Appendix A Detection and estimation in additive

Gaussian noise

A.1 Gaussian random variables

A.1.1 Scalar real Gaussian random variables
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A standard Gaussian random variable w takes values over the real line and
has the probability density function

1 w? .
fw) = N exp(—;), w e N. (A.1)

The mean of w is zero and the variance is 1. A (general) Gaussian random
variable x is of the form

x=ow+ u. (A.2)

The mean of x is w and the variance is equal to ¢%. The random variable x is
a one-to-one function of w and thus the probability density function follows
from (A.1) as

f(x) = xp (—M) . xed. (A.3)

1
e
N 2mo? 20

Since the random variable is completely characterized by its mean and vari-
ance, we denote x by N (u, 0?). In particular, the standard Gaussian random
variable is denoted by (0, 1). The fail of the Gaussian random variable w

Q(a) :=P{w > a} (A4)

is plotted in Figure A.1. The plot and the computations Q(1) = 0.159 and
Q(3) =0.00015 give a sense of how rapidly the tail decays. The tail decays
exponentially fast as evident by the following upper and lower bounds:

1 1 2
Tora (1 - ;) e < 0(a) <e a>1. (A.5)
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Figure A.1 The Q
function.
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An important property of Gaussianity is that it is preserved by linear trans-
formations: linear combinations of independent Gaussian random variables
are still Gaussian. If x,, . .., x, are independent and x; ~ N (u;, 07) (Where
the ~ notation represents the phrase “is distributed as”), then

dexi~N (Z Citbis Y c?o’f) . (A.6)
=1 i=1 i=1

A.1.2 Real Gaussian random vectors

A standard Gaussian random vector w is a collection of n independent and
identically distributed (i.i.d.) standard Gaussian random variables w, . . . , w,,.

The vector w = (w;,...,w,)" takes values in the vector space N". The
probability density function of w follows from (A.1):

2
) wew (A7)

f(w) =

Here ||w| := /X1, w?, is the Euclidean distance from the origin to w :=
(wy,...,w,)". Note that the density depends only on the magnitude of the
argument. Since an orthogonal transformation O (i.e., 0O = 00’ =1) pre-

serves the magnitude of a vector, we can immediately conclude:

If w is standard Gaussian, then Ow is also standard Gaussian. (A.8)
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Figure A.2 The isobars, i.e.,
level sets for the density f(w) of
the standard Gaussian random
vector, are circles for n = 2.
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What this result says is that w has the same distribution in any orthonor-
mal basis. Geometrically, the distribution of w is invariant to rotations and
reflections and hence w does not prefer any specific direction. Figure A.2
illustrates this isotropic behavior of the density of the standard Gaussian ran-
dom vector w. Another conclusion from (A.8) comes from observing that the
rows of matrix O are orthonormal: the projections of the standard Gaussian
random vector in orthogonal directions are independent.

How is the squared magnitude ||w||* distributed? The squared magnitude
is equal to the sum of the square of n ii.d. zero-mean Gaussian random
variables. In the literature this sum is called a y-squared random variable with
n degrees of freedom and denoted by y2. With n = 2, the squared magnitude
has density

fla) = leXp (—3) ., a=0, (A.9)
2 2
and is said to be exponentially distributed. The density of the x> random
variable for general n is derived in Exercise A.1.
Gaussian random vectors are defined as linear transformations of a standard
Gaussian random vector plus a constant vector, a natural generalization of the
scalar case (cf. (A.2)):

X =Aw+p. (A.10)

Here A is a matrix representing a linear transformation from R” to N" and
p is a fixed vector in N". Several implications follow:

1. A standard Gaussian random vector is also Gaussian (with A =1 and

n=0).
2. For any ¢, a vector in )", the random variable

c'x~N(c'm, c'AA"e); (A.11)

this follows directly from (A.6). Thus any linear combination of the ele-
ments of a Gaussian random vector is a Gaussian random variable.! More
generally, any linear transformation of a Gaussian random vector is also
Gaussian.

3. If A is invertible, then the probability density function of x follows directly
from (A.7) and (A.10):

fx) = —%(X—M)’(AA’)‘(X—M)>, x e

(A.12)

1
(V27)" /det(AA") P (

' This property can be used to define a Gaussian random vector; it is equivalent to our
definition in (A.10).
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Figure A.3 The isobars of a
general Gaussian random
vector are ellipses. They
corresponds to level sets

{x: A7 (x=p)|I* =} for
constants c.

