

Taxing Top Incomes in a World of Ideas

Chad Jones

December 2020

The Saez (2001) Calculation

- Income: $z \sim Pareto(\alpha)$
- Tax revenue:

$$T = \tau_0 \bar{z} + \tau (z_m - \bar{z})$$

where z_m is average income above cutoff \bar{z}

Revenue-maximizing top tax rate:

• Divide by $z_m \Rightarrow$ elasticity form and rearrange:

$$\tau^* = \frac{1}{1 + \alpha \cdot \eta_{z_m, 1 - \tau}}$$

where $\alpha = \frac{z_m}{z_m - \bar{z}}$.

ı

$$\tau^* = \frac{1}{1 + \alpha \cdot \eta_{z_m, 1 - \tau}}$$

- Intuition
 - Decreasing in $\eta_{z_m,1-\tau}$: elasticity of top income wrt $1-\tau$
 - Increasing in $\frac{1}{\alpha} = \frac{z_m \bar{z}}{z_m}$: change in revenue as a percent of income = Pareto inequality
- Diamond and Saez (2011) Calibration
 - $\alpha = 1.5$ from Pareto income distribution
 - $\eta = 0.2$ from literature

$$\Rightarrow \ \tau_{\text{\tiny d-s}}^* \approx 77\%$$

Overview

- Saez (2001) and following literature
 - "Macro"-style calibration of optimal top income taxation
- How does this calculation change when:
 - New ideas drive economic growth
 - The reward for a new idea is a top income
 - Creation of ideas is broad
 - A formal "research subsidy" is imperfect (Walmart, Amazon)
 - A small number of entrepreneurs ⇒ the bulk of economy-wide growth
- $\uparrow \tau$ lowers consumption throughout the economy via nonrivalry

Literature

- Human capital: Badel and Huggett, Kindermann and Krueger
- Superstars/inventors: Scheuer and Werning, Chetty et al
- Spillovers: Rothschild and Sheuer, Lockwood-Nathanson-Weyl
- Mirrlees w/ Imperfect Substitution: Sachs-Tsyvinski-Werquin
- Inventors and taxes: Akcigit-Baslandze-Stantcheva, Moretti and Wilson, Akcigit-Grigsby-Nicholas-Stantcheva
- Growth and taxes: Stokey and Rebelo, Jaimovich and Rebelo

This paper does not calculate "the" optimal top tax rate

- Many other considerations:
 - Political economy of inequality
 - Occupational choice (other brackets, concavity)
 - Top tax diverts people away from finance to ideas?
 - Social safety net, lenient bankruptcy insure the downside
 - o How sensitive are entrepreneurs to top tax rates?
 - Empirical evidence on growth and taxes
 - Rent seeking, human capital
- Still, including economic growth and ideas seems important

Basic Setup

Overview

- BGP of an idea-based growth model. Romer 1990, Jones 1995
 - Semi-endogenous growth
 - Basic R&D (subsidized directly), Applied R&D (top tax rate)
 - BGP simplifies: static comparison vs transition dynamics
- Three alternative approaches to the top tax rate:
 - Revenue maximization
 - Maximize welfare of "workers"
 - Maximize utilitarian social welfare

Environment for Full Growth Model

Final output
$$Y_t = \int_0^{A_t} x_{it}^{1-\psi} di \left(\mathbb{E}(e\theta) M_t\right)^{\psi}$$
 Production of variety i
$$x_{it} = \ell_{it}$$
 Resource constraint (ℓ)
$$\int \ell_{it} di = L_t$$
 Resource constraint (N)
$$L_t + S_{bt} = N_t$$
 Population growth
$$N_t = \bar{N} \exp(nt)$$
 Entrepreneurs
$$S_{at} = \bar{S}_a \exp(nt)$$
 Managers
$$M_t = \bar{M} \exp(nt)$$
 Applied ideas
$$\dot{A}_t = \bar{a} (\mathbb{E}(e\theta) S_{at})^{\lambda} A_t^{\phi_a} B_t^{\alpha}$$
 Basic ideas
$$\dot{B}_t = \bar{b} S_{bt}^{\lambda} B_t^{\phi_b}$$
 Talent heterogeneity
$$\ell_i \sim F(\theta)$$
 Utility (S_a, M)
$$\ell_i = \ell_{it}$$

The Economic Environment

 Consumption goods produced by managers M, labor L, and nonrival "applied" ideas A:

$$Y = A^{\gamma} \tilde{M}^{\psi} L^{1-\psi} \tag{1}$$

 Applied ideas produced from entrepreneurs, effort *e*, talent *θ*, and basic research ideas *B*:

$$\dot{A}_t = \bar{a}(\mathbb{E}(e\theta)S_{at})^{\lambda}A_t^{\phi_a}B_t^{\alpha}$$

Fundamental ideas produced from basic research:

$$\dot{B}_t = \bar{b} S_{bt}^{\lambda} B_t^{\phi_b}$$

• \tilde{M} , L, S_a , S_b exogenous. e endogenous (unspecified for now)

)

Nonrivalry of Ideas (Romer): $Y = A^{\gamma} \tilde{M}^{\psi} L^{1-\psi}$

- Constant returns to rival inputs \tilde{M}, L
 - Given a stock of nonrival blueprints/ideas A
 - Standard replication argument
- ⇒ Increasing returns to ideas and rival inputs together
 - \circ $\gamma > 0$ measures the degree of IRS
- Hints at why effects can be large
 - One computer or year of school ⇒ 1 worker more productive
 - One new idea ⇒ any number of people more productive

Distortions of the computer/schooling have small effects.

