
PearProgram: A More Fruitful Approach to Pair Programming
Maxwell Bigman
Stanford University

mbigman@stanford.edu

Ethan Roy
Stanford University

ethanroy@stanford.edu

Jorge Garcia
Stanford University

jorgeedu@stanford.edu

Miroslav Suzara
Stanford University

msuzara@stanford.edu

Kaili Wang
Stanford University

kkwang22@stanford.edu

Chris Piech
Stanford University

piech@cs.stanford.edu

ABSTRACT
In this paper we present PearProgram, a hybrid learning and re-
search tool that helps introductory Computer Science (CS) students
learn how to pair program, including in remote learning environ-
ments. Grounded in theory from the Learning Sciences, the tool
– a collaborative, online IDE – has two primary goals: 1) to help
introductory CS students achieve pair programming success; and
2) to research what factors contribute to pairs that have beneficial
outcomes. We present our learnings from the use of PearProgram
in three remote introductory CS courses: a CS1 course, and two
large international courses, including one for high school students.
Teacher and student users responded positively to PearProgram,
and use of the tool was associated with beneficial learning out-
comes in these online learning environments. Our research opens
many future research directions for (remote) pair programming,
and indicates practices that may prove useful for CS educators at
all levels.

CCS CONCEPTS
• Social and professional topics → Computer science educa-
tion; CS1; • Human-centered computing → Synchronous edi-
tors.

KEYWORDS
pair programming, CS1, online learning, covid-19
ACM Reference Format:
Maxwell Bigman, Ethan Roy, Jorge Garcia, Miroslav Suzara, Kaili Wang,
and Chris Piech. 2021. PearProgram: A More Fruitful Approach to Pair
Programming. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.
3432517

1 INTRODUCTION
Pair programming – where two programmers work together to
write one program – is an industry and educational best practice

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432517

with a long history of documented benefits for programmers of
all levels [4] [43]. Although pair programming has been shown to
have a number of benefits for introductory CS students at the K-12
and university levels [10] [39], the benefits tend to vary based on
the contexts in which pair programming is implemented. CS educa-
tion research has attempted to document some of these guidelines
derived from classroom practice [44], however, there has been min-
imal evidence of implementation of rich insights from education
research and the Learning Sciences to inform pair programming.
Moreover, with the rapid shift to remote learning in the wake of the
global pandemic in the Spring of 2020, guidelines for how to pair
program need to be re-imagined for online learning environments.

In this paper we present PearProgram, an online collaborative
tool to help introductory K-12 and university CS students learn how
to pair program based on principles of Learning Sciences theory.
Our main contributions are to: (1) present the importance of context
in implementing pair programming; (2) introduce PearProgram
and the theory behind it; (3) document the use of PearProgram in
three online introductory CS courses; and (4) offer new insights on
pair programming for practitioners, CS education researchers and
learning scientists.

1.1 Related Work
Pair programming has become a best practice in CS education at
the K-12 and university levels [30] [8]. Over two decades of work in
CS education research, including two rigorous meta-analyses, have
demonstrated that “if implemented properly” pair programming
positively impacts students’ programming assignment grades, exam
scores, and persistence, especially in introductory CS classes [39]
[9]. Other benefits of pair programming include greater confidence
[15], deeper conceptual understanding [24], and continued interest
in the topic [33] [42] [43].

1.2 A Bug in Pair Programming
Although numerous studies have highlighted the benefits of pair
programming, less attention has been focused on the role that
context and implementation have on the efficacy of the practice.
We examined student performance in a recent offering of the CS1
course at our institution, a selective research university with a
well-known CS department and a celebrated CS1 course. Students
were given the option to pair program for homework assignments
after the midterm exam, and of the 375 total students, 174 decided
to work in pairs. Our analysis revealed that, on average, students
who worked in pairs performed nearly identically to students who

Paper Session: Learning Tools SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

900

https://doi.org/10.1145/3408877.3432517
https://doi.org/10.1145/3408877.3432517
https://doi.org/10.1145/3408877.3432517

Figure 1: An example PearProgram session as seen from the copilot view (yellow) and pilot view (blue). The left-hand panel of
the application is a text editor and the right is where the code output appears. The white text boxes at the top of each screen
are some of the tips for pair programming embedded within the tool.

worked individually on homework assignments. Furthermore, stu-
dents who worked individually scored higher on average than
students who pair programmed (d = 0.04). Curiously, these findings
suggest that pair programming does not necessarily help to improve
performance in CS1 courses despite all of the studies demonstrating
otherwise. This surprising result highlights that pair programming
alone is not a sufficient pedagogical strategy, and raises questions
around what supports might be necessary to realize the benefits of
pair programming.

