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Abstract 21

The speed-accuracy tradeoff suggests that responses generated under time constraints will be less ac- 22

curate. While it has undergone extensive experimental verification, it is less clear whether it applies 23

in settings where time pressures are not being experimentally manipulated (but where respondents still 24

vary in their utilization of time). Using a large corpus of 29 response time datasets containing data 25

from cognitive tasks without experimental manipulation of time pressure, we probe whether the speed- 26

accuracy tradeoff holds within-person across a variety of tasks using idiosyncratic variation in speed. 27

We find inconsistent relationships between marginal increases in time spent responding and accuracy; 28

in many cases, marginal increases in time do not predict increases in accuracy. However, we do observe 29

time pressures (in the form of time limits) to consistently reduce accuracy and for rapid responses to 30

typically show the anticipated relationship (i.e., they are more accurate if they are slower). We also 31

consider analysis of items and individuals. We find substantial variation in the item-level associations 32

between speed and accuracy. On the person side, respondents who exhibit more within-person variation 33

in response speed are typically of lower ability. Finally, we consider the predictive power of a person’s 34

response time in predicting out-of-sample responses; it is generally a weak predictor. Collectively, our 35

findings suggest the speed-accuracy tradeoff may be limited as a conceptual model in its application in 36

non-experimental settings and, more generally, offer empirical results and an analytic approach that will 37

be useful as more response time data is collected. 38

Keywords: Response Time, IRT, Speed-accuracy tradeoff 39
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1 Introduction40