A.1 Gaussian random variables
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The isobars of this density are ellipses; the circles of the standard Gaussian
vectors being rotated and scaled by A (Figure A.3). The matrix AA’
replaces o in the scalar Gaussian random variable (cf. (A.3)) and is equal
to the covariance matrix of x:

K:=E[(x—p)(x—p)]=AA" (A.13)

For invertible A, the Gaussian random vector is completely characterized

by its mean vector p and its covariance matrix K = AA’, which is a

symmetric and non-negative definite matrix. We make a few inferences

from this observation:

(a) Even though the Gaussian random vector is defined via the matrix A,
only the covariance matrix K = AA’ is used to characterize the density
of x. Is this surprising? Consider two matrices A and AO used to define
two Gaussian random vectors as in (A.10). When O is orthogonal, the
covariance matrices of both these random vectors are the same, equal
to AA'; so the two random vectors must be distributed identically. We
can see this directly using our earlier observation (see (A.8)) that Ow
has the same distribution as w and thus AOw has the same distribution
as Aw.

(b) A Gaussian random vector is composed of independent Gaussian
random variables exactly when the covariance matrix K is diagonal,
i.e., the component random variables are uncorrelated. Such a random
vector is also called a white Gaussian random vector.

(c) When the covariance matrix K is equal to identity, i.e., the component
random variables are uncorrelated and have the same unit variance,
then the Gaussian random vector reduces to the standard Gaussian
random vector.

. Now suppose that A is not invertible. Then Aw maps the standard Gaus-

sian random vector w into a subspace of dimension less than n, and the
density of Aw is equal to zero outside that subspace and impulsive inside.
This means that some components of Aw can be expressed as linear
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combinations of the others. To avoid messy notation, we can focus only
on those components of Aw that are linearly independent and represent
them as a lower dimensional vector X, and represent the other components
of Aw as (deterministic) linear combinations of the components of X. By
this strategem, we can always take the covariance K to be invertible.

In general, a Gaussian random vector is completely characterized by its
mean g and by the covariance matrix K; we denote the random vector by
N (e, K).

A.1.3 Complex Gaussian random vectors

So far we have considered real random vectors. In this book, we are primarily
interested in complex random vectors; these are of the form x = xi + jx;
where X, X; are real random vectors. Complex Gaussian random vectors are
ones in which [xg, X;]’ is a real Gaussian random vector. The distribution is
completely specified by the mean and covariance matrix of the real vector
[xgr,X;]". Exercise A.3 shows that the same information is contained in the
mean pu, the covariance matrix K, and the pseudo-covariance matrix J of the
complex vector X, where

r = E[x], (A.14)
K := E[(x—p)(x—p)"]. (A.15)
J = E[(x—p)(x—p)]. (A.16)

Here, A* is the transpose of the matrix A with each element replaced by its
complex conjugate, and A’ is just the transpose of A. Note that in general the
covariance matrix K of the complex random vector x by itself is not enough
to specify the full second-order statistics of x. Indeed, since K is Hermitian,
i.e., K = K*, the diagonal elements are real and the elements in the lower and
upper triangles are complex conjugates of each other. Hence it is specified
by n? real parameters, where n is the (complex) dimension of x. On the other
hand, the full second-order statistics of x are specified by the n(2n+ 1) real
parameters in the symmetric 2n x 2n covariance matrix of [Xg, X;]'.

For reasons explained in Chapter 2, in wireless communication we are
almost exclusively interested in complex random vectors that have the circular
symmetry property:

X is circular symmetric if e¥x has the same distribution of x for any 6.

(A.17)
For a circular symmetric complex random vector X,

E[x] = E[e?x] = e E[x] (A.18)
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for any 0; hence the mean pu = 0. Moreover

E[xx'] = E[e!’x(ex)"] = e E[xx'] (A.19)

for any 6; hence the pseudo-covariance matrix J is also zero. Thus, the
covariance matrix K fully specifies the first- and second-order statistics of
a circular symmetric random vector. And if the complex random vector is
also Gaussian, K in fact specifies its entire statistics. A circular symmetric
Gaussian random vector with covariance matrix K is denoted as €N (0,K).

