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Collective behavior is the outcome of a network of local interactions. Here, I consider collective behavior as
the result of algorithms that have evolved to operate in response to a particular environment and physiolog-
ical context. I discuss how algorithms are shaped by the costs of operating under the constraints that the
environment imposes, the extent to which the environment is stable, and the distribution, in space and
time, of resources. I suggest that a focus on the dynamics of the environment may provide new hypotheses
for elucidating the algorithms that produce the collective behavior of cellular systems.
Collective behavior is a process without central control that

brings together multiple participants to achieve some outcome.

We see the outcomes of collective behavior everywhere in na-

ture: flocks of starlings turn in the sky, groups of T cells find their

prey and initiate an immune response, new tissues take form in

a developing embryo. Social insects have always been a focal

point in the study of collective behavior. At least since the author

of Proverbs 6:6 (‘‘Look to the ant, thou sluggard! Consider her

ways and be wise’’) wondered how ‘‘without chief, ruler, or over-

seer,’’ an ant colony manages to harvest and store food, it has

been apparent that the difficult task of deciphering the behavior

of social insects might lead us to understandmore generally how

natural systems work without central control. Here, I will draw on

what I have learned from my research on ants to propose a

general framework for investigating collective behavior.

Thinking about collective behavior generates sticky questions

about the relation between behavior at the level of the individual

participants and at the level of the group or system. For

example, we could say that brains think when neurons fire or

that the ant colony forages when the ants follow chemical

cues. The attempt to distinguish what the neurons do from

what the brain does leads to the idea of ‘‘emergence,’’ the

behavior of the group that seems to rise above an explanation

of what the individuals are doing. But a brain is merely a lot of

neurons, and a colony is nothing other than some ants, and

the behavior of the brain or the colony comes from the neurons

or the ants. It seems to me that the best way to deal with this

philosophical quagmire is to step around it. My goal is to explain

what may seem, before we understand it, to be emergent and

mysterious: how the individual actions produce the collective

behavior of the system

Collective behavior is the outcome of interactions among indi-

viduals. These interactions are the mechanism or means by

which one participant influences and responds to the behavior

of another. Cells interact through molecular mechanisms, for

example, when a hormone binds to a receptor on a mammalian

cell, or when bacteria respond to chemicals secreted into the

medium by other bacteria. Neurons use electrical stimulation

and the transfer of neurotransmitters. Ants interact with each

other through olfaction, assessing the odors on another’s body

or deposited by another ant (Gordon, 2010).
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The outcomes are what we see: starling flocks turning or

the formation of differentiated tissues. There are countless ex-

amples of collective behavior, each the outcome of interactions

among individual participants. How an ant colony forages is the

outcome of olfactory interactions among ants. The formation and

pruning of synapses is an outcome of chemical and electrical

interactions among neurons. Metastasis from tumors is an

outcome of chemical interactions among cells. Even inside cells,

the outcomes of interactions among organelles, or of molecules

within transcription networks, could be considered to be collec-

tive behavior.

Algorithms for Collective Behavior
The fundamental question in the study of collective behavior is

how do the interactions among individuals—that is, the means

by which one participant influences and responds to the

behavior of another—produce the outcome that we see? How

do ants use olfactory interactions to organize their foraging?

Howdo cancer cells use hormones and growth factors produced

by other cells to metastasize and form tumors? The goal of this

essay is to point out that an ecological perspective can help

provide a general framework for answering this question.

The quantitative study of collective behavior began with in-

sights from sociology (Granovetter, 1978) and physics (Hopfield,

1982); early studies focused on social insects (e.g., Deneubourg

et al., 1986) and animal movement (Okubo, 1986). All were math-

ematical models that describe how local interactions between

individuals produce a collective outcome. These efforts showed

that it is possible, in principle, for a mathematical model to

describe a process that leads to what seemed to be ‘‘emergent’’

behavior. As a shorthand for ‘‘the process that generates collec-

tive outcomes from the interactions among individuals,’’ I will

borrow the term ‘‘algorithm’’ from computer science. There are

many examples of such algorithms in Sumpter (2010); other spe-

cific examples are equation 1 in Rosenthal et al. (2015) or equa-

tions 3 and 4 in Prabhakar et al. (2012). By now, it is very clear

that such approaches can explain behavior that has been iden-

tified in many diverse systems. This quantitative approach has

often been embedded in a search for a general mathematical

theory, variously called a theory of emergent behavior,

complexity, or self-organization; it is based on the hope that a
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Figure 1. The Fit between Algorithm and Environment
Each large rectangle represents a particular environment with characteristic
dynamics. The algorithm that produces a collective outcome is likely to fit the
environment in which it evolves. Thus, outcomes that resemble each othermay
be based on very different algorithms.
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general class of models of collective behavior will apply to all

systems.

