Peter J. HAMMOND

. CONSEQUENTIALISM AND THE INDEPENDENCE AXIOM

1. INTRODUCTION

St.Thomas Aquinas wrote to the effect that no good consequences
could make a bad action good, and that no bad consequences
could make a good action bad. John Stuart Mill, following a
utilitarian tradition, put forward exactly the contradictory
hypothesis that, as a necessary condition for rationality,
actions should be judged entirely by their consequences. In
ethics, this way of judging actions has come to be known as
"consequentialism™, following Anscombe's (1958) critical dis-
cussion. Some of the history of consequentialism is consid-
ered further in Hammond (1986).

To date, consequentialism has usually been applied in
ethics. Yet it can be adapted to normative single person
decision theory as well, where I believe it offers a strong
justification for some standard axioms. Indeed, some years
ago, I realized that the normative principle that behaviour
should be ordinal - i.e. maximize a complete and transitive
preference ordering - could be justified by requiring
"dynamic choice" in decision trees to depend only upon out-
~comes and not upon the structure of the decision tree. This
requirement was called “metastatic choice” in Hammond (1977).
I have since realized that there is a similar justification
of the contentious independence axiom (Samuelson, 1952)
which is the basis of expected utility maximization. The
justification of both ordinality and independence is so close
in spirit to the consequentialist approach to ethics that it
is no misuse of terminology to call it "consequentialism" as
well, rather than the old and clumsy "metastatic”

In single person decision theory, consequentialism is
defined informally to mean that behaviour is explicable mere-
ly by its consequences. A little more formally, behaviour
will be consequentialist if it corresponds to a "revealed
consequence choice function" which, for every finite feasible
set of possible consequences, specifies a subset of chosen
consequences. Stated this way, consequentialism is clearly
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somewhat restrictive, but the restrictions appear reasonable.
- They are in accord with Savage (1954), for example, who ac-
tually defines an act as a mapping from states of the world
into consequences, thus making consequentialism a tautology
in his framework.

The power of the consequentialist hypothesis is much
greater than is immediately apparent, however, once it is
applied to an unrestricted domain of "consequential" decision
trees, as described in Section 2. For such trees, behaviour
is naturally described by the "behavour norms" described in
Section 3. Moreover - and this is the key to the whole ar-
gument - it is natural to restrict attention to behaviour
norms which satisfy an obvious property of dynamic consisten-
¢y, similar to that which I considered for choice functions
in Hammond (1976,1977).

Having completed the task of specifying general consis-
tent behaviour norms for consequential decision trees, ‘
Section 4 then gives a formal definition of consequentialism.
Section 5 shows how consequentialism implies ordinality -
i.e. a consequential norm must specify behaviour which
chooses consequences to maximize a (complete and transitive)
preference ordering on the space of consequence probability
distributions. Thereafter, Section 6 demonstrates how the
controversial independence axiom must also be satisfied, and
that zero probability nodes have to be excluded from the
domain of consequential decision trees. The latter result
is novel. _

 Finally, Section 7 has a concluding discussion concern-
ing the domain of relevant consequences.

2. CONSEQUENTIAL DECISION TREES

Decision trees, with their chance, decision and terminal
nodes, should be familiar from the lucid introductory lec-
tures of Raiffa (1968). Here, therefore, I merely introduce
notation and also adapt the definition so that each terminal
node x of a tree T has a well defined consequence Y(x).
in the space Y of possible consequences. Formally, then,
a consequential decision tree (or "tree" for short) is a
cellection : '

ko)

T = (N, N ,X,N, () ,n Lm(e]e) ,v(e)?

whose respective components are described and interpreted as



, Ny !
d15301nt whenever n, n' € N -are dlst1nct._§ iis, 1ndeed
allows the set N to _be construeted recur51ve1y, startlng
with ng , ‘then N (no) ., which is: disjoint ‘from - {no} ’
then N (n) for each ‘n €'N+lgn ) » etc. unt11 the termxn—

dd tha' the probab111t1
b L.