Indeed, we suspect that educators might overlook a key qualifica-
tion that Umapathy and Ritzhaupt offered alongside their positive
findings, namely that "students will need support and guidance
in understanding the pair programming practice" [39]. Similarly,
Williams guidelines for pair programming [44] leads with two rec-
ommendations: that “students need training on how to pair pro-
gram,” and that teaching staff should “actively manage” the pairs
work together. Given that these conditions are not always possible,
we seek to understand what happens when pairs work together
under minimal guidance, and how learning tools might support
best pair programming practices.

1.3 Changing Contexts: Remote Learners
While our research was underway, the onset of the global pandemic
in March 2020 forced us to reconsider the form that our tool might
take and the context in which our research could take place. Ac-
cordingly, we decided to shift our focus to remote learners. All of
our corresponding design decisions were rooted in the paradigm
of two students working together on the same program remotely.
Indeed, there has been some work done on remote CS1 learners and
“distributed pair programming” [14], and there is evidence that it
can be just as effective as in-person pair programming [34]. While
PearProgram can be used for in-person learning environments, we
chose to explicitly design it for remote learners, recognizing both
the challenges and opportunities that remote learning creates.

2 THEORETICAL FOUNDATIONS IN THE
LEARNING SCIENCES

Pair programming as an educational practice occupies an inter-
esting position: while it is commonly viewed as a CS education
practice, it is nevertheless a specific type of collaborative learning.
Indeed, the role of collaborative learning in K-12 education has been
a popular research topic [18] that has been greatly informative to
more recent Learning Sciences (LS) work on computer-based col-
laborative learning [33] [41]. The general finding from numerous

studies on academic achievement has shown that students tend to
learn better collaboratively than alone [25] [1] [38]. However, a
more nuanced understanding of collaborative learning is needed.
We adopt the view articulated by Dillenbourg et al. that “collabora-
tion is in itself neither efficient nor inefficient. Collaboration works
under some conditions, and it is the aim of research to determine
the conditions under which collaborative learning is efficient” [11].
Thus, LS research stands to offer insights about how pair program-
ming might produce the most “efficient” learning that leads to the
best results for students, as well as what underlying mechanisms
might contribute to more successful pairs. Our tool drew inspiration
from the core tenets of the Learning Sciences: context, cognition
and computation.

Context: There are important models from LS research of what
contributes to successful collaborative problem solving: strong col-
laborations involve students actively discussing the task, sharing
in the decision making process, building on one another’s ideas,
correcting each other’s mistakes and resolving any conflicts that
might arise [12] [16]. In effective collaborations, it is important that
students view their success as mutually dependent, which leads to
a dialogue that fosters new, co-created ideas and stands to establish
a shared social reality [19] [31] [32]. Yet, benefits vary based on
the context: the structure of the task (problem-oriented or not) and
the composition of the pairs/groups are key variables that affect
how successful a collaboration might be [17] [3]. In particular, our
design choices stem from Barron’s illumination of the complexities
of collaborative work, theorized in terms of a “dual-space model”
required for participants’ collaborative problem solving, in which
students need “to clarify how the content of the problem and the
relational context are interdependent aspects of the collaborative
situation” [3]. Prior research on pair programming has exclusively
focused on the content of the problem and neglected the relational
context, an area which the PearProgram tool brings to the fore-
ground.

Cognition: Many studies in the Learning Sciences show the
benefits of collaborative learning for both students’ performance
and also their cognitive development [2] [7]. Indeed, the critical
role of discussion and reflection as students socially construct their
learning has roots in education research on socio-constructivist
theories of learning [40] . From a cognitive lens, working with a
partner encourages students to explain their learning, respond to
their partner’s feedback, and work through challenging problems
by asking questions and discussing what they do not understand –
which all appear to improve achievement [6]. More recently, Pea’s

Paper Session: Learning Tools SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

901

theory of distributed cognition suggests that “knowledge is com-
monly socially constructed, through collaborative efforts toward
shared objectives or by dialogues and challenges brought about
by differences in persons’ perspectives” [28]. Moreover, students
must establish ‘joint attention’ [37] when working together, making
it clear that both learners are coordinated in mutual engagement
on the programming environment – a task which is made more
complex in remote learning environments.