Some special cases:

1. A complex Gaussian random variable w = wg + jw; with 1.i.d. zero-mean

Gaussian real and imaginary components is circular symmetric. The circu-
lar symmetry of w is in fact a restatement of the rotational invariance of the
real Gaussian random vector [wg, w;]" already observed (cf. (A.8)). In fact,
a circular symmetric Gaussian random variable must have i.i.d. zero-mean
real and imaginary components (Exercise A.5). The statistics are fully
specified by the variance o := E[|w|?], and the complex random variable
is denoted as CN (0, o2). (Note that, in contrast, the statistics of a general
complex Gaussian random variable are specified by five real parameters:
the means and the variances of the real and imaginary components and
their correlation.) The phase of w is uniform over the range [0, 27] and
independent of the magnitude ||w||, which has a density given by

r —7'2

f(n=—=expi5=¢, =0 (A.20)
g2 202

and is known as a Rayleigh random variable. The square of the magnitude,

ie., wl 4w, is x3, i.e., exponentially distributed, cf. (A.9). A random

variable distributed as CN (0, 1) is said to be standard, with the real and

imaginary parts each having variance 1/2.

. A collection of ni.i.d. CN (0, 1) random variables forms a standard circular

symmetric Gaussian random vector w and is denoted by CN (0, I). The
density function of w can be explicitly written as, following from (A.7),

1
flw) = — exp(—||w|?), we C", (A21)

As in the case of a real Gaussian random vector N (0, I) (cf. (A.8)), we
have the property that

Uw has the same distribution as w, (A.22)

for any complex orthogonal matrix U (such a matrix is called a unitary
matrix and is characterized by the property U*U =1I). The property (A.22)
is the complex extension of the isotropic property of the real standard Gaus-
sian random vector (cf. (A.8)). Note the distinction between the circular
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symmetry (A.17) and the isotropic (A.22) properties: the latter is in general
much stronger than the former except that they coincide when w is scalar.

The square of the magnitude of w, as in the real case, is a x3, random
variable.

. Ifwis CN(0,1I) and A is a complex matrix, then x = Aw is also circular

symmetric Gaussian, with covariance matrix K = AA*, i.e., CN (0, K).
Conversely, any circular symmetric Gaussian random vector with covari-
ance matrix K can be written as a linearly transformed version of a standard
circular symmetric random vector. If A is invertible, the density function
of x can be explicitly calculated via (A.21), as in (A.12),

= ———exp(—x'K'x), xel". (A.23)
When A is not invertible, the earlier discussion for real random vectors
applies here as well: we focus only on the linearly independent components

of x, and treat the other components as deterministic linear combinations
of these. This allows us to work with a compact notation.

Summary A.1 Complex Gaussian random vectors

e An n-dimensional complex Gaussian random vector x has real and imag-

inary components which form a 2n-dimensional real Gaussian random
vector.

® x is circular symmetric if for any 6,

elfx ~x. (A.24)

e A circular symmetric Gaussian x has zero mean and its statistics are

fully specified by the covariance matrix K := E[xx*]. It is denoted by
CN (0, K).

e The scalar complex random variable w ~ €N (0, 1) has i.i.d. real and

imaginary components each distributed as V' (0, 1/2). The phase of w is
uniformly distributed in [0, 277] and independent of its magnitude |w|,
which is Rayleigh distributed:

J(r) =rexp (—%2) . r=0. (A.25)

|w|? is exponentially distributed.

e If the random vector w ~ €NV (0, I), then its real and imaginary compo-

nents are all i.i.d., and w is isotropic, i.e., for any unitary matrix U,

Uw ~ w. (A.20)
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Equivalently, the projections of w onto orthogonal directions are i.i.d.
CN(0,1). The squared magnitude |w|* is distributed as x;, with
mean 7.

e If x ~ €N (0,K) and K is invertible, then the density of x is

f(x) = exp(—x*K™'x), xeC". (A27)

1
7 det K

A.2 Detection in Gaussian noise

A.2.1 Scalar detection

Consider the real additive Gaussian noise channel:
y=u+w, (A.28)

where the transmit symbol u is equally likely to be u, or up and w ~
N (0, N,/2) is real Gaussian noise. The detection problem involves making a
decision on whether u, or u, was transmitted based on the observation y. The
optimal detector, with the least probability of making an erroneous decision,
chooses the symbol that is most likely to have been transmitted given the
received signal y, i.e., u, is chosen if

Plu=u,|y} = P{u = uply}. (A.29)

