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On the Persistency of Excitation
in Radial Basis Function Network
Identification of Nonlinear Systems

Dimitry Gorinevsky, Member, IEEE

Abstract— We consider radial basis function (RBF) network
approximation of multivariate nonlinear mapping as a linear
parametric regression problem. Linear recursive identification
algorithms applied to this problem are known to converge,
provided the regressor vector sequence has the persistency of
excitation (PE) property. The main contribution of this paper
is formulation and proof of PE conditions on the input variables.
In the RBF network identification, the regressor vector is a
nonlinear function of these input variables. According to the
formulated condition, the inputs provide PE, if they belong to
domains around the network node centers. For a two-input
network with Gaussian RBF that have typical width and are
centered on a regular mesh, these domains cover about 25% of
the input domain volume. We further generalize the proposed
solution of the standard RBF network identification problem and
study affine RBF network identification that is important for
affine nonlinear system control. For the affine RBF network, we
formulate and prove a PE condition on both the system state
parameters and control inputs.

[. INTRODUCTION

PPROXIMATION of nonlinear mappings has recently

attracted much attention of the control community in
the context of nonlinear system identification. The approxima-
tion issues have been addressed by applying artificial neural
network (ANN) approaches, as well as by fitting linearly
parameterized nonlinearities to input/output data. This paper
considers radial basis function (RBF) approximation methods
that belong to the intersection of the two mentioned classes of
approaches {4], [5], (271, [35].

It has recently been acknowledged that in many problems
spatial filtering and approximation accuracy properties of RBF
networks are advantageous as compared to other methods,
including multilayered perceptron networks [5], [6], [16], [19],
[22], [26], [35]. Even more important for many applications,
the RBF networks provide approximation linear in the network
weights. This feature makes powerful tools of the linear
system theory applicable to the RBF network identification
of nonlinear systems.

The RBF network approximation can be represented in
the form of a linear parametric regression, as a product of
a parameter matrix and a regressor vector. The parameter
matrix comprises the network weights, and the regressor
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vector components are nonlinear radial functions of inputs.
Linear identification algorithms are known to converge to the
correct estimates of the regression parameter matrix, if the
regressor vector sequence satisfies the persistency of excitation
(PE) condition; e.g., see [11]. This condition is formulated
mathematically in Section III. The physical interpretation of
the PE condition is that the regressor vector sequence spans
the full dimension of the input parameter space.

In the RBF network identification, unlike the linear identifi-
cation, the regressor vector depends on the system inputs in a
nonlinear way, and it is difficult to formulate the PE conditions
on the network inputs. The PE conditions are very important
for RBF networks application, as they provide the theoretical
background for the analysis of the identification algorithm
convergence. The only formulation of the PE condition for
RBF network identification known to the author, however, is
given in [36]. This condition is very restrictive, as it requires
the inputs to coincide with the network node centers.

In this paper, we consider two RBF network architectures.
The first is a standard RBF network, and the second one is
an affine RBF network useful for approximating nonlinear
controlled systems that are affine (linear) in the control compo-
nents. We present and prove conditions on the input sequence
to provide PE for both standard and affine RBF networks.
These PE conditions are more practical than the condition of
[11]. The results presented in this paper can be used as a basis
for the convergence analysis of RBF network-based algorithms
for identification and adaptive control of nonlinear systems.

The paper outline is as follows.

Section II gives a general formulation of recursive al-
gorithms for RBF network identification. This section also
presents the basics of the RBF network approximation.

Section III presents our results on the persistency of exci-
tation for the standard RBF network identification.

In Section IV, we consider RBF network approximation of
controlled dynamical systems. We distinguish between two
types of inputs: state parameters and control inputs. The
approximation is affine in the control inputs and nonlinear
in the state parameters. We formulate the PE conditions that
simultaneously include both types of inputs.

II. RADIAL BASIS FUNCTION APPROXIMATION

Let us consider the problem of approximating a smooth
nonlinear mapping R» — RV

Y=f(p): Ye R peEPC RNp 8))
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where p is an input parameter vector, P is a compact domain,
and Y is an output vector. We assume that a scattered
(irregularly placed) set of NV; input—output pairs is available
and call this set the training data set

(YO =l pP},  G=1-.N). (@

The problem is to find an approximation ¥ = f (p) of the
mapping (1) value for any argument p € P.

