
Informatics Education Using Nothing But a Browser 
 
Chris Piech, piech@cs.stanford.edu 
Department of Computer Science, Stanford University, Stanford, CA  94305, USA 
 
Eric Roberts, eroberts@cs.stanford.edu 
Department of Computer Science, Stanford University, Stanford, CA  94305, USA 
 
Abstract 
Despite the extraordinary growth in the volume and variety of material available on the World 
Wide Web, the Internet revolution has had surprisingly little effect on the delivery of informatics 
education.  In this paper, we present an entirely web-based programming environment called 
StanfordKarel that introduces students to the fundamental techniques of algorithmic problem 
solving.  We then describe a broader project at Stanford to make educational resources freely 
available to anyone with access to a web browser—even if that browser is on a mobile phone.  
In the fullness of time, we expect these resources to cover the entire core of the informatics 
curriculum.  By developing this collection of tools, we hope to give people throughout the world 
access to the knowledge and skills they need to succeed in the 21st century. 
 
Keywords 
Computer and information science education; JavaScript; Java; online IDEs; HTML 
 
INTRODUCTION 
Over the last decade, the dizzying expansion of the online universe and the growing 
sophistication of web browsers have turned the Internet into the greatest repository of 
information in history.  At the same time, the increased availability of mobile devices has 
brought the resources of the Internet to many more people throughout the world.  In 2005, The 
Economist ran a cover story describing mobile phones as the next “killer app” for the developing 
world, citing a growing body of evidence “that the mobile phone is the technology with the 
greatest impact on development” [Economist2005].  Since that time, the computational power of 
mobile phones has increased substantially, making them even more important to economic 
growth in developing and newly developed nations. 
 
For reasons that we discuss later in the paper, informatics education has been slow to take 
advantage of the enormous potential that the Internet offers.  At Stanford, we have recently 
initiated a project that seeks to address this problem by creating a entirely browser-based 
collection of educational materials, pedagogical tools, and interactive applications to support the 
teaching of computer science.  The first of these applications is a programming environment for 
Karel the Robot [Pattis81], which offers, in the words of its designer Richard Pattis, “a gentle 
introduction to the art of programming.” 
 
Over the next year, we intend to expand those resources so that they cover the entire core of 
our undergraduate program.  In contrast to existing web-based packages for informatics 
education, our tools require nothing but a browser.  Educators and students will not need to 
install any additional software, download any special-purpose packages, or use a development 
environment not provided by our website.  Our tools, moreover, run on the client side, which 
reduces the cost of distributing computation that so often plagues client-server designs.  Our 
project also encompasses the development of authoring tools that simplify the process of 
creating web-accessible educational content for free distribution. 
 



KAREL AS AN EXEMPLAR OF THE NOTHING-BUT-A-BROWSER IDEA 
Before we describe our more general vision of browser-based educational tools, it is useful to 
begin with a specific example of how deploying resources on the Internet can make powerful 
educational resources available to a broad audience.  Partly because simplicity is the key 
criterion behind its design and partly because it is furthest along in the development process, 
the best example is the StanfordKarel website, which makes a delightful icon of Stanford 
computer science curriculum accessible to anyone with a browser, even if that browser is just a 
smart phone. 
 
The history of Karel the Robot at Stanford 
Ever since the late 1970s, students in Stanford’s introductory course in computer science have 
been welcomed to the field by Karel the Robot, named after the Czech playwright Karel Čapek 
who gave the word robot to the English language.  Despite the appearance of recent, more 
sophisticated introductory environments such as Alice and Scratch (and even more powerful 
extensions to Karel), we have happily continued to use a version based closely on Richard 
Pattis’s original conception precisely because it is simple.  As shown in Figure 1 at the bottom of 
the page, it is possible to combine a narrative introduction to Karel’s world and the entire 
reference documentation in a single browser window.  The classroom presentation of Karel is 
complete in two 50-minute lectures that allow students to master fundamental programming 
concepts without having to navigate the complexity of a modern programming language.  In our 
experience, the time we devote to these lectures is easily repaid by an increase in student 
understanding that allows us to move more quickly through later material. 
 