Since the two symbols u,, uy are equally likely to have been transmitted,
Bayes’ rule lets us simplify this to the maximum likelihood (ML) receiver,
which chooses the transmit symbol that makes the observation y most likely.
Conditioned on u = u;, the received signal y ~ N (u;, N,/2),i = A, B, and
the decision rule is to choose u, if

e I

and u, otherwise. The ML rule in (A.30) further simplifies: choose u, when

|y —uy| <[y —ugl (A.31)

The rule is illustrated in Figure A.4 and can be interpreted as corresponding to
choosing the nearest neighboring transmit symbol. The probability of making
an error, the same whether the symbol u, or u; was transmitted, is equal to

Up+ug, . luy — upl . luy — up
P{y< > |u_uA}_]P’{w>—2 }_Q<—2\/m>. (A.32)
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Figure A.4 The ML rule is to
choose the symbol that is
closest to the received symbol.
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P{ylx=u,} P{ylx=ug}

If y < (up+ug)/2
choose uy

Ify> (ua+ug)/2
choose ug

(ug+up)
2

Thus, the error probability only depends on the distance between the two
transmit symbols u 4, ug.

A.2.2 Detection in a vector space

Now consider detecting the transmit vecfor u equally likely to be u, or ug
(both elements of R"). The received vector is

y=u+w, (A.33)

and w ~ N (0, (N,/2)I). Analogous to (A.30), the ML decision rule is to
choose u, if

1 ly —u,| 1 ly —ugll®
—_expf- > VTR Az
(7N, P < Ny = (N2 P Ny ( )

which simplifies to, analogous to (A.31),

ly —usll < lly —wgll, (A.35)

the same nearest neighbor rule. By the isotropic property of the Gaussian
noise, we expect the error probability to be the same for both the transmit
symbols u,, ug. Suppose u, is transmitted, so y = u, +w. Then an error
occurs when the event in (A.35) does not occur, i.e., |W|| > [|[w+u, —ug].
So, the error probability is equal to

B{Iwl? > [w-u, —ug|?} = P {(uA —up)w<—
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An alternative view

Figure A.5 The decision region
for the nearest neighbor rule is
partitioned by the hyperplane
perpendicular to uz —u, and
halfway between u, and u.

A.2 Detection in Gaussian noise

Geometrically, this says that the decision regions are the two sides of
the hyperplane perpendicular to the vector wyz —u,, and an error occurs
when the received vector lies on the side of the hyperplane opposite to the
transmit vector (Figure A.5). We know from (A.11) that (u, —ug)'w ~
N(0, |ju, —uag||*Ny/2). Thus the error probability in (A.36) can be written in
compact notation as

Q(nuA —uBu) . (A37)
2,/N,/2

The quantity |ju, —ugl||/2 is the distance from each of the vectors u,, u, to
the decision boundary. Comparing the error probability in (A.37) with that
in the scalar case (cf. (A.32)), we see that the the error probability depends
only on the Euclidean distance between u, and uy and not on the specific
orientations and magnitudes of u, and uy.

To see how we could have reduced the vector detection problem to the scalar
one, consider a small change in the way we think of the transmit vector
u € {u,, uy}. We can write the transmit vector u as

1
u:x(uA—uB)+§(uA+uB), (A.38)

where the information is in the scalar x, which is equally likely to be 4+1/2.
Substituting (A.38) in (A.33), we can subtract the constant vector (u, +uy)/2
from the received signal y to arrive at

1
y—- E(uA+uB) = x(uy —ug) +w. (A.39)
Y2
ifyeUpg
choose ug
ifyeUy
choose uy o5
Vi
o
u
A Up
Ua
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We observe that the transmit symbol (a scalar x) is only in a specific direction:
vi=(uy —up)/[luy —upl. (A.40)

The components of the received vector y in the directions orthogonal to v
contain purely noise, and, due to the isotropic property of w, the noise in
these directions is also independent of the noise in the signal direction. This
means that the components of the received vector in these directions are
irrrelevant for detection. Therefore projecting the received vector along the
signal direction v provides all the necessary information for detection:

= V’(y—%(uA—i-uB)). (A41)

We have thus reduced the vector detection problem to the scalar one.
Figure A.6 summarizes the situation.

