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Combinatorics and Pareto

• Weitzman (1998) and Romer (1993) suggest combinatorics important for growth.

◦ Ideas are combinations of ingredients

◦ Combinations from a child’s chemistry set > # atoms in the universe

◦ But absent from state-of-the-art growth models?

• Kortum (1997) and Gabaix (1999) on Pareto distributions

◦ Kortum: Draw productivities from a distribution ⇒Pareto tail is essential

◦ Gabaix: Pareto distribution (cities, firms, income) results from exponential growth

Do we really need the fundamental idea distribution to be Pareto?
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Two Contributions

• A simple but useful theorem about extreme values

◦ The max extreme value depends on

(1) the number of draws

(2) the shape of the upper tail

• Combinatorics and growth theory

◦ Combinatorial growth: Cookbook from N ingredients ⇒ 2
N recipes, with N

growing exponentially (population growth)

Combinatorial growth with draws from thin-tailed distributions

(e.g. the normal distribution) yields exponential growth

◦ Pareto distributions are not required — draw faster from a thinner tail
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Basic Foundations
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Theorem (A Simple Extreme Value Result)

Let ZK denote the maximum value from K i.i.d. draws from a continuous distribution F(x),

with F̄(x) ≡ 1 − F(x) strictly decreasing on its support. Then for m ≥ 0

lim
K→∞

Pr
[

KF̄(ZK) ≥ m
]

= e−m

As K increases, the max ZK rises so as to stabilize KF̄(ZK).

The shape of the tail of F̄(·) and the way K increases

determines the rise in ZK
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Graphically: Unpacking KF̄(ZK)
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Graphically: Unpacking KF̄(ZK)
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F̄(ZK) = Pr [ Next draw > ZK ]

More draws K means ZK increases and F̄(ZK) declines.

– Good ideas get harder to find!
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Graphically: Unpacking KF̄(ZK)
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F̄(ZK) = Pr [ Next draw > ZK ]

More draws K means ZK increases and F̄(ZK) declines.

– Good ideas get harder to find!

Blowing up by K ⇒ K F̄(ZK) will stabilize.

So the rate at which K increases and the tail of F̄(·)

determine how ZK rises...
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Intuition

KF̄(ZK) = ε+ op(1)

⇒ F̄(ZK) ≡ Pr [ Next draw > ZK ] ∼
1

K

• Theory of records: Suppose K i.i.d. draws for temperatures.

◦ Unconditional probability that today is a new record high = 1/K

◦ This result is similar, but conditional instead of unconditional

⇒ F̄(ZK) falls like 1/K for any distribution!

⇒ ZK rises like F̄−1(1/K)
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Proof of Theorem 1

• Given that ZK is the max over K i.i.d. draws, we have

Pr [ZK ≤ x ] = Pr [ z1 ≤ x, z2 ≤ x, . . . , zK ≤ x ]

= (1 − F̄(x))K

• Let MK ≡ KF̄(ZK) denote a new random variable. Then for 0 < m < K

Pr [MK ≥ m ] = Pr
[

KF̄(ZK) ≥ m
]

= Pr
[

F̄(ZK) ≥
m

K

]

= Pr
[

ZK ≤ F̄−1

(m

K

) ]

=
(

1 −
m

K

)K

→ e−m QED.
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Remarks

• Simpler and different from the standard EVT

◦ If ZK−bK

aK
converges in distribution, then it converges to one of three types

◦ Which one depends on the tail properties of F(·)

• We will see later that Theorem 1 covers cases not covered by EVT

• Intuition for why so few conditions on F(·) are required:

◦ For any distribution of x, F̄(x) is Uniform[0,1]

◦ Min over K draws from a uniform, scaled up by K, is exponential = KF̄(ZK)

(from standard EVT)

◦ Barton and David (1959), Galambos (1978, Chapter 4), and Embrechts et al

(1997, Prop 3.1.1) have related results

8



Example: Kortum (1997)

• Pareto: F̄(x) = x−β

• Apply Theorem 1: KF̄(ZK) = ε+ op(1)

KZ−β
K = ε+ op(1)

K

Zβ
K

= ε+ op(1)

ZK

K1/β
= (ε+ op(1))

−1/β

• Exponential growth in K leads to exponential growth in ZK

gZ = gK/β

β = how thin is the tail = rate at which ideas become harder to find
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Example: Drawing from an Exponential Distribution

• Exponential: F̄(x) = e−θx

KF̄(ZK) = ε+ op(1)

Ke−θZK = ε+ op(1)

⇒ logK − θZK = log(ε+ op(1))

⇒ ZK =
1

θ
[logK − log(ε+ op(1))]

⇒
ZK

logK
=

1

θ

(

1 −
log(ε+ op(1))

logK

)

ZK

logK

p
−→ Constant
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Drawing from an Exponential (continued)

ZK

logK

p
−→ Constant

• ZK grows with logK

◦ If K grows exponentially, then ZK grows linearly

• Definition of combinatorial growth: Kt = 2
Nt with Nt = N0e gNt

gZ = glog K = gN

Combinatorial growth with draws from a thin-tailed distribution

delivers exponential growth!
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Growth Model
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Setup

