

Recipes and Economic Growth: A Combinatorial March Down an Exponential Tail

Chad Jones Stanford GSB

October 2022

Combinatorics and Pareto

- Weitzman (1998) and Romer (1993) suggest combinatorics important for growth.
 - Ideas are combinations of ingredients
 - Combinations from a child's chemistry set > # atoms in the universe
 - But absent from state-of-the-art growth models?
- Kortum (1997) and Gabaix (1999) on Pareto distributions
 - Kortum: Draw productivities from a distribution ⇒ Pareto tail is essential
 - o Gabaix: Pareto distribution (cities, firms, income) results from exponential growth

Do we really need the fundamental idea distribution to be Pareto?

Two Contributions

- A simple but useful theorem about extreme values
 - The max extreme value depends on
 - (1) the number of draws
 - (2) the shape of the upper tail
- Combinatorics and growth theory
 - o Combinatorial growth: Cookbook from N ingredients $\Rightarrow 2^N$ recipes, with N growing exponentially (population growth)

Combinatorial growth with draws from thin-tailed distributions (e.g. the normal distribution) yields exponential growth

Pareto distributions are not required — draw faster from a thinner tail

Basic Foundations

Theorem (A Simple Extreme Value Result)

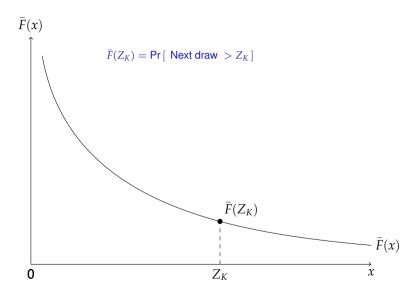
Let Z_K denote the maximum value from K i.i.d. draws from a continuous distribution F(x), with $\bar{F}(x) \equiv 1 - F(x)$ strictly decreasing on its support. Then for $m \geq 0$

$$\lim_{K\to\infty} \Pr\left[K\bar{F}(Z_K) \ge m \right] = e^{-m}$$

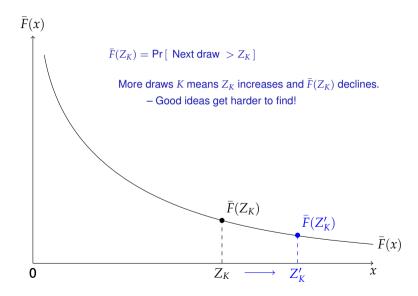
As K increases, the max Z_K rises so as to stabilize $K\bar{F}(Z_K)$.

The shape of the tail of $\bar{F}(\cdot)$ and the way K increases determines the rise in Z_K

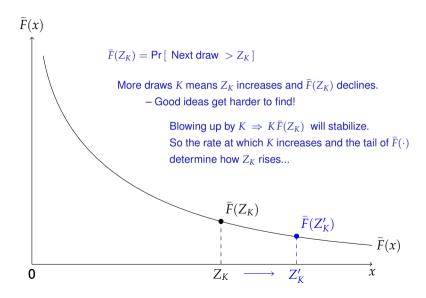
Graphically: Unpacking $K\overline{F}(Z_K)$



Graphically: Unpacking $K\bar{F}(Z_K)$



Graphically: Unpacking $K\bar{F}(Z_K)$



Intuition

$$Kar{F}(Z_K)=arepsilon+o_p(1)$$
 $\Rightarrow \ ar{F}(Z_K)\equiv \Pr\left[\ {
m Next \ draw} \ > Z_K
ight] \sim rac{1}{K}$

- Theory of records: Suppose K i.i.d. draws for temperatures.
 - Unconditional probability that today is a new record high = 1/K
 - This result is similar, but conditional instead of unconditional

$$\Rightarrow$$
 $\bar{F}(Z_K)$ falls like $1/K$ for any distribution! \Rightarrow Z_K rises like $\bar{F}^{-1}(1/K)$

