R+ such that for any E ∈ T ⊗ A,

∫

E

hB(t, ω) d(λ⊗ P) =
∫

T

P(Et ∩ f −1
t (B)) dλ. (11)

We now follow the standard proof that a regular conditional distribution exists—
see, for example, Chow and Teicher (1997, p. 225) or Kallenberg (2002, p. 107). For
any r in the set Q of rational numbers, consider the Borel set (−∞, r ] and the corre-
sponding T ⊗ A-measurable function h(−∞,r ] that satisfies Eq. (11). For simplicity,
let χr (t, ω) denote the function h(−∞,r ](t, ω). After excluding points in a countable
collection of (λ⊗ P)-null sets, there remains a set J with (λ⊗ P)(J ) = 1 such that, for
any (t, ω) ∈ J : (1) r1 < r2 implies that χr1(t, ω) ≤ χr2(t, ω); (2) limr→q χr (t, ω) =
χq(t, ω) for any q ∈ Q; (3) limr→−∞ χr (t, ω) = 0; (4) limr→+∞ χr (t, ω) = 1.

By the argument of Kallenberg (2002, p. 107), for each (t, ω) ∈ J there is a prob-
ability measure τtω on R such that τtω((−∞, r ]) = χr (t, ω) for all r ∈ Q. Because
the function χr is T ⊗A-measurable, so is the mapping (t, ω) �→ τtω((−∞, r ]). This
implies that (t, ω) �→ τtω(B) defines a T ⊗A-measurable function for each Borel set
B ⊆ R.

123



P. J. Hammond, Y. Sun

Given any E ∈ T ⊗ A, Eq. (11) implies that

∫

E

τtω(B)d(λ⊗ P) =
∫

T

P(Et ∩ f −1
t (B))dλ (12)

holds when B is any of the sets (−∞, r ] (r ∈ Q). By the π–λ Theorem, it follows
that Eq. (12) also holds for any E ∈ T ⊗ A and any Borel set B ⊆ R.

Because φ(X) is a Borel set in R, the definition of f implies that

∫

T

P( f −1
t (φ(X)))dλ =

∫

T

P(g−1
t (X))dλ = 1.

Then applying Eq. (12) with E = T ×Ω and B = φ(X) gives

∫

T ×Ω
τtω(φ(X))d(λ⊗ P) =

∫

T

P( f −1
t (φ(X)))dλ = 1,

which implies that τtω(φ(X)) = 1 for (λ⊗ P)-almost all (t, ω) ∈ T ×Ω . Thus there
is a T ⊗ A-measurable mapping µ from T ×Ω to M(X,B) such that, for all B ∈ B,
one has µtω(B) = τtω(φ(B)) for (λ⊗ P)-almost all (t, ω) ∈ T ×Ω . Hence

∫

E

µtω(B)d(λ⊗ P) =
∫

T

P(Et ∩ g−1
t (B))dλ (13)

holds for any E ∈ T ⊗ A and any Borel set B ⊆ R.
Fix A ∈ A and B ∈ B. Then for any S ∈ T , applying Eq. (13) with E = S × A

implies that
∫

S

⎡

⎣
∫

A

µtω(B)dP

⎤

⎦ dλ =
∫

S

P(A ∩ g−1
t (B))dλ. (14)

But any Radon–Nikodym derivative is essentially unique, so

P(A ∩ g−1
t (B)) =

∫

A

µtω(B)dP for λ-a.e. t ∈ T . (15)

Finally, suppose another T ⊗ A-measurable mapping µ′ : T × Ω → M(X,B)
also satisfies Eq. (15). Then, for any S ∈ T , A ∈ A and B ∈ B, one has

∫

S

P(A ∩ g−1
t (B)) dλ =

∫

S×A

µtω(B) d(λ⊗ P) =
∫

S×A

µ′
tω(B) d(λ⊗ P).
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A familiar application of Dynkin’s π–λ Theorem implies that the equality
∫

E µtω(B)
d(λ⊗ P) = ∫

E µ
′
tω(B) d(λ⊗ P) must then hold for every E ∈ T ⊗ A. The desired

result follows from the essential uniqueness of the Radon–Nikodym derivative. ��
The following lemma, which gives a conditional independence structure for the

process g, is a special case of Lemma 2 in Hammond and Sun (2006b).