Computation: The CS Education literature has demonstrated
the success of other collaborative learning strategies in compu-
tational learning. Three practices worth mentioning are: (1) con-
textualized computing, namely media computation [35]; (2) peer
instruction [23, 29] ; and of course (3) pair programming (see above).
CS Education research can largely be traced back to Seymour Papert
and his theory of constructionism, which argued that the computer
is a “universal construction machine” [27], or as he famously said,
an “object-to-think-with” [26]. Papert’s understanding of compu-
tation as a way of constructing knowledge “in the world” helps
illuminate a bridge to the LS literature by highlighting the ways
in which (pair) programming naturally affords learners the oppor-
tunity to create programs that spark a cyclical process of learning
and computational creation.

3 INTRODUCING PEARPROGRAM
When we examined the available tools for remote pair program-
ming, we found that none of them accomplished the specific set of
tasks that we aimed for, namely: a (standalone) user-friendly online
collaborative IDE for introductory CS1 students to learn how to pair
program. Most notably, none of the tools that we explored explicitly
taught students how to pair program nor did they support them in
learning how to do so.

3.1 Design Aims
We set out to build a tool to accomplish three main goals:

(1) To help introductory CS students learn how to pair program
effectively;

(2) To better understand how students currently pair program
by capturing quantitative and qualitative data;

(3) To research what factors lead to different outcomes in differ-
ent contexts.

3.2 Design Choices
It is worth noting that we occupy an interesting position in the CS
education landscape: we are a team of learning scientists, education
researchers, CS students and former CS teachers. Thus, we placed
our diverse experiences as educators and learners in conversation
with established theory from the Learning Sciences to inform a
number of key design decisions for PearProgram outlined below.

Mutual Understanding is the Learning Goal: The implicit
learning goal for students when pair programming is that they
complete the programming task, individually learning the key con-
cepts related to the problem they are working on. In PearProgram,
we emphasize a different learning goal: that both students help
each other to understand every line of code. Grounded in LS theory
about the importance of mutual dependence, we feel that by mak-
ing students responsible for one another’s learning, they will be

encouraged to help each other make sense of the program, and to
not simply find the right answer or aim to finish the task as quickly
as possible. One of the potential pitfalls of pair programming is
that one student does a disproportionate amount of the work, by
dominating the problem solving conversation and/or writing all
of the code. By encouraging students to help one another under-
stand each line of code, PearProgram aims to make students work
together, communicate more, and teach one another.

Roles: One of the key features that distinguishes our tool from
other online collaborative IDEs is that each programmer has a des-
ignated role with instructions on how to fulfill their responsibilities.
We incorporate elements from the original guidelines for pair pro-
gramming [44], such as restricting editing access so that only one
programmer can write code at a given time. Furthermore, we want
students to be deliberate about the code they are writing: if there
is a suggestion, even simply fixing a syntax error, we want the
partners to talk about that piece of code. We also extend the tradi-
tional conception of roles in pair programming, and deviate from
the driver-navigator metaphor, choosing to use the terms pilot and
co-pilot instead. Education research underscores the importance of
roles and identity [20, 21], and we incorporated these ideas into
PearProgram by giving students identities to assume and embedded
tips on how to do so.

Embedded Teaching Tips: Often pair programming is intro-
duced in a classroom setting with a set of slides and/or a short de-
scription of what to do (and not do) when pair programming. How-
ever, it can be hard for students to grasp and internalize the practice
of pair programming in the abstract. In PearProgram, we decided
to embed the teaching into the tool. Before starting a programming
session, students watch a short video about pair programming and
see the learning goals. Each role has specific instructions on how to
fulfill their individual and shared responsibilities. Drawing on the
idea of a nudge [36], students are prompted with helpful teaching
tips approximately every ten minutes. These tips are grounded in
pair programming best practices and the LS research, and include
reminders to change roles, to ask questions, to listen to one an-
other, to help one another and to be patient. In a future version, we
plan to make these tips dynamically respond to the program and
individualized for each partner.

Question & Comment Buttons: The Learning Sciences re-
search highlights the importance of actively asking questions, en-
gaging in conversation, taking turns and problem-solving. Thus,
we created buttons in the PearProgram tool to encourage students
to ask questions and annotate their code in real time. These buttons
highlight particular lines of code, and provide visual cues to the
partners: the comment button simply highlights the code, while the
question button creates a red border to encourage students to stop
and talk about the question. The use of these features feels partic-
ularly important for creating a "joint attention space" – directing
students’ attention to the same part of the code – which is a key
factor for establishing distributed cognition, especially in a remote
learning environment.

