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Diagnostic Image Sequence

Dimitry Gorinevsky, Fellow, IEEE, Seung-Jean Kim, Member, IEEE, Shawn Beard, Stephen Boyd, Fellow, IEEE,
and Grant Gordon

Abstract—Estimation of mechanical structure damage can
greatly benefit from the knowledge that the damage accumulates
irreversibly over time. This paper formulates a problem of
estimation of a pixel-wise monotonic increasing (or decreasing)
time series of images from noisy blurred image data. Our formu-
lation includes temporal monotonicity constraints and a spatial
regularization penalty. We cast the estimation problem as a large-
scale quadratic programming (QP) optimization and describe
an efficient interior-point method for solving this problem. The
method exploits the special structure of the QP and scales well
to problems with more than a million of decision variables
and constraints. The proposed estimation approach performs
well for simulated data. We demonstrate an application of the
approach to diagnostic images obtained in structural health
monitoring experiments and show that it provides a good estimate
of the damage accumulation trend while suppressing spatial and
temporal noises.

Index Terms—Optimal estimation, spatio-temporal filtering,
regularization, interior-point methods, isotonic regression, struc-
tural health monitoring, damage, monotonic

I. INTRODUCTION

We consider a time series of noisy blurred images where the
underlying images are constrained to be pixel-wise monoton-
ically increasing (or decreasing). Such problem arises when
estimating mechanical structure damage. It is known that
mechanical damage accumulates irreversibly over time; this
can be described through the monotonicity constraints. Despite
its apparent simplicity and usefulness, such formulation has
not been studied earlier, to the best of the authors’ knowledge.

The main application considered in the paper is structural
health monitoring (SHM). This work was initially motivated
by interest of commercial aircraft industry in automating, using
SHM, mandatory periodic inspections of aircraft structure,
see [1], [25], [59]. SHM has been attracting much attention
recently; an initial overview of work in this area can be
found, for instance, in [2], [55], [56], [57], [58]. Most of the
published SHM work is on component technologies; a small
portion is on integrated SHM systems producing diagnostic
images. The SHM literature considers detection of defects
or damage locations from a diagnostic image. Most papers
consider pattern recognition and detection problems: a gray-
scale image is the input, a binary damage image or damage
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location and size are possible outputs. In contrast, this paper
considers damage estimation problems: a time series of SHM
diagnostic images is an input, a series of gray-scale estimate
images is the output. The authors are unaware of any prior
work, apart from theirs, considering such formulation.

The health monitoring literature distinguishes between di-
agnostics (detecting and identifying faults) and prognostics
(forecasting of remaining useful life). The prognostics requires
estimation of the damage state. An overview of current work
on structural prognostics can be found in [11], [15]. The exist-
ing prognostics work is focused on estimation and prediction
(forecasting) of lumped parameters. The formulation herein is
related to prognostic estimation for SHM images.

The problems of estimating underlying monotonic changes
from noisy images can be also formulated in geophysics (e.g.,
analysis of earthquake precursors, petroleum extraction), in
medical imaging (e.g., a growing tumor imaged at different
times), in environmental sciences (e.g., irreversible changes
caused by global warming trends), and other areas.

Deblurring of noisy images is covered in many textbooks,
e.g., [14], [18], [35]. Particularly relevant to this work are the
papers [20], [22], [24], [25], where linear deblurring filters
are designed in spatial frequency domain. Taking into account
the monotonicity of damage accumulation leads to nonlinear
filtering problems.

There is substantial earlier work on lumped nonlinear es-
timation with monotonicity constraints. It includes ‘isotonic
regression’ work that was driven by applications in statistics
and operations research and is summarized in the books [4],
[49]. Monotonicity constraints in signal processing problems
are also considered in [19], [21], [48], [54]. Maximum a
posteriori probability (MAP) estimation assuming a monotonic
walk prior model leads to (convex) QP problems, which can be
solved efficiently. For monotonic signals, the filtering approach
based on constrained optimization provides a substantial im-
provement over standard linear filtering methods.

Most of the prior work on estimation with the monotonicity
constraints considers univariate data, some considers multivari-
ate data, and none deals with image data. This paper considers
a series of images monotonic in time. The MAP problem
is formulated as a large scale QP problem with the linear
monotonicity constraints. The novelty of our formulation is
that it includes the spatial dimensions of the problem and the
monotonicity constraints in the time dimension.

The image processing problem in this paper can be solved
using standard QP solvers when the total number of decision
variables (i.e., the pixels in the image series) is modest, say,
under 10, 000. The SHM application in Section VI of this
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paper has around a million decision variables, well beyond
the capacity of standard QP solvers.

A number of prior papers formulate image processing
problems as QPs and other constrained convex optimization
problems, e.g., see [16], [17], [29], [37], [39]. Most relevant
to the solution method described in this paper is the primal-
dual interior-point method described in [31], which was suc-
cessfully applied to medical image estimation problems of
similar size (about a million variables). In this paper we use a
specialized interior-point method for solving the QP problems
with l1 regularization penalties and monotonicity constraints.
The method customizes a truncated Newton interior-point
method described in [32] to estimation problems involving
a time series of two-dimensional data. Similar to [31], we
compute the search step using a preconditioned conjugate
gradient (PCG) method.

The solution method described in this paper improves on
[31], [32] by exploiting the special structure of the problem.
We do not explicitly form Hessian and other large scale sparse
matrices. Instead, we use convolutions with spatial kernels for
efficient application of these operators. This leads to faster
computations and greatly reduced memory requirements. A
simple Matlab implementation of the method, described in
more detail in Section III, can solve the QP problems, with
more than two million variables and two million constraints
that arise in SHM applications, on a PC in a few tens of
minutes.

The main contribution of this paper is in demonstrating
a practical solution to the problem of estimating monoton-
ically accumulating damage from a series of images. The
contribution spans several knowledge areas. Our secondary
contributions in these areas are summarized below.

First, we introduce a new type of estimation problems for
a time series of noisy images where the underlying signal
is pixel-wise monotonic in time. Apparently, despite its use-
fulness, such problem formulation has not been considered
earlier.

Second, we propose an interior-point PCG method for solv-
ing large QP problems of the formulated type. We demonstrate
that by exploiting the problem structure (which is described by
convolution operators), the method scales almost linearly with
the problem size both in computational effort and in memory
requirements.