The speed accuracy tradeoff predicts that time pres-41

sure should lead to less accurate responses. When re-42

spondents have more time to generate item responses,43

they should respond more accurately (see the con-44

ceptual model in Figure 1). The basic notion of the45

speed-accuracy tradeoff (SAT) is an intuitively ap-46

pealing one: more deliberate responses should be more47

accurate ones. It’s appeal lies in the observation that,48

for an individual, decisions made in the context of49

ample time should, all else equal, be more accurate50

than rushed ones. Beyond its intuitive appeal, it has51

also seen extensive verification work in laboratory set-52

tings wherein a variety of manipulations are used to53

induce changes in speed and has also been investi-54

gated in non-human animal models [1]. Further, con-55

nections are being made to functioning of the nervous56

system [2, 3, 4].57

While there is great power in using experimen-58

tal manipulation of time pressure for identification of59

this phenomena, experimental results do not neces-60

sarily generalize to non-experimental settings where61

additional factors may impact choice of speed and the62

resulting level of accuracy. The ubiquity of digital in-63

terfaces for all manner of widely varying psychologi-64

cal instruments have rapidly increased the availabil-65

ity of response time data in psychometric settings.66

This increase in response time data across a variety67

of psychological measures in observational settings68

increases the need for models—both conceptual and69

statistical—for understanding such data and also in-70

creases the importance of questions about the gener-71

alizability of insights derived from experimental set-72

tings.73

In settings wherein time pressures are not explic-74

itly being manipulated, the SAT may still be a rele-75

vant model of behavior. Earlier work has described76

this kind of SAT, based on idiosyncratic within-person77

changes in speed during the measurement process, as78

a “micro” SAT [5] (in contrast with the “macro” SAT79

which is typically targeted via direct experimental80

manipulation) and initial empirical work supported81

the concept [6, 7]. Others have noted that individu-82

als are continuously making choices about where to83

position themselves on the SAT curve in the course of84

responding [8]. Moreover, in non-experimental work,85

respondents are potentially making decisions about86

time due to other pressures (i.e., boredom, fatigue,87

or testing anxiety may play a role in some settings).88

This study probes the general utility of the SAT in89

anticipating behavior in a broad variety of measure-90

ment scenarios wherein we study the association of91

idiosyncratic within-person variation in response time92

with accuracy. 93

As response time data is increasingly available for 94

a range of measures, there is also rapid development 95

of a suite of statistical approaches for the study of re- 96

sponse time, especially in conjunction with response 97

accuracy [9, 10, 4, 11, 12]. These approaches account, 98

or don’t, for the speed-accuracy tradeoff in several 99

ways. For example, the hierarchical model [9]—which 100

has been widely used in educational measurement set- 101

tings to model response time behavior for a broad 102

variety of tasks—posits no within-person interplay 103

between speed and accuracy. Other approaches [4] 104

explicitly link response time and accuracy based on 105

models of decision-making (such an approach has ex- 106

perimental support [13]) and still others [11] upweight 107

rapid responses in terms of how they inform infer- 108

ences about respondent ability. These approaches all 109

make presumptions about interplay between response 110

time and accuracy that may not be empirically sup- 111

ported in specific contexts. 112

While it is clear that the SAT is a useful hypoth- 113

esis for describing behavior in some settings, we ar- 114

gue that it deserves further scrutiny when applied to 115

non-experimental data across a range of challenges. 116

The goal of this project is to study, in a variety of 117

data, whether the general intuition behind the SAT 118

holds. Conceptually, this study builds on work sug- 119

gesting that additional time spent on a response does 120

not always increase its accuracy [14, 15]. In partic- 121

ular, those projects suggested that increases in time 122

spent on an item were associated with increases in 123

accuracy, but only up to a certain point; in particu- 124

lar, they suggested a curvilinear relationship between 125

response time and accuracy. 126

We explore this issue using a large number of 127

datasets containing both response accuracy and time 128

from various cognitive tasks. We combine this data 129

with an analytic approach that leverages both an item 130

response model and individual-level variation in re- 131

sponse time. We use the item response model to gen- 132

erate an estimate of the probability of accuracy for a 133

person-item interaction. We then use within-person 134

variation in response time to ask if extra time spent 135

on an item tends to yield marginal increases in ac- 136

curacy net of the probability of accuracy suggested 137

by the item response model. In such cases, the basic 138

logic of the SAT holds. But, of course, it need not. 139

Alongside this main question, we ask several addi- 140

tional questions pertaining to interplay between speed 141

and accuracy. We focus on issues of interest that 142

have seen relatively limited empirical work (especially 143

across diverse data). We ask whether there is het- 144

erogeneity in the association between time usage and 145

accuracy as a function of the challenge (i.e., the prob- 146
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ability of accuracy as specified by a model for item re-147

sponses) of the interaction. Turning to items, we ask148

about the existence of item-level variation in the de-149

gree to which marginal changes in time predict change150

in accuracy. We then ask about the association be-151

tween person-level speed and accuracy as well as vari-152

ation in speed. Finally, given the interest in formal153

models linking time and accuracy, we examine how154

predictive of response accuracy an individual’s speed155

tends to be in out-of-sample analyses. Collectively,156

answers to these questions offer novel insight as to157

what response time data might bring to psychome-158

tric models and what types of empirical phenomena159

may be encountered as more response time data are160

brought to bear on psychological measures.161

2 Methods162

2.1 Data163

We consider item response datasets containing a va-164

riety of tasks and with respondents of various ages;165

they are documented in the Supplemental Informa-166

tion (SI). The primary criteria for inclusion were: (1)167

time pressures were not experimentally manipulated168

across the tasks,1 (2) the data came from cognitive169

tasks, and (3) accuracy can be appropriately mod-170

eled as a monotonically increasing function of some171

latent trait. Data that are appropriately modeled172

using item response theory (IRT) [16] models with173

monotonic item response functions would thus be per-174

missible. In contrast, data from measures of affective175

traits (e.g., personality) or otherwise characterized176

by non-monotonic models—e.g., “D” models [17] or177

“unfolding” models [18]—would not be eligible for in-178

clusion in this study. We focus on data that had179

responses scored in two categories (e.g., correct or180

incorrect).2 Collectively, these data draw from mea-181

sures that span a range of constructs measured at182

ages across the lifecourse183

Descriptive statistics, including the size of each184

dataset, are in Table 1. Data range from the rela-185

tively small in scale—e.g., 30 people or < 10 items—186

to the quite large—50,000 people and thousands of187

items. For both design reasons and due to nonre-188

sponse, not all individuals attempt all items. In other189

1In some cases (e.g., the Hearts & Flowers data) time pres-
sure is manipulated across blocks. We examine this variation
in the SI but focus here on a single block with constant time
pressure. In other cases (e.g., the Reading Fluency and Comp
data), the test as a whole was timed but there was not inten-
tional variation of the time pressure across tasks.

2In a few cases (e.g., NSHAP), we dichotomized polyto-
mously scored responses so as to increase the number of avail-
able items.

cases, items are attempted multiple times. 190

Figure 2 describes response time in these data. 191

Given the skew associated with time, we use logged 192

time throughout. Tests vary substantially in terms 193

of the amount of time required per interaction. Some 194

tests have items that require less than 1s on average 195

while others have items that require more than 1m. 196

We order the data by mean response time in our pre- 197

sentation of results. There is also variation in the 198

difficulty of the items, as proxied by average percent 199

correct, across the assessments. Some of the tests 200

have items for which only half of the responses are 201

correct while others have items for which responses 202

are nearly always correct. As described below, we 203

attempt to adjust for this via item response models. 204

2.2 Analysis 205

The approach used here—in particular, combining 206

probabilities from item response models with fixed 207

effects—draws from earlier work [19].3 We have also 208

verified that it behaves as expected via simulation in 209

the context of several different models for the joint 210

distribution of time and accuracy, see SI. 211

2.2.1 Mapping speed-accuracy curves 212

We first estimate within-person speed-accuracy curves. 213

To do this, we rely upon estimates of p0, the probabil- 214

ity of a correct response generated from application of 215

an item response model; specifically, the Rasch model 216

[20]. We estimate 217

p0 = Pr(xpi = 1) = σ(θp − δi) (1)

where θp and δi are person-level and item-level pa- 218

rameters respectively and σ(x) = (1 + exp(−x))−1. 219

Estimation is performed using two approaches. When 220

a conventional item response matrix can be constructed, 221

we use conventional IRT approaches [21]; when this 222

is not possible—in particular, when respondents take 223

multiple attempts at an item—we use random effects 224

model to similar effect [22]. 225

We then use p0 in our attempt to model associa- 226

tions between marginal within-person changes in time 227

usage and accuracy. We allow for nonlinear effects in 228

time (i.e., along the lines of those shown in Figure 1) 229

by mapping log t onto a b-spline basis; we denote this 230

3An analytic plan was registered on June 1 2020, https:

//osf.io/w5u3a. We do not describe this as a preregistration
as it was registered following preliminary analysis of some data.
Further, as described in the SI, we have made some (relatively
modest) adjustments to this analytic plan.
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as b(log t)j .
4 We consider as a baseline model231

xpi ∼ N
(
L(b(log tpi)j , p0,pi) + λp + γi, σ

2
x

)
. (2)

where L() indicates a linear function of its arguments232

(e.g., L(x, y) = αx + βy). Note that we rely upon a233

linear probability model. The fixed effects λp and γi234

capture person- and item-level features. This model235

assumes no change in a respondent’s speed or ability236

through the assessment and relies on a relatively con-237

strained model to generate p0; we discuss potential238

limitations stemming from these assumptions below.239

2.2.2 Heterogeneity in SAT curves240

Note that Eqn 2 assumes that changes in accuracy241

are independent of the challenge of the interaction; a242

marginal increase in time on an item that is relatively243

hard for a person is assumed to be as useful as a244

marginal increase in time on an item that is easy for245

a person. We now relax this assumption. To explore246

heterogeneity as a function of p0, we then consider247

xpi ∼ N
(
SL(b(log tpi)j , p0,pi) + λp + γi, σ

2
x

)
. (3)

where SL() is a saturated linear function of its argu-248

ments (e.g., SL(x, y) = αx + βy + ηxy, with the one249

caveat that we do not include interaction terms be-250

tween the splines). We then consider ∂f
∂ log t where f251

is the center of the normal density in Eqn 3. The goal252

is to explicitly identify regions of (p0, t) space where253

additional time predicts an increase ( ∂f
∂ log t > 0) or254

decrease ( ∂f
∂ log t < 0) in accuracy.255

2.2.3 Item- and person-level analyses256

To study the associations of marginal increases in257

time with accuracy for individual items, we consider258

the following model separately for each item259

xp ∼ N
(
β1 log(tp) + β2p0,p, σ

2
x

)
(4)

where p indexes all individuals. The estimate of β1 is260

an indicator of the marginal association between time261

and accuracy for each item. To determine whether262

there is a patterning of this indicator of association263

with the item’s difficulty, we also consider r(β1, δi)264

(with δi from Eqn 1).265

To study person-level associations between speed266

and ability (i.e., θ in Eqn 1), we estimate267

˜log(tpi) ∼ N
(
−1 · τp, σ2

t

)
(5)

4As used here, B-splines are a map from R1 to RJ where
J is specified by the user. Illustrations of these maps can be
seen in, for example, Figure 5.20 of [23]. To implement this
mapping, we use J = 4 and the defaults in the bs function [24].

where ˜log(tpi) represents demeaned (at item-level) re- 268

sponse times and we additionally assume τp ∼ N(0, σ2
τ ). 269

We multiply τ by −1 so that τ represents speed (i.e., 270

a higher τ will be associated with lower time). We 271

first examine r(τp, θp) so as to determine whether 272

higher ability respondents tend to be faster or slower 273

responders. Motivated by previous observations of 274

within-person variation in speed [25], we then con- 275

sider such variation. Focusing on items with at least 276

100 responses, we find the quantile in the response 277

time distribution of each response (i.e., the rank) 278

for a person and take the standard deviation of that 279

quantity (which we denote σrank).5 We then consider 280

r(θp, σrank) as an indication of whether within-person 281

variation in speed is associated with ability. 282

2.2.4 Predictive Accuracy 283

Finally, we ask about the relative gain in the predic- 284

tion of accuracy that we get from response time. We 285

do this by comparing the accuracy of predictions in a 286

10% hold-out-sample of item responses using models 287

trained in the remaining 90%.6 For this exercise, we 288

first standardize response time within each item. Pre- 289

dictive performance is based on a transformation of 290

the likelihood meant to provide intuition about item- 291

level responses; if ` is the log-likelihood for a response 292

with predicted accuracy of P , 293

`pi = xpi log(Ppi) + (1 − xpi) log(1 − Ppi), (6)

we consider exp( ¯̀
pi) (where the average is taken over 294

p and i). 295

We consider six alternatives (denoted A–F) for 296

Ppi. As context for evaluating gains in each dataset, 297

we first predict (A) using the invariant proportion 298

of correct responses in each dataset, Ppi = x̄. We 299

then consider item-level variation in accuracy and 300

predict based on (B) the proportion correct by item, 301

Ppi =
∑
p xpi/np where there are np responses to 302

item i. We now incorporate person-level informa- 303

tion using three quantities: the individual’s propor- 304

tion of correct responses, the individual’s mean stan- 305

dardized response time, and, due to conceptual [26] 306

and empirical [27] interest in response times for cor- 307

rect responses, the individual’s mean standardized re- 308

sponse time for correct responses.7 For each of these 309

5We note one important limitations of this analysis. Data
collected in an adaptive fashion leads to potential concentra-
tion of respondents into certain items.

6Note that we omit both the NWEA and Assistments data
from this analysis given the fact that the first data are adaptive
and the second data may have dynamics in ability that are
poorly captured by our approach.