3.3 PearProgram Workflow
The intended use for PearProgram is as a CS student’s first exposure
to pair programming. The tool (see Figure 1) has lessons integrated

Paper Session: Learning Tools SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

902

into the tool, including introductory videos, embedded teaching
tips during the programming session, and features designed for
students to actively engage with the practice of pair programming.
As originally envisioned, a teacher would create sessions for pairs
of students to work together, send them each the relevant links
to the collaborative PearProgram session, students would log on,
and (ideally) be engaging in a video or audio conversation (e.g. on
Zoom) while working together. (The tool currently has a text-based
chat feature, and a future version will hopefully have full video
integration). Students are then engaged in a synchronous, remote
pair programming environment, both seeing the same IDE as well
as where their partner is working, with the ability to ask questions,
leave comments and switch roles.

4 HOW STUDENTS USED PEARPROGRAM
We used PearProgram in three different online CS1 courses. The first,
Code in Place, was a large-scale, open access teaching experiment
taught in the midst of the COVID-19 pandemic to over 10,000
students around the world. In Code in Place, we used PearProgram
both in small group discussion sections, as well as in one informal
office hours in which we paired students off to work together. The
second use of PearProgram was in our institution’s CS1 course,
in which it was used across a number of discussion sections. The
third use of PearProgram was in CS Bridge, an international, multi-
institution three-week course to teach high school students the
fundamentals of computer programming. In CS Bridge all of the
roughly 175 students had the opportunity to use PearProgram for a
small, unsupervised programming project with access to optional
help from TAs.

4.1 Interactions with PearProgram

Table 1: Summary statistics of different PearProgram fea-
tures for the 51 sessions used in the online high school class

Feature Mean Usage St. Dev.

Chat 48.0 42.3
Code Output 8.2 7.0
Comment 1.5 6.6
Confusion Button 0.1 0.3
Resolve Confusion 0.03 0.2
Pilot Hand-off 2.7 2.7
Toggle Request 2.9 3.1

During CS Bridge, the online introductory CS course geared to-
wards high school students, learners used PearProgram to write an
interactive console program. Students had recently covered vari-
ables in the course and this activity allowed them to practice using
and updating variables in a text based setting. After students com-
pleted the activity, we examined data generated by PearProgram
to better understand how students engaged with the various fea-
tures embedded within the tool. We explored the use of the chat,
run code, comment, confusion, resolution, toggle request and role
change features in the 31 pair programming sessions, as well as
the temporal dynamics (Figures 3a and 3b). Summary statistics of
these features (Table 1) revealed that students used the chat, run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 25 50 75
Elapsed Time (minutes)

Se
ss

io
n

Feature

chat
codeOutput
comment
confused
resolve

Pilot

Partner 1
Partner 2

Figure 2: Visualization of each session and feature use
within each session. The x-axis represents the length of each
session and the y-axis represents each individual session.
The color of each bar corresponds to which partner was in
the pilot role at a given time. Overlaid on each session are
shapes corresponding to the various features

and toggle features frequently, but largely ignored the comment
and confusion features. Meanwhile, Figure 2 maps the length of
each session, which partner is in the pilot role, and when within
each session either partner sent a chat, ran the code, or used the
question or comment features

5 TEACHER ENTHUSIASM
We spoke to a number of teaching assistants (TAs)who used PearPro-
gram to gather insights about what worked well in their classes.

TAs benefited from the ability to simultaneously observe
all of their students coding at once. Unlike during in-person
discussion sections where TAs can be physically present with stu-
dent pairs listening to the dialogue and moving around the room
to help students, the online version of discussion section limits
transparency. In particular, Zoom breakout rooms mean that the
TA can at most help one pair of students at a given time without
access to any other students. One of the biggest takeaways from
TAs is how much they appreciated the ability to watch all of their
students’ coding sessions simultaneously on the PearProgram tool.
As one TA summarized, “the best part of using PearProgramwas the
fact that I was looking at all of their workspaces,” which allowed
TAs to be able to move seamlessly from one group to the next and
offer targeted help. TAs also liked being able to leave comments and
suggestions for students without ever having to enter the breakout
room, as explained in more depth below.

