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This note revisits the proof of the Steady-State Growth Theorem, first given
by Uzawa in 1961. We provide a clear statement of the theorem and a new
version of Uzawa’s proof that makes the intuition underlying the result more
apparent. For example, in the special case of factor-augmenting technical change,
ie. Y = F(B:Ky, AtL:), the effective inputs BK and AL must grow at the
same rate in steady state; otherwise trends in the factor shares are induced. The
fact that effective inputs must “balance” suggests a new interpretation of balanced
growth. Because capital accumulates and therefore inherits the trend in AL, the
balance condition implies that technical change must be purely labor augmenting.
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1. INTRODUCTION
The Steady-State Growth Theorem says that if a neoclassical growth
model exhibits steady-state growth, then technical change must be la-

bor augmenting, at least in steady state.! It did not escape the attention

* Jones thanks the Toulouse Network on Information Technology for research support.
"t is sometimes added that an alternative is for the production function to be Cobb-
Douglas, at least in steady state. But this is really subsumed in the original version of
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of economists, either in the 1960s or more recently, that this is a very
restrictive theorem. We often want our models to exhibit steady-state
growth, but why should technical change be purely labor augmenting?
The induced-innvoation literature associated with Fellner (1961), Kennedy
(1964), Samuelson (1965), and Drandakis and Phelps (1966) explicitly pon-
dered this question without achieving a clear answer. Recently, Acemoglu
(2003) and Jones (2005) have returned to this puzzle.

Perhaps surprisingly, then, given its importance in the growth literature,
we have been unable to find a clear statement and proof of the theorem.
In addition, exactly why the result holds is not something that is well un-
derstood. What is the intuition for why technical change must be labor
augmenting?

Uzawa (1961) is typically credited with the proof of the result,” and there
is no doubt that he proved the theorem. However, Uzawa is primarily con-
cerned with showing the equivalence of Harrod-neutral technical change
(i.e. technical change that leaves the capital share unchanged if the inter-
est rate is constant) and labor-augmenting technical change, formalizing
the graphical analysis of Robinson (1938). It is of course, only a small and
well-known step to show that steady-state growth requires technical change
to be Harrod neutral. But the modern reader of Uzawa will be struck by two
things. First is the lack of a statement and direct proof of the steady-state
growth theorem. Second is the absence of economic intuition, both in the
method of proof and more generally in the paper.

Barro and Sala-i-Martin (1995, Chapter 2) come close to providing a
clear statement and proof of the theorem. However, their statement of the
theorem is more restrictive: if technical change is factor augmenting at a
constant exponential rate, then steady-state growth requires it to be labor
the theorem since technical change can always be written in the labor-augmenting form in

steady state if the production function is Cobb-Douglas.
2For example, see Barro and Sala-i-Martin (1995) and Solow (1999).
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augmenting. This leaves the door open to the possibility that there might be
some perverse non-factor augmenting twist of technical change that could
be consistent with steady-state growth. McCallum (1996) also comes close,
providing a proof of the general theorem very similar to Uzawa’s approach;
by sticking so closely to Uzawa, however, the intuition for the result remains
elusive.’

This comment fills the gap in the literature. We provide a clear statement
and proof of the steady-state growth theorem. The inspiration for the proof

is Uzawa (1961), but we present the crucial steps in a slightly different way

that allows the economic intuition for the proof to come through.

2. STATING THE THEOREM
The steady-state growth theorem applies to the one-sector neoclassical
growth model. We begin by defining the model precisely and then defining
a balanced growth path.

DEerINITION 2.1. A neoclassical growth model is given by the follow-
ing economic environment:

Yy = F(Ky, L t), (1)
K, =Y, —Cy— 6K, Ko>0, §>0, 2)

and
Ly = Loe™, Ly >0, n>0. (3)

The production function F' satisfies the standard neoclassical properties:
constant returns to scale in K and L, positive and diminishing marginal
products of K and L, and the Inada conditions that the marginal product of
a factor input goes to zero as that input goes to infinity and goes to infinity
as the input goes to zero.

