
Syntactic and Functional Variability of a Million
Code Submissions in a Machine Learning MOOC

Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas
Stanford University

Abstract. In the first offering of Stanford’s Machine Learning Massive
Open-Access Online Course (MOOC) there were over a million program-
ming submissions to 42 assignments — a dense sampling of the range of
possible solutions. In this paper we map out the syntax and functional
similarity of the submissions in order to explore the variation in solu-
tions. While there was a massive number of submissions, there is a much
smaller set of unique approaches. This redundancy in student solutions
can be leveraged to “force multiply” teacher feedback.

Fig. 1. The landscape of solutions for “gradient descent for linear regression” representing over
40,000 student code submissions with edges drawn between syntactically similar submissions and
colors corresponding to performance on a battery of unit tests (red submissions passed all unit
tests).

1 Introduction
Teachers have historically been faced with a difficult decision on how much per-
sonalized feedback to provide students on open-ended homework submissions
such as mathematical proofs, computer programs or essays. On one hand, feed-
back is a cornerstone of the educational experience which enables students to
learn from their mistakes. On the other hand, giving comments to each student
can be an overwhelming time commitment [4]. In contemporary MOOCs, char-
acterized by enrollments of tens of thousands of students, the cost of providing
informative feedback makes individual comments unfeasible.



Interestingly, a potential solution to the high cost of giving feedback in mas-
sive classes is highlighted by the volume of student work. For certain assignment
types, most feedback work is redundant given sufficiently many students. For
example, in an introductory programming exercise many homework submissions
are similar to each other and while there may be a massive number of submis-
sions, there is a much smaller variance in the content of those submissions. It
is even possible that with enough students, the entire space of reasonable solu-
tions is covered by a subset of student work. We believe that if we can organize
the space of solutions for an assignment along underlying patterns we should be
able to “force multiply” the feedback work provided by a teacher so that they
can provide comments for many thousands of students with minimal effort.

Towards the goal of force multiplying teacher feedback, we explore variations
in homework solutions for Stanford’s Machine Learning MOOC that was taught
in Fall of 2011 by Andrew Ng (ML Class), one of the first MOOCs taught. Our
dataset consists of over a million student coding submissions, making it one of the
largest of its kind to have been studied. By virtue of its size and the fact that it
constitutes a fairly dense sampling of the possible space of solutions to homework
problems, this dataset affords us a unique opportunity to study the variance of
student solutions. In our research, we first separate the problem of providing
feedback into two dimensions: giving output based feedback (comments on the
functional result of a student’s program) and syntax based feedback (comments
on the stylistic structure of the student’s program). We then explore the utility
and limitations of a “vanilla” approach where a teacher provides feedback only
on the k most common submissions. Finally we outline the potential for an
algorithm which propagates feedback on the entire network of syntax and output
similarities. Though we focus on the ML Class, we designed our methods to be
agnostic to both programming language, and course content.

Our research builds on a rich history of work into finding similarity between
programming assignments. In previous studies researchers have used program
similarity metrics to identify plagiarism [1], provide suggestions to students’
faced with low level programming problems [2] and finding trajectories of student
solutions [3]. Though the similarity techniques that we use are rooted in previous
work, the application of similarity to map out a full, massive class is novel.

2 ML Class by the numbers
When the ML Class opened in October 2011 over 120,000 students registered. Of
those students 25,839 submitted at least one assignment, and 10,405 submitted
solutions to all 8 homework assignments (each assignment had multiple parts
which combined for a total of 42 coding based problems) in which students were
asked to program a short matlab/octave function. These homeworks covered top-
ics such as regression, neural networks, support vector machines, among other
topics. Submissions were assessed via a battery of unit tests where the student
programs were run with standard input and assessed on whether they produced
the correct output. The course website provided immediate confirmation as to
whether a submission was correct or not and users were able to optionally re-
submit after a short time window.