7So as to make comparisons between relatively similar bits
of information, we focus on predictions based on quantities
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three predictors, z, we predict (C–E) based on fitted310

logistic regression models containing the item pro-311

portion correct and one of the three predictors; i.e.,312

Ppi = σ(b0 +b1
∑
p xpi/np+b2zpi) where b0, b1, b2 are313

estimated via logistic regression. Finally, we use both314

time and accuracy information and predict (F) based315

on both the individual’s proportion correct responses316

and mean standardized response time. Note that out-317

of-sample responses are predicted purely on the basis318

of in-sample information (i.e., out-of-sample response319

time is not used)/ We consider analyses that utilize320

item-level response time (including out-of-sample re-321

sponse time) in the SI.8322

3 Results323

3.1 Mapping the SAT324

Using the approach in Eqn 2, we first consider base-325

line speed-accuracy curves. Results are in Figure 3.326

Each panel in that figure has a similar form; they327

are also similar to the format of Figure 1. The x-328

axis captures time spent on the item.9 The y-axis329

shows changes to the estimated accuracy net of p0.330

The densities show the distribution of log(t) for the331

data split by correct/incorrect responses. The curves332

shows estimated changes in accuracy as a function of333

time; recall that the SAT would suggest that such334

lines be monotonically increasing as longer responses335

are associated with increases in accuracy. Results are336

also categorized by age (line color).337

We readily observe a large variety of behavior in338

terms of the within-person relationship between re-339

sponse time and accuracy. In some cases (e.g., Lex-340

ical, Arithmetic), longer response times do generally341

translate into increased accuracy. However, this is342

not universally true. In come cases (e.g., working343

memory, NSHAP), longer time is uniformly associ-344

ated with a decline in accuracy. In other cases (e.g.,345

rotation, reading fluency), associations with accuracy346

for additional response time can be positive or nega-347

tive. While these results suggest that a wide variety348

of relationships are possible, we emphasize two points349

of consistency.350

Note the role of time limits. Consider, for ex-351

ample, the Hearts Flowers and Rotation tasks. For352

those, we observe steep declines in accuracy as a func-353

tion of time increases when response times are near354

computed in relatively comparable manners instead of focusing
on, for example, the IRT-based probability p0.

8The analyses presented in the SI are the ones proposed in
the original registration.

9We focus here on log t but results are similar when we
consider results in seconds, see SI.