But the proliferating examples of collective behavior now offer

a newchallenge. The evidence is growing that the processes that

generate collective behavior are, like everything else in nature,

extremely diverse. For example, there are many different pro-

cesses that might cause a group of wildebeest, ants, or cells

to move as a group from one place to another. Here, I suggest

that, like any other phenotypic traits, the rules that produce col-

lective behavior evolve in response to the dynamics of the envi-

ronment. This ecological perspective may help us to discover,

for particular systems, how collective behavior arises from

interactions among individuals.

An example from computer science shows why different algo-

rithms can evolve to produce the same outcome. There aremany

different algorithms that a computer could use for sorting a list of

numbers so that they are in ordinal sequence. One algorithm is

based on selection; it chooses the smallest value from some

subset of the list, and then it chooses the smallest of the remain-

ing ones, and so on. Another algorithm is based on insertion: it

chooses the first number in the list, then it moves the number

until it comes after another number with a lower value, and so

on. Both algorithms ultimately produce the same outcome, an

ordered list of numbers. However, because they differ in how

they proceed over time, they might differ in the conditions

in which they are most likely to generate a complete ordinal

sequence and, therefore, are most appropriate. For example, if

the first algorithm is interrupted, the beginning of the list will

already be in the correct order, while this is not true of the second

algorithm. Under some circumstances, it may be useful to have

at least the beginning of the list in the correct order. Imagine that

the algorithm is a biological process, and that a list in the correct

order is the collective behavior that is ecologically important. In

an unstable environment with frequent interruptions, the first

algorithm might be more likely than the second to evolve.

This example above suggests one of the reasons why, in nat-

ural systems, similar outcomes can be produced by different al-

gorithms (Figure 1). In response to unpredictable disruptions in

the environment, the intermediate states generated by different
algorithms can themselves be very different, even if the out-

comes are similar. Intermediate states, as well as outcomes,

are subject to natural selection, and so intermediate states can

be the target of selective pressure in environments that are often

disrupted. More generally, I argue here that algorithms are likely

to evolve to fit environmental conditions.

Because I am using ‘‘algorithm,’’ a term from computer sci-

ence, to describe a biological process, it is important to note

the difference between algorithms implemented by computers

and those implemented in nature. The algorithms in computer

programs are written by a programmer with the intention to solve

a particular problem, but in nature, there is no master program-

mer acting with intent. However, the specter of a programmer

distracts from an important similarity between the two cases:

in both computer science and biology, the algorithm itself does

not have any intention. The logic gates in the computer merely

accept inputs and configure their outputs as 1’s and 0’s, and

the way the outputs are linked produces an outcome. The algo-

rithms that generate the collective behavior of ant colonies arose

through evolution, not the effort of amaster programmer, and the

ants themselves are like the computer’s logic gates. An ant re-

sponds to interactions with other ants without any intention or

desire to create a bridge, foraging trail, or tunnel. Thus, the par-

ticipants that use an algorithm to provide a collective outcome

need not know its goals; in fact, they do not even need to have

identical goals (Farine et al., 2015).

Ants provide many opportunities for us to see the fit between

the algorithms that produce collective behavior and the dy-

namics of the environment. More than 14,000 species of ants

have evolved collective behavior in an enormous range of envi-

ronments over the past 130 million years. For example, all ant

species engage in some form of collective search to find and

retrieve resources. Some species collect patchy resources,

those that occur in clusters in space or time or both. A picnic is

a patchy resource for ants in both space and time; abundant

food appears in a specific place and lasts for a short time until

the picnickers and the ants are both done with it. The foraging

behavior of ant species that specialize on patchy resources

tends to use algorithms that include spatial information in inter-

actions among individuals, with the outcome that additional

individuals are recruited from the nest back to the patch of food.

By contrast, some ant species forage for resources that are

scattered or distributed at random, appearing unpredictably in

space and time. These species use an algorithm to find and

retrieve resources that does not include any spatial information.