0	  

5000	  

10000	  

15000	  

20000	  

25000	  

30000	  

1	   6	   11	   16	   21	   26	   31	   36	   41	  

OpFonal	  
problems	  

Problems	  1	  through	  42	  (ordered	  chronologically)	  

N
um

be
r	  o

f	  u
ni
qu

e	  
us
er
s	  

su
bm

iV
ng
	  to

	  e
ac
h	  
pr
ob

le
m
	  

(a)

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

1	   10	   19	   28	   37	  
Problems	  1	  through	  42	  (ordered	  chronologically)	  

N
um

be
r	  o

f	  s
ub

m
iss
io
ns
	  p
er
	  

us
er
	  fo

r	  e
ac
h	  
pr
ob

le
m
	  

Regularized	  LogisFc	  
Regression	  problems	  

(b)

0	  

2	  

4	  

6	  

8	  

10	  

12	  

0	   5	   10	   15	   20	   25	   30	   35	   40	   45	  

N
um

be
r	  o

f	  
pr
ob

le
m
s	  (
of
	  4
2)
	  

Average	  	  number	  of	  lines	  (over	  
all	  submissions	  to	  a	  problem)	  

Neural	  network	  
backpropagaFon	  

(c)

Fig. 2. (a) Number of submitting users for each problem; (b) Number of submissions per user for
each problem; (c) Histogram over the 42 problems of average submission line counts.

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

10	  

0	  
20
0	  

40
0	  

60
0	  

80
0	  

10
00
	  

12
00
	  

14
00
	  

16
00
	  

18
00
	  

20
00
	  

22
00
	  

24
00
	  

26
00
	  

28
00
	  

Regularized	  
LogisFc	  regression	  

N
um

be
r	  o

f	  
pr
ob

le
m
s	  (
of
	  4
2)
	  

Number	  of	  disFnct	  unit	  test	  output	  classes	  (over	  all	  
submissions	  to	  a	  problem)	  

(a)

0	  

5000	  

10000	  

15000	  

20000	  

25000	  

30000	  

35000	  

1	   4	   7	   10	   13	   16	   19	   22	   25	   28	   31	   34	   37	   40	   43	   46	   49	  
Top	  50	  most	  “popular”	  unit	  test	  output	  classes	  for	  
gradient	  descent	  for	  linear	  regression	  problem	  

N
um

be
r	  o

f	  s
ub

m
iss
io
ns
	  re

su
lF
ng
	  in
	  a
	  

gi
ve
n	  
un

it	  
te
st
	  o
ut
pu

t	  c
la
ss
	  	  

(b)

0.6	  

0.65	  

0.7	  

0.75	  

0.8	  

0.85	  

0.9	  

0.95	  

1	  

1	   10	   100	   1000	   10000	   100000	  
Number	  of	  submissions	  

Fr
ac
Fo

n	  
of
	  o
ut
pu

t	  c
la
ss
es
	  w
ith

	  k
	  o
r	  

fe
w
er
	  su

bm
iss
io
ns
	  	  

(c)

Fig. 3. (a) Histogram over the 42 problems of the number of distinct unit test outputs; (b) Number
of submissions to each of the 50 most common unit test outputs for the “gradient descent for linear
regression” problem; (c) Fraction of distinct unit test outputs with k or fewer submissions. For
example, about 95% of unit test outputs owned fewer than 10 submissions.

Figure 2(a) plots the number of users who submitted code for each of the 42
coding problems. Similarly, Figure 2(b) plots the average number of submissions
per student on each problem and reflects to some degree its difficulty.

In total there were 1,008,764 code submissions with typical submissions being
quite short — on average a submission was 16.44 lines long (after removing
comments and other unnecessary whitespace). Figure 2(c) plots a histogram of
the average line count for each of the 42 assignments. There were three longer
problems — all relating to the backpropagation algorithm for neural networks.