their maximum. In these cases, we hypothesize that 355

respondents began to choose answers with less cer- 356

tainty when they neared the time limit for each task. 357

Note that we also detect a relative increase in the den- 358

sity of incorrect responses prior to the time limit for 359

these two datasets. We further illustrate the role of 360

time limits along the lines described here using vari- 361

ation in time pressure in additional data from the 362

Hearts Flowers task, see SI. 363

Within age, we generally observe variation in curve 364

shape. However, if we focus on older respondents (the 365

HRS and NSHAP data), we observe strong negative 366

slopes. In the context of these data, we hypothesize 367

that the nature of the curve is due in part to both the 368

age of the respondent and the type of task in these 369

data. We further investigated this possibility using 370

the PIAAC data, see SI; this analysis supports the 371

supposition that the nature of the HRS and NSHAP 372

tasks play some role (it does not seem to be simply 373

the age of the respondent). 374

Figure 3 focuses on associations between response 375

time and accuracy net of the underlying challenge 376

(i.e., p0) of the interaction. We now ask whether 377

there may be heterogeneous effects associated with 378

interplay between speed and accuracy as a function 379

of this challenge. We do so by constructing curves 380

similar to the ones shown in Figure 3 but that vary by 381

the challenge of the interaction. Rather than focusing 382

on the curve, we focus on the curve’s instantaneous 383

slope (i.e., ∂f
∂ log t ). 384

3.2 Heterogeneity as a function of p0 385

We now allow for heterogeneity as a function of the 386

interaction’s p0. Conceptually, this is equivalent to 387

asking if the shape of the curve shown in Figure 1 is 388

sensitive to the value of p0 (i.e., the location of the 389

horizontal gray line). Results based on the approach 390

in Eqn 3 are shown in Figure 4. In this figure (as in 391

Figure 3), the x-axis shows response time for the test. 392

The y-axis shows the p0 of the interaction; a value of, 393

for example, 0.7 means that an individual responding 394

to a given item is projected by the Rasch model to 395

have a 70% probability of getting the item correct. At 396

a given point in each panel of the figure, the color rep- 397

resents ∂f
∂ log t . Areas in blue correspond to ∂f

∂ log t > 0 398

suggesting that a marginal increase in time for an in- 399

teraction of the given challenge will be positive (i.e., 400

the SAT seems to be operant). Areas in red corre- 401

spond to ∂f
∂ log t < 0; in such areas, marginal increases 402

in time are associated with decreases in accuracy. If 403

we consider a vertical strip, a change in color sug- 404

gests sensitivity in the time/accuracy relationship as 405

a function of p0. Likewise, when we consider a hor- 406

5



izontal strip a change in color suggests sensitivity in407

the time/accuracy relationship to the baseline dura-408

tion of the response.409

We start with the datasets consisting of rapid410

tasks. Results are fairly heterogeneous. One fairly411

universal finding (Rotation and Set being exceptions)412

is that, across values of p0, shorter responses are those413

that are likely to benefit from some increase in accu-414

racy if they are marginally longer (i.e., the left side of415

each panel tends to be blue); this is perhaps due to416

marginally longer responses being less due to rapid417

guessing. The boundary between blue and red also418

tends to slope from upper left to bottom right such419

that, for a constant response time, marginal increases420

are more likely to be in the blue as opposed to the421

red if they represent more challenging interactions.422

Consider the Add Subtract dataset. If log(t) = 1.8423

and p0 ≈ 0.5, we observe ∂f
∂ log t > 0 while if p0 ≈ 0.8424

we observe ∂f
∂ log t < 0425

With less rapid tasks, many of the same patterns426

appear. In particular, we observe larger blue regions427

on the left and boundaries between blue and red re-428

gions tend to be negatively sloped. However, there429

are also cases where the partial derivative is uniformly430

positive (e.g., PIAAC) or negative (e.g., HRS). All431

told, these analyses suggest that whether the SAT432

holds may vary both across the nature of the task but433

also as a function of the precise conditions within the434

set of tasks in a given dataset.435

3.3 Item-level heterogeneity436

Using a modified approach (e.g., Eqn 4), we focus437

on SAT curves for individual items. We focus on438

the marginal effect of time net of p0. Results are439

shown in Table 2 focusing on only those items that440

have at least 100 responses. Given that each dataset441

contained numerous items, we identified those items442

showing positive/negative marginal associations with443

time based on estimates of β1 that were significant af-444

ter adjusting (via Bonferonni correction) for multiple445

testing of all items within dataset.446

In general, associations tended to be positive or447

null. However, note that, for example, the chess data448

had a relatively large proportion of items show a neg-449

ative association and nearly all data had at least some450

items that showed negative associations; we specu-451

late on the reasons for such negative associations in452

the Discussion. We also investigated correlations be-453

tween item difficulty and the marginal time/accuracy454

associations. Such associations varied widely across455

the datasets.456

3.4 Person-level heterogeneity 457

We next analyze person-level speed via Eqn 5. Re- 458

sults are shown in Table 3. We first consider correla- 459

tions between estimates of ability and speed. Corre- 460

lations vary widely. In some cases, more able respon- 461

dents are also faster (e.g., chess) in other cases, the 462

opposite is true (e.g., the PIAAC and PISA). 463

We next consider within-person variation in speed 464

during the test. We observed variation in speed—as 465

indexed by changes in a respondent’s rank ordering 466

of response time across items—that was fairly con- 467

sistent across all the datasets although the ECLS 468

Flanker tasks showed the least amount of within- 469

person variation. This quantity has an interesting 470

pattern of association with ability. Across nearly all 471

datasets (Lexical being the exception), respondents 472

with larger estimates of θ showed less variation in 473

speed. Although this association was not always sig- 474

nificant, we think it suggestive of a potentially im- 475

portant insight regarding fluctuations in respondent 476

speed and resulting estimates of ability based on the 477

collected responses. 478

3.5 Predictive power of response time 479

Finally, we examine the predictive power of response 480

time as compared to alternative predictors. Recall 481

that out-of-sample fit is evaluated via exp( ¯̀
pi) where 482

`pi is as in Eqn 6. Results are shown in Figure 5. We 483

focus here on three comparisons (denoted via letters 484

in Figure 5 legend), how prediction changes when we: 485