Lemma 9 Let C ⊆ A be a countably generated σ -algebra onΩ . Suppose that µ is a
T ⊗C-measurable mapping from (T ×Ω, T ⊗A) to M(X,B)which, for each A ∈ A
and B ∈ B, satisfies Eq. (10). Then the process g is essentially pairwise independent
conditioned on C, with P(g−1

t |C) = µtω for λ-a.e. t ∈ T .

The next lemma presents an elementary property of the iteratively complete mea-
sure λ̄∞.

Lemma 10 Suppose that D ⊆ T × T is a T̄ 2 measurable set satisfying λ̄2(D) = 1.
Let D∗ consist of all sequences t∞ ∈ T ∞ such that (ti , t j ) ∈ D whenever (i, j) ∈ N

with i �= j . Then D∗ ∈ T̄ ∞ and λ̄∞(D∗) = 1.

Proof Let Gn denote the set of all pairs (i, j)with i, j ∈ {1, 2, . . . , n} satisfying i �= j .
For each n ∈ N and each pair (i, j) ∈ Gn , define Dn

i j ⊂ T n as the set of all tn = (ti )ni=1

such that (ti , t j ) ∈ D. Note that λ̄n(Dn
i j ) = λ̄2(D) = 1. Define Dn := ∩(i, j)∈Gn Dn

i j ,

so T n\Dn = ∪(i, j)∈Gn (T n\Dn
i j ), and then λ̄n(T n\Dn) ≤ ∑

(i, j)∈Gn λ̄n(T n\Dn
i j ) =

0. It follows that λ̄n(Dn) = 1 = λ̄∞(Dn × ∏∞
k=n+1 Tk) for each n ∈ N. But

D∗ = ∩n∈N[Dn × ∏∞
k=n+1 Tk], which implies that D∗ ∈ T̄ ∞. Moreover T ∞\D∗ =

∪n∈N

[
(T n\Dn)× ∏∞

k=n+1 Tk
]

and so λ̄∞(T ∞\D∗) ≤ ∑∞
n=1 λ̄

n(T n\Dn) = 0.
Hence λ̄∞(D∗) = 1. ��

The following lemma, which will be used to derive various versions of Monte Carlo
convergence, generalizes Lemma 10 in Hammond and Sun (2003).

Lemma 11 Suppose that g is a regular conditionally independent process given C,
with P(g−1

t |C) = µtω for λ-a.e. t ∈ T . Let f : T × X → R be any T ⊗B-measurable
function with

∫
T

[∫
Ω

f 2
t (gt (ω)) dP

]
dλ < ∞. Then, for λ̄∞-a.e. sequence t∞ ∈ T ∞,

one has

1

n

n∑

i=1

f (ti , g(ti , ω))−−→
P−a.s.

∫

T

⎡

⎣
∫

X

f (t, x) dµtω

⎤

⎦ dλ =
∫

T ×X

f (t, x) dγ µω , (16)

which also implies that γ µω is the Monte Carlo limit γω of g.

Proof Given the specified function f , we follow the proof of Lemma 10 in Hammond
and Sun (2003) and define, for each t ∈ T and ω ∈ Ω , the functions

ψt (ω) := ft (gt (ω)); ϕ(t, ω) :=
∫

X

ft (x)dµtω(x); ht (ω) := ψt (ω)− ϕt (ω).
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By hypothesis, ψt is square-integrable (and so P-integrable) on (Ω,A, P) for λ-a.e.
t ∈ T . Because P(g−1

t |C) = µtω, the proof of Lemma 10 in Hammond and Sun
(2003) shows that for λ-a.e. t ∈ T , one has E(ψt |C)ω = ∫

X ft (x)dµtω = ϕ(t, ω) for
P-a.e. ω ∈ Ω , and also that ϕ is square integrable w.r.t. λ⊗ P .