3Motivated by a previous version of our paper, Russell (2004) provides a quick mathe-
matical proof of the theorem that exploits some methods from the physics literature on a
class of partial differential equations called advective equations.
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A balanced growth path in the neoclassical growth model is defined as a
situation in which all quantities grow at constant exponential rates (possibly
zero) forever. We follow the usual convention of also refering to this as a
steady state.

Finally, we will define Fx K/Y to be the capital share and F.L/Y to
be the labor share. As usual, the two factor shares sum to a value of unity,
by Euler’s theorem. We follow standard notation in denoting y = Y/L
and k = K /L, and we will use an asterisk superscript to denote a variable
along the steady-state path.

With these definitions, we can now present the Steady-State Growth The-

orem:

THEOREM 2.1 (The Steady-State Growth Theorem, Uzawa 1961). If
aneoclassical growth model possesses a steady state with constant, nonzero
factor shares and i} |y; = g > 0, then it must be possible along the steady-
state path to write the production function as Y," = G(K[, AiLt), where

Ay /Ay = g and where G is a neoclassical production function.

As is well-known, in the case of Cobb-Douglas production, capital- and
labor-augmenting technical change are equivalent. One sometimes sees the
theorem interpreted as saying that technical change must be labor augment-
ing or the production function must be Cobb-Douglas. This is equivalent

to the statement of the theorem as given.

3. PROVING THE THEOREM
This proof largely follows Uzawa (1961) in spirit. It differs in that we
provide more economic intuition, highlight the key steps of the proof more
clearly, and fill in some details. The main innovation in the proof is in
writing the key differential equation in (4) below in terms of the elasticity

of output with respect to the capital-output ratio. This produces a familiar
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equation in a way that Uzawa’s consideration of the marginal product of
capital does not.

The capital-output ratio is a key variable throughout the proof, so we de-
fine z = K/Y. We also make the standard definition f(k;t) = F'(k, 1;t).

The proof now follows.

1. The first step of the proof is to rewrite the production function in terms
of the capital-output ratio: y; = ¢(x4;¢). Intuitively, this step is readily
understood by drawing the production function in (k,y) space: for each
ray through the origin — that is for each capital-output ratio — there is a
unique level of output per worker on that ray.*

2. Next, we note that the elasticity of y; with respect to x; satisfies a
familiar property:

Ology:  alwy;t)

Ologx; 1 —a(xy;t) @

where a(z;t) = frkt/y: is the capital share. This equation says that the
elasticity of output with respect to the capital-output ratio is equal to the
ratio of the capital and labor shares. Such an equation is well-known in the
case of Cobb-Douglas production, where it has been exploited by Mankiw,

Romer and Weil (1992), Klenow and Rodriguez-Clare (1997), and Hall and

4 Formally, we can use the inverse function theorem to justify this step. The capital-
output ratio depends only on k. and ¢, since y; is a function of k; and t: x; = k¢/y: =
k/f(ke;t) = h(ke;t). We can apply the inverse function theorem to show that this function
can be inverted:

Oh(kest) L kefu(kest)
ke f(kst)  fllest)?
_ 1 <1_ fk(kt;t)kt)
f(kest) f(kest)
# 0 Vke,

where the last step follows from the fact that the labor share is strictly between zero
and one. Therefore, by the inverse function theorem, h_l(- ;) exists, and we can write
ki = h™'(x;t). Finally, we can substitute this result into the production function to get

yr = fki;t) = f(h ' (met),t) = (s ).
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Jones (1999), among others. Equation (4) shows that this property holds
more generally.’

3. Now comes the key step of the proof. From this point on, we assume
the economy is on a balanced growth path. Because the capital share is
constant in steady state, the right side of equation (4) is invariant over time.

Then, since y; = ¢(zy;t), we can write this equation as

dlog p(a*;t) _  afa*) (5)
0log x* 1—afz*)’

where we use an asterisk to indicate a quantity along a balanced growth

path.