This makes sense when an ant can retrieve a food item on its

own, and the presence of an item in a certain location does not

mean that others are likely to find more food in the same place.

For example, harvester ants collect seeds that are scattered by

wind and flooding, not clustered in patches (Gordon, 1993). In-

teractions between individuals depend on the rate at which

food is found, not its location. Each ant leaves the nest to search

for food in response to the rate at which it meets returning for-

agers with food (Pinter-Wollman et al., 2013). Since the more

food is available, the more quickly foragers find it and return,

the rate of forager return is, in effect, a measure of food availabil-

ity. Positive feedback that links the rate of ants that leave the nest

to the rate at which they return with food allows the colony to

adjust its foraging activity to fluctuations in food availability.
Cell Systems 3, December 21, 2016 515
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When less food is available, fewer foragers return, and this de-

creases the rate at which foragers leave the nest (Prabhakar

et al., 2012).

Feedback is important in many biological systems (e.g., Fer-

rell, 2016). The algorithms that produce collective behavior

specify how interactions among participants create feedback

(Åstrom and Murray, 2009). Feedback can be positive, which

tends to amplify response to an input signal, or negative, which

can dampen the response to an input signal. Types of feedback

often operate in combination. In ant recruitment, trail pheromone

creates positive feedback, and then, when the food runs out, the

pheromone fades away, which shuts down the recruitment pro-

cess. In cellular systems, there are many examples of circuits

involving both positive and negative feedback (e.g., Youk and

Lim, 2014) that generate diverse outcomes.

Subtle differences in algorithm can also lead to important

differences in outcome. Different regimes of positive and nega-

tive feedback based on simple signaling interactions can

generate diverse outcomes, such as quorum sensing or para-

crine signaling (Maire and Youk, 2015). Migrating groups of cells

tend to use chemical and tactile interactions that generate a

gradient. The gradient produces feedback that results in a partic-

ular direction of movement (Mayor and Etienne-Manneville,

2016). Different types of feedback result when the forward and

rear have distinct edges that react differently, while others gather

cells passively behind amoving front. These two processes have

very different outcomes in the specificity of the shapes formed:

for example, whether they fill a gap, as in wound-healing, or

create interdigitating layers of tissue, as in the zebrafish neural

crest.

Despite this diversity, the algorithms used to regulate collec-

tive behavior do have some characteristics in common. They

tend to be distributed processes (Gordon, 2015). In a distributed

process, the role or behavior of an individual or component is

determined by its interactions with others rather than its inherent

attributes. Some important advantages of distributed processes,

flexibility and resilience to disturbance, arise because different

participants in the collective outcome are able to respond to

changing conditions (Gordon, 2015). For example, task alloca-

tion in an ant colony, the distributed process that determines

which ant performs which task at a given time, uses an algorithm

based on the rate of interaction between ants. An individual ant

assesses interactions by detecting the cuticular hydrocarbon

profile of each ant it meets (Greene and Gordon, 2003). An

ant’s cuticular hydrocarbon profile provides information about

its task because the conditions in which an ant works change

the chemistry of the hydrocarbons on its body surface. For

example, when harvester ant foragers are out in the sun, the pro-

portion of n-alkanes in their hydrocarbon profiles increases,

leading a forager to smell recognizably different from an ant

that works inside the nest (Wagner et al., 2001). An ant uses its

recent experience of interactions with other ants in its decisions

about what task to perform and whether to perform it actively

(Gordon, 2015). Collectively, this allows the colony to regulate

the numbers of ants currently engaged in each task in response

to the availability and flow of resources and external conditions.

For example, when extra food is available, ants engaged in other

tasks switch tasks to foraging as a result of increased interac-

tions with other ants that found food (Gordon 1989).
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Distributed algorithms often employ stochasticity to achieve