Third, we develop an approach to selecting (tuning) a sparse
spatial regularization penalty in the optimization problem
such that the solution satisfies engineering specification for
noise rejection and estimation error. Tuning the regularization
penalty in frequency domain is new, though, in spirit, the
approach is related to earlier work on frequency-domain tuning
of spatial filters.

Finally, we demonstrate an important application to struc-
tural health monitoring. The problem setup includes collecting
a series of diagnostic image data and estimating spatio-
temporal signal of the underlying damage from this noisy
data. Such problem formulation in itself is novel in SHM, even
apart from the new estimation approach used. We demonstrate
estimation of the underlying damage from experimental SHM
data.

Section II gives a mathematical formulation of the estima-
tion problem. Section III describes the specialized interior-
point method for this problem. Section IV discusses selection
of the regularization penalty. Section V verifies the efficiency
and performance of the approach for simulated data with
known ground truth. Section VI validates the approach in SHM
application with experimental data.

II. OPTIMIZATION-BASED FORMULATION

This section introduces the problem formulation.

A. Estimation problem

Consider an observed data set Y comprising a sequence of
Nt diagnostic images Y (t) ∈ <N1,N2 :

Y = {Y (1), ..., Y (Nt)}. (1)

We assume that damage intensity at each spatial location
(pixel) is described by a real number. A truth data set X
comprises a corresponding sequence of underlying damage
maps X(t) ∈ <N1,N2 :

X = {X(1), ..., X(Nt)}. (2)

We assume a linear model of the diagnostic imaging system

Y (t) = BX(t) + e(t), (3)

where B is a linear operator <N1,N2 → <N1,N2 and e(t) ∈
<N1,N2 is the observation noise.

We consider the problem of estimating X from Y . Consid-
ering (3) as an inverse problem and directly solving it for X(t)
while assuming e(t) = 0 does not work for an ill-conditioned
blur operator B. A standard approach is to regularize the
problem with a penalty on the size of nonsmoothness of X .
Such a regularization approach is commonly used in image
processing. We explicitly incorporate the knowledge about the
damage being irreversible, by introducing pixel-wise mono-
tonicity constraints, X(t) ≥ X(t − 1), where A ≥ B means
that Aij ≥ Bij for all i and j.

The truth data set X (2) can be estimated by solving the
following constrained optimization problem:

L =
1
2

Nt∑
t=1

‖Y (t)−BX(t)‖2F +
1
2

Nt∑
t=1

(X(t),RX(t))

+ ρ

Nt∑
t=2

‖X(t)−X(t− 1)‖1 → min (4)

subject to X(t)−X(t− 1) ≥ 0, t = 2, . . . , Nt (5)

where (U, V ) denotes a dot product of the two images U and
V considered as flat vectors, ‖U‖2F = (U,U), and ‖U‖1 is
the `1-norm of U (i.e., the sum of the absolute values of the
pixels).

The first sum in (4) corresponds to the inverse problem of
finding X(t) such that BX(t) = Y (t). This inverse problem is
ill-conditioned (sensitive to noise with high spatial frequency)
and has to be regularized. The regularized problem including
the first two terms in (4) corresponds to spatial Wiener filtering
for each of the images Y (t) separately. The choice of spatial
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regularization operator R : <N1,N2 → <N1,N2 in the second
sum is important; it is discussed in Section IV. The positive
scalar ρ in the third sum scales temporal regularization.

The problem (4)–(5) is a convex QP problem, which has a
single global optimum. One of advantages of such formulation
of the estimation problem is that it works with incomplete data.
(The missing data pixels can be just dropped from the sum of
the squared errors, the first sum in (4) ). Even for a series of
images of a moderate size, the QP problem (4)–(5) becomes
very large. The SHM data example in Section VI has a series
of 24 images 171 × 171 pixels each, which leads to a QP with
about one million of variables and one million constraints.

In a special case, where B and R are identity (or scaled
identity) operators, the problem (4)–(5) separates into N1 ·N2

independent problems of pixel-wise time series regressions
with the monotonicity constraint. Each monotonic regression
problem can be solved independently and efficiently, see [19],
[21]. Such solution does not use any spatial information and
will not be spatially smooth. In this paper we are interested
in the problem that combines the spatial smoothness and
temporal monotonicity.

B. Bayesian estimation interpretation

The QP problem (4)–(5) can be interpreted as a Bayesian
MAP estimate of the form

L = − log P (Y |X)− log P (X) → min . (6)

The first sum in (4) is the data fit error corresponding to the
observation likelihood − log P (Y |X) in (6). The observation
model implied by the first sum in (4) is that the noise e(t)
in (3) is zero-mean identically distributed Gaussian noise
(white noise) independent for different spatial locations and for
different t. The observation model can be easily generalized
to include known spatial or temporal correlations of the noise
e(t).

The last two sums in (4) express the prior likelihood
− log P (X) in (6); they correspond to spatial and temporal
regularization terms. The constraints come from the tempo-
ral part of the prior model. It is assumed that the prior
probabilities are independent: P (X) = PS(X) · PT (X),
where the subscripts indicate the spatial and temporal priors,
respectively. Such separable stochastic models are commonly
used in multidimensional signal processing.

Spatial prior: For the spatial probability structure we use
a Gaussian Random Field (GRF) model which leads to a
quadratic log-likelihood in the spatial prior

− log PS(X(t)) = −1
2

(X(t),RX(t)) + CR (7)

where R is a positive definite operator and CR is a normaliza-
tion constant. One special case of the regularization operator
is

R = r0I, (8)

where r0 is a scalar and I is the identity operator. Another
special case is

R = r1∆, (9)

where ∆ is the Laplace operator. Both identity and Laplace
regularization operators are often used in image processing
problems.

A generalization of identity and Laplace operators is an
operator R with a symmetric positive definite (2K + 1)-
tap finite impulse response (FIR) convolution kernel R =
{rij}K

−K . Such a regularization operator R can be introduced
through a Gaussian Markov Random Field (GMRF) prior
probability structure for the underlying damage. A GMRF
probability structure specifies the conditional probability for
a pixel through its neighborhood and can be expressed in the
form

xjk = r00ejk +
K∑

l,m=−K; l,m 6=0

rlmxj+l,k+m (10)

where ejk are white noise variables. In the context of damage
estimation, the model (10) expresses that a damage at a given
spatial location is correlated with the neighboring location
damages.