A. Exact RBF Interpolation

The most convenient way of representing an unknown
nonlinear function is to present it as an expansion. The
expansion is linear in parameters that are assumed to be
unknown. Let us consider an approximation of the mapping
(1) that has the form

N,
Y = f(p) =) 29w, (p) 3)
j=1

where N, is the order of the expansion, w;(p) are scalar
expansion functions, and Z() € Rv are the expansion pa-
rameters. The truncated Fourier series expansion, polynomial
expansion, and B-spline expansion all have the form (3). In the
ANN literature, approximations of the form (3) are known as
functional link networks [4], [29], and we further call vectors
ZU) the network weight vectors.

Given the expansion functions w;(p) (3), a standard way to
solve the scattered data approximation problem is to choose
the parameter vectors Z() by fitting expansion (3) to the data
(2) with a least error. In the special case N, = N,;, when the
number of the expansion weight vectors (3) coincides with the
number of the training set data pairs (2), one can generally fit
the training data exactly.

In this paper we consider an expansion of the form (3) with
functions w; () that depend on the radii 7; = ||Q/)~p||, where
QU) € RN» are given vectors. Such expansion is known under
the name of RBF approximation. RBF approximation has been
used in computer graphics and experimental data processing
applications (e.g., geophysical data) for two decades and has
been demonstrated to provide for a high quality of approxi-
mation. One can find further details and references in [7]}-[9],
[23], [33], and [34]. The cited papers employ the method
recently referred to as an exact RBF interpolation. This method
uses the radial functions centered at each of the data points
(2). In this method, the radial function centers are Q) = p(i),
and the expansion functions in (3) have the form

w;(p) = h(p - p) 4)

where h(:) is a radial function, i.e., h(p — p7)) depends on
the radius ||p — p®¥?||. Some most commonly used radial basis
functions are

h(p) = exp(—||p|i*/d);
h(p) = (1 +[lp||*/d*)"/*:
h(p) = (L +|lpl|*/d*)~"/? 5)

where || - || denotes the Euclidean vector norm. The first radial
function in (5) is Gaussian, and the last two are called Hardy
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multiquadrics and reverse multiquadrics, respectively [23].
Usually, the radial function width parameter d in (5) is chosen
to be about an average distance between the neighboring node
centers [2], [7], [8], [34].

Let us introduce the data matrix Y and the parameter matrix
© built of vectors (2) and (3)

Y = [Y(l). o _Y(Nr)] € pN-Ne
@:[Z(l)_’....Z(Na)] e§RNyvNa. (6)

In the exact RBF interpolation we have N, = N;. By
substituting (3) and (4) into (2), and using (6), we can write
the condition of the exact fit of training data Y (p)) = V@)
in the matrix form

Y =0H, H={h(p® —p)N_ erNN (1)

The symmetrical matrix H in (7) is called interpolation
matrix. This matrix has been proved to be invertible for the
commonly used radial functions, if the vectors p{) are distinct
[25]. With (3), (6), and (7) we obtain the interpolation of the
mapping (1) of the form

Y =f(p) = YH‘lﬁ(p)'
h(p) =col({h(p — pP)} 1)) € RN, ®)

It has recently been acknowledged that RBF interpolation
minimizes a certain regularization performance index that
describes the interpolated surface roughness [7], [32], [33].
Different forms of radial functions (5) correspond to mini-
mization of different regularization indexes.

Note that approximation (8) is linear in the data vectors y®
(6). Thus, the computational complexity of the method remains
moderate even for a large dimension N, of the vector Y.

The exact RBF interpolation (8) is global in the sense that
it has the same form for any p € P. One needs to complete
the most computationally expensive part of (8)—inversion of
matrix H (7)—only once for any number of points, where
approximation (8) of function (1) is to be computed. Yet, this
advantage cannot be used if the training set (2) grows with
time.

