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ABSTRACT 
In recent years, enrollments in undergraduate computer science 
programs have seen tremendous growth nationally.  Often 
accompanying such growth is a concern from faculty that the 
additional students choosing to pursue computing may not have 
the same aptitude for the subject as was seen in prior student 
populations.  Thus such students may exhibit weaker performance 
in computing courses.  To help address this question, we present a 
statistical analysis using mixture modeling of students’ 
performance in an introductory programming class at Stanford 
University over an eight year period, during which enrollments in 
the course more than doubled. Importantly, in this setting many 
variables that would normally confound such a study are directly 
controlled for.  We find that the distribution of student 
performance during this period, as reflected in their programming 
assignment scores, remains remarkably stable despite the large 
growth in enrollment.  We then explain how the notion of having 
“more weak students” and the fact that the distribution of student 
ability is unchanged can readily co-exist and lead to 
misperceptions about the quality of incoming students during an 
enrollment boom. 
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1. INTRODUCTION 
The past decade has seen tremendous growth in enrollments in 
computer science programs.  Indeed, the Computing Research 
Association 2014 Taulbee Survey [12] shows a near doubling of 
the number of newly declared CS/CE undergraduate majors from 
2007 to 2014.  The increase in majors is correlated with a sharp 
increase in the number of students taking introductory computer 
science courses, which has received much attention of late in the 
popular press [9, 11]. 

The increasing numbers of students taking CS courses has led 
some faculty to lament the quality of students entering such 
programs.  Indeed, commentary along these lines is readily found 
in public online forums frequented by computing faculty. For 
example, consider the following quote from a former EECS 
professor at a well-known university [8]: 

Based on my recent teaching experience, there are 
definitely many students signing up for CS majors who 
aren't prepared enough and have difficulty getting 
through foundational material. Some of them manage to 
learn through perseverance (retaking courses several 
times), some don't. They won't be nearly as efficient as 
median students… 

More anecdotally, we have often heard colleagues questioning 
whether the students in CS courses today are as strong as those in 
the past. The thinking along these lines being that when 
enrollments were lower only the students who had both the 
aptitude and interest in computing were enrolling.  Now, with CS 
becoming a “hot” major, we are potentially attracting students 
who have interest, but perhaps less aptitude than before. 

Rather than allowing such anecdotal statements to continue 
unchecked, in this work we seek to provide a statistical analysis of 
student performance in introductory programming courses during 
the recent period of large enrollment growth (2007-2014) to 
quantify the extent to which we may be attracting weaker students 
into such courses.  It is especially important to counter anecdotes 
with rigorous analysis in such a context.  Unsubstantiated 
statements about “weaker” students can potentially be even more 
damaging and off-putting to students from under-represented 
populations who may be particularly susceptible to stereotype 
threat [3, 7, 10]. 

Based on building robust statistical models, we find that, contrary 
to the perception of attracting weaker students, the quality of 
student work in the introductory programming course we analyze 
has remained remarkably consistent during the entire eight year 
period we consider.  Indeed, through a mixture modeling 
approach to fitting the distribution of grades on students’ 
assignments, we find clear evidence that the distribution of 
student quality (as reflected in assignment scores) is virtually 
unchanged even in the face of an over 100% increase in 
enrollment.  By examining the implications of the model in more 
detail we are able to reconcile the quantitative results regarding 
consistent student populations over time with the reasons that 
potentially give rise to anecdotes about “more weak students” 
taking CS courses.  In this way, we seek to not only provide a 
quantitative basis for understanding the implications of enrollment 
growth, but also help to provide educators with insight about 
potential misperceptions that can arise in such situations. 
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The remainder of the paper is organized as follows.  In Section 2 
we describe the introductory programming course and data we 
analyze in our study.  Section 3 provides details of the statistical 
methods we use to model the data and gives the results obtained 
from our statistical analysis.  In Section 4 we discuss the results in 
this study further, highlight our main contributions, and present 
directions for future work. 