an outcome (Lewontin, 2000; Gerhart and Kirschner, 1997). For

example, the algorithm that harvester ants use to regulate

foraging activity relies on the variable rate at which foragers

find seeds and return to the nest (Prabhakar et al., 2012). There

are many examples of the use of stochasticity in nature; it pro-

vides information in visual neural circuits (Tka�cik et al., 2010),

helps to initiate spindle formation (Farhadifar et al., 2015), or reg-

ulates the response to disturbance of a swarm of midges (Ni

et al., 2015). One simple example is the collective searching of

space. If all searchers always remain on the same path, none

of them will find anything off the path; random movement in-

creases the probability that a searcher will encounter something

novel. This can be seen in the ‘‘run-and-tumble’’ behavior of in-

dividual cells during bacterial chemotaxis (Berg and Purcell,

1977). This behavior, combined with interaction between cells,

enables efficient search. Another example of the use of sto-

chasticity is the search of conformational space during protein

folding; the jostling around of amino acid polymers allows certain

sites to find and bind to each other, which changes the probabil-

ity that neighboring amino acids will interact (McLaughlin et al.,

2012). A third example of the use of stochasticity is the role of un-

predictable obstacles in the formation of patterns. An instance of

this is the aggregation phase of the life cycle of the slime mold

Dicyostelium, which requires that cells form spiral waves. The

spiral wave arises when a wavefront is interrupted by some

obstacle. Thus, randomly encountered obstacles are necessary

for the algorithm that produces the collective outcome of aggre-

gation (Grace and H€utt, 2015).

For most of the collective behavior that we see in nature, the

algorithm is unknown. To learn what the algorithm is, the first

step is to find out how the participants interact. This is the inves-

tigation of molecular mechanisms, and much of cell biology is

engaged in this project. The next step is to understand how

the mechanisms come together to create dynamic outcomes.

This search for algorithms is the project of systems biology. I

suggest here that, to derive hypotheses about what are the algo-

rithms of particular collective behavior, the best place to start

is to consider how the collective behavior functions in its envi-

ronment. This is an ecological question.

Ecological Context: The Environment and Its Dynamics
A system’s ‘‘environment’’ is everything it uses and influences.

Environments keep changing, and collective behavior changes

in response. It is important to remember that environments do

not exist independently of organisms; what the environment is

depends on how the organisms are linked to it. For example,

the macroenvironment of a cell consists of whatever chemical

and tactile stimuli it can receive and use. Ethologists referred

to this relation for an animal as its ‘‘Umwelt,’’ the aspects of

the world that its sensory systems can receive and that its

actions can influence.

The most important reason that organisms and environments

cannot be considered to be independent is that they are always

changing each other (Lewontin, 2000; Sultan, 2015). All living en-

tities engage in ‘‘niche construction,’’ (Odling-Smee et al., 2003)

constantly modifying their environments as they are responding

to them. Plant roots host mycorrhizae that modify the nitrogen

content of soil from which the plants collect nitrogen. Birds build



Table 1. Correspondence between Environmental Conditions

and the Dynamics of Collective Behavior

Environment Dynamics

Energy flow Feedback

Spend faster than acquire Stop unless activated

Acquire faster than spend Go unless stopped

Stability Rate

High Slow and steady

Low Fast or sporadic

Distribution of resources Rate

Patchy Accelerating, non-linear

Uniform Linear
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nests, and beavers build dams. Bacteria secrete substances that

kill competitors, modify the available nutrients, and allow them

to infect new hosts (McNally et al., 2014). In the microenviron-

ment inside the cell, the products of metabolism influence

the signaling pathways that regulate metabolism (Agathocleous

and Harris, 2013). Cell movement can depend on local modifica-

tion of the environment: for example, groups of melanoma cells

move toward a gradient of lysophosphatidic acid that they create

by degrading it as they move along (Muinonen-Martin et al.,

2014).

Because collective behavior deals with a changing world, the

algorithms of collective behaviormust enable it to change appro-

priately. I suggest here that those algorithms are shaped by

the selective pressures of a changing environment.

The dynamical fit between how organisms change and how

their environments change is a central theme of evolutionary

biology (Mangel and Clark, 1988; Sultan, 2015). The relation

of phenotype and environment determines which variants are

favored in the turbulent process of natural selection, on the time-

scale of generations, that shifts the proportion of a population

with particular traits. The relation of organisms and environment

determines which variants are favored by natural selection. Ecol-

ogy is the study of this relation, and this is why ecology can

inform our understanding of the algorithms governing collective

behavior.

Levinsmodeled the action of selection in response to a chang-

ing environment beautifully in Evolution in Changing Environ-

ments (Levins, 1968), describing the tradeoff between the cost

of flexibility, producing a range of phenotypes for different con-

ditions, and the cost of inflexibility, having the wrong phenotype

in particular conditions. Levins (1968) pointed out that the scale

of changing phenotypes evolves in relation to what he called the

‘‘grain’’ of the environment—that is, how quickly it changes in

time and space.