Proof of Theorem 1

• Given that Z_K is the max over K i.i.d. draws, we have

$$\Pr[Z_K \le x] = \Pr[z_1 \le x, z_2 \le x, \dots, z_K \le x]$$

= $(1 - \bar{F}(x))^K$

• Let $M_K \equiv K\bar{F}(Z_K)$ denote a new random variable. Then for 0 < m < K

$$\begin{aligned} \Pr \left[\left. M_K \ge m \right. \right] &= \Pr \left[\left. K \bar{F}(Z_K) \ge m \right. \right] \\ &= \Pr \left[\left. \bar{F}(Z_K) \ge \frac{m}{K} \right. \right] \\ &= \Pr \left[\left. Z_K \le \bar{F}^{-1} \left(\frac{m}{K} \right) \right. \right] \\ &= \left(1 - \frac{m}{K} \right)^K \to \left. e^{-m} \right. \quad \mathsf{QED}. \end{aligned}$$

Remarks

- Simpler and different from the standard EVT
 - $\circ~$ If $\frac{Z_K-b_K}{a_K}$ converges in distribution, then it converges to one of three types
 - Which one depends on the tail properties of $F(\cdot)$
- We will see later that Theorem 1 covers cases not covered by EVT
- Intuition for why so few conditions on $F(\cdot)$ are required:
 - For any distribution of x, $\bar{F}(x)$ is Uniform[0,1]
 - Min over K draws from a uniform, scaled up by K, is exponential = $K\bar{F}(Z_K)$ (from standard EVT)
 - Barton and David (1959), Galambos (1978, Chapter 4), and Embrechts et al (1997, Prop 3.1.1) have related results

Example: Kortum (1997)

- Pareto: $\bar{F}(x) = x^{-\beta}$
- Apply Theorem 1:

$$\begin{split} K\bar{F}(Z_K) &= \varepsilon + o_p(1) \\ KZ_K^{-\beta} &= \varepsilon + o_p(1) \\ \frac{K}{Z_K^{\beta}} &= \varepsilon + o_p(1) \\ \frac{Z_K}{K^{1/\beta}} &= (\varepsilon + o_p(1))^{-1/\beta} \end{split}$$

• Exponential growth in K leads to exponential growth in Z_K

$$g_Z = g_K/\beta$$

 β = how thin is the tail = rate at which ideas become harder to find

Example: Drawing from an Exponential Distribution

• Exponential: $\bar{F}(x) = e^{-\theta x}$

$$K\bar{F}(Z_K) = \varepsilon + o_p(1)$$

$$Ke^{-\theta Z_K} = \varepsilon + o_p(1)$$

$$\Rightarrow \log K - \theta Z_K = \log(\varepsilon + o_p(1))$$

$$\Rightarrow Z_K = \frac{1}{\theta} [\log K - \log(\varepsilon + o_p(1))]$$

$$\Rightarrow \frac{Z_K}{\log K} = \frac{1}{\theta} \left(1 - \frac{\log(\varepsilon + o_p(1))}{\log K}\right)$$

$$\frac{Z_K}{\log K} \xrightarrow{p} \text{Constant}$$

Drawing from an Exponential (continued)

$$\frac{Z_K}{\log K} \stackrel{p}{\longrightarrow} \text{Constant}$$

- Z_K grows with $\log K$
 - If K grows exponentially, then Z_K grows linearly
- Definition of **combinatorial growth**: $K_t = 2^{N_t}$ with $N_t = N_0 e^{g_N t}$

$$g_Z = g_{\log K} = g_N$$

Combinatorial growth with draws from a thin-tailed distribution delivers exponential growth!

Growth Model

Setup

- Cookbook is a collection of K_t recipes
- At a point in time, researchers have evaluated all recipes from N_t ingredients
 - Each ingredient can either be included or excluded, so $K_t = 2^{N_t}$ (which equals $\sum_{k=0}^{N_t} {N_t \choose k}$, the sum of all combinations)
- Research = learning the "productivity" of the new recipes that come from adding a new ingredient
- $\dot{N}_t = \alpha R_t \Rightarrow$ each researcher can evaluate α new ingredients each period
 - ∘ R_t grows with population ⇒ so does N_t

Combinatorial growth: Cookbook of $K = 2^N$ recipes from N ingredients, with N growing exponentially

Corollary (Poisson version of Theorem 1)

Let Z_K denote the maximum over P independent draws from a distribution with a strictly decreasing and continuous tail cdf $\bar{F}(x)$ and suppose P is distributed as Poisson with parameter K. Then for 0 < m < K

$$\Pr\left[K\bar{F}(Z_K) \ge m\right] = \frac{e^{-m} - e^{-K}}{1 - e^{-K}}.$$

- · Applies at each point in time, not just asymptotically
- Integrate across a continuum of sectors to make aggregate growth deterministic
- (Thanks to Sam Kortum for this suggestion)