2. THE DATA 
Analyzing the performance of student populations over time can 
potentially suffer from many confounding factors, such as the 
efficacy of different instructors in a course, the impact of different 
pedagogies on learning, and the use of different assessment 
instruments.  Luckily, in our setting, all these factors are directly 
controlled for.  Specifically, we consider CS106A, an introductory 
programming course using Java (equivalent to CS1) taught at 
Stanford University.  This course was taught by the same 
instructor (the first author) every Autumn term for the past eight 
years (2007-2014).  During this time the contents of the course 
(e.g., textbook, handouts, lectures, section materials) remained 
largely unchanged (by design) and the same instructional 
pedagogy was employed.  Moreover, the course used the same 
seven programming projects in every Autumn term offering and 
employed the same grading rubrics for their evaluation. 

The main variable that changed during the period from 2007 to 
2014 is the size of the course, which grew from less than 300 
students to more than double that size.  As a result, the data on 
student performance in this course (as measured by programming 
assignment grades) over time provides a highly controlled setting 
to test hypotheses related to the performance of students enrolling 
in the course as enrollments have increased. 

It is important to be precise about the data that we consider in our 
study.  In order to use a performance measure that is directly 
comparable across years, we focus on students’ aggregate 
(weighted sum numeric) grade on the seven programming 
assignments/projects in the course, as these are consistently 
evaluated across years.  In aggregate, the seven programming 
assignments make up 50% of the overall course grade.  We do not 
include exam data (the course has a midterm and final exam) as 
the exams are different each term.  Thus, exam scores are not 
directly comparable across terms as difficulty across exams is not 
directly calibrated.  Trying to equate means/variances of exam 
scores across classes would create statistical distortions in our 
otherwise controlled data.  We recognize that the exclusion of 
exam scores may present a potential threat to the validity of our 
results as assignment grades are only one measure of students’ 
ability in a programming course.  However, we believe that the 
distortive effects of exam data normalization across courses would 
present an even greater threat to the validity of cross-term 
comparisons.  Thus, exam data is not included in our analysis. 

We start by considering the full set of students officially enrolled 
in the course – that is students who have included the course on 
their study list by the “add” deadline, which is the end of the third 
week of our 10 week term.  Students who then “withdrew” from 
the course (i.e., dropped the course before the end of the eighth 
week of the term) are excluded from our dataset of assignment 
scores (as their set of assignment submissions are intentionally 
incomplete), but such students are then examined separately so we 
can determine if there is a significant increase in the percentage of 
such students over time.  This allows us to separately analyze the 
performance of those students who completed the course from 

those who withdrew, to have a finer level of resolution in 
examining student performance. 

Next, any students with documented academic integrity issues are 
excluded from the dataset.  The reason for this is that we want the 
data to be representative of students’ actual performance, and thus 
we try to minimize the influence of plagiarism/cheating to the 
extent that it can be identified.  It is important to note that 
Stanford is an Honor Code school and students were given the 
opportunity to retract assignments before the end of the course if 
they felt that the work they submitted was not entirely their own.  
Any student with one or more such assignment retractions or who 
was otherwise found to have an academic integrity issue (through 
the use of plagiarism detection software) was removed from the 
dataset as their assignment scores no longer entirely reflected their 
own work.  We note that information regarding academic integrity 
issues at Stanford must be treated with great delicacy as these 
cases are considered highly confidential.  For these reasons, we 
cannot provide more details with respect to that aspect of the data 
(e.g., the actual number of data points removed as a result of this 
filtering, separate analysis of students involved in such issues, 
etc.), other than to say that the number of data points filtered as a 
result was generally small and that the filtering process does not 
qualitatively impact the results we report here. 

Finally, to further improve data integrity, we did a manual 
inspection of all the remaining data to remove any obviously 
“dirty” data (e.g., students with 0 scores on all assignments/exams 
who had mistakenly enrolled in the course or forgot to drop, but 
clearly had no intention of actually trying to complete the class).  
This final stage resulted in the filtering of very few data points.  
The remaining data was used in the analysis we discuss presently. 