Temporal prior: To explain the temporal prior PT (X), we
consider the underlying damage for a single image pixel. We
omit the pixel index in the following discussion. We consider
a first-order monotonic random walk model

x(t + 1) = x(t) + ξ(t), (11)

where ξ(t) is independent process noise with an identical
exponential distribution

pξ(x) =
{

e−x/ρ, x ≥ 0
0, x < 0.

(12)

The increments ξ(t) have zero probability of being negative.
This model reflects the fact that the damage is accumulating
irreversibly. Such a monotonic damage accumulation model
corresponds to the Palmgren-Miner rule used in mechanical
damage analysis. The reader is referred to [19], [21] for more
details and references.

The temporal prior probability for the pixel can be expressed
as a product of the independent probabilities of the increments
(we assume that no prior for x(1) is available)

− log PT ({x(1), . . . , x(N)}) =

−
N∑

t=2

log pξ(x(t)− x(t− 1)) = ρ

N∑
t=2

|x(t)− x(t− 1)|, (13)

In accordance with (12), the second equality holds subject to
x(t)−x(t−1) ≥ 0. By adding up the prior terms of the form
(13) for all pixels in the image, we obtain the last summation
term in (4).

C. Problem structure

In what follows, we consider the filter described by the QP
problem (4)–(5). We consider R and ρ as tuning parameters
of the filter without resorting to the MAP interpretation. This
paper considers blur operator B and the regularization operator
R that are FIR convolution operators. This problem structure
allows for efficient solution.
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If an image U is considered as a flat vector, the FIR
operators B and R correspond to sparse square matrices of
compatible size. Multiplying by such matrix (even in a sparse
matrix form) is inefficient for a large image size. The imaging
blur operator B can be efficiently applied as a 2-D convolution

BX(t) = B∗∗X(t), (14)

where B is a spatially-invariant FIR (finite impulse response)
PSF (point spread function) kernel of the blur. The notation
∗∗ in (14) stands for two-dimensional convolution. We assume
that one of the standard image processing approaches to
boundary condition handling in convolution is used; see, e.g.,
[14], [18], [35] for more details on these approaches.

For the model (10), the spatial regularization operator R in
(4) has the form

RX(t) = R∗∗X(t), (15)

where R is a non-causal 2-D FIR convolution kernel with
a maximum tap delay K and entries rlm. A necessary and
sufficient condition for (7) to represent a valid probability
density function is that the 2-D FIR convolution kernel R
is symmetric and positive-definite [34]. Section IV considers
the selection of the kernel R (filter tuning) in more detail.
The scaled identity operator (8) is a convolution operator with
K = 0. The Laplace operator (9) corresponds to K = 1,
r0,0 = r1, r1,0 = r−1,0 = r0,1 = r0,−1 = −r1/4 and other
entries rij = 0.

III. A SPECIALIZED LARGE-SCALE QP SOLVER

This section describes an interior-point method for solving
the problem (4)–(5). Our approach is based on truncated
Newton method. Such methods were earlier used for image
enhancement, deconvolution, and deblurring, e.g., see [40].
The success of the method critically depends on finding a
preconditioner that gives an effective trade-off between the
computational complexity and the accelerated convergence.
The new contribution in this section is in establishing the
preconditioner and in demonstrating how the specific structure
of the problem (4)–(5) can be otherwise exploited to reduce
the computational complexity and the memory requirements
of the solution method.

With some abuse of notation we consider the images
X(t) and Y (t) as flat vectors in <M obtained by stacking
all M = N1N2 image elements (pixels). Instead of the
decision vector X = (X(1), . . . , X(Nt)) ∈ <N , where
N = NtN1N2, in (4)–(5), we introduce a new decision vector
Z = (Z(1), . . . , Z(Nt)) ∈ <N , where

Z(1) = X(1), Z(t) = X(t)−X(t− 1), t = 2, . . . , Nt.

The inverse variable transformation is X(t) =
∑t

k=1 Z(k).
This can be represented as X = LZ, where L is a sparse
lower block-triangular matrix.

In terms of these new variables, (4) is equivalent to finding
Z(1), . . . , Z(Nt) ∈ <M that solve

G(Z) = Ψ(LZ) + ρ

Nt∑
t=2

Z(t) → min (16)

subject to Z(t) ≥ 0, t = 2, . . . , Nt, (17)

where

Ψ(X) =
1
2

Nt∑
t=1

(‖Y (t)−BX(t)]‖2 + X(t)T RX(t)
)

If Z? solves the problem (16)–(17), then X? = LZ? solves
the original problem (4)–(5).

A. The barrier method

The logarithmic barrier for the nonnegativity constraints
(17) has the form

Φ(Z) = −
Nt∑
t=2

M∑

i=1

log Zi(t), (18)

The logarithmic barrier function (18) is smooth and convex in
its domain. We augment the objective function (16) with the
barrier function (18) to obtain

φτ (Z) = τG(Z) + Φ(Z), (19)

where τ > 0 is a barrier weight. The augmented function
φτ (Z) is smooth, strictly convex, and bounded below, and so
has a unique minimizer Z?(τ) ∈ <N . The set {Z?

τ | τ > 0}
defines a curve in <N , parameterized by τ , which is called
the central path. The minimizer of (19) is no more than N/τ -
suboptimal, so the central path leads to an optimal solution.
See [8, §11] for more on the central path and its properties.

In a classic primal barrier method, the barrier subproblem
that finds the minimizer of (19) is solved for an increasing
sequence of values of τ until N/τ is smaller than the required
tolerance. Standard references on interior-point methods in-
clude [43], [44], [62], [63].

B. A truncated Newton interior-point method

For solving the large-scale QP problem (16)–(17) we use a
truncated Newton method (also known as a conjugate gradient
Newton method) [51], [12]. This is a modification of the bar-
rier method with the search direction computed approximately,
using a PCG method.