The biggest challenge that students face in using Karel does not come from learning the 
structure of Karel itself but from the relatively complex process of getting Karel up and running 
on their computers.  Since 2001, when we adopted Java as the programming language for the 
introductory course, Stanford has used an implementation of Karel that runs inside Eclipse, 
which is the leading cross-platform programming environment for Java.  Although doing so 

 

 
Figure 1: StanfordKarel Reference Card 



means that students learn how to use the Eclipse framework in the relatively simple world that 
Karel provides, this strategy forces students to complete the following process before they can 
run their first Karel program: 
 

1. Download, install, and configure Stanford’s distribution of Eclipse. 
2. Download a starter project from the course website. 
3. Import the project into Eclipse. 
4. Learn enough about Eclipse to edit, run, and debug their programs. 

 
Every step in this process is fraught with complexity for beginning students, primarily because 
Eclipse is an industrial-strength programming environment.  While the large number of teaching 
assistants for our introductory curriculum makes it possible to help students who get stuck at 
Stanford, there is no support for individuals who are trying to learn this material independently, 
either through the website for the class or by downloading the lectures available through the 
Stanford Education Everywhere initiative (http://see.stanford.edu).  Understandably, that 
complexity creates a barrier that renders this material inaccessible to much of its potential 
audience. 
 
Creating a web-based version of Karel 
As a prototype for the nothing-but-a-browser vision, we have released a web-based Karel 
implementation designed to remove all barriers to entry for students learning to program. 
StanfordKarel features a simple integrated development environment (IDE), an interactive E-
Learning course, and an easy-to-use framework that enables students to share their work. 
 

 

 
Figure 2: Screenshot of StanfordKarel  



Our goal in developing StanfordKarel was to design the simplest possible IDE that still supports 
the set of features essential to write and execute a Karel program. When students load the 
website they are presented with a page that looks much like the display in Figure 2.  The page 
contains a syntax-directed editor in which students can compose and edit their programs, 
buttons to control program execution, and a graphical display of Karel’s world.  The contents of 
Figure 2 show a session in progress, in which the student has written a program that teaches 
Karel to climb a mountain represented by the stair-step walls illustrated in the map at the right of 
the figure.  To run the program, all the student has to do is hit the green run button, which sends 
Karel through the steps of the program displayed in the editor.  By displaying the editor and map 
of Karel’s world in a single visual space, the student gets to follow the code as the program 
execution proceeds. 
 
The StanfordKarel IDE presents a simple user interface, requires no installation, and runs on 
any platform with a browser capable of displaying HTML and JavaScript.  By implementing the 
IDE in the standard tools used to create client-side applications on the web, we gain sufficient 
platform independence to run Karel programs from any web-capable phone.  Figure 3, for 
example, shows Karel running on an Apple iPhone. 
 
As the article from The Economist cited in the introduction makes clear, many people in 
developing and newly developed nations have access to a mobile phone but limited or no 
access to a desktop computer.  Requiring adopters to download and install a desktop-based 
IDE makes it far more difficult for those people to participate in the increasingly technological 
international economy.  Making educational technology available on the web holds forth the 
promise of a more level playing field of economic opportunity. 
 
Embedded learning resources 
Although making development environments accessible on the web is a necessary step toward 
our goal of expanding the audience for informatics education, it is by no means sufficient.  

 

 
Figure 3: StanfordKarel running on the iPhone’s Safari Browser 



Creating a comprehensive repository of information requires making other materials available 
on the web as well.  The StanfordKarel website, for example, includes an interactive tutorial that 
introduces students to the Karel programming language and the underlying principles of 
algorithmic problem solving.  That tutorial is based on the printed materials we have used for 
many years at Stanford [Roberts05] but takes advantage of the power available to web-based 
applications.  Given that we now have a functional web-based Karel IDE, we are able to blur the 
lines between the context in which students learn programming concepts and the context in 
which they write their code.  The existence of the StanfordKarel application makes it possible to 
embed interactive demonstrations directly into the online tutorial.  This facility is illustrated by 
the problem shown at the bottom of Figure 1, in which students are challenged to have Karel 
pick up the beeper and drop it at the center of the ledge.  The buttons on the page in Figure 1 
are active.  As a result, students can practice entering the sequence of commands that 
transforms the original state of the world into the desired final state, as follows: 
 

 
 
Students learn best when they are able to interact with the material. This principle is especially 
true in informatics where the experience of experimenting with code and observing results plays 
an important role in the process of understanding how computers respond to different programs.  
By including interactive exercises throughout the learning portion of the website, we encourage 
students to write, test, and debug Karel programs of gradually increasing complexity.  In the 
process, those students learn the essential concepts without having to pay the high conceptual 
cost of learning to use a sophisticated desktop IDE. 
 