Figure 1 shows the number of students completing the course (i.e., 
data points after the filtering process above was applied) in the 
Autumn term of each year as well as the number of students who 
withdrew from the course in the respective term.  The actual 
numbers are included in the graph above each data point. 

We note that the number of students withdrawing from the course 
in any given offering is very small on a relative basis – never 
greater than 3.5% of the starting population of the class.  In fact, 
the percentage of students withdrawing from the class in 2007 is 
essentially the same as that in 2014 (2.8% in both cases) when 
enrollments were more than double.  Since the percentage of 
withdrawals remains very low and stable during the period in 
which enrollments grew, it provides no indication—as far as 
withdrawals are concerned—that the student population enrolling 
in the course as time goes on is less capable on a relative basis, as 
we would have expected to see an increase in the percentage of 
withdrawals if that were the case. 

 
Figure 1. Students completing and withdrawing from course 

275 
324 

375 
447 

582 
522 

586 582 

8 3 5 15 17 17 21 17 

0 
100 
200 
300 
400 
500 
600 
700 

2007 2008 2009 2010 2011 2012 2013 2014 
Completed course Withdrew 

55



More importantly, the number of withdrawals is quite small on an 
absolute basis, and thus would not provide a robust indicator of 
potential changes in the aptitude of students taking the class even 
if we saw slightly more fluctuation in this measure.  Thus, to see 
whether the student population has become “weaker” as 
enrollments have grown we need to consider a detailed analysis of 
the assignment scores of students who completed the class. 

3. RESULTS 
3.1 Initial Comparison of Classes 
Perhaps the most obvious initial test to consider in determining 
whether the performance of students in our introductory 
programming course has changed as enrollments have grown is to 
consider a T-test of mean assignment scores in the course over 
time.  Setting the 2007 class as the baseline (as it has the smallest 
enrollment in our controlled data), we perform T-tests between 
this class and the class in every subsequent year.  Essentially, we 
are looking to see if there is any evidence to reject the null 
hypothesis, which is that the mean assignment score in the 2007 
class is the same as any other class we compare against.  We 
report the p-values from these T-tests (two-tailed, heteroscedastic 
tests) between the 2007 class and all other years in Table 1.  As a 
side comment, we note that performing ANOVA across all the 
classes simultaneously would not accurately reflect differences in 
class means as enrollments grow since the test statistic would also 
be influenced by differences among classes with comparable 
enrollment levels (e.g., the 2011 and 2014 classes). 

Table 1. p-values of T-tests comparing to 2007 class 

Class 2008 2009 2010 2011 2012 2013 2014 

p-value 0.69 0.69 0.82 0.10 0.11 0.46 0.82 
 

The T-test results in Table 1 do not lead us to reject the null 
hypothesis at the α = 0.05 level for any class we compare against, 
indicating that there does not appear to be a statistically 
significant difference in the mean scores between the 2007 class 
and any other class compared against (i.e., classes with much 
higher enrollments).  We do note that the comparison with the 
2011 class reaches the α = 0.10 significance level, but this is 
tempered by the fact that seven T-tests are being performed, so we 
would expect some T-tests to result in lower (and potentially close 
to statistically significant) values even when there is no real 
difference in the means of the data sets.  Interestingly, in 
comparing the 2007 class with the 2014 class, we find a p-value 
of 0.82, indicating that it is in fact extremely likely that the means 
of the two classes are the same, despite the fact that enrollment in 
the former class is less than half that of the latter class.   

To see the stability of class means over time, Figure 2 provides a 
graph of the assignment means (actual mean values are also given 
in the graph), with error bars showing one standard deviation 
around the mean, respectively for each class.  Aggregate 
assignment scores are on a 50 point scale, although a few points 
of extra credit are possible. 

We caution, however, that a lack of statistical significance in the 
difference of the means does not necessarily imply that the 
distributions of the assignment scores are also similar.  Indeed, in 
some cases it is possible for two distributions to be quite different, 
but still yield similar means using a T-test (for example, if the 
distributions have different higher order central moments, such as 
variance or skewness).  To address this point, we next consider 

analyzing the distribution of scores in each class via mixture 
modeling. 