B. RBF Network Approximation

Recently, some authors have treated the RBF approximation
in the connectionist network setting [1], [19], [24], [26],
[301-[32]. They consider the radial function centers Q) (we
will call QW) the network node centers) that do not coincide
with the training set points, so that the expansion functions in
(3) have the form

w;(p) = h(p— QY),
Suppose that the node centers Qu), (j =1,---N,) are
given and fixed vectors. Let us fit the training set data (2)
using network (3). Employing the same notation (6) as in (7),
we can represent the fitting problem in the regression form

Y =004+e, @ = (hp® - Q)N e mYN (10)

(7: lv-Na) (9)

where £ = [e), .- V)] € RNoNt s a residual error
matrix. Since we cannot be sure that ® is a well conditioned
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or even a full rank matrix, we will look for a regularized least
square solution to (10) that minimizes

I€]I% + «||®]|% — min. O<axkl (11)

where || - || denotes a matrix norm equal to the square root
of the sum of the squared matrix entries (the Frobenius norm).
In (12), v is a scalar regularization parameter, introduced to
obtain solution of possibly ill-conditioned problem following
the regularization technique of [37]. The parameter «v is small
and does not influence the solution if the problem is well
conditioned. Solving (10) and (11) for © gives

O =Yd (aly, +067)! (12)

where I, is the NV, x N, identity matrix.

If N; > N, and the training set inputs p) are uniformly
distributed in the input domain, matrix ® should have a rank
N, because basis functions (9) are linearly independent. The
condition that ® has the full rank is called the PE condition.
The discussion of the PE condition is the main topic of this
paper, and for the network (3), (9) we formulate the PE
condition in Section III.

As the exact RBF interpolation is known to yield very
accurate results, one can expect that an RBF network with
fixed centers can provide good approximation accuracy. More
discussion of the properties of the RBF network with nodes
placed on a uniform grid can be found in [35]. The idea
discussed in [35] and theoretically studied in more detail in
{34] is that an RBF interpolation on a uniform grid performs
a spatial filtering of the approximated function. Thus, the
RBF approximation error is small, if the function has small
high-frequency contents.

C. Recursive Identification of the RBF Model

Equation (12) describes the computation of the network
parameter matrix © with the method that is called batch
learning in the ANN literature. This method assumes that
the whole training data set (2) is available at once. In many
practical situations, however, the training data pairs arrive one
by one, and a recursive weight updating procedure is desirable.
The recursive weight update enables the user not to keep track
of all upcoming data, but rather modify the parameter matrix ©
as the new data arrive. This feature is especially important for
RBF network-based nonlinear adaptive control applications.

We can apply a well-known recursive least squares (RLS)
equivalent of (12) to update an already available estimate of
the matrix © (6). Let us introduce a regressor vector

O(p) = col({h(p = QV)}2,)

and denote &%) = &(p*)). The vectors ®*) are the columns
of the regression matrix ® (10). Let ©*) be an estimate of
© available at step k. The RLS identificator has the following
standard form [11]

QU+ 2 G 1 (K)o plk) 1)
ok —y () _ k)l

P+ = p) _ (0 p) g g k)" plk) 15(k).
g = (1 + oW @B p) k)1

(13)

(14)
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where, as usual, ¢(*) is the kth step prediction error, P*) is
the inverse covariance matrix, and g‘*) is an auxiliary variable.
For a*) = 1 and the initial condition P(©) = a~1Iy . (14)
is equivalent to (12). The deadzone parameter a(*) can be
introduced in (14) in the usual way to provide robustness with
respect to the imprecise modeling and measurement noise; e.g.,
see [11} for more detail. The dimension of the covariance
matrix P*) is N, x N,. This dimension does not depend on
the dimension NV, of the output vector Y. Since there are no
matrix inversions in the RLS update (14), it is feasible for a
relatively large network size N,,.

Papers [4] and [5] consider an application of the orthog-
onal least square modification of the RLS algorithm to RBF
network approximation. Papers [5] and [22] consider modifi-
cations of the RLS identification of an RBF network for the
cases of dynamical node creation, update, and clustering of
the node centers. In this paper, we consider the numbers of
the nodes and the node centers as fixed parameters.

Another recursive estimation technique commonly used in
signal processing and adaptive control is projection estimation.
The projection estimation is a special case of the least mean
square algorithm, which is known as the Widrow-Hoff updat-
ing rule in the signal processing literature and as a delta rule in
the ANN literature. To derive the projection update, instead of
minimizing a mean error index (11), let us minimize a one-step
error increment index similar to (11)

6|2 + )]0+ — 0|12 — mnin,

k) =y k) _ gkrgph)

(15)

where e'*) is the kth step approximation error. The solution
of (15) for ©*) has the form similar to (12)
QU+ = ) 4 (BB /(o 4 [|BF))) (16)
where ||®(M))|2 = k) pr),
Projection estimation of RBF network weights in adaptive

control of a nonlinear system is considered, for instance, in
[27].