• Cookbook is a collection of Kt recipes

• At a point in time, researchers have evaluated all recipes from Nt ingredients

◦ Each ingredient can either be included or excluded, so Kt = 2
Nt

(which equals
∑Nt

k=0

(

Nt

k

)

, the sum of all combinations)

• Research = learning the “productivity” of the new recipes that come from adding a

new ingredient

• Ṅt = αRt ⇒each researcher can evaluate α new ingredients each period

◦ Rt grows with population ⇒ so does Nt

Combinatorial growth: Cookbook of K = 2
N recipes from N ingredients,

with N growing exponentially

13



Corollary (Poisson version of Theorem 1)

Let ZK denote the maximum over P independent draws from a distribution with a strictly

decreasing and continuous tail cdf F̄(x) and suppose P is distributed as Poisson with

parameter K. Then for 0 < m < K

Pr
[

KF̄(ZK) ≥ m
]

=
e−m − e−K

1 − e−K
.

• Applies at each point in time, not just asymptotically

• Integrate across a continuum of sectors to make aggregate growth deterministic

• (Thanks to Sam Kortum for this suggestion)
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Economic Environment: Like Kortum (1997) but with Weibull/Combinatorial Growth

Aggregate output Yt =
(

∫ 1

0
Y

σ−1

σ

it di
)

σ
σ−1

with σ > 1

Variety i output Yit = ZKit

(

M
− 1

ρ

it

∑Mit

j=1
x

ρ−1

ρ

ijt

)

ρ
ρ−1

with ρ > 1

Production of ingredients xijt = Lijt

Best recipe ZKit = maxc=1,...,K̃it
zic where K̃it ∼ Poisson(Kt)

Weibull distribution of zic zic ∼ F(x) = 1 − e−xβ
β = how thin is tail

Number of ingredients evaluated Ṅt = αRλ
t Nφ

t , φ < 1

Cookbook (Poisson parameter) Kt = 2
Nt

Resource constraint: workers Lit =
∑Mit

j=1
Lijt and

∫ 1

0
Litdi = Lyt

Resource constraint: R&D Rt + Lyt = Lt

Population growth (exogenous) Lt = L0egLt
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Allocation

• Consider the allocation of labor that maximizes Yt at each date with a constant

fraction of people working in research

◦ Lijt maximizes Yt

◦ Rt = s̄Lt

• Number of ingredients evaluated (eventually) grows at a constant rate

Ṅt

Nt
=

Rλ
t

N1−φ
t

⇒ gN =
λgL

1 − φ

• And we have combinatorial growth in the number of recipes in the cookbook

Kt = 2
Nt ⇒ glog K = gN
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Applying Theorem 1 to the Weibull Distribution

• Suppose y ∼ Exponential. Let y ≡ xβ . Then x ∼ Weibull: F̄(x) = e−xβ

max y

logK

p
−→ Constant

⇒
max xβ

logK

p
−→ Constant

⇒
max x

(logK)1/β

p
−→ Constant

• Therefore

gZK
=

glog K

β
=

gN

β
=

1

β

λgL

1 − φ

(slightly more complicated with Poisson process, but same idea)
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Remarks

gZK
=

glog K

β
=

gN

β
=

1

β

λgL

1 − φ

• This is the growth rate of output per person in the growth model

• Combinatorial march down a Weibull tail

• Growth rate depends on

◦ Population growth = growth rate of researchers

◦ λ and φ = how researchers evaluate ingredients

◦ Allows φ > 0: it may get easier (or harder) to evaluate ingredients

◦ While β captures the degree to which good ideas get harder to find
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Can the distribution shift out over time?

• Consider all the technologies that could ever be invented. They are recipes.

◦ Let F̄(x) be the associated distribution of productivities

◦ That doesn’t shift...

• What’s behind the question: some technologies cannot be invented before others

◦ The smartphone could not come before electricity, radio, and semiconductors

• Answer: Suppose new ideas are future ingredients

◦ Ingredients must be evaluated in a specific order

◦ Nothing changes...
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Generality?

For what distributions do combinatorial draws ⇒exponential growth?
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Theorem (A general condition for combinatorial growth)

Consider the growth model above but with zi ∼ F(z) as a general continuous and

unbounded distribution, where F(·) is monotone and differentiable. Let η(x) denote the

elasticity of the tail cdf F̄(x); that is, η(x) ≡ − d log F̄(x)
d log x . Then

lim
t→∞

ŻKt

ZKt
=

gN

α

if and only if

lim
x→∞

η(x)

xα
= Constant > 0

for some α > 0.
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Remarks

ŻKt

ZKt
→

gN

α
⇐⇒ lim

x→∞

η(x)

xα
= Constant > 0

• Thinner tails require faster draws but still require power functions:

◦ It’s just that the elasticity itself is now a power function!