 
Figure 2. Means of student assignment scores (values labeled), 

with error bars indicating standard deviation in each class 
 

3.2 Mixture Modeling 
At a high level, mixture modeling is the task of modeling a 
probability distribution as a weighted sum of two of more 
component distributions [5].  Such modeling is often used when a 
probability distribution may not be fit well by a single parametric 
distribution (e.g., a single Gaussian), but is more accurately 
captured by combining two or more such models – for example, a 
multi-modal distribution. 

More formally, a mixture distribution f(x) with K components is a 
weighted sum of component distributions f1, f2, …, fK, with 
respective component weights w1, w2, … wK, defined by the 
equation (eq. 1): 

𝑓(𝑥) =  �𝑤𝑖𝑓𝑖(𝑥)
𝐾

𝑖=1

 

In our analysis, we consider parametric mixture models, where the 
component distributions fi are all Gaussians with different 
respective means µi and variances σ2

i.  The mixture models are fit 
to the data using the EM (Expectation Maximization) algorithm 
[1, 2, 4], which is guaranteed to converge to a local optimum of 
the likelihood function of the data (i.e., it finds parameters µi and 
σ2

i for all the component Gaussian distributions as well as 
component weights wi that jointly maximize the likelihood of the 
data being fit).  While EM is an iterative algorithm that can be 
sensitive to the starting point chosen (as it is only guaranteed to 
converge to a local optimum of the likelihood function), we note 
that given how few parameters are being fit in our models, our 
results were extremely stable with EM producing exactly the same 
set of parameters for a given data set when initialized at a variety 
of different starting points. 

To illustrate why mixture models are needed (rather than just 
fitting a single Gaussian to the data) let us consider the case where 
we try to model the distribution of student assignment scores with 
a single Gaussian (which would be equivalent to a mixture model 
with only one component (i.e., K=1)).  Figure 3 shows a 
histogram of the actual data (student assignment scores) for the 
2014 class compared with the values that would be expected using 
a single Gaussian model with mean and variance fit to the data. 
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Figure 3. Actual scores compared to a single Gaussian model 

 

As is clear in Figure 3, the single Gaussian provides a poor fit to 
the actual data as it underestimates the most common score ranges 
(i.e., 46-48, 48-50) and overestimates other ranges. 

Alternatively, we can consider a mixture of two Gaussians (i.e., 
K=2) fit to the same data (2014 class).  We call this the 2-
Gaussian mixture model.  Figure 4 illustrates the two Gaussian 
components that are found in the data via the EM algorithm, 
showing one component that captures much of the lower tail of 
the distribution (Component 1) and another much more peaked 
component that reflects the most common score ranges 
(Component 2).  

 

 
Figure 4. Components in Gaussian mixture model with K=2 

 

We can combine these two components into a single distribution 
using the mixture model equation (eq. 1) along with the respective 
component weights also fit using EM.  The resulting 2-Gaussian 
mixture model is graphed alongside the actual data in Figure 5.  
As can be seen in the figure, the 2-Gaussian model provides a 
much better fit to the data. 

 
Figure 5. Actual scores compared to a 2-Gaussian model 

 

More importantly than just the accuracy of the model, the 2-
Gaussian model gives us greater insight about the distribution of 
students in the class.  Namely, there is one group of students 
(reflected in Component 2) that is generally doing well and shows 
a solid understanding of the course assignments as reflected in 
their scores.  There is another group of students (the bottom half 
of Component 1) which appears to be comprised of “weaker” 
students with regard to the assignments.  This group makes up the 
tail of the class distribution.  We turn our attention to analyzing 
these two groups over time momentarily. 