More formally, we are viewing the received vector in a different orthonor-
mal basis: the first direction is that given by v, and the other directions are
orthogonal to each other and to the first one. In other words, we form an
orthogonal matrix O whose first row is v, and the other rows are orthogonal
to each other and to the first one and have unit norm. Then

x|ju, —ug]
1 0
o (y - E(uA —i—uB)) = ) +Ow. (A42)

0
Since Ow ~ N (0, (N,/2)I) (cf. (A.8)), this means that all but the first com-
ponent of the vector O(y — 3(u, +ug)) are independent of the transmit
symbol x and the noise in the first component. Thus it suffices to make a

decision on the transmit symbol x, using only the first component, which is
precisely (A.41).

Y2

—@ <

Figure A.6 Projecting the u,
received vector y onto the

signal direction v reduces the

vector detection problem to

the scalar one.
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This important observation can be summarized:

1. In technical jargon, the scalar y in (A.41) is called a sufficient statistic of
the received vector y to detect the transmit symbol u.

2. The sufficient statistic y is a projection of the received signal in the signal
direction v: in the literature on communication theory, this operation is
called a matched filter; the linear filter at the receiver is “matched” to the
direction of the transmit signal.

3. This argument explains why the error probability depends on u, and uy
only through the distance between them: the noise is isotropic and the
entire detection problem is rotationally invariant.

We now arrive at a scalar detection problem:
y=xllu, —upll +w, (A.43)

where w, the first component of Ow is N (0, N,/2) and independent of the
transmit symbol u. The effective distance between the two constellation points
is |[u, —ug||. The error probability is, from (A.32),

0 Ju, —ugl (A.44)
2J/N,J2 ) '

the same as that arrived at in (A.37), via a direct calculation.

The above argument for binary detection generalizes naturally to the case
when the transmit vector can be one of M vectors u,, . .., u,,. The projec-
tion of y onto the subspace spanned by u,,...,u, is a sufficient statistic
for the detection problem. In the special case when the vectors u,, ..., u,,
are collinear, i.e., w; = hx; for some vector h (for example, when we are
transmitting from a PAM constellation), then a projection onto the direction
h provides a sufficient statistic.

A.2.3 Detection in a complex vector space

Consider detecting the transmit symbol u, equally likely to be one of two
complex vectors u,,u, in additive standard complex Gaussian noise. The
received complex vector is

y=u+w, (A.45)

where w ~ CN (0, N,I). We can proceed as in the real case. Write

u=x(uA—uB)+%(uA+uB). (A.46)
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The signal is in the direction
vi=(uy —up)/|lu, —ugl. (A.47)

Projection of the received vector y onto v provides a (complex) scalar suffi-
cient statistic:

- . 1
pimv (y- g ctu) ) =slu-wl b (A4

where w ~ CN (0, N,). Note that since x is real (£1/2), we can further extract
a sufficient statistic by looking only at the real component of y:

R[F] = x[lu, — ug| +R[w], (A.49)

where N[w] ~ N(0, N,/2). The error probability is exactly as in (A.44):

lu, — gl
oftn) o

Note that although u, and u, are complex vectors, the transmit vectors
1
x(uA—uB)—f—E(uA—i—uB), x==l, (A.51)

lie in a subspace of one real dimension and hence we can extract a real
sufficient statistic. If there are more than two possible transmit vectors and
they are of the form hx;, where x; is complex valued, h*y is still a sufficient
statistic but N[h*y] is sufficient only if x is real (for example, when we are
transmitting a PAM constellation).

The main results of our discussion are summarized below.

Summary A.2 Vector detection in complex Gaussian noise

Binary signals
The transmit vector u is either u, or u,; and we wish to detect u from
received vector

y=u+w, (A.52)

where w ~ CN (0, NyI). The ML detector picks the transmit vector closest
to y and the error probability is

u, —upll
of i) s
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Collinear signals
The transmit symbol x is equally likely to take one of a finite set of values
in € (the constellation points) and the received vector is

y=hx+w, (A.54)

where h is a fixed vector.

Projecting y onto the unit vector v := h/|/h|| yields a scalar sufficient
statistic:

vy = ||h|lx + w. (A.55)
Here w ~ €N (0, N,).
If further the constellation is real-valued, then
N[v7y] = [[h]lx+9R[w] (A.56)

is sufficient. Here fR[w] ~ N (0, N,/2).

With antipodal signalling, x = %a, the ML error probability is simply

alh]
0 ( N0/2> . (A.57)

Via a translation, the binary signal detection problem in the first part of
the summary can be reduced to this antipodal signalling scenario.