• Examples

◦ Weibull: F̄(x) = e−xβ ⇒ η(x) = xβ

◦ Normal: F̄(x) = 1 −
∫ x

−∞ e−u2/2du ⇒ η(x) ∼ x2 – like Weibull with β = 2

• Intuition

◦ Kortum (1997): F̄(x) = x−β ⇒ η(x) = β so Kt = ent is enough

◦ Here: F̄(x) = e−xβ so must march down tail exponentially faster, Kt = 2
ent
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For what distributions do combinatorial draws ⇒exponential growth?

• Combinatorial draws lead to exponential growth for many familiar distributions:

◦ Normal, Exponential, Weibull, Gumbel

◦ Gamma, Logistic, Benktander Type I and Type II

◦ Generalized Weibull: F̄(x) = xαe−xβ or F̄(x) = e−(xβ+xα)

◦ Tail is dominated by “exponential of a power function”

• When does it not work?

◦ lognormal: If it works for normal, then log x ∼ Normal means percentage

increments are normal, so tail will be too thick!

◦ logexponential = Pareto

◦ Surprise: Does not work for all distributions in the Gumbel domain of attraction

(not parallel to Kortum/Frechet).
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Scaling of ZK for Various Distributions

Growth rate of ZK

Distribution cdf ZK behaves like for K = 2
N

Exponential 1 − e−θx logK gN

Gumbel e−e−x

logK gN

Weibull 1 − e−xβ (logK)1/β gN

β

Normal 1√
2π

∫

e−x2/2dx (logK)1/2 gN

2

Lognormal 1√
2π

∫

e−(log x)2/2dx exp(
√
logK) gN

2
·
√

N

Gompertz 1 − exp(−(eβx − 1)) 1

β log(logK) Arithmetic

Log-Pareto 1 − 1

(log x)α exp(K1/α) Romer!
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Microfoundations for Romer (1990)

• Kortum (1997) found there is no process satisfying EVT that delivers Romer (1990)

result of exponential growth with constant flow of draws

• But Theorem 1 shows us how to get it:

◦ If x ∼ logpareto with α = 1, then linear growth in K (e.g. K̇t = L̄) gives

exponential growth in max

• Implies ZK = exp
(

K1/α(ε̃+ op(1)
)

◦ No affine transformation of ZK works, which is why EVT fails

(need to take logs)

◦ Implies that log productivity is Fréchet in cross-section

– much thicker tail than we observe in the data

– variance of log productivity would rise over time
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Evidence from Patents

Combinatorial growth matches the patent data
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Rate of Innovation?

• Kortum (1997) was designed to match a key “fact”: that the flow of patents was

stationary

◦ Never clear this fact was true (see below)

• Flow of patents in the model?

◦ Theory of record-breaking: p(K) = 1/K is the fraction of ideas that exceed the

frontier [cf Theorem 1: F̄(ZK) =
1

K
(ε+ op(1))]

◦ Since there are K̇ recipes added to the cookbook every instant, the flow of

patents is

p(K)K̇ =
K̇t

Kt

◦ This is constant in Kortum (1997) ⇒ constant flow of patents
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Flow of Patents in Combinatorial Growth Model?

• Simple case: Ṅt = αRt (e.g. λ = 1 and φ = 0 in Ṅt = αRλ
t Nφ

t )

• Then Kt = 2
Nt

⇒
K̇t

Kt
= log 2 · Ṅt

= log 2 · αRt

= log 2 · αs̄L0egLt

• That is, the combinatorial growth model predicts that the number of new patents

should grow exponentially over time

◦ When ideas are small, it takes a growing number to generate exponential growth
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Annual Patent Grants by the U.S. Patent and Trademark Office
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Total in 2019: 390,000

   U.S. origin: 186,000

   Foreign share: 52%
Total

U.S. origin

YEAR

THOUSANDS
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Breakthrough Patents from Kelly et al (2021)

1900 1920 1940 1960 1980 2000 2020
  800

 1600

 3200

 6400

12800

25600

RATIO SCALE

Note: even omitting computers/electronics,

grows at 2% per year since 1950

30



U.S. Patent Growth by Technology Class, 1950–1990
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Annual Academic Publication Counts, 1970–2020

1970 1980 1990 2000 2010 2020
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Remarks

• In Kortum (1997), rise in patents should correspond to a rise in growth rates.

◦ Data seem more consistent with the combinatorial growth model

◦ (Important caveat: meaning of a “patent” is not stable over time)

• Can researchers evaluate a combinatorially growing list of recipes?

◦ Maybe it is only the “good” ideas that take time

◦ With λ = 1 and φ = 0, the number of good ideas per researcher is constant

◦ Chess players find the best line from an exploding set of possibilities

◦ Henri Poincare quote
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Implications for Future Research

• Wherever Pareto has been assumed in the literature, perhaps we can use thin tails?

◦ Technology diffusion, trade, search, productivity

• Beautiful feature of Kortum (1997)

◦ Pareto assumption ⇒ theory of growth, markups, and firm heterogeneity

• If ideas are “small,” we lose these connections

◦ Combinatorial theory of growth

◦ But markups and heterogeneity disappear asymptotically

◦ Gaps between ideas are too small to provide this theory

• Opportunity! Need new theory of markups and heterogeneity
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