Here, we pause to observe that it is also possible to fit mixture 
models with more than two components to the data.  Indeed, we 
considered three-component (i.e., K=3) mixture models and found 
that they led to qualitatively similar results as the two-component 
models, but were harder to directly interpret as they had greater 
model complexity and more parameters.  Others [6] have also 
found that two-component mixture models provide a compelling 
fit to educational data related to student activity, albeit in a 
different context than ours.  While we could have engaged in 
Bayesian model selection to determine the number of mixture 
components more automatically, this would have required the use 
of a subjective prior distribution over the number of model 
components, which would be open to argument, and would further 
complicate potential interpretation of the model.  Thus, we simply 
note that it is possible to construct more complex models using 
the methodology presented here, but for the remainder of our 
discussion we focus on two-component models for clarity as they 
provide an excellent fit to the data without overly complicating 
the interpretation of the model. 

3.3 Mixture Components Over Time 
After discovering that a two-component model provides both a 
good fit to the data as well as giving us insight about the 
subpopulations of students in the course (as reflected in 
assignment scores), we can look at the evolution of these two 
components over time by fitting a two-component model to the 
data set of assignment scores for each respective year. 

Figures 6 and 7, graph the respective assignment means for 
Component 1 and Component 2 in the 2-Gaussian model for each 
class over time (the actual mean values are also given in the 
graphs).  Error bars in both figures show one standard deviation 
associated with each respective mean. 
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Figure 6. Component 1 means of student assignment scores 
(values labeled), with error bars indicating Component 1 

standard deviation for each class 
 

 
Figure 7. Component 2 means of student assignment scores 
(values labeled), with error bars indicating Component 2 

standard deviation for each class 
 

We see that the Gaussian components, fit independently for each 
data set (year) are remarkably stable over time.  Indeed, 
comparing the 2007 class to that in 2014 shows that the means for 
both respective components differ by less than one-tenth of one 
point on an absolute 50-point scale or less than 0.2% on a relative 
basis.  This gives us compelling evidence that the subpopulations 
of students in the course (at least with respect to assignment 
scores) have not changed substantially as enrollments have grown 
over time.  

Nevertheless, there is yet one more critical factor we need to 
examine in such a model.  Knowing that the component means 
(and standard deviations) of the distribution of students in the 
class has not changed over time reflects that there are two clear 
and stable subpopulations in the course.  However, we must also 
recall that a mixture model weights the component distributions 
(with weights wi) in the sum that forms the mixture distribution.  
Thus, we must examine if there is a trend in the mixture weights 
over time, which could reflect, for example, that a larger 
proportion of students might be coming from Component 1 as 
enrollments increase. 

We must pay careful attention to the nuances of such an analysis, 
as Component 1 overlaps with Component 2 in the mixture model 
for every class year we fit (see Figure 4 for a graphical example of 
this phenomenon).  Notably, the larger variance of Component 1 
allows it to capture two ends of the distribution—both the left-
hand tail of “weak” students as well as the right-hand tail of “very 
strong” students.  To address this issue, we consider the 
proportion of students in each class whose probability of being 
assigned to Component 1 in that class is greater than that of being 
assigned to Component 2 (i.e., they are captured by Component 1) 
and have scores below the mean of Component 1.  This essentially 
captures just the left-hand tail of students in each class (i.e., the 
lower half of Component 1).  The graph of the percentage of such 
students in each class is given in Figure 8 (actual percentages are 
also given in the graph). 

 

 
Figure 8. Percentage of students assigned to Component 1 in 
each class with an assignment score below component mean 

 

Here we find that while the percentage of students in Component 
1 who are below the component mean shows some fluctuation 
over time, there is no positive correlation with the growth in class 
size.  Indeed, a correlation analysis of this percentage with class 
size reveals a negative correlation, but there are so few data points 
(eight) in measuring this correlation that we cannot conclude that 
an increase in class size leads to a greater proportion of “strong” 
students in the course, only that there is no evidence that the 
proportion of “weak” students grows as enrollments increase. 