A.3 Estimation in Gaussian noise

A.3.1 Scalar estimation

Consider a zero-mean real signal x embedded in independent additive real
Gaussian noise (w ~ N (0, N,/2)):

y=x+w. (A.58)

Suppose we wish to come up with an estimate ¥ of x and we use the mean
squared error (MSE) to evaluate the performance:

MSE := E[(x — %)?], (A.59)
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where the averaging is over the randomness of both the signal x and the
noise w. This problem is quite different from the detection problem studied
in Section A.2. The estimate that yields the smallest mean squared error is
the classical conditional mean:

i =E[x]y]. (A.60)

which has the important orthogonality property: the error is independent of
the observation. In particular, this implies that

E[(x—x)y] =0. (A.61)

The orthogonality principle is a classical result and all standard textbooks
dealing with probability theory and random variables treat this material.

In general, the conditional mean E[x|y] is some complicated non-linear
function of y. To simplify the analysis, one studies the restricted class of linear
estimates that minimize the MSE. This restriction is without loss of generality
in the important case when x is a Gaussian random variable because, in this
case, the conditional mean operator is actually linear.

Since x is zero mean, linear estimates are of the form x = cy for some real
number c. What is the best coefficient ¢? This can be derived directly or via
using the orthogonality principle (cf. (A.61)):

2
c= & (A.62)
E[x2] 4+ N,/2
Intuitively, we are weighting the received signal y by the transmitted sig-
nal energy as a fraction of the received signal energy. The corresponding
minimum mean squared error (MMSE) is

E[x*]N,/2
MMSE = M. (A.63)
E[x2]+ N, /2
A.3.2 Estimation in a vector space
Now consider estimating x in a vector space:
y=hx+w. (A.64)

Here x and w ~ N (0, (N,/2)I) are independent and h is a fixed vector in ).
We have seen that the projection of y in the direction of h,

h'y

—xtw, A65
=t (A.65)

y=

is a sufficient statistic: the projections of y in directions orthogonal to h
are independent of both the signal x and w, the noise in the direction
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of h. Thus we can convert this problem to a scalar one: estimate x from
9, with w ~ N (0, N,/(2||h|?)). Now this problem is identical to the scalar
estimation problem in (A.58) with the energy of the noise w suppressed by a
factor of ||h||%. The best linear estimate of x is thus, as in (A.62),

ELCNNE
B[]+ Noy2 (A.66)

We can combine the sufficient statistic calculation in (A.65) and the scalar
linear estimate in (A.66) to arrive at the best linear estimate X = ¢’y of x
from y:

_
© = BT+ N2 (4D

The corresponding minimum mean squared error is

E[x*]Ny/2

MMSE = :
E[x?][h][* 4+ No/2

(A.68)

An alternative performance measure to evaluate linear estimators is the
signal-to-noise ratio (SNR) defined as the ratio of the signal energy in the
estimate to the noise energy:

__ (c'h)’E[x?]

That the matched filter (¢ = h) yields the maximal SNR at the output of any
linear filter is a classical result in communication theory (and is studied in
all standard textbooks on the topic). It follows directly from the Cauchy-
Schwartz inequality:

(c'h)” < [le|* [Ih[?, (A.70)
with equality exactly when ¢ = h. The fact that the matched filter maximizes

the SNR and when appropriately scaled yields the MMSE is not coincidental;
this is studied in greater detail in Exercise A.8.

A.3.3 Estimation in a complex vector space

The extension of our discussion to the complex field is natural. Let us
first consider scalar complex estimation, an extension of the basic real setup
in (A.58):

y=x+uw, (A.71)
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where w ~ CN (0, N,) is independent of the complex zero-mean transmitted
signal x. We are interested in a linear estimate X = c*y, for some complex
constant c¢. The performance metric is

MSE = E[|x — x|*]. (A.72)

The best linear estimate X = ¢*y can be directly calculated to be, as an
extension of (A.62),

E[|x[*]
= —F——. A.73
BRI+ Ny (7
The corresponding minimum MSE is
E[|x|*]N,
MMSE = &. (A.74)
E[|x[*]+ N,

The orthogonality principle (cf. (A.61)) for the complex case is extended to:
E[(x—x)y*]=0. (A.75)

