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Yeast–Bacterium Interactions: The Next
Frontier in Nectar Research
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Beyond its role as a reward for pollinators, floral nectar also provides a habitat
for specialized and opportunistic yeasts and bacteria. These microbes modify
nectar chemistry, often altering mutualistic relationships between plants and
pollinators in ways that we are only beginning to understand. Many studies on
this multi-partite system have focused on either yeasts or bacteria without
consideration of yeast–bacterium interactions, but recent evidence suggests
that such interactions drive the assembly of nectar microbial communities and
its consequences for pollination. Unexplored potential mechanisms of yeast–
bacterium interactions include the formation of physical complexes, nutri-
tional interactions, antibiosis, signaling-based interactions, and horizontal
gene transfer. We argue that studying these mechanisms can elucidate
how nectar microbial communities are established and affect plant fitness
via pollinators.

Microbial Ecology of Floral Nectar
Virtually all ecosystems contain both fungi and bacteria. They interact with each other via
diverse mechanisms ranging from trophic interactions to biofilm formation and even the
interchange of genetic information, to name just a few [1,2]. These interactions are receiving
increasing attention as we understand more about how the roles of fungi and bacteria as
decomposers, nitrogen fixers, pathogens, and mutualistic partners of plants and animals are
modified by fungus–bacterium interactions [3–8].

In this context, one emerging focus of plant science is the study of floral nectar as a habitat for
both fungi (particularly yeasts) and bacteria that can withstand high osmotic pressure (see
Glossary) and secondary compounds (Box 1). Recent studies indicate that these microorgan-
isms reach high densities in nectar (up to >105 cells/mm3 for yeasts and >107 cells/mm3 for
bacteria [9–11]) and modify nectar chemistry in ways that alter pollinator foraging and conse-
quently seed set and other fecundity parameters of plants [12–20]. Likewise, it has been shown
that microbe-induced changes in nectar chemistry can affect longevity and other life-history
characteristics of nectar-feeding insects [21].

Although bacteria and yeasts are both found frequently in floral nectar [22–24] and can have
contrasting effects on nectar traits [19,25], most studies so far have focused on either bacteria
or yeasts [9–12,26–32], and much remains unknown about interactions between these two
microbial groups. In this opinion article, we briefly review the current knowledge of yeast–
bacterium interactions and identify potential mechanisms of the interactions that we believe
would be worthwhile to study. Through this article, we hope to stimulate more research on
yeast–bacterium interactions, which we believe will be necessary to fully understand the effects
of nectar microbes on plants and their pollinators.
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Current Evidence for Yeast–Bacterium Interactions and Consequences for
Plants
The microbiome of floral nectar is species-poor relative to that of other parts of plants (Box 2).
However, an increasing number of recent studies suggest strong associations between yeasts
and bacteria in floral nectar. For example, a survey of nectar microorganisms associated with
diverse species of Mediterranean plants in southern Spain found that culturable bacteria and
yeasts co-occurred more often than would be expected by chance and identified three
significant and relatively frequent positive bacterium–yeast associations: Acinetobacter spp.
with Metschnikowia gruessii, Acinetobacter spp. with Metschnikowia reukaufii, and Leuco-
nostoc sp. with M. reukaufii [22]. Co-occurrence might be facilitated by resource partitioning
between yeasts and bacteria in nectar. For example, Metschnikowia spp. and the nectar
acinetobacters Acinetobacter nectaris and Acinetobacter boissieri may have complementary
carbon assimilation profiles, with the yeast depleting glucose and enriching floral nectar in
fructose and the bacteria preferentially using the latter monosaccharide [33].