In previous work (Gordon, 2014), I adapted these ideas to

consider the evolution of collective behavior. Collective behavior

is a phenotype that has dynamics and evolves in response to the

dynamics or grain of the environment. Specifically, I outlined

three basic challenges that characterize the dynamics of an envi-

ronment and constrain how collective behavior functions in

particular environmental contexts:

1) Operating costs: the relation between the rates of

spending and acquiring the energy that keeps the system
going. When spending and acquiring occur at similar rates

or when spending is faster than acquiring, the system

is under stress. When acquiring is much faster than

spending, activity is easier.

2) Threat of rupture: how stable the environment is, or how

likely conditions are to change, and how likely changes

are to interrupt the network of interactions that allows

the system to function.

3) Distribution of resources: whether some condition, such

as the amount of a resource, is patchy, concentrated in

time, space, both, or is uniform.

Operating costs, stability, and the distribution of resources are

overlapping features of an environment and could occur in any

combination. For example, harvester ants live in a stable environ-

ment in which they must spend water to obtain it due to water

loss while out foraging, and they forage for scattered, uniformly

distributed resources. In this environment, natural selection

shapes interactions between foragers to create feedback that

keeps foragers inactive unless they are stimulated to leave the

nest foragers returning with food (Gordon, 2013). Changes in

foraging behavior are slow, on the scale of hours, and they do

not use recruitment. By contrast, the tropical arboreal turtle ant

lives in a rapidly changing environment in which resources can

be gained more rapidly than energy is spent because the air

is humid. The turtle ants use a system of feedback in which inter-

actions allow the system to continue unless inhibited. They lay

pheromone trails as they go, using chemical interactions to

maintain a constant activity on the trail. The ants forage for

patchy, ephemeral resources to which they recruit quickly, with

the numbers at the food increasing at an accelerating rate (Gor-

don, 2012).

Considering each of these types of dynamics separately sug-

gests how the algorithms for collective behavior may correspond

to environmental or physiological context. This, in turn, gener-

ates hypotheses about the selective pressures that shape the

algorithm. There are likely to be correspondences between

algorithm, the feedback regime that regulates the collective

outcome, and the ecological situation. I suggest that these cor-

respondences will appear across systems, and that this can pro-

vide a unified framework for the investigation of the algorithms

that generate collective behavior. The following section outlines

some hypotheses about such correspondences, summarized in

Table 1.
Algorithms Shaped by Operating Costs
High Operating Costs: Spend Faster than Obtain

When operating costs are high, the rate of spending energy is

higher than the rate of obtaining it, so life is tough. In this situa-

tion, activity may be regulated so as to avoid unnecessary costs.

This suggests the hypothesis that in such a system, activity oc-

curs only when feedback activates it. If this is true, systems in

which a process is inhibited unless activated may indicate a

high rate of energy expenditure relative to energy gain.

For example, the system of nestmate recognition in ants ap-

pears to operate using the absence of aggression as the default.

In many species, ants repel intruders and sometimes attack ants

of another colony when they meet outside their nests. Attacking

nestmates would have a high cost: wasting time and energy in
Cell Systems 3, December 21, 2016 517
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fighting and leading to the loss of colony members. Nestmate

recognition appears to be a distributed process (Esponda and

Gordon, 2015) in which colony identity is defined collectively

by all of the ants in the colony. Each ant responds to the odor

of another ant by reference to its own unique and shifting

boundary in odor space between what it identifies as a nest-

mate and what it identifies as an outsider. This boundary

changes as a result of its experience of encounters with other

ants. Early in its life, an ant works inside the nest and encoun-

ters only nestmates, but later, while foraging, it may meet an

ant from another colony and experience aggression from it.

In response to this experience, the ant places the odor of

that other ant on the foreign side of its decision boundary.

This adverse experience thus ‘‘inoculates’’ the ant against

passively allowing future intrusions by a foreigner that smells

like the aggressive ant it met. This is analogous to the mamma-

lian immune system: T cells acquire antibodies through expe-

rience with the outside world. Both ants and T cells are using

similar collective algorithms. The default is not to attack self;

the system has evolved to actively keep the ‘‘attack’’ system

inhibited. This system requires feedback from the outside

world to instigate aggression. The algorithm may have evolved

to use active inhibition as the default because the cost of at-

tacking nestmates or launching an autoimmune response is

high.