Because g is assumed to be a regular conditionally independent process, we know
that P((gt , gt ′)−1|C)(ω) = µtω ⊗ µt ′ω for λ̄2-a.e. (t, t ′) ∈ T 2. Applying Theorem 1
of Chow and Teicher (1997, p. 223) to the random variable ψtψt ′ , we obtain

E(ψtψt ′ |C)ω =
∫

X×X

ft (x) ft ′(y) d(µtω(x)⊗ µt ′ω(y))

=
∫

X

ft dµtω

∫

X

ft ′ dµt ′ω

for λ̄2-a.e. (t, t ′) ∈ T 2, which implies that

E(ht ht ′ |C) = E(ψtψt ′ |C)− E(ψt |C)E(ψt ′ |C) = 0.

So there exists a T̄ 2-measurable set D such that λ̄2(D) = 1 and E(ht ht ′) = 0 for
all (t, t ′) ∈ D. Now define D∗ as the set of all sequences t∞ = (ti )∞i=1 ∈ T ∞ such
that (ti , t j ) ∈ D for all i, j ∈ N with i �= j . By Lemma 10, λ̄∞(D∗) = 1. Hence,
for all t∞ ∈ D∗, the random variables (hti )

∞
i=1 are mutually orthogonal. Arguing as

in the last two paragraphs of the proof of Lemma 10 in Hammond and Sun (2003,
pp. 761–762) shows that, for λ̄∞-a.e. t∞ ∈ T ∞, one has

1

n

n∑

i=1

hti (ω)−−→
P−a.s.

0 and
1

n

n∑

i=1

ϕti (ω)−−→
P−a.s.

∫

T

ϕω(t)dλ(t). (17)

But Eq. (17) obviously implies that for λ̄∞-a.e. t∞ ∈ T ∞,

1

n

n∑

i=1

ψti (ω) = 1

n

n∑

i=1

hti (ω)+ 1

n

n∑

i=1

ϕti (ω)−−→
P−a.s.

∫

T

ϕω(t)dλ(t). (18)

Because
∫

T ϕω(t)dλ(t) = ∫
T [∫X ft (x)dµtω(x)]dλ = ∫

T ×X f (t, x) dγ µω , the result
follows from Eq. (18). ��

5.4 Proof of Proposition 3 and Theorem 1

We shall prove the equivalence of all the conditions in both Proposition 3 and The-
orem 1 together. Let P(1), P(2), P(3) and P(4) indicate parts (1), (2), (3) and (4) of
Proposition 3, respectively. Similarly, let T(1), T(2) and T(3) indicate the respective
parts of Theorem 1. Note that P(1) and T(2) are identical.

P(1) �⇒ P(2): This is trivial.
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P(2) �⇒ P(3): This is also trivial.
P(3) �⇒ T(3): For each B ∈ B, let ϕB be the random variable defined so that for

λ̄∞-a.e. t∞ ∈ T ∞, one has

1

n

n∑

i=1

1B(g(ti , ω))−−→
P−a.s.

ϕB(ω). (19)

Obviously ϕB must be essentially bounded in [0, 1] and so integrable. Integrating
Eq. (19) over any measurable set A ∈ A yields the result that, for λ̄∞-a.e. t∞ ∈ T ∞,
one has

1

n

n∑

i=1

∫

A

1B(g(ti , ω)) dP = 1

n

n∑

i=1

P(A ∩ g−1
ti (B)) →

∫

A

ϕB dP. (20)

By Lemma 2, it follows that t �→ P(A ∩ g−1
t (B)) is T -measurable.