‘for each ‘n E N°, so: ‘thdt:
‘distribution-over: Ny (n). .
) Notlce that terminal nodes are %o
”sequences. It ‘is important to allow’ dlfferent terml a
‘in the same tree to result in the same consequence.
- Let . T(Y). denote the set of all. poss1b1e consequent131
decision trees giving rise to-consequences in the'set Y .o
It ‘consists of all possi ;(flnzte) decision. .t together
with suitable consequences. mapp1ngs. .
... Where a decision tree. T is a var1ab1e, i “w111 be in-
cluded as “an- argument 1n express1ons like . N*(T) B+I($gn) ’
n (T), etc. RN e T ) S
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3. CONSISTENT BEHAVIOUR NORMS

For such consequential decision trees, a behaviour
norm is a correspondence B(T,n) whose domain consists
- of pairs (T,n) in which T € T(Y) 1is a consequential
decision tree and n € N*(T) is a decision node of T . The
correspondence takes values B(T,n) which are non-empty sub-
sets of N_,(T,n) , for each pair (T,n) in the domain. The
norm B is allowed to take multiple values, as usual in
decision theory, so that indifference is possible. If 8
were restricted to take single values, the preference order-
ings considered below would have to be strong orderings, ex-
cluding indifference. And if B were allowed to take values
which were probability distributions over N, (T,n) it would
be a stochastic behaviour norm which I plan to discuss else-
where.

Let T € T(Y) be any consequential decision tree, and
€N any node of T =(N* N°,X,N. (+) S T (D IO
Then there is a continuation tree T ~ or "subtree" - start-
ing at @i, with :

T=(F,f°,%,8,,() b LT LY

This continuation can be constructed riaturally as follows.
First, define the binary relation > on N so that n' >n
- i.e. n' 1is a successor of n - if and only if there
exists a chain Ny, Ny, eeey in N, with n, =n and
ne = n' , for which n:y, € N+1(nj) (j=1ltok-1).
Second, define N(n) as the set “{n' €E N|n' >n or n' = n}
of nodes in N which either succeed or are equal to n .
Now let : _ :
(i) N* = §* 0 N(T)
(ii) N° = N° N N(n)
(iii) X = X N N(n) ; .
(iv) N, N> N be the restriction to N_= N(n) of the
correspondence N.,(-) , satisfying N, ,(n) = N+1(n)

e wa

{c N(n) N) for each n € N :
(v) n, = n ; B _
(vi) (+l+) be the restriction to N of the probabilities
w(-[-), satisfying mn'|n) = ﬂ(n']n) for each n € N°
and each n' € Ny, (n) (= N, (n)) ;_ '
(vii) ¥ : X > Y be the restriction to X of the consequence

mapping Y , satisfying Y(x) = y(x) for all x € X .
It is then obvious that T is itself a consequential deci-
sion tree. ‘
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From now on, given any node n of N(T) , let T, de-
note the continuation of tree T from node n . ‘

Given 6 € N(T) , because T is a consequential deci-

‘sion tree, the behaviour norm R specifies the behaviour
set B(T-,n) at any n € N¥(Ty) . But N¥(Tg) < N¥*(T)
and so the behaviour norm B also specifies the behaviour
set B{(T,n) at n . '

Having behaviour sets differ at n , depending upon »
whether the decision tree is regarded as T or as Tg , is
clearly inconsistent. Indeed, when n 1is reached, the
agent's decision problem is really described by T, ; the
decisions which may have been taken before reaching n have
become irrelevant. Thus, regardless of what B(T,n) may
be, the agent's behaviour is really described by B(T ,n) .

. In other words, behaviour is entirely described by whit
happens only at the initial nodes of decision trees in T(Y).

This leads to the following requirement. A behaviour
norm B 1is consistent if, for every T € T(Y) , n € N(T)
and n € N*(Tﬁ) , one has B(Tﬁ ,n} = B(T,n) .

From now on, only consistent behaviour norms will be
considered, and they will be called simply norms.

4, CONSEQUENTIALIST NORMS

An act in a consequential decision tree T is a decision
‘rule or pure behaviour strategy a : N* » N which satisfies
a(n) € N, ,(n) at every decision node n € N*

A simple probability distribution of consequences (or,
for short, a "risky consequence", or even just "consequence")
is a function p, taking non-negative real values on its
" domain Y, for which there exists a finite support S c¥
such that u(y) >0 & y € S, and Z%és p(y) = 1 . The

set of all such simple probability distributions will be
denoted by M (Y) or just Y.