The most computationally expensive part of the method is
related to operation with the Hessian H = ∇2φτ (Z) ∈ <N,N

of the augmented objective function (19). The Hessian has the
form

H = block diag(diag(Z(1)), . . . , diag(Z(Nt)))
+ τLT block diag(BT B + R, . . . , BT B + R)L(20)

We will not go into the details of the PCG algorithm,
and, instead, refer the reader to [52], [44]. An important
part of the PCG is choosing a preconditioner P ∈ <N,N , a
symmetric positive definite linear operator that approximates
the Hessian H . We use a diagonal preconditioner P, which
retains all diagonal entries of H. Such a preconditioner retains
the Hessian of the logarithmic barrier (the first matrix in the
sum (20)).

The PCG algorithm needs a good initial search direction and
an effective truncation rule. As an initial search direction, we
use the search direction from the previous step. The truncation
rule for the PCG algorithm gives the condition for terminating
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the algorithm when either the cumulative number of PCG steps
exceeds the given limit Npcg, or the gradient is less than
the relative tolerance εpcg. We change the relative tolerance
adaptively as

εpcg = min {0.1, ξη/‖g‖2} , (21)

where η is the duality gap at the current iteration and ξ is an
algorithm parameter. The choice of ξ = 0.01 appears to work
well for a wide range of problems. In other words, we solve
the Newton system with low accuracy at early iterations, and
increase the accuracy as the duality gap decreases.

C. Complexity and performance

Each iteration of the PCG algorithm involves a handful of
inner products, the matrix-vector product Hp with p ∈ <N

and a solve step with the preconditioner P in computing P−1r
with r ∈ <N . The solve step P−1r can be computed in O(N)
flops, since P is diagonal.

The most computationally expensive operation for a PCG
step is the matrix-vector product Hp with p ∈ <N . In accor-
dance with (20), this can be done without actually forming
matrix H. Operators L and LT can be applied by computing
cumulative sums; operators B, BT , and R, by computing two-
dimensional convolutions of each image Z(t) in the series with
the FIR kernels B and R. Each of these operations takes O(N)
flops.

The memory requirement of the truncated Newton interior-
point method is modest, so the method is able to solve
very large problems, for which forming the Hessian H, let
alone computing the search direction, would be prohibitively
expensive. The runtime of the truncated Newton interior-point
method is determined by the product of s, the total number of
PCG steps required over all iterations, and the cost of a PCG
step. In extensive testing, we found that the total number of
PCG steps ranges between a few hundred and several thousand
to compute a solution with a relative tolerance of 0.01.
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Fig. 1: Computation time (in seconds) depending on the problem size
for the proposed solver and Mosek

The performance of a Matlab implementation of the trun-
cated Newton interior-point method described above is illus-
trated in Figure 1. A series of the QP problems (4)–(5) were

solved for different N1, N2, Nt. The detailed formulation
of the problem is the same as discussed in Section V. The
logarithmic plot shows dependence of the solution time (in
seconds) on the problem size N = N1 ·N2 ·Nt. The shallow
curve describes the near-linear computational complexity of
the developed method, while the steeper one a near-quadratic
complexity of obtaining the solution using the Mosek QP
solver [41]. Note that for very small problems Mosek, with
its optimized C/C++ implementation, performs faster than the
simple Matlab implementation of the proposed method. For
large problems, the Matlab implementation is much faster. On
our test PC with 2 Gb RAM, Mosek runs out of memory for
N ≈ 20 · 103. The proposed method was tested and works
well for up to N ≈ 20 · 106.

IV. TUNING REGULARIZATION OPERATOR

In the optimization problem (4)–(5) for a given model (3)
we need to tune the spatial filtering (the operator R) and
the time-domain filtering (the scalar ρ). As with the time-
domain monotonic regression problem discussed in [19], [21],
the parameter ρ can be set, based on (11)–(12), to a ratio of
the standard deviations of the noise and the signal.

We consider the FIR convolution kernel R in (15) as
a filter design parameter. Our approach to choosing R is
related to passband equalization by Wiener filtering; an added
requirement is that R has a fixed FIR structure. Linear
multidimensional control and filtering problems, which are
related in spirit, are considered in [20], [22], [23], [24].
These prior papers design weights of linear multidimensional
filters. Herein, we consider a different problem of designing
regularization penalty in the optimization formulation.

A. Tuning requirements

Consider the spatial response of the proposed filter, steady-
state in time to a steady state input X(t) = X∗. Substituting
X(t) = X∗, Y (t) = Y∗, and N À 1 into (4) and removing
the inactive monotonicity constraints (5) leads to a steady-state
optimization problem

1
2
‖Y∗ −BX‖2F +

1
2
(X,RX) → min (22)

To obtain an optimal estimate X , we assume that Y∗ =
BX∗ + e∗, where e∗ is the steady state (spatial) noise.
Substituting this into (22) and solving for X yields

X =
[
I− (BT B + R)−1R

]
X∗ + (BT B + R)−1BT e∗, (23)

The first term in (23) describes recovery of the steady state
signal and the second term describes the noise amplification.
The design goal is to find an optimized tradeoff between the
two goals: the recovery error gain (BT B+R)−1R being small
(which requires R to be small) and the noise amplification gain
(BT B+R)−1BT being small (which requires R to be large).

For an operator R of the form (15) the tradeoff given by
(23) can be conveniently analyzed in spatial frequency domain,
at the cost of neglecting the boundary effects; e.g., see [23],
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[35]). The convolution operator R in (4), (15) can be expressed
through a 2-D optical transfer function

r(v1, v2) = (2π)−2
∑

−L≤k,l≤L

rije
−2πikv1e−2πilv2 . (24)

Similarly, the blur convolution operator B in (14) can be
expressed through a transfer function b(v1, v2). The operator
BT in (23) can also be represented in the convolution form
and corresponds to a complex conjugate transfer function
b(−v1,−v2) = b̄(v1, v2).