T(3) �⇒ T(1): By Lemma 8, there is a T ⊗ A-measurable mapping (t, ω) �→ µtω

from T ×Ω to M(X,B) such that for all A ∈ A and B ∈ B, one has P(A∩g−1
t (B)) =∫

A µtω(B)dP for λ-a.e. t ∈ T . Next, part (1) of Lemma 6 implies that for any B ∈ B,
the mapping (t, ω) �→ µtω(B) is Sµ⊗Cµ-measurable, and thus T ⊗Cµ-measurable.
Lemma 9 implies that g admits an essentially regular conditional distribution process
given the countably generated σ -algebra Cµ, and is essentially pairwise conditionally
independent given Cµ.

T(1) �⇒ P(1): If T(1) holds, we can apply Lemma 11 to each indicator function
1J with J ∈ T ⊗ B.

T(1) �⇒ P(4): We apply Theorem 6.6 in Parthasarathy (1967, p. 47).13 Because X
is a Polish space, so homeomorphic to a complete separable metric space, this theo-
rem implies that there exist a topologically equivalent metric on X and a sequence of
bounded and uniformly continuous functions ϕm : X → R (m = 1, 2, . . .) with the
property that, for each t∞ ∈ T ∞ and each ω ∈ Ω , the distribution νn

t∞,ω converges
weakly to τω if and only if the sequence of integrals

∫
X ϕm(x) dνn

t∞,ω converges to∫
X ϕm(x) dτω as n → ∞ for each m = 1, 2, . . .

For any Borel set B in X , define τω(B) = ∫
T µtω(B) dλ. For each fixed

m = 1, 2, . . ., because ϕm is measurable and bounded, the definition of νn
t∞,ω and

Lemma 11 together imply that for λ̄∞-a.e. sequence t∞ ∈ T ∞,

∫

X

ϕm(x) dνn
t∞,ω = 1

n

n∑

i=1

ϕm(g(ti , ω))

−−→
P−a.s.

∫

T

∫

X

ϕm(x) dµtωdλ =
∫

X

ϕmdτω. (21)

13 See also the proof of Theorem 12.11 in Aliprantis and Border (1994).
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After excluding countably many λ̄∞-null sets, there exists a subset T ∞
1 of T ∞ with

λ̄∞(T ∞
1 ) = 1 such that for each sequence t∞ ∈ T ∞

1 , Eq. (21) holds for all m simul-
taneously. Consider any fixed sequence t∞ ∈ T ∞

1 . Again, after excluding countably
many P-null sets, for P-almost all ω ∈ Ω one has

∫
X ϕm(x) dνn

t∞,ω → ∫
X ϕm(x) dτω

for all m simultaneously. This implies that for each sequence t∞ ∈ T ∞
1 , the sufficient

condition for νn
t∞,ω to converge weakly to τω is satisfied for P-almost all ω ∈ Ω .

P(4) �⇒ T(3): Fix any A ∈ A with P(A) > 0 and any bounded continuous function
ϕ on X . By P(4), for λ̄∞-a.e. sequence t∞ ∈ T ∞ one has

∫

X

ϕ(x) dνn
t∞,ω = 1

n

n∑

i=1

ϕ(g(ti , ω))−−→
P−a.s.

∫

X

ϕ(x) dτω.

This obviously implies that

1

n

n∑

i=1

∫

A

ϕ(g(ti , ω))dP →
∫

A

⎡

⎣
∫

X

ϕ(x) dτω

⎤

⎦ dP (22)

and so, by Lemma 2, that t �→ ∫
A ϕ(gt (ω))dP is T -measurable. Let AA = {C ∈

A : C ⊆ A}, let P A be the (conditional) probability measure defined on (A,AA)

by P A(E) := P(A ∩ E)/P(A), and let g A denote the restriction of g to T × A.
Then

∫
A ϕ(gt (ω))dP = ∫

X ϕ(x) d
(
P A(g A

t )
−1

)
for each t , so the mapping t �→∫

X ϕ(x)dP A(g A
t )

−1 is T -measurable. Note that a mapping t �→ψt from T to M(X,B)
is T -measurable w.r.t. the Borel σ -algebra on M(X,B) generated by the topology
of weak convergence of measures if and only if

∫
X ϕdψt is T -measurable for every

bounded continuous function ϕ on X . This implies that t �→ P A(g A
t )

−1 defines a
T -measurable mapping from T to M(X,B). By Lemma 1 in Hammond and Sun
(2003), therefore, given any fixed B ∈ B, the mapping t �→ P(A ∩ g−1

t (B)) =
λ(A) · P A(g A

t )
−1(B) is T -measurable.