III. PERSISTENCY OF EXCITATION

This section, as well as Section IV, contains the major
contribution of this paper.

The well-known convergence condition for the estimation
algorithms (16) and (14) is the PE condition, i.e., the require-
ment that for some 6 >0, K. > N, and any n >0

n+HK. §
z( > <I>““)<I><"‘>1) )

k=n

an

where o(A) denotes a minimal singular value of the matrix
A [11L. :

In accordance with (13), the PE condition depends on the
training inputs p/). Authors of [36] have established that the
inputs consecutively coinciding with the node centers Q)
provide PE. The PE condition of [36] immediately follows
from the invertibility of the exact RBF interpolation matrix H
(7). Condition [36] is very restrictive, since for a random input
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sequence p/), which clearly should provide PE, the network
inputs never coincide with the node centers.

We keep assuming that the node centers QYY) of the RBF
network are fixed and prove that the sequence ®(p'/)) provides
PE if the inputs p) belong to certain neighborhoods of the
node centers Q). We show numerically that, in fact, these
neighborhoods may occupy a significant part of the input
domain volume, and thus, the derived PE condition is not
too restrictive.

Definition 1: Let us consider a finite sequence of K. RBF
network inputs p'#) and call it exciting, if for some & >0 the
following inequality holds

) -

K.
o(Ug. )= (z NOFRIGON
k=1

Clearly, an infinite sequence {p(j)}ji‘l has a PE property,
if for some K. all finite sequence pieces of the length K,
contain exciting subsequences of length N, with the same é.

To establish the PE condition, let us use the cardinal
interpolation representation of (10) and (18). Let us consider
the interpolation matrix H of the form (7) and a new regressor
vector X (p) of the form

(18)

Xl(P)
X(p)=| : | =H'oper™
XN, (P)
H={hQW - QU e RN (19)

The interpolation matrix H is proved to be invertible for
the commonly used radial functions [25]. The functions x;(p)
(19) are called cardinal functions [34] and have the property

X;(Q™) = 851 (20)
where &y, is the Kronecker symbol. The regressor vector X (p)
(19) is the linear transformation of the vector ®(p) (13), and by

substituting (19) into (18), we obtain the excitation condition
(18) in the form

o= 5 )

k=1

@y

where X®) = X(p¥)). For e; = 6/g?(H) > 0. inequality
(18) follows from (21). Inequality (21) easily proves the PE
condition of [36]. In this condition, p\¥) = Q) and, according
to (20), U, = In,, an identity matrix. Thus, (21) holds with
§ = 1.

Since the cardinal functions (19) are continuous and satisfy
(20), the node centers QY) are inner points of the diagonal
dominance sets A5 (0<e)

Nao

> lp)>e

i=1,i#j

A= pe A5 Ix(p)l - (2)

Now we are in position to formulate the following theorem
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Gaussian RBF

i 1

1

-0.5
-0.5 o} 0.5 1 1.5
p_1
Fig. 1. View of the diagonal dominance domains .A0 (22) for Gaussian RBF

approximation, d = 1. RBF centers are at the pomls with whole coordinates
and within the closed curves the cardinal functions (19) for the node exceed
the absolute value sum of all other cardinal functions.

Theorem 1: Let us consider an infinite sequence of the RBF
network inputs {pt) }32,. Assume that K. > N, and € >0
exist, such that for any k and node number j,1<j < N,
we can find an input vector p(9, (k <i < k + K.), such that
p € As.

Then the sequence {p{)
a7.

The proof of Theorem 1 is given in the Appendix.

Practical usefulness of Theorem 1 depends on how large
the diagonal dominance sets (22) of the cardinal functions
are. The shape and sizes of the sets A% depend on the radial
basis functions used and on the node center positions. To get
an idea on how the domains (22) look like, let us consider
an important special case of the network node centers Qv
placed on a uniform mesh with a unit base.

For the presentation clarity, let us consider a two-
dimensional input parameter space, N, = 2. We compute
the borders of the domain (22) for ¢ — 0 numerically. The
cardinal functions x(p) decay fast and are small far from the
respective node center. Thus, remote nodes contribute little
to the diagonal dominance condition (22). Therefore, in the
middle of the node grid 11 x 11, that we use for computations
in the example, shape of the domains (22) is almost the same
as for the cardinal interpolation on an infinite grid of nodes.