TAs left comments for students while they were working.
All of the TAs we spoke with mentioned how they liked the tool’s
comment feature as a way to leave feedback while students were
working without interrupting their workflow. All of the TAs used
the comment feature extensively to help their students through
challenges, although how they used it varied slightly. One TA went
into her students’ sessions to see if they were on the right track,

Paper Session: Learning Tools SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

903

Figure 3: (a) Histogram of session length. Dotted line represents the median. (b) Density plot of feature usage over 90 minutes.
(c) ` change in discussion posts before and after intervention (d) Completion rates. Standard error bars.

leaving comments and hints if she found mistakes, as well as cele-
brating good decisions the pairs had made. Another TA mentioned
how she liked to “gently nudge” her students towards the correct ap-
proach, leaving generative questions to spark discussions amongst
the pairs. A third TA stated that her aim with the comments was to
“show students direction” rather than telling them directly what to
do, sparking conversations about what did and did not work in the
code and why.

TAs found the tool very useful for group coding sessions.
Part of our institution’s model for CS courses is to have smaller
weekly discussion sections with roughly 10-15 students. Two of the
TAs we spoke to used the PearProgram tool to create group collabo-
rative coding sessions in their discussion sections which created an
opportunity for a dynamic live coding session. Both TAs mentioned
how useful it was for their students to all be able to seamlessly take
on the pilot role, as well as the ability to anonymously leave both
questions and comments on the code – which seemed to create
more active engagement from their students. One TA specifically
liked the visual cue of questions, and she spoke to the importance
of anonymity as this allowed students to ask questions that they
might not feel comfortable asking in front of the whole class.

Students embraced new identities. Analysis of qualitative
data and case studies surrounding PearProgram also illustrated that
the tool may play a role in influencing learner’s attitudes towards
their own identities as programmers. One powerful anecdote shared
by a TA was of a student who expressed uncertainty about her iden-
tity as a programmer and considered dropping out of the CS1 course
prior to pair programming. However, she became empowered by
roles of “pilot” and “co-pilot” embedded within the tool. Though
this change in attitude and increase in confidence may stem from
the act of pair programming, the tool’s explicit use of two active
roles as opposed to the traditional, more passive, drive-/navigator
roles may play a role in shaping learner’s identities both within
their pairs and as programmers.

6 IMPACT ANALYSIS
Through these early experiences we have gathered interesting and
promising findings for future development and research.

6.1 Students and Teachers liked PearProgram
We surveyed student users of PearProgram (n= 57) and found that
74% of them felt that the tool taught them how to pair program,
93% of the students enjoyed the experience, and 70% of the students
would want to use it again. Furthermore, 72% felt more confident
programming after using the tool and 53% of the students felt that
they were better teachers after using the tool. We also surveyed the
teachers using the tool (n=26) and found that 100% of them wanted
to use the tool again. It is important to note that neither of these
surveys were anonymous.

6.2 Students who used PearProgram did better
After the online high school CS1 course finished, we examined
the relationship between use of PearProgram and two learning
outcomes: course engagement and course pass rates.

Course Engagement Increased: Of the 155 students that took
the course, 82 students used PearProgram to work collaboratively
on an assignment and 73 worked individually for the duration of the
course. We first looked at levels of course engagement, as measured
by number posts in the course online discussion forum before and
after the PearProgram activity. This analysis showed that students
who pair programmed had a significant increase in the number
of discussion forum posts after using PearProgram compared to
students who worked alone (Figure 3c).

Higher Pass Rates: We were also able to examine the course
pass rates for students who used PearProgram and those who did
not. This analysis found that across the whole class, 130 of 155
students passed the course (pass rate = 84%). When broken down
by those who pair programmed and those who did not, 75 of the 82
students who pair programmed passed the class (pass rate = 91%),
whereas 55 of the 73 students who did not pair program passed the
class (pass rate = 75%). As seen in Figure 3d, the effect size for this
difference was about 16 percentage points (p = 0.007).

Limitations: It should be noted that this was not a randomized
control experiment and these results should in no means be inter-
preted as causal. One important potential confound is that students
who were already disengaging from the course before the introduc-
tion of PearProgram did not feel compelled to interact with the tool
and simply continued to disengage after the PearProgram activity,

Paper Session: Learning Tools SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

904

resulting in fewer forum posts and lower pass rates. Despite the cur-
rent inability to make any causal claims, we did observe a positive
correlation between use of PearProgram and learning outcomes, as
measured by discussion engagement and passing rates.