3 Functional variability of code submissions
First, we examine the collection of unit test outputs for each submitted assign-
ment (which we use as a proxy for functional variability). In the ML Class, the
unit test outputs for each program are a set of real numbers, and we consider two
programs to be functionally equal if their unit test output vectors are equal.1

Not surprisingly in a class with tens of thousands of participants, the range
of the outputs over all of the homework submissions can be quite high even in
the simplest programming assignment. Figure 3(a) histograms the 42 assigned
problems with respect to the number of distinct unit test outputs submitted
by all students. On the low end, we observe that the 32,876 submissions to the
simple problem of constructing a 5 × 5 identity matrix resulted in 218 distinct
unit test output vectors. In some sense, the students came up with 217 wrong
ways to approach the identity matrix problem. The median number of distinct
outputs over all 42 problems was 423, but at the high end, we observe that the
1 The analysis in Section 4 captures variability of programs at a more nuanced level
of detail



0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

1	   6	   11	   16	   21	   26	   31	   36	   41	   46	  

Regularized	  LogisFc	  Regression	  

Linear	  Regression	  (Gradient	  Descent)	  
Return	  a	  5x5	  idenFty	  matrix	  

Top-‐k	  unit	  test	  output	  classes	  

Fr
ac
Fo

n	  
of
	  st
ud

en
ts
	  c
ov
er
ed

	  b
y	  

an
no

ta
Fn

g	  
to
p-‐
k	  
un

it	  
te
st
	  o
ut
pu

t	  c
la
ss
es
	  

(a)

0	  
2	  
4	  
6	  
8	  

10	  
12	  
14	  
16	  
18	  

0.8	   0.82	   0.84	   0.86	   0.88	   0.9	   0.92	   0.94	   0.96	   0.98	  

N
um

be
r	  o

f	  
pr
ob

le
m
s	  (
of
	  4
2)
	  

User	  coverage	  with	  50	  annotated	  unit	  test	  output	  
classes	  (over	  all	  submissions	  to	  a	  problem)	  

Regularized	  LogisFc	  
regression,	  PCA	  

(b)

Fig. 4. (a) Number of students covered by the 50 most common unit test outputs for several
representative problems; (b) Histogram over the 42 problems of number of students covered by the
top 50 unit test outputs for each problem. Observe that for most problems, 50 unit test outcomes is
sufficient for covering over 90% of students.

39,421 submissions to a regularized logistic regression problem produced 2,992
distinct unit test outputs!

But were there truly nearly 3,000 distinct wrong ways to approach regularized
logistic regression? Or were there only a handful of “typical” ways to be wrong
and a large number of submissions which were each wrong in their own unique
way? In the following, we say that a unit test output vector v owns a submission
if that submission produced v when run against the given unit tests. We are
interested in common or “popular” outputs vectors which own many submissions.

Figure 3(b) visualizes the popularity of the 50 unit class output vectors which
owned the most submissions for the gradient descent for linear regression prob-
lem. As with all problems, the correct answer was the most popular, and in the
case of linear regression, there were 28,605 submissions which passed all unit
tests. Furthermore, there were only 15 additional unit test vectors which were
the result of 100 submissions or more, giving some support to the idea that we
can “cover” a majority of submissions simply by providing feedback based on a
handful of the most popular unit test output vectors. On the other hand, if we
provide feedback for only a few tens of the most popular unit test outputs, we
are still orphaning in some cases thousands of submissions. Figure 3(c) plots the
fraction of output vectors for the linear regression problem again which own less
than k submissions (varying k on a logarithmic scale). The plot shows, for exam-
ple, that approximately 95% of unit test output vectors (over 1, 000 in this case)
owned 10 or fewer submissions. It would have been highly difficult to provide
feedback for this 95% using the vanilla output-based feedback strategy.