Economic Environment: Like Kortum (1997) but with Weibull/Combinatorial Growth

Aggregate output
$$Y_t = \left(\int_0^1 Y_{it}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}} \text{ with } \sigma > 1$$
 Variety i output
$$Y_{it} = Z_{Kit} \left(M_{it}^{-\frac{1}{\rho}} \sum_{j=1}^{M_{it}} x_{ijt}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}} \text{ with } \rho > 1$$
 Production of ingredients
$$x_{ijt} = L_{ijt}$$
 Best recipe
$$Z_{Kit} = \max_{c=1,\ldots,\tilde{K}_{it}} z_{ic} \text{ where } \tilde{K}_{it} \sim \text{Poisson}(K_t)$$
 Weibull distribution of z_{ic}
$$z_{ic} \sim F(x) = 1 - e^{-x^{\beta}} \quad \beta = \text{how thin is tail}$$
 Number of ingredients evaluated
$$\dot{N}_t = \alpha R_t^{\lambda} N_t^{\phi}, \quad \phi < 1$$
 Cookbook (Poisson parameter)
$$K_t = 2^{N_t}$$
 Resource constraint: workers
$$L_{it} = \sum_{j=1}^{M_{it}} L_{ijt} \text{ and } \int_0^1 L_{it} di = L_{yt}$$
 Resource constraint: R&D
$$R_t + L_{yt} = L_t$$
 Population growth (exogenous)

Allocation

- Consider the allocation of labor that maximizes Y_t at each date with a constant fraction of people working in research
 - \circ L_{ijt} maximizes Y_t
 - $\circ R_t = \bar{s}L_t$
- Number of ingredients evaluated (eventually) grows at a constant rate

$$\frac{\dot{N}_t}{N_t} = \frac{R_t^{\lambda}}{N_t^{1-\phi}} \quad \Rightarrow \quad g_N = \frac{\lambda g_L}{1-\phi}$$

And we have combinatorial growth in the number of recipes in the cookbook

$$K_t = 2^{N_t} \quad \Rightarrow \quad g_{\log K} = g_N$$

Applying Theorem 1 to the Weibull Distribution

• Suppose $y \sim$ Exponential. Let $y \equiv x^{\beta}$. Then $x \sim$ Weibull: $\bar{F}(x) = e^{-x^{\beta}}$

$$\frac{\max y}{\log K} \xrightarrow{p} \text{Constant}$$

$$\Rightarrow \frac{\max x^{\beta}}{\log K} \xrightarrow{p} \text{Constant}$$

$$\Rightarrow \frac{\max x}{(\log K)^{1/\beta}} \xrightarrow{p} \text{Constant}$$

Therefore

$$g_{Z_K} = \frac{g_{\log K}}{\beta} = \frac{g_N}{\beta} = \frac{1}{\beta} \frac{\lambda g_L}{1 - \phi}$$

(slightly more complicated with Poisson process, but same idea)

Remarks

$$g_{Z_K} = \frac{g_{\log K}}{\beta} = \frac{g_N}{\beta} = \frac{1}{\beta} \frac{\lambda g_L}{1 - \phi}$$

- This is the growth rate of output per person in the growth model
- Combinatorial march down a Weibull tail
- Growth rate depends on
 - Population growth = growth rate of researchers
 - \circ λ and ϕ = how researchers evaluate ingredients
 - Allows $\phi > 0$: it may get easier (or harder) to evaluate ingredients
 - \circ While β captures the degree to which good ideas get harder to find

Can the distribution shift out over time?

- Consider all the technologies that could ever be invented. They are recipes.
 - Let $\bar{F}(x)$ be the associated distribution of productivities
 - That doesn't shift...
- What's behind the question: some technologies cannot be invented before others
 - o The smartphone could not come before electricity, radio, and semiconductors
- Answer: Suppose new ideas are future ingredients
 - o Ingredients must be evaluated in a specific order
 - Nothing changes...

Generality?

For what distributions do combinatorial draws ⇒ exponential growth?