7 DISCUSSION: LESSONS LEARNED
7.1 Implications for CS Education
The promising initial results from use of PearProgram create op-
portunities for CS instructors to implement pair programming in
their (introductory) classes without having to explicitly teach stu-
dents how to pair program. While there are limitations to the initial
study, students who engaged with the PearProgram tool appeared
to realize many of the benefits promised by pair programming:
namely, increased performance [39], greater confidence [15], as
well as higher levels of enjoyment [5]. PearProgram thus alleviates
the burden from instructors of needing to teach the practice of
pair programming, and it also offers interesting data points about
students that can be used to create more personalized learning
experiences. Specifically, PearProgram generates information such
as who wrote the bulk of the code, who prefers to be driver or
navigator, which pairs had the most success, and how long different
pairs took to complete a task (see Figure 2). These insights from
the PearProgram tool allow for new understanding for instructors,
TAs and researchers. In particular, as CS instruction is increasingly
forced to move to remote environments, it creates new possibilities
for students to continue to engage with pair programming even
when they are not co-located.

Another exciting application area for instructors is in supervised
lab work, especially in remote settings. Given the initial success of
PearProgram in TA-led discussion sessions, it seems that the tool
offers new possibilities for in-person and remote TAs to work with
many pairs of students at a given time, similar to what Guo has
been able to accomplish with Codeopticon where one teacher can
monitor as many as hundreds of learners at a time [13]. Moreover, it
creates opportunities for group coding sessions in remote discussion
sections and lab environments.

7.2 Implications for CS Education Research
As discussed above, meta-analyses of pair programming suggest
that in order to realize the benefits of the practice it must be “im-
plemented properly,” which includes the fact that "students will
need support and guidance in understanding the pair program-
ming practice" [39]. Given its explicit design as both a learning
and research tool, PearProgram offers a new way of understanding
what conditions might be most successful for students when pair
programming, and presents the possibility for a combination of
qualitative and quantitative analysis to uncover the “black box” of
what makes pair programming work. Future research can explore
student attitudes, prior skill levels, video analysis of pair interac-
tions, and the coding session itself to gain a deeper understanding
of what conditions lead to the most successful pair programming
experiences. Of particular interest to the CS education research
community might be questions of how to best pair students, what
makes “distributed” (what we refer to as ‘remote’) pair program-
ming successful, why pair programming works for some students
but not others, who pair programming benefits the most, as well as

what long term benefits pair programming might offer to students
as they move through their CS courses. Additionally, PearProgram
and the broader shift to remote instruction suggest that after a
dozen years it might be time to revisit the ‘Eleven Guidelines’ for
pair programming [44] and update them with more recent findings
from both LS theory and practice, as well as for new contexts (such
as remote learners). Similarly, the driver-navigator roles might be
another area worth investigating and updating, as our initial find-
ings and education research suggest that roles and labels influence
student identity and engagement with the materials. Finally, the
potential benefits that the Learning Sciences offer to CS education
research suggest that the two fields might create synergistic effects
that stand to benefit CS learners, teachers and researchers – and
might be a fertile area of exploration for future research [22].

7.3 Implications for Learning Sciences
Research on CS

As learning scientists focused on CS education, we are drawn to
three particular sets of factors for further inquiry: contextual, cog-
nitive and computational.

Context: Our observations of pair programmers using PearPro-
gram indicated unique communication patterns cross-culturally
and within gender. How do different students’ socio-cultural and
economic realities impact the nature of learning in a pair program-
ming context? Might there be unique benefits to underrepresented
students’ learning accessed by the roles made available? How do
questions of stereotype threat, positioning and power play out in
CS learning environments?

Cognition: Interviews with PearProgram users indicate a shift in
attitudes towards listening and enhanced agency in their learning.
Is material learned through an arduous solitary process comparable
to material learned in an enjoyable cooperative process? Do the
secondary skills acquired via collaboration (listening, concise com-
munication, respectful ideation) transfer to other learning contexts?
What affordances and limitations does pair programming offer stu-
dents in establishing a joint attention space [32], particularly in
remote learning environments?

Computation Our observations suggest that students engage
the available communication and "help" features in unique ways.
To what extent can the tool serve as a learning coach or instructor
of collaborative practices? Is the tool enabling a more comprehen-
sive understanding of coding languages? What might the role of
teaching tools be in facilitating collaborative learning practices in
CS education?