Because the right-hand side of this equation does not depend on time,

this partial differential equation can be solved to yield®

* d *
log p(x™;t) = a(t) + / % ;C* (6)
for some function a(t). And therefore
Yy = o™ t) = Ay (a7), (7

where A(t) = exp(a(t)) > 0 and ¢(z*) = exp ( o) dx*).

T—a(z*) a*

This is the crucial result. We’ve shown that the effects of ¢ and z* can
be separated. This implies, for example, the familiar result that y; /A; =
1 (x*) is constant along a balanced growth path, where A, = A(t). Since y;
grows at rate g by assumption, it must therefore be the case that Ay JAr =g

as well.

®To derive this equation, notice that y, = f(ki;t) = ¢(ze;t) = ¢(h(ke;t);t). Differ-
entiating gives
Of (kes;t) _ 0¢(me;t) Oh(kest)

Okt Oxy Okt

Using the expression for % in footnote 4 above and rearranging gives the equation in the
main text.
5This can be readily verified by differentiating the solution.
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4. To conclude the proof, note that k; = x;y;, so that

ke _ oy 1<y_?>: 1<y_t>
A, -4t &)= &) ®

Inverting’, we have

Y _a(k
=) ©
and therefore
* ~ Ktik *
Y; = AtLtG = G(Kt 7AtLt)~ (10)
AtLt

And this proves the key result: technical change is labor augmenting
along the balanced growth path. Finally, since Y;* = F(Kj, Lyt) =
G(K/, AiLy), it must be the case that G satisfies the standard neoclassical

properties as well.

4. DISCUSSION
Here’s the one paragraph version of the proof. The crux is step 3 above.
To begin, we notice that the familiar Cobb-Douglas property also holds
more generally: the elasticity of output per worker with respect to the
capital-output ratio is «(x; t)/(1 — a(x; t)). Then, the fact that the capital
share must be constant in steady state means that the production function
must be factorable. That is, it must be possible, at least in steady state,

to write the production function as y; = A(t)y(z). But this means that

"To show invertibility, differentiate:

Gz = 27 (2)

dG1 _ dy~1(z
= dz ¥ 1(2)+Z wdz( )
— -1 ?
T
dx
> 0 Vz>0

as ¢ = y/A is always positive and dip/dz is also always positive. So G(-) exists.
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y¢ /A and ky/A; must be constant as well, and one can really just look at
the production function y; /A; = F'(k¢/ A, 1/Ay; t) to see that this requires
technical change to be labor augmenting.

This reasoning leads to the following intuition, which is the most sugges-
tive way we have found to understand the labor-augmenting result. Divide
both sides of the production function by output, yielding the “balance” ex-
pression 1 = F(K;/Y;,1/y.,t). In steady state, the capital-output ratio
must be constant and y; grows at a constant exponential rate. To satisfy the
balance equation, then, technical change must exactly offset the fact that
“effective labor” is falling at the rate of growth of y;. That is, technical
change must be labor augmenting.

This use of the word “balance” is suggestive in another way. In par-
ticular, consider the familiar phrase “balanced growth path” and ask what
it is that is balanced along such a path. One is tempted to reply that it
is the capital-output ratio that is somehow balanced, but a careful look at
Uzawa’s result suggests something different. To see this, consider as an
example the special case of factor-augmenting technical change. Suppose
Y, = F(ByKy, Ay L), where B, and A; grow exogenously at constant ex-
ponential rates. What must be “balanced” to get a steady state with positive
and constant factor shares? The answer is the growth rates of the two effec-
tive inputs, By K; and A.L;. If one effective input grows faster, a trend is
induced in the factor shares unless the production function is Cobb-Douglas.
Because capital accumulates and therefore inherits the trend in A;L;, the
balance condition then implies that technical change must be purely labor

augmenting.?

8To recall why, consider first the case where B is constant. In this case, it is well known
that K; and A, L, grow at the same rate in steady state. Now think about what would happen
if B: were to grow as well. Then B;K; would have to grow faster than A;L;. Growth
would not be balanced and the factor shares would trend.
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