Recent laboratory experiments, however, suggested priority effects (Figure 1) between A.
nectaris and M. reukaufii in which A. nectaris decreased the abundance of M. reukaufii when
introduced to nectar earlier than the yeast and conversely M. reukaufii decreased A. nectaris
abundance when the order of introduction was reversed (T. Fukami et al., unpublished). Similar

Glossary
Antibiosis: interaction between
organisms in which at least one of
them is adversely affected by the
release of metabolites or cell
components from the other.
Bacterial farming: mutualistic
association established between
bacteria and other organisms (e.g.,
fungi or social amoeba) in which the
bacteria benefit through dispersal
and rearing, while the other partner
benefits from the harvesting of an
additional carbon source and, in
some cases, increased stress
resistance (e.g., in some filamentous
fungi [56]).
Bacteriocin: antibacterial peptide or
protein produced by some bacteria
that either kills or inhibits the growth
of other bacteria.
Chelator: small molecule that binds
tightly to metal ions.
Cross-feeding: interactions involving
the exchange of metabolites or
cofactors between organisms. These
interactions can vary in the degree of
reciprocity (from completely
unidirectional to bidirectional) and
cost-benefit balance for the
interacting partners.
Endosymbiotic: living within the
body or cells of another organism in
a mutualistic relationship.
Horizontal gene transfer: sharing
of genetic material between
organisms that are not in a parent–
offspring relationship and may even
be members of different species.
Mycophagy: literally ‘feeding on
fungus’ and synonymous with
‘fungivory’. Bacterial mycophagy
refers to the ability of bacteria to
grow at the expense of living fungal
cells and/or hyphae.
Osmotic pressure: pressure
difference needed to stop the flow of
solvents across a semipermeable
membrane. It can also be defined as
the tendency of solvent molecules to
move in the direction of lower solvent
activity.
Phylloplane: surface of a leaf
considered as a habitat, generally for
microorganisms.
Priority effects: effects that the
arrival order and initial abundance of
species have on the development of
assembling communities at a local
site (e.g., a flower). These effects of
community assembly history occur
when species influence one another

Box 2. The Nectar Microbiome

Evidence indicates that floral nectar is initially sterile but rapidly colonized by microorganisms after anthesis [28,88] from
various sources, including the air, rain drops, dew, pollen, corolla, and especially the body (generally mouthparts) of
flower-visiting animals [28,83,89]. Nectar microbial communities are species poor relative to, for example, the rhizo-
sphere or the phylloplane, and they are often dominated by yeasts of the genus Metschnikowia and bacteria of the
genus Acinetobacter [10,22–24,26,27,31,43,90]. Other microbes that are found in nectar include yeast species of the
genera Candida, Cryptococcus, Rhodotorula, and Sporobolomyces and bacteria such as Asaia, Erwinia, Neokoma-
gataea, Pantoea, Pseudomonas, and Rosenbergiella (for a detailed list, see [90]). Some of these other species may be
opportunistic (i.e., not adapted to the nectar environment) and generally occur in lower frequency than Metschnikowia
and Acinetobacter [76,83,90].

In addition to the filtering effect of the physical and chemical characteristics of nectar (which may be variable even within
the same plant [39]) on each microbial species, dispersal limitation [27,43] and microbe–microbe interactions can also
determine the species composition of the nectar microbiome. Microbial dispersal and interactions are affected by a
variety of factors, including the plant’s phenology; the density, longevity, sex, and spatial distribution of flowers; and the
activity of legitimate and nonlegitimate floral visitors [27,36,91,92]. Nectar secretion patterns may also affect the
assembly of the nectar microbiome by providing new nutrients to the microorganisms. All these factors depend to some
degree on the abiotic conditions (temperature, water availability, photoperiod, etc., even at microscales). Although
individual flowers are ephemeral, the collection of flowers on a plant functions as a microbial metacommunity that lasts
longer than individual flowers while the plant is blooming [27,35,91]. Outside of the flowering season, flower-visiting
animals may act as reservoirs of nectar microbes [93].