To better quantify the efficacy of output-based feedback, we explore the no-
tion of coverage — we want to know how many students in a MOOC we can
“cover” (or provide output-based feedback for) given a fixed amount of work for
the teaching staff. To study this, consider a problem P for which unit test output
vectors S = {s1, . . . , sk} have been manually annotated by an instructor. This
could be as simple as “good job!”, to “make sure that your for-loop covers special
case X”. We say that a student is covered by S if every submitted solution by
that student for problem P produces unit test outputs which lie in S. Figure 4(a)
plots the number of students which are covered by the 50 most common unit
test output vectors for several representative problems. By and large, we find



that annotating the top 50 output vectors yields coverage of 90% of students
or more in almost all problems (see Figure 4(b) for histogrammed output cov-
erage over the 42 problems). However, we note that in a few cases, the top 50
output vectors might only cover slightly over 80% of students, and that even at
90% coverage, typically between 1000-2000 students are not covered, showing
limitations of this “vanilla” approach to output-based feedback.

Thus, while output-based feedback provides us with a useful start, the vanilla
approach has some limitations. More importantly however, output based feed-
back can often be too much of an oversimplification. For example, output-based
feedback does not capture the fact that multiple output vectors can result from
similar misconceptions and conversely that different misconceptions can result
in the same unit test outputs. Success of output-based feedback depends greatly
on a well designed battery of unit tests. Moreover, coding style which is a crit-
ical component of programming cannot be captured at all by unit test based
approaches to providing feedback. In the next sections, we discuss a deeper anal-
ysis which delves further into program structure and is capable of distinguishing
the more stylistic elements of a submission.

4 Syntactic variability of code submissions
In addition to providing feedback on the functional output of a student’s pro-
gram, we also investigate our ability to give feedback on programming style. The
syntax of code submission in its raw form is a string of characters. While this
representation is compact, it does not emphasize the meaning of the code. To
more accurately capture the structure of a programming assignment, we compare
the corresponding Abstract Syntax Tree (AST) representation.

This task is far more difficult due to the open ended nature of programming
assignments which allows for a large space of programs. There were over half a
million unique ASTs in our dataset. Figure 5(b) shows that homework assign-
ments had substantially higher syntactic variability than functional variability.
Even if a human labeled the thirty most common syntax trees for the Gradient
Descent part of the Linear Regression homework, the teacher annotations would
cover under 16% of the students. However, syntactic similarity goes beyond bi-
nary labels of “same” or “different”. Instead, by calculating the tree edit distance
between two ASTs we can measure the degree to which two code submissions
are similar. Though it is computationally expensive to calculate the similarity
between all pairs of solutions in a massive class, the task is feasible given the dy-
namic programming edit distance algorithm presented by Shasha et al [5] . While
the algorithm is quartic in the worst case, it is quadratic in practice for student
submission. By exploiting the [5] algorithm and using a computing cluster, we
are able to match submissions at MOOC scales.

By examining the network of solutions within a cutoff edit distance of 5,
we observe a smaller, more manageable number of common solutions. Figure 1
visualizes this network or landscape of solutions for the linear regression (with
gradient descent) problem, with node representing a distinct AST and node sizes
scaling logarithmically with respect to the number of submissions owned by that
AST. By organizing the space of solutions via this network, we are able to see



0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

Regularized	  
LogisFc	  regression	  

N
um

be
r	  o

f	  
pr
ob

le
m
s	  (
of
	  4
2)
	  

Number	  of	  disFnct	  abstract	  syntax	  trees	  (over	  all	  
submissions	  to	  a	  problem)	  

(a)

0.00E+00	  

2.00E-‐01	  

4.00E-‐01	  

6.00E-‐01	  

8.00E-‐01	  

1.00E+00	  

1.20E+00	  

1	   6	   11	   16	   21	   26	   31	  

Linear	  Regression	  (Gradient	  Descent)	  

Return	  a	  5x5	  idenFty	  matrix	  

Linear	  Regression	  (Evaluate	  cost	  funcFon)	  