Promoting code sharing 
In addition to building an IDE and an interactive learning environment, we have also 
implemented a simple mechanism that encourages students to share their programs with other 
users and to learn from programs that other students have shared in this way.  One of the three 
buttons on the Karel IDE is a blue deploy button.  When a student clicks this button, a copy of 
the code in the editor window is stored on the StanfordKarel server.  In return, that student 
receives a link to a page containing their program that can then be shared with others. 
 
Uploading the program to the server also makes that program visible to other users of the 
StanfordKarel site. As a result, students can see the creative applications that their peers have 
made along with the code that makes those applications run.  Students can then build their own 
extensions to those programs in a way that creates a decentralized learning community on the 
web.  This approach has proven enormously successful for MIT’s Scratch environment 
[Moloney10], despite the fact that the Scratch environment requires users to register and 
download additional software.  The fact that using StanfordKarel requires nothing but a browser 
should make it even easier to exploit the “viral” capabilities of web-based applications.  Early 
signs certainly point in that direction.  With no public announcement whatever, people somehow 
found the StanfordKarel website and started sharing programs.  In less than two weeks after 
putting up our own test site, StanfordKarel had already received endorsements from over 100 
people who clicked on the thumbs-up icon on the StanfordKarel home page. 
 



ACADEMIC BARRIERS TO WEB-BASED EDUCATIONAL STRATEGIES 
As we came to appreciate how much value we could obtain by putting StanfordKarel on the 
web, one of the questions that occurred to us was why it had taken so long to adopt this 
strategy, which has such clear advantages.  In the introduction, we note that informatics 
education has in many ways been slow to adopt web-based technologies, especially when 
compared to commercial services.  One explanation for this collective failure is that academic 
institutions are conservative and therefore move too slowly to adopt the latest technologies.  
While there is some truth in that analysis, it is also possible that the challenges academic 
institutions currently face with respect to informatics education come less from being too late 
than from being too early. 
 
To understand this seemingly paradoxical claim, it is important to remember that educators 
were in fact quick to recognize the potential of web-based technologies. Several papers from 
the 1990s argue that the web completely transforms the nature of informatics education.  One 
paper from 1999, for example, asserts that the web represents a fundamental paradigm shift, 
going so far as to punctuate that assessment with an exclamation point in the title [Boroni99].  
Taking much the same line, the Curriculum 2001 recommendations from the ACM and IEEE-CS 
proposed an entirely web-based model as a viable organizing principle for the undergraduate 
curriculum [ACM01].  The enthusiasm was certainly there. 
 
Historically, the problem is not that the informatics education community failed to embrace web 
technology in a timely fashion but rather that it embraced the wrong technology.  For the most 
part, educators decided—on the basis of what seemed like powerful evidence in the early 
years—to focus on Java and the applet paradigm as the strategy for creating interactive web 
content [Roberts04, ACM06].  That strategy, however, did not succeed.  By the early 2000s, 
Java applets had been abandoned by the commercial world in favor of the now ubiquitous blend 
of JavaScript, HTML, CSS, and related technologies that power today’s web-based applications.  
The reasons behind the failure of the applet paradigm are clearly identified in the following 
article [Srinivas01] from Java World: 
 

Java applets fueled Java’s initial growth. The ability to download code over the network and 
run it on a variety of desktops offering a rich user interaction proved quite compelling. 
However, Java’s Write Once, Run Anywhere (WORA) promise soon became strained as 
browsers began to bloat and several incompatibilities emerged that were caused by the Java 
language itself.  