8 CONCLUSION
Pair programming is an important CS education practice that stands
to benefit from a deeper understanding of the contextual factors
of when it works best, and how educators might support its imple-
mentation for students to realize its numerous benefits. Utilizing
key insights from Learning Sciences, PearProgram appears to be
a promising tool that can both support (remote) introductory CS
students, and also reveal promising and important research findings
about pair programming. Further use of PearProgram in a wider
variety of settings will help inform the development of both the
tool and future research.

Paper Session: Learning Tools SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

905

REFERENCES
[1] Philip C Abrami and Bette Chambers. 1996. Research on cooperative learning

and achievement: Comments on Slavin. Contemporary Educational Psychology
21, 1 (1996), 70–79.

[2] Brigid Barron. 2000. Achieving coordination in collaborative problem-solving
groups. The journal of the learning sciences 9, 4 (2000), 403–436.

[3] Brigid Barron. 2003. When smart groups fail. The journal of the learning sciences
12, 3 (2003), 307–359.

[4] Kent Beck. 2000. Extreme programming explained: embrace change. addison-
wesley professional.

[5] Cathy Bishop-Clark, Jill Courte, and Elizabeth V Howard. 2006. Programming in
pairs with Alice to improve confidence, enjoyment, and achievement. Journal of
educational computing research 34, 2 (2006), 213–228.

[6] Ann L Brown, Annemarie S Palincsar, and Bonnie B Armbruster. 1984. Instructing
comprehension-fostering activities in interactive learning situations. Learning
and comprehension of text (1984), 255–286.

[7] CK Chan. 2013. Towards a Knowledge Creation Perspective. The international
handbook of collaborative learning (2013), 437.

[8] K CSTA. 12. Computer science standards. Computer Science Teachers Association
(12).

[9] Carolina Alves de Lima Salge and Nicholas Berente. 2016. Pair Programming vs.
Solo Programming: What Do We Know After 15 Years of Research?. In 2016 49th
Hawaii International Conference on System Sciences (HICSS). IEEE, 5398–5406.

[10] Jill Denner, Linda Werner, Shannon Campe, and Eloy Ortiz. 2014. Pair program-
ming: Under what conditions is it advantageous for middle school students?
Journal of Research on Technology in Education 46, 3 (2014), 277–296.

[11] P Dillenbourg, M Baker, A Blaye, C O’Malley, and E Spada. 1996. Learning
in humans and machines: Towards an interdisciplinary learning science. The
evolution of research on collaborative learning (1996), 189–211.

[12] Merrilyn Goos, Peter Galbraith, and Peter Renshaw. 2002. Socially mediated
metacognition: Creating collaborative zones of proximal development in small
group problem solving. Educational studies in Mathematics 49, 2 (2002), 193–223.

[13] Philip J. Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring
for Computer Programming. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software and Technology (UIST ’15). ACM, New York, NY, USA,
599–608. https://doi.org/10.1145/2807442.2807469

[14] Brian Hanks. 2005. Student Performance in CS1 with Distributed Pair Program-
ming. SIGCSE Bull. 37, 3 (June 2005), 316–320. https://doi.org/10.1145/1151954.
1067532

[15] Brian Hanks, Charlie McDowell, David Draper, and Milovan Krnjajic. 2004. Pro-
gram quality with pair programming in CS1. In Proceedings of the 9th annual
SIGCSE conference on Innovation and technology in computer science education.
176–180.

[16] Cindy E Hmelo-Silver and Howard S Barrows. 2008. Facilitating collaborative
knowledge building. Cognition and instruction 26, 1 (2008), 48–94.

[17] Learning Cindy E Hmelo-Silver and Christina DeSimone. 2013. Problem-based
learning: An instructional model of collaborative learning. In The international
handbook of collaborative learning. Routledge, 382–398.

[18] David W Johnson and Roger T Johnson. 1999. Making cooperative learning work.
Theory into practice 38, 2 (1999), 67–73.

[19] David W Johnson and Roger T Johnson. 2004. Cooperation and the use of
technology. (2004).

[20] Jennifer M Langer-Osuna. 2016. The social construction of authority among peers
and its implications for collaborative mathematics problem solving. Mathematical
Thinking and Learning 18, 2 (2016), 107–124.

[21] Jennifer M Langer-Osuna. 2017. Authority, identity, and collaborative mathemat-
ics. Journal for Research in Mathematics Education 48, 3 (2017), 237–247.

[22] Lauren E. Margulieux, B. Dorn, and Kristin A. Searle. 2019. Learning Sciences
for Computing Education.

[23] Eric Mazur. 2013. Peer instruction. (2013).
[24] Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fernald. 2006.