Box 1. Antimicrobial Defenses of Floral Nectar

The high sugar concentration of floral nectar exerts osmotic pressure on microbes and represents a filter for microbial life
[46,76]. However, high sugar concentration can encourage growth of a wide range of osmotolerant microorganisms
including plant pathogens [77,78]. Consequently, it has been hypothesized that some plants may resist microbial
colonization of nectar by producing high levels of hydrogen peroxide and other reactive oxygen species, toxic
secondary metabolites from diverse chemical families (e.g., alkaloids, phenolics, and terpenoids), or different lytic
enzymes (e.g., chitinases, lipases, and RNases) [62,78–82]. These chemicals are geographically and phylogenetically
widespread across the plant kingdom, although species may vary in defense mechanisms [62,79]. In turn, many nectar-
inhabiting microbes appear to possess catalase activity that might protect them from the toxic action of hydrogen
peroxide [23,24,26,83]. Tolerance of nectar yeasts and bacteria to diverse secondary compounds of plant origin has
also been reported [83,84]. Antimicrobial chemicals in nectar has also been hypothesized to encourage specialist
pollinators, deter nectar robbers, and alter pollinator behavior [79,85–87].
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differently (through resource
competition, cross-feeding, and
other types of local interactions),
depending on arrival order and initial
abundance.
Prophage: bacteriophage genome
integrated into the genome of a host
cell.
Quorum sensing: process of cell-
to-cell communication that allows
microorganisms (typically bacteria) to
share information about cell density
and adjust gene expression
accordingly. This sharing of
information is achieved through the
production and release of chemical
signal molecules called autoinducers
that increase in concentration as a
function of cell density.
Rhizosphere: thin soil layer around
roots that is directly influenced by
root secretions and associated soil
microorganisms.
Semiochemical: chemical
substance that conveys a signal from
one organism to another, of the
same or a different species, and
frequently modifies the behavior of
the recipient organism.
Syntrophy: relationship between the
individuals of different species in
which one or both benefit nutritionally
from the presence of the other. The
classical concept of syntrophy refers
to the close associations established
between microorganisms under
anoxic conditions and energy
constraints to degrade complex
organic compounds, where one of
the partners keeps intermediate
products (e.g., hydrogen) at low
concentrations by active
consumption, facilitating further
degradation by the other partner.
However, other ‘non-classical’ types
of syntrophy have also been
described [96].
Transposase: enzyme that binds to
the end of a transposon (i.e., DNA
sequence that can change its
position within a genome) and
catalyzes its movement to another
part of the genome.

priority effects were found between M. reukaufii and the acetic acid bacterium Neokomagatea
(formerly Gluconobacter) sp., both isolated from the floral nectar of Diplacus (Mimulus) aur-
antiacus (Phrymaceae, sticky monkey-flower) [34]. Priority effects have also been found in a
field experiment wherein inoculation of D. aurantiacus nectar with Neokomagataea sp. resulted
in this bacterium dominating the nectar communities across multiple floral generations. Neo-
komagataea sp. dominance even led to exclusion of M. reukaufii, despite M. reukaufii being
common in nearby plants to which Neokomagataea sp. was not introduced [35].

Antagonistic interactions between yeasts and bacteria in nectar were also suggested by Tsuji
and Fukami [36]. This study showed that reduced animal visitation caused a decline in yeast
(mostly M. reukaufii) frequency and abundance in the nectar of male flowers of the dioecious
shrub Eurya emarginata (Pentaphylacaceae) and an increase in bacterial (mostly A. nectaris and
A. boissieri) abundance. This result was interpreted as possible competitive release of bacteria
from yeasts, which, curiously, was not found in female flowers of the same shrub (where yeasts
were never common) nor for Eurya japonica plants in the region [36].

The amount, composition, and timing of nectar production can influence the array of animals
that the flower attracts and their foraging behavior, but all these parameters can be affected by
factors that are not entirely under the control of the producing plant, which include the activity of
bacteria and yeasts in nectar [37–39]. Vannette and Fukami [25] have recently demonstrated
that M. reukaufii and Neokomagatea sp. can have contrasting effects on the floral nectar traits
of D. aurantiacus. Specifically, M. reukaufii reduced the concentration and altered the compo-
sition of amino acids in nectar, but had no significant effect on the total nectar volume produced
by the plant or its sugar composition, whereas bacteria increased the amino acid concentra-
tion, enhanced the proportion of monosaccharides, and reduced the total volume of nectar
[25]. However, combined inoculation of yeasts and bacteria was not carried out in this or
previous similar studies [13,19], overlooking potential effects of yeast–bacterium interactions
on nectar traits.