The linear estimate in (A.73) is easily seen to satisfy (A.75).
Now let us consider estimating the scalar complex zero mean x in a complex
vector space:

y=hx+w, (A.76)

with w ~ CN (0, N,I) independent of x and h a fixed vector in €". The
projection of y in the direction of h is a sufficient statistic and we can reduce
the vector estimation problem to a scalar one: estimate x from

h*y

y= T =x+w, (A.77)

where w ~ €N (0, N,/||h|]?).
Thus the best linear estimator is, as an extension of (A.67),
E[]x]’]

c=——"" 1 _p (A78)
E[|x[1[h]12 + N,

The corresponding minimum MSE is, as an extension of (A.68),

E[x*]N,

MMSE = ————F—~——.
E[][h]* + N

(A.79)
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A.4 Exercises

Exercise A.1 Consider the n-dimensional standard Gaussian random vector
w~ N(0,L,) and its squared magnitude |w/|>.
1. With n = 1, show that the density of ||w||? is

1 a
fila) = Wiz 7hikd (—5) . a=0. (A.86)
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2. For any n, show that the density of ||w||?> (denoted by f,(-)) satisfies the recursive
relation:

furl@==f(@),  az0. (A87)

3. Using the formulas for the densities for n =1 and 2 ((A.86) and (A.9), respectively)
and the recurisve relation in (A.87) determine the density of ||w||> for n > 3.

Exercise A.2 Let {w(f)} be white Gaussian noise with power spectral density N,/2.
Let s;,...,8y be a set of finite orthonormal waveforms (i.e., orthogonal and unit

energy), and define z; = [~ w(r)s;(¢)dz. Find the joint distribution of z. Hint: Recall
the isotropic property of the normalized Gaussian random vector (see (A.8)).

Exercise A.3 Consider a complex random vector X.

1. Verify that the second-order statistics of x (i.e., the covariance matrix of the real
representation [N[x], J[x]]") can be completely specified by the covariance and
pseudo-covariance matrices of x, defined in (A.15) and (A.16) respectively.

2. In the case where x is circular symmetric, express the covariance matrix
[R[x], 3[x]]" in terms of the covariance matrix of the complex vector X only.

Exercise A.4 Consider a complex Gaussian random vector X.

1. Show that a necessary and sufficient condition for x to be circular symmetric is
that the mean g and the pseudo-covariance matrix J are zero.

2. Now suppose the relationship between the covariance matrix of [R[x], J[x]]’ and
the covariance matrix of x in part (2) of Exercise A.3 holds. Can we conclude that
X is circular symmetric?

Exercise A.S Show that a circular symmetric complex Gaussian random variable must
have i.i.d. real and imaginary components.

Exercise A.6 Let x be an n-dimensional i.i.d. complex Gaussian random vector, with
the real and imaginary parts distributed as N (0, K,) where K is a 2 x 2 covariance
matrix. Suppose U is a unitary matrix (i.e., U*U =I). Identify the conditions on K,
under which Ux has the same distribution as x.

Exercise A.7 Let z be an n-dimensional i.i.d. complex Gaussian random vector, with
the real and imaginary parts distributed as N (0, K,) where K is a 2 x 2 covariance
matrix. We wish to detect a scalar x, equally likely to be £1 from

y=hx+z, (A.88)

where x and z are independent and h is a fixed vector in €. Identify the conditions
on K, under which the scalar h*y is a sufficient statistic to detect x from y.

Exercise A.8 Consider estimating the real zero-mean scalar x from:
y=hx+w, (A.89)

where w ~ N (0, N,/2I) is uncorrelated with x and h is a fixed vector in R".
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1. Consider the scaled linear estimate ¢y (with the normalization ||c| = 1):
X:=ac'y = (ac'h) x +ac'z. (A.90)

Show that the constant a that minimizes the mean square error (E[(x — %)?]) is
equal to

]E 2 th 2
_ Elfic'nf” (A1)
E[x2]|c’h|? + N,/2

2. Calculate the minimal mean square error (denoted by MMSE) of the linear estimate
in (A.90) (by using the value of a in (A.91). Show that

]E 2 ]E 2 rh2
D) snR = 14 P ICRE

(A.92)
MMSE N,/2

For every fixed linear estimator ¢, this shows the relationship between the correspond-
ing SNR and MMSE (of an appropriately scaled estimate). In particular, this relation
holds when we optimize over all ¢ leading to the best linear estimator.