The above paragraphs have shown that P(1) �⇒ P(2), P(2) �⇒ P(3), P(3) �⇒
T(3), T(3) �⇒ T(1), T(1) �⇒ P(1), T(1) �⇒ P(4), and finally that P(4) �⇒ T(3).
Given that P(1) and T(2) are identical, it follows that all the conditions in both Propo-
sition 3 and Theorem 1 are equivalent. To finish the proof requires showing that when
g satisfies one (and thus all) of these conditions, then given any countably generated
sub-σ -algebra C of A, the process g also has a stochastic macro structure given C if
and only if the Monte Carlo σ -algebra satisfies Cg ⊆ C.

First, if g has a stochastic macro structure given C, then by Definition 4 there is an
essentially regular conditional distribution process µ : T × Ω → M(X,B) that is
T ⊗C-measurable. Now apply Lemma 11 with f (t, x) = 1S(t)·1B(x) to show that the
Monte Carlo limit function γ (S, B, ω) in Definition 3 is given by

∫
S µtω(B)dλ, which

must be C-measurable as a function of ω. Since Cg is defined as the sub-σ -algebra of
A generated by the family of functions ω �→ γ (S, B, ω) (S ∈ T , B ∈ B), we must
have Cg ⊆ C.

Conversely, suppose that T(3) is true and that C contains Cg . Following the proof
that T(3) �⇒ T(1), there is a T ⊗A-measurable mapping (t, ω) �→ µtω from T ×Ω to
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M(X,B) such that, for all A ∈ A and B ∈ B, one has P(A∩g−1
t (B)) = ∫

A µtω(B)dP
for λ-a.e. t ∈ T ; moreover, that mapping must be T ⊗Cµ-measurable. Then Lemma 9
implies that g has a stochastic macro structure given Cµ. Lemma 11 and the argument
in the above paragraph imply that γ (S, B, ω) = ∫

S µtω(B) dλ for S ∈ T and B ∈ B.
It follows from part Eq. (2) of Lemma 6 and from Definition 7 that Cµ ⊆ Cg , so
Cµ ⊆ C by hypothesis. Hence, µ is also T ⊗ C-measurable. Then Lemma 9 implies
that g has a stochastic macro structure given C. Also, since g has a stochastic macro
structure given Cµ, the previous paragraph shows that Cµ contains Cg , so Cµ = Cg .
By Lemma 7, for each J ∈ T ⊗B the mapping ω �→ γω(J ) is Cg-measurable. Hence,
Lemma 11 implies that Cg is also the smallest sub-σ -algebra of A with respect to
which the mapping ω �→ γω(J ) is measurable for every J ∈ T ⊗ B. ��

5.5 Proof of Proposition 4

For each (t, ω) ∈ T ×Ω , let µ′
tω be the Dirac measure δg(t,ω) at g(t, ω). Because of

the hypothesis that g is T ⊗ A-measurable, so is µ′. For any A ∈ A and B ∈ B, it is
clear that µ′

tω(B) = 1g−1
t (B)(ω), so

P(A ∩ g−1
t (B)) =

∫

A

µ′
tω(B)dP for λ-almost all t ∈ T . (23)

By Theorem 1, the process g has event-wise measurable conditional probabilities.
Thus the uniqueness property in Lemma 8 implies that µ′

tω = µtω for (λ⊗ P)-almost
all (t, ω) ∈ T ×Ω . Fix any B ∈ B. The last part of the proof of Theorem 1 implies
that µtω(B) [and so µ′

tω(B)] is T ⊗ Cg-measurable as a function of (t, ω). So the set
g−1(B) is T ⊗Cg-measurable. This is true for any B ∈ B, so g is T ⊗Cg-measurable.
The Fubini property then implies that gt is Cg-measurable for λ-almost all t ∈ T . ��

5.6 Proof of the results in Sect. 4

Proof of Proposition 5
(1) �⇒ (3): The condition of Lemma 11 is obviously satisfied with C = {Ω,∅}

and µtω = µt . So the Monte Carlo limit measure γ on (T × X, T ⊗ B) is defined by
γ (J ) := ∫

T µt (Jt ) dλ for each J ∈ T ⊗ B.
(3) �⇒ (2): This is obvious.14

(2) �⇒ (1): By Proposition 3 and Theorem 1, the mapping t �→ P(A ∩ g−1
t (B))

is T -measurable. For each S ∈ T and B ∈ B, and for λ̄∞-a.e. sequence t∞ ∈ T ∞,
one has

1

n

n∑

i=1

1S(ti ) 1B(g(ti , ω))−−→
P−a.s.

∫

S

µt (B)dλ.

14 Note that (1) �⇒ (2) was already shown after the statement of Proposition 5. Here we prove (1) �⇒
(3) instead, while (3) �⇒ (2) is trivial.
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Integrating Eq. (5) over any measurable set A ∈ A yields the result that, for λ̄∞-a.e.
t∞ ∈ T ∞, one has

1

n

n∑

i=1

1S(ti )
∫

A

1B(g(ti , ω)) dP = 1

n

n∑

i=1

1S(ti ) P(A ∩ g−1
ti (B))

→ P(A)
∫

S

µt (B) dλ. (24)

By the classical law of large numbers, 1
n

∑n
i=1 1S(ti ) P(A ∩ g−1

ti (B)) → ∫
S P(A ∩

g−1
t (B)) dλ for λ∞-a.e. t∞ ∈ T ∞. For any S ∈ T , A ∈ A and B ∈ B, therefore,

∫

S

P(A ∩ g−1
t (B)) dλ = P(A)

∫

S

µt (B) dλ =
∫

S

∫

A

µt (B) dP dλ. (25)

By the essential uniqueness of the Radon–Nikodym derivative, Eq. (25) implies that
P(A ∩ g−1

t (B)) = ∫
A µt (B) dP for λ-a.e. t ∈ T . So by Lemma 8, µtω = µt , which

is T ⊗ {Ω,∅}-measurable. Part (1) then follows from Lemma 9. ��
Proof of Proposition 6

(1) �⇒ (2): This follows from Lemma 9.
(2) �⇒ (4): This follows from Lemma 11.
(4) �⇒ (3): This follows directly from the definitions.
(3) �⇒ (1): For any S ∈ T , A ∈ A and B ∈ B, we repeat the procedure used to

prove (2) �⇒ (1) in Proposition 5. The only difference is that the limit in Eq. (24)
becomes λ(S)

∫
A µω(B) dP instead of P(A)

∫
S µt (B) dλ. Thus, we obtain

∫

S

P(A ∩ g−1
t (B)) dλ =

∫

S

∫

A

µω(B)dP dλ. (26)

Essential uniqueness of the Radon–Nikodym derivative then implies Part (1). ��
Proof of Proposition 7

(1) �⇒ (2): This follows from Lemma 5 in Hammond and Sun (2003). Note that
Eqs. (5) and (6) in the proof of Lemma 5 in Hammond and Sun (2003) follow from
essential pairwise exchangeability (as defined in part Eq. (1) of Definition 5 of this
paper) and from the Fubini property for the measure λ̄2.

(2) �⇒ (3): This is a special case of Lemma 8, which is also shown in Lemma 4
of Hammond and Sun (2003) under the special assumption of pairwise measurable
probabilities.

(3) �⇒ (4): This follows trivially from Proposition 6.
(4) �⇒ (1): The proof of Lemma 7 in Hammond and Sun (2003) can be repeated,

but with λ⊗ λ replaced by λ̄2. ��
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