Given any act a in T , the probabilities £(a,n)
(n € N) of reaching each node in T can be calculated by
forward recursion as follows : :

(i) E(a;n) =1 ;

(ii) if £(a,n) has already been calculated, and if
n' € N+1(n) , then : - -
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m(n'[n) &(a,n)  (if n € N°) ,
£(a,n') = { &(a,n) (if n € N¥, n’ = a(n))
0 (if n € N*, n' # a(n))

~Ultimately, this forward recursion ends as the terminal
nodes of T are reached, and one has &(a,x) =0 (all
x € X), dex £(a,x) =1, so that £(a,x) (x € X) is it-

self a probability distribution on the set X of terminal
nodes of T . Given the consequence mapping Y the act a
then results in the risky consequence p(a) € Y satisfying :

Pla)(y) = Z {€(a,x) | y(x) =y} (all y €Y).

The risky consequence p € Y is feasible in the con-
sequential decision tree T if there exists an act a 1in
T for which u =p(a) - i.e. u is the result of a .
Write F(T) for the set of all risky consequences which are
feasible 'in T ; it is a non-empty finite subset of Y .

The risky consequence U € Y is revealed chosen by B8
in T if there exists an act a in T with a(n) € B(T,n)
(all n € N*(T)) for which p = po(a) =-i.e. u is the
result of an act a which, at each decision node of T ,
selects a member of the behaviour set specified by B
Write ®(T) for the set of all rlsky consequences whlch
are revealed chosen by B in T ; it is a non-empty finite
subset of F(T) . '

Two trees T, T' € T(Y) are consequentially equivalent
if F(T) = F(T') . Consequential equlvalence says that only
the feasible sets of risky consequences in a tree are rele-
vant; one can ignore the structure of the trees which makes
. those consequence sets feasible.

The norm B specifies consequentially equivalent
behaviour in the two trees T, T' € T(Y) if QB(T) = ¢ (T").
Now comes the crucial definition of the paper. The
norm B is consequentialist if it is defined at all deci-

sion nodes of all decision trees in T(Y) and specifies
consequentially equivalent behaviour in any pair of conse-
quentially equivalent decision trees. Thus does behaviour
become explicable merely by its consequences.

Let F denote the set of non-empty finite subsets of
the rlsky consequence space Y. A consequence choice func-~
tion is a mapping C : F -+ F satisfying C(F) ¢ F for all
FEF.



(v1) Y(X(u,y)) -
with this constructmn of T , notice that
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wez  Gf a(ny)
pa) = : a(n Y
U € Z~NZ' (if a(n )

n, and _
n(y) € Ng,(ny))
n(w) € Nyy (n)~ {n 1)

- In particular, for each p € Z , there is a unique act a
with p(a) =y, and a(n ) = n, p(a) € 2!

So, with this constructlon of T, F(T) = But
U EC (Z) by hypothes1s, so U is revealed chosen by B
in T . There is therefore an act a with p(3) = ¢ which
is a selectlon from B(T,-) . But U € Z' by hypothesis,
so p(a) = implies a(n ) by the previous para-
graph. Thus n, € B(T,n )

Consider now any r1sky consequence U € Ca(Z) N Z' ,
Arguing as in the previous paragraph, with ¥ - replaced by
4, there is an act a with p(a) =y which is a selection
-from B(T,*) . Because | € Z' , this implies that a(ny) =
n, and that a(n,) = n(p) € B(T, n,) . By consistency of
the norm B , it follows that n(u) € B(Tn »0;) . This im-
plies that u € ¢,(T, ) because p is the consequence of
the act which selgcts node n(U) at the only decision node
n of T, . But F(T, ) =2Z' by constructionof T,
and so : ‘

M€ BTy ) = Cg(F(T, )) = Cg(z")

Conversely, consider any risky consequence p € C,(2') .
Then u € ¢ (Tn )} and soe n(y) € B(Tnl,n ) . By consis-
tency of the norm B, it follows that nku) € 8(T,n,) .
But. n, € B(T,n,) as shown two paragraphs ago. So the act
a with a(n)) 2 n; and a(n;) = n{y) 1is a selection from
B(T,+) which results in the consequence U . It follows
that :

M E @B(T) = CB(F(T)) = CB(Z) .