Theorem (A general condition for combinatorial growth)

Consider the growth model above but with $z_i \sim F(z)$ as a general continuous and unbounded distribution, where $F(\cdot)$ is monotone and differentiable. Let $\eta(x)$ denote the elasticity of the tail cdf $\bar{F}(x)$; that is, $\eta(x) \equiv -\frac{d \log \bar{F}(x)}{d \log x}$. Then

$$\lim_{t\to\infty}\frac{\dot{Z}_{Kt}}{Z_{Kt}}=\frac{g_N}{\alpha}$$

if and only if

$$\lim_{x \to \infty} \frac{\eta(x)}{x^{\alpha}} = \text{Constant} > 0$$

for some $\alpha > 0$.

Remarks

$$\frac{\dot{Z}_{Kt}}{Z_{Kt}} \to \frac{g_N}{\alpha} \iff \lim_{x \to \infty} \frac{\eta(x)}{x^\alpha} = \operatorname{Constant} > 0$$

- Thinner tails require faster draws but still require power functions:
 - It's just that the elasticity itself is now a power function!
- Examples
 - Weibull: $\bar{F}(x) = e^{-x^{\beta}} \Rightarrow \eta(x) = x^{\beta}$
 - Normal: $\bar{F}(x) = 1 \int_{-\infty}^{x} e^{-u^2/2} du \Rightarrow \eta(x) \sim x^2$ like Weibull with $\beta = 2$
- Intuition
 - Kortum (1997): $\bar{F}(x) = x^{-\beta} \Rightarrow \eta(x) = \beta$ so $K_t = e^{nt}$ is enough
 - Here: $\bar{F}(x) = e^{-x^{\beta}}$ so must march down tail exponentially faster, $K_t = 2^{e^{nt}}$

For what distributions do combinatorial draws ⇒ exponential growth?

- Combinatorial draws lead to exponential growth for many familiar distributions:
 - Normal, Exponential, Weibull, Gumbel
 - Gamma, Logistic, Benktander Type I and Type II
 - Generalized Weibull: $\bar{F}(x) = x^{\alpha}e^{-x^{\beta}}$ or $\bar{F}(x) = e^{-(x^{\beta} + x^{\alpha})}$
 - Tail is dominated by "exponential of a power function"
- When does it not work?
 - o lognormal: If it works for normal, then $\log x \sim$ Normal means percentage increments are normal, so tail will be too thick!
 - logexponential = Pareto
 - Surprise: Does *not* work for all distributions in the Gumbel domain of attraction (not parallel to Kortum/Frechet).

Scaling of Z_K for Various Distributions

Distribution	cdf	Z_K behaves like	Growth rate of Z_K for $K = 2^N$
Gumbel	$e^{-e^{-x}}$	$\log K$	g _N
Weibull	$1 - e^{-x^{\beta}}$	$(\log K)^{1/\beta}$	$\frac{g_N}{\beta}$
Normal	$\frac{1}{\sqrt{2\pi}} \int e^{-x^2/2} dx$	$(\log K)^{1/2}$	$\frac{g_N}{2}$
Lognormal	$\frac{1}{\sqrt{2\pi}} \int e^{-(\log x)^2/2} dx$	$\exp(\sqrt{\log K})$	$rac{g_N}{2}\cdot \sqrt{N}$
Gompertz	$1-\exp(-(e^{\beta x}-1))$	$\frac{1}{\beta}\log(\log K)$	Arithmetic
Log-Pareto	$1 - \frac{1}{(\log x)^{\alpha}}$	$\exp(K^{1/lpha})$	Romer!

Microfoundations for Romer (1990)

- Kortum (1997) found there is no process satisfying EVT that delivers Romer (1990) result of exponential growth with constant flow of draws
- But Theorem 1 shows us how to get it:
 - o If $x \sim$ logpareto with $\alpha = 1$, then linear growth in K (e.g. $K_t = \bar{L}$) gives exponential growth in max
- Implies $Z_K = \exp\left(K^{1/\alpha}(\tilde{\varepsilon} + o_p(1))\right)$
 - \circ No affine transformation of Z_K works, which is why EVT fails (need to take logs)
 - Implies that log productivity is Fréchet in cross-section
 - much thicker tail than we observe in the data
 - variance of log productivity would rise over time

Evidence from Patents

Combinatorial growth matches the patent data

Rate of Innovation?