(A)

(B)

t1

t1

t2

t2

No yeast Bacteria

Yeast No bacteria

Figure 1. Typical Setting of a Micro-
cosm Experiment to Test for Priority
Effects between Nectar Microorgan-
isms [34,94,95]. Sequential microbial
dispersal events to flowers is mimicked
using plastic microtubes loaded with ster-
ile synthetic nectar (or, alternatively, fil-
tered natural nectar). In the example
shown, the experiment includes two
treatments: (A) ‘bacteria-first’, in which
the bacterial species is first introduced
and sometime later (t1) the yeast species
is inoculated; and (B) ‘yeast-first’, in which
the introduction order is the opposite. In
both cases, after a second incubation
time (t2), the content of the microtubes
is plated on selective media and colony-
forming units of yeasts and bacteria
counted separately to estimate the final
cell density. Control treatments (e.g., only
yeasts, only bacteria, and no microbes)
are run in parallel. The results of the
experiment displayed in the figure depict
strong priority effects, as in Tucker and
Fukami [34]. Figure created with BioRen-
der (https://biorender.io).
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Yeasts and bacteria may also differentially alter secondary metabolites in nectar, including
volatile compounds [15,40]. Nectar microorganisms can produce blends of volatile com-
pounds that attract or deter pollinators [15,40,41]. In turn, this effect on pollinators might
have consequences on microbial and plant fitness and the dispersal of microorganisms from
flower to flower [15]. Furthermore, other nectar-consuming animals can also be affected by the
volatile-producing activity of nectar microbes, as recently demonstrated for the generalist aphid
parasitoid Aphidius ervi (Hymenoptera) [42]. However, this line of research has also been
focused on the separate effects of bacteria and yeasts, rather than the potential combined
effects.

All in all, studies so far suggest that yeast–bacterium interactions in floral nectar can be strong
enough to affect plant-pollinator mutualism, but that the direction and strength of yeast–
bacterium interactions might depend on many factors, including the microbes involved, the
plant hosts, their intra-species variability in floral traits, environmental conditions [34], and the
order of arrival of microbes to floral nectar that, in turn, depends on the dispersal activity of
pollinators and other floral visitors [43]. To explain the conditions under which yeasts and
bacteria interact and affect plants and pollinators, what is needed now is a better understanding
of the mechanisms that underlie yeast–bacterium interactions in floral nectar.

Unexplored Potential Mechanisms of Yeast–Bacterium Interactions in Floral
Nectar
Potential mechanisms of yeast–bacterium interactions include the formation of physical com-
plexes, nutritional interactions, antibiosis, signaling-based interactions, and horizontal gene
transfer between yeast and bacterial cells [1,2]. Although the importance of these mecha-
nisms in nectar is currently unknown, they may operate simultaneously and potentially result in
unexpected consequences for host plants and floral visitors (Figure 2).

Formation of Physical Complexes
Fungi and bacteria often form assemblies in which participating cells display physical and
physiological properties distinct from free-living cells [44]. These associations are found in a
variety of microbial habitats in and on plants and vary in their degree of complexity and intimacy,
ranging from loose and disordered cell aggregates to multi-species biofilms held together by an
extracellular matrix and highly specific endosymbiotic associations [2,8,44]. Inspection of a
nectar drop under the microscope makes clear that simple forms of physical association (e.g.,
polymicrobial groups of cells) are common in nectar microbial communities. Similarly, although
polymicrobial biofilms in floral nectar have not been documented, they are widespread in the
rhizosphere and the phylloplane [45]. There is no reason to discard their possible occurrence
on nectary surfaces. If they do occur, the extracellular matrix surrounding the microbes might
protect them against osmotic pressure, toxins, and other stressors that limit microbial growth
[46]. Formation of microbial biofilms on the surface of pollinator’s mouthparts may also be
possible, given the anchor-like morphology of the aggregates of M. gruessii cells [28] and the
stickiness of the colonies of bacteria such as A. nectaris and Rosenbergiella spp. (S. Álvarez-
Pérez et al., unpublished).