exchange person-level response accuracy for person- 486

level response time (C versus D), exchange response 487

time information for response time based only on cor- 488

rect items (D versus E), and combine accuracy and 489

response time information (F versus C/D). 490

With respect to the first comparison (C versus D), 491

we generally make better predictions based on accu- 492

racy rather than response time. There are exceptions 493

(ECLS Flanker, Set, Add Subtract, Working Mem- 494

ory, and Mult Div); we emphasize that, especially for 495

data containing more complex tasks that take longer 496

than 10s, we are better able to predict novel responses 497

using accuracy rather than response time. With re- 498

spect to the second comparison (D versus E), differ- 499

ences were quite small. In only two cases were dif- 500

ferences larger than 0.01; in both cases (Groupitizing 501

and MITRE-ETS), prediction was superior when us- 502

ing all response time information. With respect to 503

the third comparison (F versus C/D), we generally 504

find that prediction using both response time and ac- 505

curacy is generally inferior to models based on just 506

a single predictor (response time or accuracy). Sim- 507

ilarly, results from analyses in the SI suggest that 508

6



using response time from an individual item response509

tend to degrade prediction as compared to predicting510

based on p0 alone. In sum, these analyses suggest511

that response time may not be a useful predictor of512

behavior in many cases. This could be due, in part,513

to the fact that additional time on an item may pre-514

dict both positive and negative changes in accuracy515

(i.e., Figure 3).516

4 Discussion517

We use the standardized analysis of 29 item response518

datasets that also contain information on response519

time to study interplay between speed and accuracy520

in non-experimental settings. Results suggest that, in521

these non-experimental settings, marginal increases522

in time do not necessarily lead to increased accuracy.523

In some cases, we observed patterns consistent with524

those predicted by the SAT but, in other cases, we did525

not. Accuracy either declined or showed an inconsis-526

tent relationship with increased response times. Fur-527

ther, there may be additional heterogeneity within a528

set of tasks when we stratify by the underlying chal-529

lenge (i.e., p0) of the interaction. We emphasize that530

our analytic approach returned appropriate results531

when data were generated under a variety of joint532

models for speed and accuracy (see SI) thus offering533

additional credence to these results.534

When we consider associations between time and535

accuracy at the item-level, we identify items that have536

both the relationship between those two quantities537

anticipated by the SAT as well as the opposite. Turn-538

ing to respondents, we observe inconsistent relation-539

ships between respondent speed and ability. While540

faster respondents are not necessarily more able, we541

do observe a consistent relationship between varia-542

tion in respondent speed across items and their abil-543

ity as respondents with more variation in speed tend544

to be lower ability. Finally, our predictive analyses545

suggested that, in general, response time—either at546

the level of individual responses or aggregated across547

a person’s responses—is rarely a strong predictor of548

accuracy.549

We first discuss implications for the SAT. Sub-550

stantial experimental evidence [1] suggests that ar-551

tificial manipulation of time pressure has an effect552

on accuracy. We observe something similar in re-553

sponses occurring near a time limit. With such data,554

responses near the time limit tend to be incorrect555

when the individual spends additional time on the556

item. These observations are consistent with predic-557

tions of the SAT. Our findings suggest that other fac-558

tors may be at work in observational data and gener-559

ally tend to reduce the role of the SAT as a plausible 560

first-order explanation for observed behavior. 561

One substantively interesting case wherein the SAT 562

does not hold involves older respondents (i.e., the 563

HRS, NSHAP). In these data, we observe decreases 564

in accuracy when respondents spend more time on 565

items. We suspect that this finding has to do with 566

both the nature of cognition in older respondents and 567

the tasks in question. With respect to the age of the 568

respondents, they may be experiencing some form of 569

“cognitive aging”—an age-related decline in cogni- 570

tive functioning [28]. For respondents experiencing 571

cognitive aging, it is possible that a within-person 572

reduction in response speed isn’t associated with de- 573

liberation and increased accuracy but, rather, con- 574

fusion and decreased accuracy. Our findings can be 575

read alongside others suggesting a change in the SAT 576

[29, 1] as respondents age. 577

We do not observe consistent evidence that more 578

accurate respondents are generally faster or slower. 579

This could be due to heterogeneity across tasks or, for 580

example, motivational gradients across the datasets. 581

But, when we consider variation in speed, higher abil- 582

ity respondents generally tend to vary less (i.e., they 583

show less fluctuation in their place in the response 584

time distribution item-to-item). Such variation in 585

speed could be a phenotype worth further study. Pre- 586

vious work suggests, for example, that such variation 587

tends to predict cognitive aging in older samples [30]. 588

Although the heterogeneous tasks here may be 589

classified using existing taxa [31], we suspect that 590

our findings could also be used to devise new taxa. 591

For example, various data—working memory, HRS, 592

Chess, NSHAP—show downwardly sloping curves in 593

Figure 3 absent any time limits. This might reflect 594

some underlying similarity to the cognitive processes 595

brought to bear in answering these tasks. Future 596

work could potentially use alternative research modal- 597

ities (e.g., eye-tracking or imaging studies) to probe 598

whether this may be the case. 599

Turning now to the utility of incorporating re- 600

sponse time into models meant to predict response 601

behavior, we generally find that response time is of 602

limited predictive value. While there may be cases 603

where response-time information provides some in- 604

crease in predictive accuracy, we generally find re- 605

sponse time to be less useful than accuracy in pre- 606

dicting out-of-sample responses. This is consistent 607

with findings in Figure 3 suggesting that the curve of 608

association between time and accuracy is either rela- 609

tively flat or otherwise not monotonic in many cases. 610

That said, we note that our work does not suggest 611

that response time is not predictive of future behav- 612

ior or functioning (i.e., events some extended time 613

7



from the point of observation rather than responses614

collected basically contemporaneously).615

We acknowledge limitations. Other features of616