But of course CG(Z yc 2' so in fact u € C (Z') implies
that w € C,(Z) nZz'.

So, unger the hypothesis that 2z, Z' E F ' czZ ,
and ¥ € Co(Z) N Z' , we have proved that Co(Z) nz' =
CB(Z ) . ﬁrrow s characterization of ordlnal1ty has been
verified, and €, must be ordinal. There must_exist a
{unique) reveale% preference ordering &, on Y which is
maximized by the consequence choice func§1on CB ‘revealed
by the consequentialist norm B .
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6. CONSEQUENTIALISM IMPLIES INDEPENDENCE

If risky consequences are excluded, with chance nodes

not permitted in decision trees, ordinality characterizes
consequentialist norms completely. With risk, however, the
(revealed) preference ordering GB corresponding to a con—
sequentialist norm B also has to satisfy the following
independence property for every real number o with

0 <a <1, and every set Mys W,s M, € M (Y)

oy + U -o)uy & o, + (1 -oduy & uy & ouy .
Here, of course, ap: + (1 —a)u3 (j =1, 20 denotes the
risky consequence u~ for which u(y) = ou.(y) + (1 -a)u,; (y)
(all y € Y). This independence property 1s precisely the
axiom first formulated by Samuelson (1952) which has since
excited so much controversy.

To demonstrate this property, take any real number o
satisfying 0 <a <1 and any His My, Uy € M(Y) .
Construct the consequential decision tree :

LEEE L S O MO N N [OD IO

to satisfy :

(1) N* = {nl 5o
(ii) N° = {ny} U {n; | j =1, 2, 3} ;
(iii) X = X, U X, U X, where, for j =1, 2, 3,
Xy = {xj(y) |y €Y, u(y) >0} ;
(iV}N.;.! (no) = {nls?{3} ’ N“'i n.l) =.{n1,n2} .
N, (W) =X (G=1,2,3);
(v wa, o)) =lo,” @@, |n) = 1 -o_, and, for j=1,23
and all” x;(y) € X3 , w(x;(y) | n3) = u;(y) ;
(vi) for j =1, 2, 3 and for all xj(y) € Xj ’

This tree has just two acts a,, a, given by aj(nl) =
n: (j =1, 2) whose consequences are auj + (1™=o)y,
respectively. Thus :

on, + (1 -a)uy & om, +(1 )y, 0, € B(T,n) .

In the continuation tree T, , there are just two acts
whose consequences are U, and u, respectively. So :

M, tRB b, = ;‘] € B(Tnl,nl) .
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.Consistency of the norm B , however, requires that
B(T,n,) = B(Tn1’nﬁ) . Thus ap, + (1 ~o)u,; &, ap, +
(1 —a)p, & u; ®, v, and so independence s certainly sa-
tisfied whenever "0 < g < 1 '

In addition the above equivalence has been proved for
the extreme points a =0 and a=1. For a=1, of
course, it is a tautology, but for o = 0 , we get the
equivalence W, HB U, @ u 6, 1., which is a contradiction
when u, PB u, (i.e. M, 1s strictly preferred to ul) .

Does this contradiction mean that consequentialist
norms de not exist ? Evidently, yes, if one insists on in-
cluding in the domain T(Y) of the consequentialist norm
all consequential decision trees. Yet the tree which pro-
duces the contradiction, with o =0 and so m(n, Ino) =0,
is perverse in the sense that a chance node n_ 1is included
with a probability distribution attaching zero probability
to one of the immediate successors of n, . If risk is
described by probabilities, the domain should be restricted
to TO(Y) , the set of all consequential decision trees
T ={(N*,N° ,X,N,, () » Ny ,M(+|+} ,w(-)} with the proper-
ty that 7(n" {n) >0 whenever n € N° and =n' € N, (n) .
This is hardly an important restriction; if m(n' |n) =0 ,
then n' and all its successors in N(n') should be ex—
cluded from the tree T anyway, so that the modified tree
is in TO(Y) . ' - _

Notice that this exclusion of zero probability nodes
applies only to finite decision trees. The implications
for infinite decision trees of consequentialism also re-
main largely unexplored. ' :