The numerically found borders of the diagonal dominance
domains AO are plotted in Figs. 1-3. In all three figures,
the RBF network nodes are at the points with whole coordi-
nates—the centers of the domains .A0 Fig. 1 shows the shapes
of the domains AO for Gaussian RBF network with d = 0.7.
The domains have symmetrical diamond shapes. Figs. 2 and
3 show the domain borders for the Gaussian and reverse
multiquadrics radial functions (5). In Figs. 2 and 3, the node
center is in the coordinate origin, and the first quadrant defines

521 provides PE in the sense of
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i 5

0.3 0.4 0.5

p_1

Fig. 2. Diagonal dominance domain borders for Gaussian RBF and different
Gaussian widths . Border of only one quadrant respective to the RBF center
is shown.

0.5 F

0.45F -

Fig. 3. Diagonal dominance domain borders for reverse multiquadrics RBF
and different widths d of the multiquadrics. The border of only one quadrant
respective to the RBF center is shown.

the shape of the symmetrical domain .A?‘ The border depends
on the radial function width parameter d. which is displayed
near the curve. For smaller values of d. the radial functions (5)
are narrower and their values at the neighboring nodes smaller.
Thus, each radial function dominates other radial functions in
a larger neighborhood of its own center.

The borders in Figs. 2 and 3 are plotted for the widths d
in the range normally used in practice. We do not discuss an
issue of optimal choice of d here. Note also that Theorem
1 actually gives only a sufficient condition of the persistent

excitation. Thus, the width d should be chosen to provide the
best accuracy of approximation rather than a maximal size of
the diagonal dominance domain.

Optimal choice of d for the problem of scattered data RBF
approximation of manipulator dynamics is studied in [2]. By
normalizing the average distance between the node centers in
the results of [2] to unit, one can derive that the best accuracy
is obtained with d ~ 2 for Gaussian RBF and d ~ 3-6 for
reverse multiquadrics. Yet, these results strongly depend on
the scaling of the input data. Our experience suggests d ~ 1.5
for Gaussian RBF.

One can see that the diagonal dominance domains in Fig. 1
cover about 25% of the plane area. Thus, for randomly
generated inputs pi/). about 25% of the inputs will add
to the persistent excitation as guaranteed by Theorem 1.
This guarantees fast convergence of the considered recursive
algorithms for the RBF network identification.

From the results of Figs. 2 and 3, some estimates can be
made regarding the size of the diagonal dominance domains
for the dimension of the input vector p higher than two.!
Let us assume that the domain A? could be approximated
by hypercube that has unit diagonals and the side v/2/2.
and occupies (v/2/2)™ of the unit hypercube volume. This
makes 50% for N, = 2. 25% for N, = 4. and 12.5% for
N, = 6. RBF approximation is rarely feasible for larger
input dimension N,. as the number of the network nodes
grows with N, exponentially. Still this estimate shows that it
becomes increasingly more difficult to guarantee persistency
of the excitation for large dimension N, of the input space.

IV. IDENTIFICATION AND PERSISTENCY OF
EXCITATION IN AFFINE RBF NETWORK

Let us now consider a mapping that describes a nonlinear
system and has the form

Y =SU.p)= fp)+ G(p)U
Y eR¥: Uer: pePCRY (23)
where vector p has the meaning of the system parameters
(state variables) and U is the control vector. Affine nonlinear
dynamical systems, for which the right-hand side of the
governing equations has the form (23), have attracted much
attention in modern nonlinear control theory [21]. For such
systems, in (23) p is the state-space vector, vector Y is the
state derivative, and U is a control input. Affine mappings of
the same form are considered in a number of papers on ANN-
based adaptive control, e.g., [15], [27], [28], and [35] among
many others. Nonlinear mappings of the form (23) are used in
[12]-{14], [17], and [18] to describe open-loop feedforward
control of dynamical systems, where Y is the task-related
system output, U describes the open-loop control program over
a certain time interval, and p is the task parameter vector.
By applying the RBF network approximation of the form
(3), (9 to the vector-valued mapping f(-) and the matrix-
valued mapping G(-) and combining them to approximate the

!'The author owes this remark to an anonymous reviewer.
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system (23), we obtain an affine RBF network of the form

>
z =3
e

Y =8(U.p) = f(p) + Gp)U

h(p — Q(j))[z(j) + G(])U]
1

(24)

J

where Z() and G4) are the parameter matrixes of appropriate
dimensions.