4. DISCUSSION AND CONCLUSIONS 
The series of increasingly refined statistical analyses we 
conducted on student assignment data showed no evidence for an 
increase in the proportion of “weaker” students taking the course 
in the face of significant enrollment increases.  Indeed, the 
statistics bore out a remarkable stability in the student population 
(and subpopulations) over time.  This may lead one to wonder 
where a perception of an increase in “weak” students came from 
to begin with.  The answer here is somewhat obvious in 
retrospect, but can now be understood from a rigorous 
prospective.  While the proportion (and distribution) of “weak” 
students remains relatively stable as enrollments grow, that in turn 
implies that the number of “weak” students grows on an absolute 
basis with enrollments in a linear fashion. 

Such students, who tend to struggle more with assignments, are 
more likely to seek out course staff for assistance, such as 
attending office hours, sending questions via email, posting to 
discussion groups, etc.  Since such activity is often the most direct 
communication instructors receive from students, they perceive 
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greater numbers of students struggling as enrollments grow.  
Naturally, this can lead to the conclusion that more “weak” 
students are being drawn into the course.  In fact, on an absolute 
scale, more such students are enrolling in the course, but that is 
simply to be expected from having greater numbers of students in 
the class overall.  As shown in the analysis above, such anecdotal 
interactions with students should not be construed as indicating 
that the population of students taking the course has somehow 
shifted in distribution and a greater percentage of “weak” students 
are enrolling in the course.  Thus, our analysis helps to resolve a 
perceptual paradox that we have seen arise among several faculty 
in the face of growing enrollments: it is simultaneously possible to 
see more students struggle in a class and also have there be no 
change with regard to the proportion of “weak” students taking 
the course.  We would encourage instructors to be more cognizant 
of this fact when making public statements about students 
choosing to pursue computing courses in the face of growing 
enrollments so as not to alienate students who may not be as 
confident in their abilities, especially if they have no prior 
experience in computing or are part of a population susceptible to 
stereotype threat. 

The main contributions of this work are three-fold.  First, we 
highlight a growing concern among faculty regarding potential 
changes in the student body taking computing courses in the 
context of quickly-growing enrollments.  Second, we provide a 
statistical analysis and general methodology, employing the use of 
mixture models, in a controlled setting to show that no evidence 
exists in our data to imply that increased enrollments have led to 
an increase in the proportion of “weak” students.  Lastly, we 
provide an explanation for why faculty may perceive changes in 
the student population as enrollments grow, when in fact there is 
little change in the distribution of students’ facility with the 
subject. 

Importantly, our analysis, while showing results in the limited 
context our own CS1 course, provides a general methodology that 
we believe others can use to analyze data at their respective 
institutions to more rigorously understand the evolution of student 
performance in their courses.  Indeed, our analysis is not meant to 
be the final word on student performance in computing courses in 
the face of enrollment increases.  Far from it, our goal is to 
provide a methodology that others use as a starting point in 
analyzing their own student populations. 

In future work, we seek to apply this sort of analysis to other 
courses at our own institution and elsewhere, as more data with 
controlled factors becomes available.  For example, is the stability 
we see in student performance in the face of large enrollment 
growth a more universal phenomenon (at least in introductory CS 
courses)?  We are also interested in seeing how other factors, such 
as more informed teaching or greater resources for help (e.g., 
discussion forums, course helpers, etc.) may impact the stability 
of student performance in computing courses over time. 

We are particularly interested in performing such analyses on 
courses further downstream in our program to better understand 
the evolution of student populations not only over time, but also 
through course content.  For example, we can try to identify what 
factors (e.g., prior experience, help-seeking behavior, intended 
major, etc.) might impact the subpopulation component that a 
student is associated with.  By examining students longitudinally, 
we can seek to find factors that might be indicative of students 
moving between subpopulation components as they progress 
through a series of courses. 

On a more theoretical note, this work has pushed us to consider 
extensions to the EM algorithm applied to multiple disjoint data 
sets in order to induce mixture models where some of the mixture 
components share parameters across all the data sets.  For 
example, we could build a 2-Gaussian model where the mean and 
variance for one of the Gaussians is required to be same across all 
data sets examined whereas the second Gaussian component is 
allowed to vary for each data set separately.  In the educational 
setting, this would allow us to see how the “lower” component 
varies given an “upper” component that is the same across classes. 
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