Bacteria not only attach to fungal cells but also can colonize them intracellularly, as seen in
diverse species of soil, rhizophere, and phylloplane fungi [1,2,8]. Examples of endosymbiotic
bacteria hosted within yeast partners are scarce in the literature, but Siavoshi et al. [47] reported
that diverse osmotolerant yeasts isolated from whole flowers, fruits, and honeybees contained
in their vacuoles bacterial cells identified as Helicobacter pylori and hypothesized that this
intracellular establishment could be an adaptation to the stressful conditions of sugar-rich

396 Trends in Plant Science, May 2019, Vol. 24, No. 5



environments. If such intracellular bacteria were found in nectar yeasts, the study of the
consequences for both microbial partners (e.g., genome signatures, transmission during yeast
mitosis and/or meiosis, yeast–bacteria co-evolution) and the plant–animal system would open
exciting new avenues in nectar research.

Nutritional Interactions
Competition for nutrients may drive yeast–bacterium interactions in nectar [34]. In particular, M.
reukaufii seems to have undergone extensive gene duplications, especially in high-capacity
amino acid transporter genes, allowing the yeast to exert strong priority effects against other
microbes in nitrogen-poor habitats such as nectar [48,49]. An opposite trend in genome
evolution might have taken place for A. nectaris and A. boissieri, whose genome sizes are well
below the average value for the genus Acinetobacter (2.7 vs. 3.9 Mb) [50]. Such a difference in
genome size between the A. nectaris/boissieri clade and most other acinetobacters could
reflect adaptation to the carbohydrate-rich condition of floral nectar and the digestive tract of

Physical complexes

Horizontal gene transfer Signaling-based interac�ons

An�biosis

Biofilm

Unordered
aggregate Endosymbiosis Nectar

microbes

Compe��on

Syntrophy
Cross-feeding

Bacterial farming

Mycophagy

Nutri�onal interac�ons

Figure 2. Overview of Potential Mechanisms of Yeast–Bacterium Interactions. This opinion article considers the
following potential mechanisms of yeast–bacterium interactions: (i) formation of physical complexes, (ii) antibiosis and
signaling-based interactions, (iii) nutritional interactions, and (iv) horizontal gene transfer. Figure created with BioRender
(https://biorender.io).
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pollinators. A similar scenario has been hypothesized for some insect-associated bacteria such
as Lactobacillus kunkeei, whose genome is remarkably smaller than those of other species of
Lactobacillus and seems to have lost a substantial part of the genetic repertoire encoding for
amino acid metabolism and carbohydrate metabolism and transport [51].

Competition among nectar microbes for iron and other micronutrients is also possible. Yeasts
such as Metschnikowia pulcherrima [52] and species of bacterial genera such as Acinetobacter
and Pseudomonas [53,54] can produce chelators that allow them to efficiently acquire iron
from the environment and make it unavailable for other microbes. Moreover, bacterial
mycophagy [55] and bacterial farming by fungi [56] have not yet been reported to occur
in the nectar microbiota, but given the high cell densities that yeasts and bacteria can reach in
floral nectar [9–11], these types of nutritional interactions might be likely. Similarly, the possibility
that nectar microbes engage in cross-feeding and syntrophic interactions [57] cannot be
discarded.

Antibiosis and Signaling-based Interactions
Some species of Metschnikowia and other yeasts prevalent in nectar exhibit antimicrobial
activity against plant pathogens [58,59], suggesting that antibiosis might shape nectar micro-
bial communities. Likewise, diverse bacterial genera found in nectar (e.g., Pseudomonas and
Pantoea) produce antifungal substances and bacteriocins [60,61]. Tucker and Fukami [34]
demonstrated that environmental variability could counteract the inhibitory effects of some
substances generated by nectar microbes (e.g., H+ ions, which reduce nectar pH and hinder
yeast growth), thus promoting coexistence of yeasts and bacteria in floral nectar. As floral
nectar is a dynamic system where biotic and abiotic conditions are highly variable during a
flower’s lifespan [39,62], the role of inhibitory substances on yeast–bacterium interactions
might be difficult to predict. A better knowledge (e.g., through metabolomic and transcriptomic
analyses) of the metabolites produced by microbes when colonizing nectar alone or in
interactions, supplemented with mathematical modeling of microbial community assembly
[34], would be of great help in this regard.