As in Section III, we assume that the network node centers
QW are fixed parameters of the approximation (24). By
introducing the regressor vector ®(p, U) and abusing Section
Il notations for the network parameter matrix © and the
weights Z (), we can write (24) in the regression form

Y =5(U,p) = 0%(p,U)

0 =[zW W ... zNe) NI, (25)
In accordance with (24), the regressor vector in (25) has

the form

B, U) = d(p) © W, W:B}

(26)
where ® denotes direct (Kronecker) matrix product and ®(p)
is given by (13). The regression representation (25) of the
network (24) has the same form as the regression represen-
tation (10) of the network (3). Therefore, we can apply one
of the recursive identification algorithms discussed in Section
III for estimating ©. By using the notation of (10), we can
write the estimation algorithms in the same form as presented
in Section III.

For clarity, let us consider an estimation algorithm discussed
in Section ITI—the projection estimation—in more detail here.
For network (25), the projection algorithm can be written in
the form similar to (16)

Ok =6 4 T (0 1 B?)

B —y B _ g @n
where ©(F) is an estimate of the network parameter (weight)
matrix © (25) at the iteration k 3 — B(p®), U®) is the
regressor vector (26) at the same iteration and p(*), U(*) and
Y ) are, respectively, the task parameter, input, and output
vector at the iteration £.

Estimation algorithm (27) converges, if the PE condition of
the form (17) is satisfied. We follow the outline of Section
III and prove a sufficient condition for all finite pieces of the
sequence 3% of length K. > N, (N, + 1) to be exciting in
the sense similar to (18).

Unlike the standard RBF network considered in Section
III, in the affine RBF network (25) the regressor vector
3" = 3(ptk), U} depends on two input vectors: p(*) and
U Thus, the PE condition of this section is more involved
than that of Section III.

Let us now formulate a generalization of the Theorem 1 for
the affine network identification.
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Theorem 2: Let us consider an infinite sequence of the
affine RBF network inputs {p(?), U()}2 . Assume that K, >
N4(N, +1) and e > 0 exist, such that for any k and any node
number 7,1 < j7 < N, we can find N, +1 different input pairs
{pt), U@y Nt (k< 1; < k+ K.) for which the following
inequality holds

Na
i () /cond(W) = D~ (@) >e.
k=1k#j

(28)

Here x;(p) are the cardinal functions (19) of the RBF inter-

polation, and the square matrix W € RN«F1L.Ne+l hag the

columns
; 1
w® = [ @) } .

We also assume that the matrix W satisfies the inequality

29

a(W) > a0 (30

where o is a given constant, and ¢(-) denotes the minimal
singular value of the matrix. Then the sequence 3N =k,
U()) provides PE.

The proof of Theorem 2 is given in the Appendix.

Remark 2: For N, = 0. cond(W) = 1 in (28), and we
obtain the condition of the Theorem 1.

Remark 3: Condition (28) describes the diagonal domi-
nance set that is smaller than the set (22) to the degree
depending on the excitation properties of the control vector
sequence U,

V. CONCLUSIONS

We have considered linear algorithms for RBF network
identification of nonlinear systems. The algorithms converge,
if the regressor vectors (13) or (26) satisfy the PE condition.
The regressor vector is a nonlinear function of the input
variables. We have proved that PE is achieved, if the input
variables belong to certain neighborhoods of the RBF network
nodes. By means of a numerical example, we have further
demonstrated that these neighborhoods are sufficiently large.

We have further considered affine RBF network identifi-
cation. Such a network has two different types of inputs. The
system output depends in a nonlinear way on the input vector p
of the first type and linearly on the input vector U of the second
type. Affine RBF networks approximate an important class
of nonlinear systems that are affine in control components.
For such systems, the vector p represents the system state
variables, and the vector U comprises the control inputs.

The formulated conditions represent the necessary basis for
convergence analysis of the RBF network-based identification
and adaptive control-algorithms for nonlinear dynamical and
controlled systems. In this paper, we have formulated the
PE conditions for the RBF network identification of static
mappings. The derived conditions can be used in analysis
of RBF network identification of dynamical systems. This
usage, however, requires an additional study. Clearly, the
particular application of the derived PE conditions will depend
on the form of the dynamical system representation via a
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static mapping, such as the form of difference or differential
governing equation used in the analysis.

APPENDIX

Proof of Theorem 1: The proof is by a contradiction.