In the spatial frequency domain, (23) can be expressed as

xe(v1, v2) =
(

1− r(v1, v2)
|b(v1, v2)|2 + r(v1, v2)

)
x∗(v1, v2)

+
b̄(v1, v2)

|b(v1, v2)|2 + r(v1, v2)
e(v1, v2) (25)

We require that noise amplification gain in (25) is bounded.
The bound e0 has a meaning of signal to noise ratio (the
amplified noise should be below the signal)∣∣∣∣

b(v1, v2)
|b(v1, v2)|2 + r(v1, v2)

∣∣∣∣ ≤ e0. (26)

Spatial filter (23) has the same form as the steady state
spatial filter considered in [23], with R taking place of the
smoothing operator and BT of the feedback operator in [23].
A robust stability condition for the filter is derived [23] and
has the form (26). The robust stability is guaranteed for
|δb(v1, v2)| ≤ 1/e0, where δb(v1, v2) is the transfer function
of the uncertainty in B.

To ensure signal recovery performance in (25), we define the
in-band frequency set as ΩIn ≡ {(v1, v2) : b(v1, v2) > h0}.
The design parameter h0 roughly describes the noise level;
in-band, the system response is above the noise level. In this
band we strive to invert the blur operator and recover the truth
signal x∗ with a minimal distortion level e1:∣∣∣∣

r(v1, v2)
|b(v1, v2)|2 + r(v1, v2)

∣∣∣∣ ≤ e1, {v1, v2} ∈ ΩIn, (27)

Outside the in-band set, the blur operator gain is low, the
noise overwhelms the signal, and the filter has degraded
performance.

The design specifications (26), (27) can be used for tuning
the scalar weights r0 or r1 for the regularization operators
(8) or (9). The tuning can be done by trial and error, using
the plots shown in Figure 3. A more systematic approach to
choosing the regularization operator R is detailed in Appendix.
The approach is to fix e0 (26) and then minimize e1 in (27).
For a symmetric kernel R, the transfer function r(v1, v2) is
real. It is also linear in the design parameters: r0 in (8), r1 in
(9), or rij in (15). We multiply (26) and (27) through by the
denominators, which are positive, to obtain linear inequalities.
After gridding spatial frequencies we obtain an LP problem,
which can be solved efficiently. The described design method
yields the kernel R and the achievable filter performance
parameter e1 for a given blur kernel B. There are two tuning
parameters: noise amplification e0, which roughly corresponds
to the signal to noise ratio, and bandwidth parameter h0, which
roughly corresponds to the noise level. More details on the
design can be found in Appendix.

B. Tuning example
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Fig. 2: Spatial operators in the optimization problem statement.

We illustrate the tuning of the regularization operator, with
a Gaussian blur B the half-width σ of which is 2 pixels. This
example corresponds to the simulation study in Section V
and experimental data in Section VI. The Gaussian blur was
truncated to yield a point-spread function (PSF) operator B
illustrated on the left plot in Figure 2. The noncausal FIR
operator B had a maximal ±6 pixels tap delay along each
spatial coordinate. By assuming a 128 × 128 spatial frequency
grid, the LP (33), (34) was solved to obtain a central symmetric
operator R with maximal L = 2 tap delays (5 × 5 FIR con-
volution kernel), which is shown in the right plot of Figure 2.
The in-band frequency set ΩIn was chosen by considering a
set of grid frequencies where the blur operator gain exceeds
h0 = 0.55 of the maximal (zero-frequency) gain. The maximal
noise amplification gain in (26) was chosen as e0 = 1.2.
The design yields the in-band signal recovery distortion factor
e1 = 0.3393 in (27). The two tuning parameters h0 and e0

were chosen by trials and errors such that the problem is
feasible and a reasonably looking solution can be found.
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Fig. 3: Frequency response specifications for signal recovery (upper
plot) and noise amplification (lower plot). Solid lines - the 5-tap
operator R, dashed lines - R = r0I, dash-dotted lines - R = r1∆.

We also solved the design problem for the regulariza-
tion operators (8) and (9). The optimal scaling factors are
r0 = 0.1736 for the scaled identity operator R = r0I and
r1 = 2.1846 for the scaled Laplace operator R = r1∆.
These designs yield in-band signal recovery distortion factors
e1 = 0.3641 and e1 = 0.3542 respectively.

The three frequency domain designs are illustrated in Fig-
ure 3. The designs are central symmetric and the 2-D transfer
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functions primarily depend on the magnitude
√

v2
1 + v2

2 of the
spatial frequency vector. The upper plot in Figure 3 shows the
estimator signal gain, the magnitude of the first-term transfer
function in (25) for the three designs. The lower plot shows the
noise gain (the magnitude of the second-term transfer function
in (25)).

V. SIMULATION RESULTS

The performance and practical usefulness of the proposed
signal processing approach were verified in simulation. For the
simulated data, the ground truth data (underlying damage) is
available. This allows verifying the performance of the filter.
(Section VI will describe an application to experimentally
collected SHM data.)

A. Simulated data

The simulated data was a series of Nt = 20 images with
N1 = 32 by N2 = 30 pixels. The blur operator B was
modeled as the FIR convolution operator B shown on the left
in Figure 2 and discussed in the example of Subsection IV-B.

We simulated the underlying damage as a series of Nt

images U(t) ∈ <N1,N2 which are zero outside of an el-
liptic domain 6 × 7 pixels in the center of the image and
constant inside this domain. The damage U(t) was pixel-
wise ramped up from zero to the end value U(Nt) over the
middle third of the time interval. The observed data Y (t) (1)
were simulated by blurring U(t) and adding noise e(t) to get
Y (t) = B∗∗U(t)+e(t). The noise e(t) had standard deviation
e0, which were varied in the simulation runs. The last image
Y (t = 20) of a raw data set Y obtained for e0 = 0.4 is
illustrated in Figure 4 (the upper left plot).

The experiments described in the next section involve
similar damage pattern and similar blur.

B. Filtering results

The designed optimization-based filter was implemented
using the interior-point method described in Section III. We
solved the problem with relative accuracy 1%. The solver al-
lows achieving much better relative accuracy, but this accuracy
is more than adequate for practical use. The algorithm was
implemented in Matlab and run on a 2GHz PC. We used η = 1
in the adaptive rule (21).

We compared the results for the following five filters:
F1 This filter uses the regularization operator R in (4)–(5)

designed as in Subsection IV-B. The 5× 5 FIR kernel R
is illustrated on the right plot in Figure 2.

F2 This filter uses the scaled identity regularization R = r0I,
where r0 = 0.1736 was designed as in Subsection IV-B.
The same ρ = 0.2 was used.