Low Operating Costs: Acquire Faster than Spend

When operating costs are low, activity is not expensive, and

feedback can be used to maintain the status quo in activity.

This suggests the hypothesis that in conditions of low operating

costs, interactions between participants will perpetuate the ac-

tivity unless something happens to inhibit it. For example, in

some ant species, the ants lay trail pheromone everywhere

that they walk, with the outcome that other ants follow them,

and the trail continues to move forward even in the absence of

resources. This creates a highway system fromwhich temporary

recruitment trails to new food sources are formed (Flanagan

et al., 2013).

In cellular systems, feedback that supports the status quo

physiological state may be associated with low operating costs.

An example of feedback that allows a process to continue,

possibly because operating costs are low, occurs in groups of

astrocytes. They create cables at the edge of wounds, using ad-

herens in a ‘‘treadmilling’’ process that recycles adherens along

a directional gradient such that forward movement promotes

further forward movement (Peglion et al., 2014).

Algorithms Shaped by Stability or the Threat of Rupture
Environments differ in stability. Stability is high when change

is unlikely, or the magnitude of change is low, or both. One

hypothesis about the relation between the dynamics of collec-

tive behavior and environmental stability is that high stability

is associated with slow, steady responses. By contrast, in un-

stable environments where the probability of change is high

and the magnitude of change can be extreme, response is

likely to be more rapid or else to involve a period of waiting

out very unfavorable conditions (Balaban et al., 2004). For

example, harvester ants forage in a stable resource environ-

ment, searching for seeds that can stay in place on the ground

for months and that are distributed by wind and flooding in
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small increments. Their searching behavior is slow and re-

sponds slowly to a change in food availability. The opportu-

nistic, invasive ant species that we meet in our kitchens are

able to find sudden windfalls of food, such as crumbs, cat

food, and sticky fingerprints very quickly and to recruit their

nestmates rapidly to collect it. There are many cases in ecology

of the association between environmental stability and the rate

of response. One is reproductive allocation: in many organ-

isms, the number of offspring produced and the timing of

reproduction depend on the stability of the environment, which

sets the probability of success. One of many examples of

reproductive allocation is widespread in plants. In unstable

conditions, they tend to produce more and smaller seeds

rather than a few larger and more costly ones that might not

succeed (Westoby et al., 2002).

At the cellular level, there are probably many examples of an

association between the algorithm for collective behavior and

the stability of the environment. Epithelial cells respond quickly

to wounds in an environment, the skin, where invasion and

rupture are likely inmammalian bodies (Clark, 1996). By contrast,

brains are stable environments in which physical rupture is rare,

and the collective behavior of neurons is not regulated to provide

rapid repair to traumatic injury. The activation of stem cells

involved in hair growth is tuned to very slow oscillations, lasting

weeks ormonths, of morphogenetic proteins (Plikus et al., 2008).

This slow rate suggests that environmental conditions changing

very slowly on the timescale of months, such as seasonal

changes of temperature, may have influenced the evolution of

the regulation of hair growth.

Algorithms Shaped by the Distribution of Resources
The distribution of resources or targets can range from patchy

or clustered to uniformly distributed and scattered. Response

to patchy resources may deploy accelerating or nonlinear dy-

namics, such as the foraging trails that bring increasing numbers

of ants to a picnic. Resources that occur in patches are available

only at a certain time and in a certain location, so an accelerating

response makes it possible to capture the resource at the place

and time when it is still available. By contrast, when resources

are uniformly distributed, then there may be no recruitment.

Instead, the rate of food intake is linear, as each ant searches

independently and each ant takes about the same amount of

time to find food.

Accelerating responses to patchy resources are common.

Desert plants accelerate soil respiration in response to brief ep-

isodes of rainfall (Potts et al., 2014). Cytokines create chemical

interactions that T cells follow, with the outcome that numbers

of T cells increase at a location where pathogens are patchy

and concentrated in time and space (Fricke et al., 2015; Chao

et al., 2004). An interesting question is whether the reverse is

also true. As the collection of a patchy resource can require an

accelerating response, does the observation of an accelerating

process indicate a reliance on patchy resources? A classic

example of accelerating response is cell proliferation in both

metazoan tumors and within populations of microbes; numbers

of cells increase at a higher-than-linear rate. Considering

whether environmental resources are patchy may allow us to

better understand the algorithms that govern cell growth and

division both in normal and diseased cells.
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The prediction that the dynamics of the algorithms are likely to fit

the dynamics of the environment draws on the idea that natural

selection, on the timescale ofmany generations, shapes the rela-

tion between traits and their environments. This relation is based

on the response to the environment that an individual organism

experiences on the timescale in which it lives and reproduces.