data collection may be relevant; we discuss a few617

specific features that may be worth further consider-618

ation. We have not addressed, for example, ordering619

effects [32]. In many cases, items later in the test may620

appear harder than they would if presented earlier in621

the test. This may be due, in part, to systematic622

changes in response time devoted to such items [19].623

In analyses of responses collected relatively early ver-624

sus relatively late in the NWEA testing do suggest625

differences in the relationship between speed and ac-626

curacy (see SI). There are presumably motivational627

differences across the datasets that we do not measure628

and cannot study. There is evidence to suggest that629

emotional states—e.g., worry [33]—that may vary as630

a function of motivational differences and/or testing631

pressure may affect the SAT.632

There are also potential limitations related to our633

analytic approach. In particular, the Rasch model634

that we use may be inadequate for characterizing the635

relevant item response functions; this may induce bias636

in, for example, Figure 4 if estimates of p0 are dis-637

torted. Future work could investigate whether find-638

ings can be refined using more alternative item re-639

sponse models. Further, there are also cases where640

our ability to identify items (e.g., working memory)641

is relatively weak in the sense that we are classifying642

a relatively broad class of tasks as a single item. In643

other cases (e.g., Assistments), the assumption of a644

static ability may be inappropriate. We think that645

the potential insights from a common analysis ap-646

plied to a broad variety of datasets offers great value647

in spite of these limitations but encourage others to648

keep these limitations in mind when interpreting our649

results.650

Alongside the above arguments made regarding651

our substantive understanding of the SAT, our find-652

ings have implications for both psychometrics and653

survey design. For psychometrics, we think there are654

two principle implications. First, the SAT may have655

limited utility to describe response behaviors in non-656

experimental settings when time pressures are light.657

Second, response time may offer only limited predic-658

tive power in many empirical settings; incorporation659

of response time into such models—especially in cases660

where additional time sometimes predicts higher lev-661

els of accuracy but other times lesser—needs to be662

done with care. However, we emphasize that within-663

person variation in speed may be a useful phenomena664

to investigate further; across our data, respondents665

that showed more variation in speed tended to per-666

form worse. In general, while we agree with others667

that RT may be used to better inform validity stud- 668

ies [34], we think that a richer empirical grounding on 669

how RT should be expected to behave will be useful 670

in this endeavor; this study is an attempt to provide 671

such grounding. 672

For survey design, we flag two insights in par- 673

ticular that merit consideration. First, time limits 674

on items should be used with caution. They largely 675

served to increase the number of incorrect responses. 676

If time pressure is not an inherent part of the con- 677

struct, perhaps time limits need not be utilized?10 678

Second, we note the following question raised by our 679

data: why do some items have relationships with 680

times such that marginal increases by a respondent 681

are associated with decreased accuracy? There are 682

conceptual reasons to suspect that items may have 683

this property. Items that are quite simple—consider 684

either the question of today’s date (in the HRS) or a 685

simple arithmetic problem such as 2 + 2 in the con- 686

text of either the Arithmetic or Add Subtract data— 687

may demonstrate this behavior as respondents sim- 688

ply know the answer or do not and longer responses 689

simply indicate befuddlement. But, in general, we 690

suspect there are occasions when such findings sug- 691

gest poor psychometric performance of the item; for 692

example, some items could be confusing for reasons 693

unrelated to the construct of interest and this could 694

potentially impact the SAT [36]. To diagnose such 695

cases, we would recommend item fit analyses—for 696

example, infit and outfit statistics [37] in the case 697

of the Rasch model—and, when possible, analyses of 698

distractors [38, 39]. 699

In this paper, we consider results from a standard 700

analysis applied to a heterogenous set of cognitive 701

tasks. The results, especially those in Figure 3, are 702

themselves heterogeneous but suggest that there are 703

many occasions wherein additional response time is 704

associated with a decrease in accuracy. We argue that 705

this suggests a need to reconsider whether the SAT is 706

a viable first-order descriptor of behavior in response 707

time data not explicitly manipulated with respect to 708

time pressure. In observational settings, people vary 709

their speed for a variety of reasons (fatigue, boredom, 710

confusion about a specific problem, etc) that diverge 711

from the reasons that people vary their speed in the 712

context of experimental SAT studies. When one ex- 713

perimentally manipulates time pressure, one observes 714

the SAT. However, absent that, people are making 715

decisions that affect speed and accuracy for lots of 716

reasons, not all of which lead to results anticipated 717

10This consideration and the subsequent conceptualization
of a measure as being either one of “speed” or “power” is an old
one (see Ch 17 of [35]) that we find to be continually relevant
here.
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by the SAT.718
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Table 1: Descriptive statistics for the datasets (including time limits for those
datasets that impose them at the item level).

# people # items # Interactions Time Limit (s)

Lexical 93 15 66 059
RR98 Accuracy 30 33 12 194
Hearts Flowers 255 8 5071 1.5
LDT 104 495 51 480
ECLS Flanker 12 008 20 239 963 10.0
ECLS DCCS 12 023 30 360 430 10.0
Motion 106 30 31 778 10.0
MSIT 740 24 16 739 2.5
Reading Fluency 3943 315 212 507
Reading Comp 3947 448 165 630
Arithmetic 895 173 133 796
Groupitizing 481 88 40 450
Rotation 95 10 950 7.5
Set 355 10 3550 20.0
Letter Chaos 233 10 2330 20.0
Add Subtract 16 190 60 200 297 20.0
Working Memory 194 4 1365
Mult Div 14 184 60 174 517 20.0
HRS 2215 20 36 785
Chess 258 80 19 135 30.0
PISA Reading 42 398 223 1 850 217
PERC 1680 15 25 132
MITRE-ETS 801 95 75 912 90.0
Assistments 2306 3518 131 864
NSHAP 2210 13 28 717
PIAAC 2278 104 55 563
PISA Math 21 995 60 323 887
NWEA Grade 3 49 998 5181 1 952 749
NWEA Grade 8 49 984 6049 1 888 845
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Table 2: Item-level analysis for those items with > 100 responses. The percentage
of items showing positive or negative coefficients of log(t) predicting accuracy (e.g.,
estimates of β1 from Eqn 4) are those that remain after Bonferonni correction. Only
significant correlations between difficulty and β1 are shown.