F3 This filter uses the Laplace regularization operator R =
r1∆, where r1 = 2.1846 as described in Subsec-
tion IV-B.

F4 This is a simple spatial low-pass filter; it convolves the
noisy images with the blur operator B. This operator has
just the right spatial bandwidth for the filtering since,
since the spatial harmonics of the observed signal outside
of B band mostly contain noise.

F5 A simple spatio-temporal filter. The output of filter
is passed through a pixel-wise EWMA (exponentially
weighted moving average) filter with 0.7 filter factor.

The same time domain regularization parameter ρ = 0.2
was used in filters F1, F2, and F3. The filtering results are
not very sensitive to this parameter. Filters F1, F2, and F3
were tuned as discussed in Subsections IV-A and IV-B.

The filter performance was evaluated by considering the
following two error metrics:

E1 The detection error metric is defined as the ratio of the
recovered signal maximum absolute value outside of the
damage area (where the ground truth signal is zero) and
the mean value of the recovered signal in the damage
area. The ‘outside of the damage area’ is defined as
a complement to the damage domain with the linear
size increased by a factor of

√
3. A simple practical

approach to detecting the damage from the estimate is
by thresholding. This metric describes the extent to which
the recovered damage signal stands above the clutter. This
determines applicability of the thresholding approach.

E2 The tracking error metric is defined as the mean square
error of restoring the underlying damage signal. The error
is computed for the blurred signals as ‖BX−BU‖. This
metric quantifies filter performance for damage trending
and prognostics. Though the stated problem is to remove
the noise and blur from the underlying signal U , we
compare BU and BX . This is because the minimized
loss index (4) includes ‖Y −BX‖, where B is a spatial
low pass filter; the inverse problem is ill-defined. The
filter would make BU − BX small, but would not
necessarily make U −X small.

We studied the dependence of the filtering results on the
signal to noise ratio, by varying the noise standard deviation
e0 in the range from 0.1 to 1; all other parameters of the sim-
ulation and of the estimation filter were fixed. The results of
the study are shown in two tables. Table I shows the detection
error metric E1 depending on the standard deviation e0 of the
observation noise. Smaller E1 indicates better performance,
values above unity indicate that damage cannot be detected.
The four rows correspond to the filters F1, F2, F3, and F4.
All rows show a noticeable error for the small signal-to-noise
ratios (small e0). The error is related to the blurring of the input
signal, and is present irrespectively of the noise. In practice,
damage is commonly detected by thresholding the signal at 0.5
of the maximum value (at 6 dB). Therefore, the detection error
metric E1 should be below the threshold level 0.5. In Table I,
this holds for filter F1 if e0 ≤ 0.1. For the optimization-based
filters F1, F2, and F3, this holds for e0 ≤ 0.4.

Table II shows the tracking error metric E2 computed for the
same simulation as in Table I. Filter F1 with 5-tap R is close
to but slightly worse than filter F3 (Laplacian regularization);
filter F2 (scaled identity regularization) has about 50% larger
error than F1 or F2; and the performance of filters F4 and F5
based on the simple spatial convolution is about twice worse.

Overall, filter F1 provides the best balance of the two
metrics; filter F2 yields the best tracking error metric E2; and
filter F3 provides the best detection error metric E1. The three
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Noise standard deviation e0 0.1 0.2 0.4 0.6 0.8 1
Filter F1 (5-tap R) 0.2579 0.2754 0.2722 0.5252 0.5614 0.7787
Filter F2 (R = r0I) 0.2260 0.2445 0.2439 0.5996 0.7012 0.8254
Filter F3 (R = r1∆) 0.2857 0.3020 0.2926 0.5007 0.5021 0.7636
Filter F4 (convolution with B) 0.4632 0.5952 0.8496 1.0861 1.9305 2.0393
Filter F5 (F4 plus EWMA) 0.4311 0.5064 0.6394 1.2435 1.1961 1.7261

TABLE I: Detection error metric comparison results

Noise standard deviation e0 0.1 0.2 0.4 0.6 0.8 1
Filter F1 (5-tap R) 3.0598 3.3861 3.7380 4.1272 4.6145 5.2035
Filter F2 (R = r0I) 4.0542 4.3209 4.6503 4.8576 5.3247 5.7649
Filter F3 (R = r1∆) 2.8182 3.1618 3.4735 3.9690 4.4600 5.1363
Filter F4 (convolution with B) 4.1964 5.5598 8.6145 11.8626 15.7361 19.5784
Filter F5 (F4 plus EWMA) 6.2828 6.6329 7.4085 8.6174 9.2635 12.0161

TABLE II: Tracking error metric comparison results

Fig. 4: Last image in raw data (upper left plot), for F1 filter (upper
right), for F5 (lower left), B∗∗U(Nt) (lower right). The surfaces show
the damage estimates depending on the spatial location coordinates
(in inches).

optimization-based filters F1, F2, and F3 perform much better
than the simple filters F4 and F5. The EWMA filtering in
F5 somewhat improves performance compared to filter F4 for
measurement noise with e0 = 0.6 and larger. Adding EWMA
to filter F4 is unhelpful for smaller noise levels.

The Laplacian regularization (filter F3) might provide the
best balance of the complexity and performance. Two notes are
in order in that regard. First, the above results were obtained
for an optimally tuned Laplacian penalty. Selecting an arbitrary
penalty weight does not guarantee the performance. Second,
the results of this section were obtained for a specific Gaussian
blur kernel. For a more demanding blur operator, a higher
order regularization operator R might be necessary.