Collective behavior depends on the capacity of the individual

participants to engage in the interactions that produce that

behavior. For example, how a bird flock turns is the result of

the responses of individual birds to the moment-to-moment

behavior of their neighbors. On the evolutionary timescale,

over many generations, the sensory systems that produce these

responses are shaped by the ecological importance of the ability

to turn the flock. The algorithm that produces turning thus draws

on the sensory systems that have evolved so as to allow the flock

to turn. A similar evolutionary process can be traced in transcrip-

tion regulatory networks as evolutionary changes in signaling

pathways: for example, the incorporation of new regulators

must allow the entire network to function (Sorrells and Johnson,

2015).

Selection acts on how the collective behavior affects the sur-

vival and reproductive success of organisms: how the bird flock

can turn to avoid obstacles, or how the transcription regulatory

network produces the right proteins at the right time. Perhaps

the most familiar example of an evolutionary process in cell

biology is cancer. Early studies described cancers as uncon-

trolled clones of founder cells harboring discrete mutations,

and it is becoming clear that these mutations allow cancer cells

to engage in destructive collective behavior. As populations of

cancer cells evolve overmany generations of cells fromancestral

healthy cells, the cancer cells acquire new capacities to partici-

pate in interactions with other cells. These interactions produce

collective outcomes, such as tumors that are able to harness

otherwise healthy vasculature. The characteristics of particular

cells, such as the receptors they are expressing, are the equip-

ment for playing a game, for joining in a set of relations with

certain dynamics; in other words, for following the algorithm

that generates cancer. When andwhere tumors appear depends

on selection for cells with the genetic lesions that provide the

capacity to interact with other cells, cancerous and healthy, in

tumor-forming ways.

To look for the algorithms of collective behavior, the first step

is to consider how they operate in relation to environments. For

example, we know that animals in cold places have traits that

help to deal with the cold, such as thick fur and hibernation, while

animals in hot places have traits that help to deal with the heat,

such as sweating and dilation of blood vessels. A scientist inter-

ested in learning about the physiology of a newly discovered an-

imal that lives in the desert would look for heat dissipation, not for

fur. I am suggesting we do the same to discover the algorithms

for collective behavior: look for a fit between the algorithm and

the environment.

Asking how the algorithms that produce collective outcomes

correspond to the relevant ecological dynamics can generate

new hypotheses about collective behavior in systems we do

not yet understand. There is no single way to accomplish a

particular outcome, such as search or migration; each of these
outcomes is regulated differently in particular ecological situa-

tions. The way to learn how collective behavior works is to look

at its dynamical relation with the system around it: what are

the operating costs to keep the process going, how stable is

its situation, and how the resources it uses are distributed? For

example, among systems that search for and collect resources,

do the ones that deal with rapidly changing resources work

differently from those that filter stable ones? Do systems that

regulate growth in situations of high energy expenditure tend

to use characteristic feedback regimes?

Collective behavior, from tumor metastasis to wildebeest

migration, is a response to the surrounding environment. Ecol-

ogy, the study of the layers of overlapping interactions that

regulate natural systems in response to changing conditions, is

the next frontier for systems biology. To approach collective

behavior from an ecological perspective is to extend the

fundamental question about evolution, the relation of changing

phenotype and changing environment, from the study of whole

organisms to the rest of biology.

For cell and systems biology, the answers to these questions

may be hiding in plain sight. As Gibson (1986) studies of vision

show, the world presents itself to organisms in particular

ways, which he called ‘‘affordances.’’ One consequence of this

obvious fact, that biological entities respond to the subset of

the world that they can perceive, is that it is easier for us to

take into account the ecology of entities whose Umwelt is similar

to our own. This may explain why we know more about how

wildebeest act collectively in response to changing environ-

ments than we do about cells; it is easier for us see what is

happening around a wildebeest than around a cell. Growing

interest in the collective behavior of cells is due to amazing ad-

vances in imaging that makes it possible to observe cells acting.

Now, we need to learn to see the world where they are living.
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