Top-‐k	  abstract	  syntax	  trees	  

Fr
ac
Fo

n	  
of
	  st
ud

en
ts
	  c
ov
er
ed

	  b
y	  

an
no

ta
Fn

g	  
to
p-‐
k	  
ab
st
ra
ct
	  sy

nt
ax
	  tr
ee
s	  

(b)

1.00E-‐06	  

1.00E-‐05	  

1.00E-‐04	  

1.00E-‐03	  

1.00E-‐02	  

1.00E-‐01	  

1.00E+00	  

1	   41	   81	   121	   161	   201	  

Lo
g	  
pr
ob

ab
ili
ty
	  

Log	  distribuFon	  for	  pairs	  
that	  agree	  on	  unit	  tests	  

Log	  distribuFon	  for	  pairs	  
that	  disagree	  on	  unit	  tests	  

Edit	  distance	  between	  pairs	  of	  
submissions	  

(c)

Fig. 5. (a) Histogram of the number of distinct abstract syntax trees (ASTs) submitted to each
problem.; (b) Number of students covered by the 30 most common ASTs for several representative
problems; (c) (Log) distribution over distances between pairs of submissions for pairs who agree on
unit test outputs, and pairs who disagree. For very small edit distances (<10 edits), we see that the
corresponding submissions are typically also functionally similar (i.e., agree on unit test outputs).

clusters of submissions that are syntactically similar, and feedback for one AST
could potentially be propagated to other ASTs within the same cluster.

Figure 1 also encodes the unit test outputs for each node using colors to dis-
tinguish between distinct unit test outcomes.2 Note that visually, submissions
belonging to the same cluster typically also behave similarly in a functional sense,
but not always. We quantify this interaction between functional and syntactic
similarity in Figure 5(c) which visualizes (log) distributions over edit distances
between pairs of submissions who agree on unit test outcomes and pairs of sub-
missions who disagree on unit test outcomes. Figure 5(c) shows that when two
ASTs are within approximately 10 edits from each other, there is a high proba-
bility that they are also functionally similar. Beyond this point, the two distri-
butions are not significantly different, bearing witness to the fact that programs
that behave similarly can be implemented in significantly different ways.

5 Discussion and ongoing work

The feedback algorithm outlined in this paper lightly touches on the potential
for finding patterns that can be utilized to force multiply teacher feedback. One
clear path forward is to propagate feedback, not just for entire programs, but
also for program parts. If two programs are different yet share a substantial
portion in common we should be able to leverage that partial similarity.

Though we focused our research on creating an algorithm to semi-automate
teacher feedback in a MOOC environment, learning the underlying organization
of assignment solutions for an entire class has benefits that go beyond those ini-
tial objectives. Knowing the space of solutions and how students are distributed
over that space is valuable to teaching staff who could benefit from a more nu-
anced understanding of the state of their class. Moreover, though this study is
framed in the context of MOOCs, the ability to find patterns in student submis-
sions should be applicable to any class with a large enough corpus of student
solutions, for example, brick and mortar classes which give the same homeworks
over multiple offerings, or Advanced Placement exams where thousands of stu-
dents answer the same problem.
2 Edge colors are set to be the average color of the two endpoints.



References

1. D. Gitchell and N. Tran. Sim: a utility for detecting similarity in computer programs.
In ACM SIGCSE Bulletin, volume 31, pages 266–270. ACM, 1999.

2. B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What would other
programmers do: suggesting solutions to error messages. In Proceedings of the 28th
international conference on Human factors in computing systems, pages 1019–1028.
ACM, 2010.

3. C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein. Modeling how students
learn to program. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education, pages 153–160. ACM, 2012.

4. P. M. Sadler and E. Good. The impact of self-and peer-grading on student learning.
Educational assessment, 11(1):1–31, 2006.

5. D. Shasha, J. T.-L. Wang, K. Zhang, and F. Y. Shih. Exact and approximate
algorithms for unordered tree matching. IEEE Transactions on Systems, Man, and
Cybernetics, 24(4):668–678, 1994.