Filter performance is illustrated in Figures 4 and 5. The
simulated signal U(t) included two features. The first feature
had 31 central pixels with value 1. The second feature had 12
pixels with value 0.5 near the corner of the domain. Features
were ramped up at different times (see Figure 5). The signal
U(t) was blurred with a Gaussian kernel B with the width of
2 pixels; a white observation noise with standard deviation 0.4
was added. With the peak-to-peak magnitude of signal U(t)
being unity, this correspond to a signal-to-noise (S/N) ratio
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Fig. 5: Temporal responses for the middle pixel of the first feature
(upper plot) and the middle pixel of the second feature (lower plot).
Filtering with F1 (solid line), with F5 (dash line), and the blurred
signal B ∗∗U(t) (dash-dotted line).

close to one.
The last image Y (Nt) for simulated raw data is shown in

the upper left plot on Figure 4. The last image corresponds to
fully ramped up signal U(t). The upper right plot shows the
last estimate X(Nt) for filter F1; the lower left shows similar
results for F5; and the lower right plot shows the blurred signal
B∗∗U(Nt) with no noise added. We show B∗∗U(Nt), rather
than U(Nt) because the high-frequency information beyond
the bandwidth of B is lost when recovering X . Since B is a
good low pass filter, the blurred signal B∗∗U(Nt) should have
about the same frequency content as the recovered X . Note
that metric E1 in Table I uses the mean value of the signal
in the damage area, which is about three times smaller than
the peak value. It also uses the maximum value of the noise
signal over all scans, which is larger than the value seen in
the plots on Figure 4.

One can see that the optimization-based filter F1 recovers
well both features in the underlying (blurred) signal. For the
simple spatio-temporal smoothing filter F5, the second feature
is below the noise level of the recovered signal (defined as
150% of maximum noise value). Figure 5 snows signal and
estimate time series at the middle pixels of the first and second
features. By design, nonlinear filter F5 suppresses the smaller
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second feature more than the larger first feature.

VI. SHM APPLICATION RESULTS

This section discusses an application of the proposed ap-
proach to an SHM system in a laboratory experiment setting.
The first goal of the section is to illustrate how the approach
can be applied in practice, what steps are involved. We also
put the approach in perspective of the existing SHM literature.
The second goal of the section is to show that the approach
provides practically useful damage estimates. There is no
certainty that the SHM system output increases monotonically
with damage. However, we assume that the underlying damage
is monotonic (irreversible) and attribute any deviation from
monotonicity to measurement errors.

A. SHM test data

The experimental data was collected with a commercial
SHM sensing system developed by Acellent Technologies
and previously demonstrated in a variety of structural health
monitoring applications [5], [6], [7], [46]. The overall setup
of the experimental data collection and processing is reflected
in Figure 6. The two upper blocks correspond to transducers,
electronics, and software of a commercial SHM system used
in the experiments. We considered this SHM system as a
black box capable of producing a snapshot diagnostic map.
In experiments, we collected and accumulated a series of the
diagnostic maps (lower left block) and then processed the
collected series using the algorithms described in the earlier
sections of the paper (the lower right block).

Fig. 6: Data processing in the experimental system.

A variety of SHM and NDE (nondestructive evaluation)
systems exist. These systems are based on different physical
principles and employ a variety of proprietary signal process-
ing algorithms. The main envisioned practical application for
the proposed approach is for estimating structural damage
from an accumulated time series of the diagnostic maps
produced by SHM or NDE systems.

B. Ultrasonic SHM systems

The Acellent SHM system detects and locates structural
defects using piezoelectric ceramic disc to transmitted and

received ultrasonic signals in a so called pitch-catch config-
uration [30]. The transducers are distributed on the surface
of the structure and connected to a portable diagnostic unit
comprised of sensor/actuator amplifiers, filters, a function
generator, data acquisition card, and a laptop computer with
diagnostic software. Each transducer is driven with a pre-
selected signal, typically a modulated sinusoidal tone burst,
so that elastic waves are generated and propagate through the
structure to be recorded by neighboring transducers acting as
sensors. The received signals are compared with a previously
recorded baseline signal to identify the locations and extents
of structure properties changes. The changes are considered
indicative of damages or other structural anomalies; the results
are reported out as a smoothed damage map estimate.

Fig. 7: Flat composite panel with 49 sensors.

The system uses elastic waves, primarily in the form of
Lamb waves, see for example [50], [60], for integrated struc-
tural health monitoring. A deeper discussion or various aspects
and operation principles of such systems can be found in [3],
[10], [13], [28], [30], [47]. Very few such integrated systems
are avaliable commercially. The reader is referred to [5], [6],
[7], [46] for more technical details on the Acellent SHM
system. Consistent with the formulation of aircraft monitoring
problem in [25], [59], we used the output of the system as a
black box.

C. SHM test data
To collect the data, tests were performed on a 1.2 m × 1.2m

flat composite panel 13 mm thick. The panel was instrumented
with 49 transducers placed in a 7 x 7 grid with 178 mm
spacing. Damage was induced in the panel through consecutive
impacts, using equal blows that that were calibrated to produce
barely visible impact damage (BVID) by adjusting the drop
height of the dead load. The blows were repeated nine times
at the same location; see Figure 7. Using an environmental
chamber to control the temperature of the panel, the data was
collected between the impacts at two different temperatures
20◦C and 40◦C.

Environmental effects, such as temperature differences,
cause additional changes in the sensed signals, and can con-
found damage detection schemes. The effects of temperature
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variations on guided wave SHM systems has been considered
by others, see, e.g., [33], [36], [47]. Thermal calibration
techniques utilizing multiple baselines collected at various
temperatures can be employed to mitigate these effects, but
still leave a residual error. Outdoor structures and vehicles, es-
pecially aircrafts, are subject to a range of temperatures many
times larger than could be enacted in the study. To emulate the
temperature-induced error, only a partial thermal compensation
was applied in the data processing (over a range of operating
temperatures from 25◦C - 35◦C). The diagnostic images were
collected outside the range and therefore are influenced by
environmental variation. The images are illustrated in Figure 8.
The horizontal axes show panel coordinates in inches, the
vertical axis is damage indication in relative intensity units.
(Unit damage is well visible). There is a visible temperature-
caused variation between the left (20◦C) and right (40◦C)
images.

Fig. 8: Diagnostic images collected at 20◦C and 40◦C after 3, 6 and
9 impacts. The surfaces show damage estimates (in relative units)
depending on the spatial coordinates (in inches).

The initial data set obtained in the experiments contains 8
pairs of images with 171 × 171 = 29,241 pixels each. We
used a bootstrapping-like method to increase the number of
images in the sequence and create a more realistic emulation
of the random temperature swings. From a single pair of the
images {Y20(t), Y40(t)} obtained for the same panel damage
at two different temperatures we created nb > 2 samples.
We then computed linear interpolations of the two images to
approximate data for nb in-between temperatures:

Y (τ) = aτY20(t) + (1− aτ )Y40(t), (k = 1, . . . , nb), (28)

where τ = nbt + k, (k = 1, . . . , nb) is the time index of
the generated data set and aτ are random variables uniformly
distributed on the interval [0, 1]. We assumed nb = 3: three
scans were generated according to (28) for each damage state.