Apart from their role in affecting the foraging behavior of floral visitors, some metabolites of
microbial origin can act as signaling molecules in interactions among microbes and between
these microbes and their host plants [63]. These semiochemicals can affect the behavior,
population dynamics, and gene expression of other microorganisms [2,63]. In addition, some
semiochemicals of fungal origin can alter bacterial quorum sensing, affecting population
density-dependent activities of the target species, including effects on morphogenesis, biofilm
formation, antibiotic production, and interactions with animal and plant hosts [2,64,65].
Although quorum sensing was originally considered in bacteria, similar signaling mechanisms
can occur in fungi, and even several cases of inter-kingdom quorum sensing have been
reported [64,65]. Farnesol, a major quorum sensing molecule in diverse fungal species
[41,64,65], is also a component of insect pheromones that mediate foraging, sexual attraction,
and other behavioral responses, and it has been found in the flowers of some plants [66–68].
Even though the study of semiochemical production by nectar microbes is still in its infancy
[15,40,42] and, to our knowledge, farnesol release by nectar yeasts remains to be demon-
strated, it seems possible that microbe–microbe communication changes floral visitors’ behav-
ior as a side effect.

Horizontal Gene Transfer
Horizontal gene transfer is prevalent in plant-associated bacteria [69,70]. Numerous cases of
horizontal gene transfer from bacteria to fungi have also been described, although it seems less
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frequent than horizontal gene transfer among bacteria [70,71]. Although horizontal gene
transfer has not been reported for nectar microbes, the genome of A. nectaris contains
sequences encoding transposases and prophage sequences [50]. In addition, it has been
demonstrated that Acinetobacter baylyi, which is also found in floral nectar ([10]; S. Álvarez-
Pérez et al., unpublished), can speed up horizontal gene transfer by actively killing other
bacteria to extract and take up parts of their DNA and that this phenomenon is more effective
when A. baylyi outnumbers its ‘victim’ and also when both coexist for a short time [72].
Furthermore, other nectar bacteria such as Pseudomonas spp. and acetic acid bacteria have a
complex history of genome evolution that might include horizontal gene transfer events with
yeasts [70,73–75]. Future research should therefore focus on finding possible hallmarks of
passive and active (e.g., killing-enhanced, as in A. baylyi) horizontal gene transfer in the genome
of nectar microbes.

Concluding Remarks and Future Perspectives
The conventional view that floral nectar is merely a reward that angiosperms offer pollinators
has been challenged in recent years. Floral nectar is now routinely seen also as the habitat of
specialized yeasts and bacteria capable of overcoming high sugar concentrations and other
hurdles inflicted by plants, and opportunistic microbes profiting from the activity of the
specialists. We have argued here that elucidating the mechanisms of yeast–bacterium inter-
actions will be essential to advancing the understanding of the effects that these microorgan-
isms have on the behavior of pollinators and other floral visitors and, eventually, plant fitness.
Many questions remain to be addressed (see Outstanding Questions for some examples)
regarding the ecology and evolution of the nectar inhabitants and their interactions with animals
and plants. Because pollination is a critical component of many agricultural crops, better
knowledge on yeast–bacterium interactions that will be gained by answering outstanding
questions has the potential to facilitate improved plant breeding and crop production.
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Outstanding Questions
Is the result of yeast–bacterium inter-
actions between nectar microbes pre-
dictable? Which biotic and abiotic
factors can alter the outcome of yeast-
–bacterium interactions?

Do nectar microbes have mechanisms
by which they are effectively vectored
by insects from flower to flower? Are
there any differences between yeasts
and bacteria in this regard?

What role have yeast–bacterium inter-
actions played in the evolution of nec-
tar microbes and plant–animal
interactions, particularly pollinators?

Do some plants respond adaptively to
their nectar microbiota? If so, which
mechanisms do they use to select
for specific microbial species? Do
these mechanisms involve modifica-
tion of yeast–bacterium interactions?

How can a better understanding of
yeast–bacterium interactions in nectar
be used to improve pollination and
pest control of economically important
plants?
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