It is sufficient to prove that the finite sequences {p/*+#)} 1
satisfy (21) for some ¢; and any k. Let us suppose that this is
not true and that o(¥ g ) <e; for any fixed e; and some &.
Then for some x € RV [|z]| = 1.z = col({x;} }2,). we have
2T Wy x < e1. Therefore, for any j. k < j < k+ K. we obtain

X (p )| < VeT. 31)

Without a loss of generality we can assume that the first
component of the vector » is one with the largest absolute
value

lz1] > |xj]. (F=2.---.Ng): and |21] > 1//N,.

The second inequality in (32) follows from the first one

and the fact that ||z|| = 1. By the theorem condition, for
some 7. (k<1 < k+ K.) we have pt) € AS. Combining (22)
and (32) we obtain

(32)

N,
e 2 )l +e/VNa.  (33)
=2

On the other hand, we can write (31) in the form

N, Ny
V> S baanl > | a0 =13 xe )]
=1

1=2

N
> (e =Y Ixa(p! ).
=2

(34)

By taking e; = ¢2/N,. we come to a contradiction between
(33) and (34). O
Proof of Theorem 2: The proof follows the scheme of the
proof of Theorem 1, but is somewhat more involved.
Let us assume that the conditions of Theorem 2 hold, but
for any 6 >0 some k exists so that

j=k+K.
Z 6(1)0).U(-’>)5T(1)(J).UU)) < 6.
j=k+1

o(Uk,)=0c

(35)

Inequality (35) implies that a unit vector 7 € RYe (Mt
exists such that

TPV U <VE. (G=k+1.-- k+K.). (36)

Let us now introduce an extended interpolation matrix Hc
RN (Nut 1) Na(Nut 1) and the new regressor vector X (p,U)
of the form

Xp.U)y=H '3(p.U)=X(p)a W
37)

where Ix, 41 is the unit matrix of dimension N, + 1, X(p)

is a vector of the form (19), ®(p.U’) and W have the form

H=H®Iy, 1.
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(26), ® is the Kronecker product, and the last equality in (37)
follows from the block matrix properties [10].

By substituting (37) into (36), we obtain that for a unit
vector T = HZ/||HZ| and some k the following inequality

holds
TLX (pWV, UDY <eq. (G=k+1.-- . k+K.) (38

where ¢, = V§/||Hz|| < V6/a(H). Let us cut vector T into
N, vectors z0U) of length N, + 1 each

T= [;lr(l)T‘--:r(‘V“)T]T. (39)
Without a loss of generality we can assume that
V> D) =20 N)
=) >1/V/N, (40)

where the second inequality follows from the first one and the
fact that ||7|| = 1.

Now let us take N, + 1 vectors W) so that the Theorem
2 condition (28) is satisfied for the first node, 7 = 1. Again,
without a loss of generality we assume that [; = k + . By
writing inequality (38) for each of these vectors and computing
a linear combination of the inequalities with weights s;. we
obtain

Nut1l

<e Z Is;]-
j=1

By denoting Xf']) = x:(pYT") and using (37), we can write
(41) in the form

Nyl . ) N, +1 . No '
Z s, W m(l)x(lj) + Z ;W) Zm(’)x?)
Jj=1 i=2

j=1

N, +1 ‘ ‘
Z ETY(I)(.I’H-"). U(J+k))sj 1)
j=1

Nu+1

<er Y sl
j=1

We are considering a finite number of the network nodes,
and the radial functions (5) have infinite support. Therefore,
we can always find constants C' and C; so that in the domain
(22)

42)

0<C < x;(p)<Cy for pe A (43)

In (28) cond(W) > 1. thus p{/) € A9, and by using (43)
we obtain from (28)

N,
Z\XE”)V‘X&J” < 1/cond(W) — £/C1. 44)
=2

Let us also denote s = col({s_,};\;“fl) € RVHLIf we
divide (42) by |x\’| and use (30), (40), (43), and (44), we
obtain the following chain of the inequalities

N+l

£
LIV HT> 20 Y Isil
j=1

2> |[[Wsl] - || = [|Ws|

1 €
2w
(cond(W) (& ) e ”‘

> [Islla(W)llzMle/Cr > [Isllooe/(C1v/Na).  45)
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Since 4 in (28) and €7 in (38) can be taken arbitrary small,
and ¢ in the Theorem 2 condition (28) is fixed, by choosing
e1 < Cog/(C1y/Na(N, + 1)) we come to the contradiction.
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