As Figure 8 illustrates, the environment variation is about
25% of the maximum signal (compare the size of the side lobe
in the lower right plot with the central peak).

D. SHM filtering results

The underlying damage maps X(t) were estimated from
the observed data Y (t) by solving the QP problem (4)–(5)
for optimization-based filtering. Blur kernel B was not known
exactly; it was approximated by a Gaussian kernel of width 2.
The tuning parameters of the filter were the same as described
in Subsection IV-B. For the noise amplification gain tuning
e0 = 1.2, the design is robust to 1/e0 (about 80%) uncertainty
in the blur operator (see Subsection IV-B).

The filter (4)–(5) implicitly assumes white observation
noise. Figure 8 indicates that the noise is in-fact a low-pass
noise. Thus, the designed filter could be overly conservative
on high spatial frequencies. Such design has an increased
robustness to high-frequency uncertainty of the blur operator,
which is desirable. A discussion on choosing the temporal
regularization parameter ρ can be found in [19], [21]. We used
ρ = 0.01.

The proposed filtering approach was applied to the test data
set illustrated in Figure 8. The raw images in Figure 8 show
the SHM system response. In experiments we know that, in
fact, the damage is concentrated in a single spot. The filtering
results are shown in Figure 9. The displayed images are X(t)−
X(1) for the filter (4)–(5). (We assume that initially there
is no damage and subtract the baseline.) The right plots in
Figure 9 show the filtered data X(t) − X(1). The left plots
shows the test data Y (t). The right plots in Figure 9 have a
single peak, which accurately recovers the damage location.
The restored signal looks blurred because the filter cannot fully
restore the high-frequency harmonics of the underlying signal
with B being a good low pass filter. In fact, the underlying
damage might have sharper boundaries.

The SHM system measures the damage indirectly, by ob-
serving the changes in ultrasonic wave propagation compared
to an initial baseline state. It would be desirable to compare
the filtered SHM data with the ground truth data. Though
the ground truth is not fully known, it is partially known.
In the experiments, the damage of the composite panel is
concentrated at the panel center. The damage includes surface
indentation and some debonding/delamination of the surface
layers of the composite. The damage increases after each
blow and remains constant between the blows. The filter
output matches this prior knowledge. The proposed nonlinear
filtering scheme substantially improves the quality of the
damage estimate by removing the phantom damage at multiple
locations on the plate.

VII. CONCLUSIONS

We have considered estimation of a time series of images
pixel-vise monotonic in time. The problem is motivated by
structural health monitoring; the damage accumulating in a
structure needs to be distinguished from the noise (scatter).
We have formulated the estimation problem as optimization
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Fig. 9: Filtering results for the test data set. The surfaces show
damage depending on the spatial coordinates (in inches). The left
plot shows original data at several time instances, the right plots
shows the corresponding filtered signal data.

of a regularized loss index and proposed a method for tuning
the spatial regularization operator.

The estimation with monotonicity constraints leads to a
large-scale structured QP problem. We developed an interior-
point method for solving large-scale QP problems of this
type. Our simple Matlab implementation can handle quadratic
programs with several million variables and constraints in a
few tens of minutes on a PC.

We have verified the approach in a simulation study and
showed that it performs well for signal to noise ratio above
unity. We have also validated the approach by applying it to di-
agnostic images of structural damage obtained in experiments.
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APPENDIX

In designing the convolution regularization operator R, we
look for a symmetric solution such that r(v1, v2) is real and
positive (this ensures the operator R is positive semidefinite).
Since r(v1, v2) ≥ 0, the denominators in (26), (27) are

real positive. Thus, the design specifications (27), (26) can
be multiplied by the denominator and presented as linear in
r(v1, v2) inequalities:

0 ≤ r(v1, v2) ≤ s|b(v1, v2)|2, (v1, v2) ∈ ΩIn, (29)
|b(v1, v2)| ≤ e0|b(v1, v2)|2 + e0r(v1, v2) (30)

where s = e1/(1− e1) will be considered as a slack variable.
Following [22], [23], a general symmetric kernel R can be

presented as a linear combination of elementary symmetric
kernels to yield a real transfer function of the form

r(v1, v2) = pT (v1, v2)r̄, (31)

where r̄ ∈ <K is the vector of the design parameters and
the components of the vector p(v1, v2) ∈ <K are transfer
functions of the elementary symmetric kernels. The specific
form of p(v1, v2) in the linear expansion (31) depends on the
chosen family of the parametric kernels.

The symmetry types for 2-D operators are discussed, e.g.,
in [35]. In the example below, we assume a 8-fold symmetry:
rm,n = r−m,−n = r−m,n = rm,−n = rn,m = r−n,−m =
r−n,m = rn,−m. The elementary symmetric kernels of a
convolution operator with a given maximum tap delay are
described in [22], [23]. The transfer function can be presented
in the form (31) with K = 1 for the simple regularization
operators (8) and (9). For the scaled identity regularization
operator (8) r̄ = r0 and p(v1, v2) = (2π)−2. For the scaled
identity regularization operator (8) r̄ = r1 and p(v1, v2) =
(2π)−2(sin2 πv1 + sin2 πv2), the optical transfer function of
the Laplace operator.

Introduce the decision vector x ∈ <K+1 combining r̄ and
the slack variables

x = (s, r̄), (32)

By using (29), (30) and (32) we obtain the following con-
strained optimization problem

s → min, (33)
subject to c(v1, v2) + DT (v1, v2)x ≥ 0, (34)

where the vector c(v1, v2) and the matrix DT (v1, v2) collect
the linear inequalities expressing the problem (29)–(32). One
can introduce a grid of the frequency points and consider the
inequality constraints (34) on the grid only. The problem (33),
(34) then becomes a linear program with a large number of
constraints and K + 1 decision variables (32) that can be
efficiently solved by an off-the-shelf LP solver. The optimal
decision vector x (32) defines the regularization operator R in
accordance with (31).
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