Pair programming improves student retention, confidence, and program quality.
Commun. ACM 49, 8 (2006), 90–95.

[25] Angela M O’Donnell and Donald F Dansereau. 1992. Scripted cooperation in
student dyads: A method for analyzing and enhancing academic learning and
performance. Interaction in cooperative groups: The theoretical anatomy of group
learning (1992), 120–141.

[26] Seymour Papert. 1980. Mindstorms: Computers, children, and powerful ideas.
NY: Basic Books (1980), 255.

[27] Seymour Papert and Idit Harel. 1991. Situating constructionism. Constructionism
36, 2 (1991), 1–11.

[28] Roy D Pea. 1993. Practices of distributed intelligence and designs for education.
Distributed cognitions: Psychological and educational considerations 11 (1993),
47–87.

[29] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. 2016. A multi-institutional study
of peer instruction in introductory computing. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. 358–363.

[30] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon. 2013. Success
in Introductory Programming: What Works? Commun. ACM 56, 8 (Aug. 2013),
34–36. https://doi.org/10.1145/2492007.2492020

[31] Barbara Rogoff. 1990. Apprenticeship in thinking: Cognitive development in social
context. Oxford university press.

[32] Jeremy Roschelle and Stephanie D Teasley. 1995. The construction of shared
knowledge in collaborative problem solving. In Computer supported collaborative
learning. Springer, 69–97.

[33] R Keith Sawyer and Kenneth J Goldman. 2010. Collaborative learning of computer
science concepts. Educational dialogues: Understanding and promoting productive
interaction (2010), 323–345.

[34] Julia Schenk, Lutz Prechelt, and Stephan Salinger. 2014. Distributed-pair program-
ming can work well and is not just distributed pair-programming. In Companion
Proceedings of the 36th International Conference on Software Engineering. 74–83.

[35] Beth Simon, Päivi Kinnunen, Leo Porter, and Dov Zazkis. 2010. Experience report:
CS1 for majors with media computation. In Proceedings of the fifteenth annual
conference on Innovation and technology in computer science education. 214–218.

[36] Richard H Thaler and Cass R Sunstein. 2009. Nudge: Improving decisions about
health, wealth, and happiness. Penguin.

[37] Michael Tomasello et al. 1995. Joint attention as social cognition. Joint attention:
Its origins and role in development 103130 (1995).

[38] SS Totten, TADigby, and P Russ. 1991. Cooperative Learning: AGuide to Research.
new York: garland.

[39] Karthikeyan Umapathy and Albert D Ritzhaupt. 2017. A meta-analysis of pair-
programming in computer programming courses: Implications for educational
practice. ACM Transactions on Computing Education (TOCE) 17, 4 (2017), 1–13.

[40] Lev Vygotsky. 1978. Interaction between learning and development. Readings on
the development of children 23, 3 (1978), 34–41.

[41] Rupert Wegerif. 2010. Mind expanding: teaching for thinking and creativity in
primary education: Teaching for Thinking and Creativity in Primary Education.
McGraw-Hill Education (UK).

[42] Linda L Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-programming
helps female computer science students. Journal on Educational Resources in
Computing (JERIC) 4, 1 (2004), 4–es.

[43] Laurie Williams, Robert R Kessler, Ward Cunningham, and Ron Jeffries. 2000.
Strengthening the case for pair programming. IEEE software 17, 4 (2000), 19–25.

[44] Laurie Williams, D Scott McCrickard, Lucas Layman, and Khaled Hussein. 2008.
Eleven guidelines for implementing pair programming in the classroom. In Agile
2008 Conference. IEEE, 445–452.

Paper Session: Learning Tools SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

906

https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/1151954.1067532
https://doi.org/10.1145/1151954.1067532
https://doi.org/10.1145/2492007.2492020

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 A Bug in Pair Programming
	1.3 Changing Contexts: Remote Learners

	2 Theoretical Foundations in the Learning Sciences
	3 Introducing PearProgram
	3.1 Design Aims
	3.2 Design Choices
	3.3 PearProgram Workflow

	4 How Students used PearProgram
	4.1 Interactions with PearProgram

	5 Teacher enthusiasm
	6 Impact Analysis
	6.1 Students and Teachers liked PearProgram
	6.2 Students who used PearProgram did better

	7 Discussion: Lessons Learned
	7.1 Implications for CS Education
	7.2 Implications for CS Education Research
	7.3 Implications for Learning Sciences Research on CS

	8 Conclusion
	References