 

By the time that the failure of the applet paradigm was unambiguously recognized, educators 
found themselves in a difficult position.  Many people had invested considerable time and 
energy in development efforts that eventually came to nothing.  Quite naturally, many of those 
people were reticent to invest similar levels of effort using a different paradigm for fear that that 
work would eventually suffer the same fate.  To make matters worse, most educators regarded 
the commercially successful technology—represented most iconically by the JavaScript 
language itself—to be wildly inefficient, aesthetically horrible, and pedagogically disastrous.  As 
JavaScript expert Douglas Crockford reports 
 

JavaScript is a language with more than its share of bad parts. It went from non-existence to 
global adoption in an alarmingly short period of time. It never had an interval in the lab when 
it could be tried out and polished. It went straight into Netscape Navigator 2 just as it was, 
and it was very rough. When Java applets failed, JavaScript became the “Language of the 
Web” by default. JavaScript’s popularity is almost completely independent of its qualities as 
a programming language. [Crockford08] 

 

Despite the grain of truth behind such criticism, we cannot as a community afford to ignore the 
realities of the technological marketplace.  JavaScript has won the technological battle and is 



pretty much the only game in town.  We must learn to play in that game or abandon the 
enormous potential that web technologies provide.  And in doing so, we can take heart from 
some further thoughts that Crockford has to offer on the subject: 
 

Fortunately, JavaScript has some extraordinarily good parts. In JavaScript, there is a 
beautiful, elegant, highly expressive language that is buried under a steaming pile of good 
intentions and blunders. The best nature of JavaScript is so effectively hidden that for many 
years the prevailing opinion of JavaScript was that it was an unsightly, incompetent toy. My 
intention here is to expose the goodness in JavaScript, an outstanding, dynamic 
programming language. 

 
WHERE DO WE GO FROM HERE 
At present, the StanfordKarel website is best regarded as a prototype, offering an existence 
proof that it is possible to design effective educational software that runs entirely in a browser.  
Over the next year, our research group at Stanford proposes to extend that technology in the 
following ways: 
 

1. Publish a collection of web-based animations that enable students to visualize how 
complex algorithms work.  We have already been able to create several of these 
animations by automatically translating existing Java code into JavaScript, as described 
in a talk at Google Atlanta [Roberts10]. 

2. Extend the technology used in the StanfordKarel website to create a similar resource for 
teaching JavaScript itself at the introductory level.  Making this technology work for a 
more sophisticated programming environment is a much more complex and ambitious 
task, but our experience to date has convinced us that (1) it is entirely possible to make 
such a system work and (2) that the payoff of doing so will be enormous. 

3. Refine our existing set of tools for creating and maintaining JavaScript content.  As 
Douglas Crockford observes, it is possible—by making the right engineering decisions 
and building the appropriate scaffolding—to create an “elegant subset [of JavaScript that] 
is vastly superior to the language as a whole, being more reliable, readable, and 
maintainable.” 

4. Expand our collection of materials so that it covers the fundamental core concepts of 
informatics education, bringing that material to the widest possible audience. 

 
CONCLUSION 
In this paper, we have described our experience with StanfordKarel as an exemplar of a 
completely web-based tool for informatics education available to anyone with a web browser.  
Using the system requires no installation, no additional software, and no specialized expertise, 
thereby bringing it within the reach of what has become a large fraction of the world’s 
population.  We have also sought to argue why it is essential for the informatics education 
community to put aside its prejudices and adopt the technologies that have unambiguously won 
the battle for primacy in the development of interactive content.  Finally, we have outlined an 
ambitious program to expand this project to cover the core of a typical undergraduate 
curriculum. 
 
Although we recognize that this work remains at an early stage, we believe it is important to get 
feedback from those parts of the world that will be most affected by the increased accessibility 
that our web-based vision enables.  Talking with people in developing and newly developed 
countries is essential to the eventual success of this undertaking.  By working together we can 
realize the potential of free, democratically available informatics education that has thus far 
been only a dream. 