- Kortum (1997) was designed to match a key "fact": that the flow of patents was stationary
 - Never clear this fact was true (see below)
- Flow of patents in the model?
 - o Theory of record-breaking: p(K)=1/K is the fraction of ideas that exceed the frontier [cf Theorem 1: $\bar{F}(Z_K)=\frac{1}{K}(\varepsilon+o_p(1))$]
 - \circ Since there are \dot{K} recipes added to the cookbook every instant, the flow of patents is

$$p(K)\dot{K} = \frac{\dot{K}_t}{K_t}$$

This is constant in Kortum (1997) ⇒ constant flow of patents

Flow of Patents in Combinatorial Growth Model?

• Simple case: $\dot{N}_t = \alpha R_t$ (e.g. $\lambda = 1$ and $\phi = 0$ in $\dot{N}_t = \alpha R_t^{\lambda} N_t^{\phi}$)

Then

$$K_t = 2^{N_t}$$

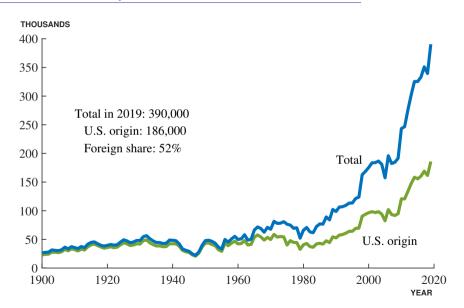
$$\Rightarrow \frac{\dot{K}_t}{K_t} = \log 2 \cdot \dot{N}_t$$

$$= \log 2 \cdot \alpha R_t$$

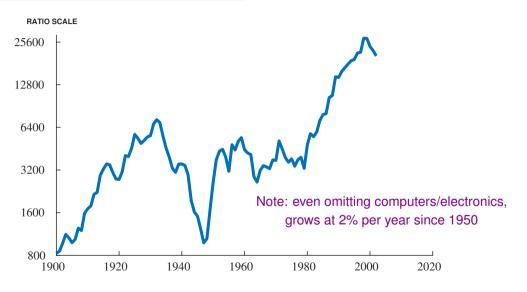
$$= \log 2 \cdot \alpha \bar{s} L_0 e^{g_L t}$$

- That is, the combinatorial growth model predicts that the number of new patents should grow exponentially over time
 - When ideas are small, it takes a growing number to generate exponential growth

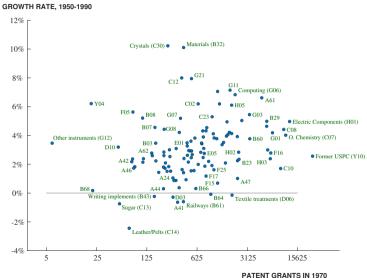
Annual Patent Grants by the U.S. Patent and Trademark Office



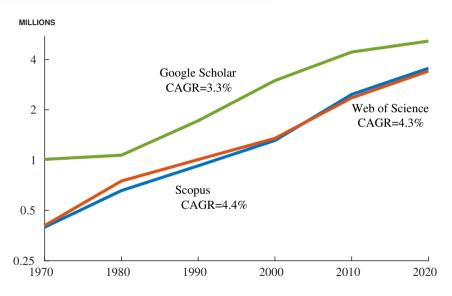
Breakthrough Patents from Kelly et al (2021)



U.S. Patent Growth by Technology Class, 1950–1990



Annual Academic Publication Counts, 1970–2020



Remarks

- In Kortum (1997), rise in patents should correspond to a rise in growth rates.
 - Data seem more consistent with the combinatorial growth model
 - (Important caveat: meaning of a "patent" is not stable over time)
- Can researchers evaluate a combinatorially growing list of recipes?
 - Maybe it is only the "good" ideas that take time
 - With $\lambda = 1$ and $\phi = 0$, the number of good ideas per researcher is constant
 - Chess players find the best line from an exploding set of possibilities
 - Henri Poincare quote

Implications for Future Research

- Wherever Pareto has been assumed in the literature, perhaps we can use thin tails?
 - Technology diffusion, trade, search, productivity
- Beautiful feature of Kortum (1997)
 - Pareto assumption ⇒ theory of growth, markups, and firm heterogeneity
- If ideas are "small," we lose these connections
 - Combinatorial theory of growth
 - But markups and heterogeneity disappear asymptotically
 - Gaps between ideas are too small to provide this theory
- Opportunity! Need new theory of markups and heterogeneity