N items %(β1 > 0) %(β1 < 0) r(β1, δi) CI-L CI-U

Lexical 15 40 13 0.22 -0.33 0.66
RR98 Accuracy 32 0 0 -0.11 -0.44 0.25
Hearts Flowers 8 12 12 0.86 0.39 0.97
LDT 495 1 0 -0.14 -0.22 -0.05
ECLS Flanker 20 70 10 0.78 0.52 0.91
ECLS DCCS 30 40 0 0.87 0.74 0.94
Motion 30 13 10 -0.48 -0.71 -0.14
MSIT 24 50 0 0.70 0.41 0.86
Reading Fluency 292 10 4 -0.13 -0.24 -0.01
Reading Comp 408 11 2 -0.40 -0.48 -0.32
Arithmetic 170 31 1 0.25 0.11 0.39
Groupitizing 88 59 0 0.29 0.08 0.47
Rotation 10 0 0 -0.04 -0.65 0.61
Set 10 0 80 -0.41 -0.82 0.30
Letter Chaos 10 20 0 0.30 -0.40 0.78
Add Subtract 60 38 7 -0.11 -0.35 0.15
Working Memory 4 0 75 0.83 -0.64 1.00
Mult Div 60 3 63 -0.05 -0.30 0.20
HRS 20 5 65 0.17 -0.30 0.57
Chess 80 5 26 -0.03 -0.25 0.19
PISA Reading 218 39 16 -0.25 -0.37 -0.12
PERC 15 13 40 -0.26 -0.68 0.29
MITRE-ETS 95 13 2 -0.63 -0.73 -0.49
Assistments 604 0 1 0.10 0.02 0.18
NSHAP 13 8 54 0.21 -0.38 0.68
PIAAC 104 71 0 0.53 0.37 0.65
PISA Math 60 28 15 0.05 -0.20 0.30
NWEA Grade 3 3694 3 0 -0.09 -0.13 -0.06
NWEA Grade 8 3331 3 2 -0.02 -0.06 0.01
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Table 3: Person-level associations between ability (θ), speed (τ), and
variation in speed (σrank).

r(θ, τ) E(σrank) r(θ, σrank) CI-L CI-U

Lexical 0.15 0.25 0.06 -0.14 0.26
RR98 Accuracy 0.17 0.25 -0.14 -0.47 0.24
Hearts Flowers -0.20 0.25 -0.36 -0.46 -0.25
LDT -0.05 0.22 -0.61 -0.72 -0.47
ECLS Flanker -0.05 0.19 -0.18 -0.20 -0.16
ECLS DCCS -0.11 0.23 -0.22 -0.24 -0.20
Motion 0.06 0.26 -0.43 -0.57 -0.26
MSIT -0.23 0.24 -0.27 -0.34 -0.20
Reading Fluency -0.03 0.21 -0.12 -0.15 -0.09
Reading Comp -0.28 0.22 -0.20 -0.23 -0.17
Arithmetic 0.19 0.22 -0.56 -0.61 -0.52
Groupitizing -0.46 0.24 -0.41 -0.48 -0.33
Rotation 0.12 0.22 -0.05 -0.25 0.15
Set 0.16 0.25 -0.11 -0.21 -0.01
Letter Chaos -0.08 0.22 -0.20 -0.32 -0.07
Add Subtract 0.08 0.23 -0.13 -0.14 -0.11
Working Memory 0.31 0.23 -0.08 -0.22 0.06
Mult Div 0.05 0.24 -0.13 -0.15 -0.11
HRS 0.41 0.24 -0.06 -0.10 -0.02
Chess 0.44 0.24 -0.01 -0.13 0.11
PISA Reading -0.23 0.25 -0.28 -0.29 -0.27
PERC -0.43 0.24 -0.20 -0.24 -0.15
MITRE-ETS -0.62 0.22 -0.23 -0.29 -0.16
Assistments -0.36 0.24 -0.27 -0.31 -0.23
NSHAP 0.30 0.24 -0.07 -0.11 -0.03
PIAAC -0.33 0.23 -0.48 -0.51 -0.45
PISA Math -0.15 0.24 -0.06 -0.08 -0.05
NWEA Grade 3 0.02 0.24 -0.14 -0.15 -0.14
NWEA Grade 8 0.04 0.23 -0.21 -0.22 -0.20
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Figure 1: Prototypical speed-accuracy curve. For an individual, increases in response time are, all else equal,
expected to translate into increase in accuracy relative to expectation (gray line); this is indicated by the
upward slope of the blue line. Note that there is no time limit considered in this hypothetical scenario.
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Figure 2: Response Time. Left: Boxplots of response time (logged) for each of the datsets. Right: Compar-
ison of mean item-level accuracy (x-axis) and response time (y-axis) across the items. Horizontal lines show
1s, 10s, and 1m increments.
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Figure 3: Estimated association between response time and changes to accuracy (net of p0). For each test,
the x-axis spans from the .1 to .9 quantiles of observed log(t). The y-axis focuses on offsets to the test mean
of (IRT-based) Pr(x = 1). Curves represent estimated accuracy as a function of time (colored by respondent
age). Densities at bottom of panel show distribution of response times for each test separately by response
type. Vertical lines represent time limits (where applicable).
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Figure 4: Estimated change in accuracy as a function of both response time (x-axis) and p0 (y-axis). Colors
can be interpreted based on legend on right. Blue indicates points where a marginal increase in time spent
by a respondent on an item is expected to increase accuracy; red indicates points where the opposite is true.
A lack of color represents a point with no estimated association between marginal increase in response time
and accuracy.
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Figure 5: Comparison of out-of-sample predictions (via exp(¯̀); see Section 2.2.4) in 10% hold-out. Predictions
are made based on predictors shown in the legend. (A) is based on the overall mean accuracy in the data
(see Figure 2). (B) is based on the mean accuracy for each item. (C) is based on the mean accuracy for each
person. (D,E) are based on the mean standardized response time for each person (with E focusing just on
correct responses). (F) combines C and D.
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