REFERENCES 
[ACM01] ACM/IEEE-CS Joint Task Force. Computing Curricula 2001. December 2001.  

http://www.acm.org/education/curric_vols/cc2001.pdf 
[ACM06] ACM Java Task Force. Project Rationale. 25 August 2006. 

http://jtf.acm.org/rationale/ 
[Boroni98] Christopher Boroni, Frances Goosey, Michael Grinder, and Rockford Ross.  A 

paradigm shift! The Internet, the Web, browsers, Java and the future of computer science 
education. SIGCSE Bulletin, March 1998. 
http://doi.acm.org/10.1145/274790.273181 

[Brin06] David Brin. Why Johnny can’t code.  Salon, 14 Sep 2006. 
http://www.salon.com/technology/feature/2006/09/14/basic 

[Crockford08] Douglas Crockford. JavaScript: The Good Parts. Sebastopol, CA, USA: 
O’Reilly, May 2008. 
http://eleventyone.done.hu/OReilly.JavaScript.The.Good.Parts.May.2008.pdf 

[Davies11] Stephen Davies, Jennifer Polack-Wahl, and Karen Anewalt.  A snapshot of current 
practices in teaching the introductory programming sequence.  Proceedings of the Forty-
second SIGCSE Technical Symposium on Computer Science Education. Dallas, TX, USA, 
March 2011.  http://doi.acm.org/10.1145/364447.364552 

[Economist05] The Economist.  The real digital divide: Encouraging the spread of mobile 
phones is the most sensible and effective response to the digital divide. 10 March 2005.  
http://www.economist.com/node/3742817?story_id=3742817 

[GalEzer98] Judith Gal-Ezer and David Harel.  What (else) should CS educators know? 
Communications of the ACM, September 1998. 
http://doi.acm.org/10.1145/285070.285085 

[Maloney10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn 
Eastmond. The Scratch programming language and environment. ACM Transactions on 
Computing Education, November 2010.  http://doi.acm.org/10.1145/1868358.1868363 

[Pattis81] Richard Pattis. Karel The Robot: A Gentle Introduction to the Art of Programming. 
John Wiley & Sons, 1981. 

[Reed01] David Reed. Rethinking CS0 with JavaScript. Proceedings of the Thirty-second 
SIGCSE Technical Symposium on Computer Science Education. Charlotte, NC, USA, 
February 2001.  http://doi.acm.org/10.1145/364447.364552 

[Roberts04] Eric Roberts. The dream of a common language: The search for simplicity and 
stability in computer science education. Proceedings of the Thirty-fifth SIGCSE Technical 
Symposium on Computer Science Education. Norfolk, VA, USA, March 2004.  
http://doi.acm.org/10.1145/971300.971343 

[Roberts05] Eric Roberts. Karel the Robot Learns Java. Stanford University, Stanford, CA, USA, 
September 2005. 
http://cs.stanford.edu/~eroberts/karel-the-robot-learns-java.pdf 

[Roberts10] Eric Roberts. Converting Java into JavaScript. Google Atlanta, Atlanta, GA, USA, 
October 2010.  http://cs.stanford.edu/~eroberts/talks/Google/JavaIntoJavaScript.ppt 

[Srinivas01] Raghavan Srinivas. Java Web Start to the rescue. Java World, July 2001.  
http://ww.javaworld.com/javaworld/ jw-07-2001/jw-0706-webstart.html 

[Zachary03] Joseph Zachary and Peter Jensen. Exploiting value-added content in an online 
course: Introducing programming concepts via HTML and JavaScript. Proceedings of the 
34th SIGCSE Technical Symposium on Computer Science Education. Reno, NV, USA, 
February 2003. 
http://doi.acm.org/10.1145/611892.612016 

 



Biography 

 

Starting in the fall of 2011, Chris Piech will be a Ph.D. student 
in Computer Science studying the application of techniques from 
artificial intelligence to computer science education.  He holds a 
B.S. degree in Computer Science from Stanford University. 

 

Eric Roberts is Professor of Computer Science at Stanford 
University.  He received his Ph.D. in Applied Mathematics from 
Harvard University in 1980 and taught at Wellesley College in 
Massachusetts before joining the Stanford faculty in 1990.  He 
was the principal author of the ACM/IEEE-CS Curriculum 2001 
report and the organizer of the ACM Java Task Force.  He is 
past chair of the ACM Education Board and a member of IFIP 
Working Group 3.2 (Informatics and ICT in Higher Education). 

 
This paper has been accepted for presentation at the conference on ICT and Informatics in a Globalised World of 
Education to be held in Mombasa, Kenya in August 2011.  It is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivative Works 3.0 unported License (see http://creativecommons.org/licenses/by-nc-nd/3.0/). 
 
 