If the domain is restricted to T9(Y) , do ordinality
and independence of the revealed preference ordering
characterize completely the set of consequentialist norms
Here the answer is yes, because given any ordering 6 on
Y satisfying the independence property stated earlier in
this section (with 0 <o < !) , one can construct a con-
sequentialist norm B whose revealed preference ordering
3 = ® . Space does not permit more than the merest sketch
of a proof. One constructs, by backward Egcursion, an in-
difference class [p]l(n) of members of Y at each node n
of any tree T € T9(Y) . The recursion starts with termin-
al nodes x , at which [u](x) is taken to be the set of
risky consequences indifferent to vy{x) . At any chance
node n , one takes :

"~
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lul(n) = aneNH(n) m(n" [n) [ul(a")
in an obvious notation which is appropriate because of the
independence property. And at any decision node n , one
takes [pl(n) to maximize & over the set {lul(n" |
n' € N+1(n)}<, and the behaviour set B(T,n) equal to the
'set of maximizing nodes n' in N+1(n) . Checking the
details of this comstruction and that it yields a consequen-—
tialist comsistent behaviour norm is then routine but
tedious.

Thus, one has the following characterization :
THEOREM. For any space of consequences Y , and the domain
TO(Y) of all consequential finite decision trees with only
positive probabilities at every chance node, the consistent
~ behaviour norm B is consequentialist only if there is a
(unique) revealed preference ordering ﬁB satisfying the
independence property. Conversely, given any preference
ordering & which satisfies independence on the space Y
of all risky consequences, there is a (unique) consequen-—
tialist norm B onrn T°(Y) which reveals a preference or-
dering ®, equal to & .

Notice that consequentialism does not imply maximizing
the expected value of a von Neumann-Morgenstern utility
function unless one imposes an additional continuity axiom;
only two of the three axioms of Herstein and Milmor (1953)
are implications of consequentialism.

7. WHAT CONSEQUENCES ARE RELEVANI ?

. If consequentialism implies the independence axiom,
what are we to make of the Allais (1953) paradox and the
kind of preferences discussed by Allais (1979), Machina
(1982) and others which violate this axiom ? In Machina's
notation, such preferences are usually assumed to be repre-
sented by a utility functional U(F) whose argument F is
a cumulative distribution function of money income y . It
is also usually assume that U(F.) >'U(F2) when F, sto-
chastically dominates F, . Generally, of course, the in-
dependence axiom is violated, so there is no von Neumann-
Morgenstern utility function (NMUF) of income y for
which U can be written in the expected utility form
U(F) = [v(y) dF(y) . But U can be written in the expec-
ted utility form U(F) = [w(y,F)dF(y) provided w(y,F) =
U(F) ; indeed, making w depend only on F and not on y _
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‘is really a special case. Thus, preferences which appear
to violate the independence axiom will not do so if the
domain of relevant consequences is expanded from y's to
pairs (y,F) . Of course, the parsimony of the original
representatlon U(F) has been lost.

This is the nature of consequent1allsm. It says that,
for a sufficiently rich domain of consequences, behaviour
should depend only on those consequences, and then certain
mathematical properties such as the independence axiom
emerge as logical implications. As Broome (1986) also dis-
cusses, consequences have to be "individuated" finely enough,
otherwise something relevant for a normative principle of
behaviour is being left out of account. Indeed, if comse-
quences are too coarsely individuated, it may appear that
no single preference order gives an acceptable normative
principle of behaviour. So a necessary condition for the
existence of preferences, as well as for the independence
axiom, is that consequences are defined finely enough.

' This paper shows that exactly the same condition is
sufficitent not only for the existence of preferences, but
also for the controversial independence axiom. The conclu-
sion is that, in objecting to the independence axiom, one
also objects to consequentialism, which is the best argument
I know for the existence of preferences. One is led to ask
why those who would reject the independence axiom sill cllno
to the assumption of a preference ordering.

Over the years I have heard many objections to the ar-
guments of this paper. The most serious concerns the con-
sistency condition of Section 3. It has been claimed that
continuation trees should be treated differently from entire
decision trees. Perhaps history matters. But if it
does, it is a relevant consequence. One may ask then
whether historical consequences can be disentangled from the
structure of each decision tree so that every tree of the
domain TO(Y) represents a meaningful decision problem, as
- I have assumed. But that cannot be discussed here.

Department of Economics
Stanford University
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