Distorting the creation of the idea...

BGP from a Dynamic Growth Model

- BGP implies that stocks are proportional to flows:
 - A and B are proportional to S_a and S_b (to some powers)
 - S_a , S_b , L all grow at the same exogenous population growth rate.
- Stock of applied ideas (being careless with exponents wlog)

$$A = \nu_a \mathbb{E}[e\theta] S_a B^\beta \tag{2}$$

Stock of basic ideas

$$B = \nu_b S_b \tag{3}$$

Output = Consumption:

• Combining (1) - (3) with $\tilde{M} = \mathbb{E}[e\theta]M$:

$$Y = \left(\nu \mathbb{E}[e\theta] S_a S_b^{\beta}\right)^{\gamma} (\mathbb{E}[e\theta] M)^{\psi} L^{1-\psi}$$

- Output per person $y \propto (S_a S_b^{\beta})^{\gamma}$
- Intuition: y depends on stock of ideas, not ideas per person
- LR growth = $\gamma(1 + \beta)n$ where n is population growth
- Taxes distort $\mathbb{E}(e\theta)$:
 - ψ effect is traditional, but ψ small?
 - $\circ \gamma$ effect via nonrivalry of ideas, can be large!

Nonlinear Income Tax Revenue

$$T = \underbrace{\tau_0[wL + wS_b + w_a\mathbb{E}(e\theta)S_a + w_m\mathbb{E}(e\theta)M]}_{\text{all income pays }\tau_0} \\ + \underbrace{(\tau - \tau_0)[(w_a\mathbb{E}(e\theta) - \bar{w})S_a + (w_m\mathbb{E}(e\theta) - \bar{w})M]}_{\text{income above }\bar{w} \text{ pays an additional }\tau - \tau_0}$$

Full growth model: entrepreneurs paid a constant share of GDP

$$rac{w_a \mathbb{E}(e heta) S_a}{Y} =
ho_s$$
 and $rac{w_m \mathbb{E}(e heta) M}{Y} =
ho_m.$

and
$$Y = wL + w_bS_b + w_a\mathbb{E}(e\theta)S_a + w_m\mathbb{E}(e\theta)M$$
, $\rho \equiv \rho_s + \rho_m$

$$\Rightarrow T = \tau_0 Y + (\tau - \tau_0) \left[\rho Y - \bar{w} (S_a + M) \right]$$

Some Intuition

Entrepreneurs/managers paid a constant share of GDP

$$\frac{w_a \mathbb{E}(e\theta) S_a}{Y} = \rho_s$$
 and $\frac{w_m \mathbb{E}(e\theta) M}{Y} = \rho_m$.

- Production: $Y = \left(\nu \mathbb{E}[e\theta] S_a S_b^{\beta}\right)^{\gamma} (\mathbb{E}[e\theta] M)^{\psi} L^{1-\psi}$
- Efficiency: Pay ∼ Cobb-Douglas exponents. IRS means cannot!
- Jones and Williams (1998) social rate of return calculation:

$$\tilde{r} = g_Y + \lambda g_y \left(\frac{1}{\rho_s (1 - \tau)} - \frac{1}{\gamma} \right)$$

 \Rightarrow After tax share of payments to entrepreneurs should equal γ $\rho_s(1-\tau)$ versus γ is one way of viewing the tradeoff

The Top Tax Rate that Maximizes Revenue

Revenue-Maximizing Top Tax Rate

Key policy problem:

$$\begin{split} \max_{\tau} T &= \tau_0 Y + (\tau - \tau_0) \left[\rho Y - \bar{w} (S_a + M) \right] \\ \text{s.t.} \\ Y &= \left(\nu \mathbb{E}[e\theta] S_a S_b^\beta \right)^\gamma (\mathbb{E}[e\theta] M)^\psi L^{1-\psi} \end{split}$$

- A higher τ reduces the effort of entrepreneurs/managers
 - Leads to less innovation
 - which reduces everyone's income (Y)
 - which lowers tax revenue received via τ_0

Solution

$$\max_{\tau} T = \tau_0 Y(\tau) + (\tau - \tau_0) \left[\rho Y(\tau) - \bar{w} S_a \right]$$

• FOC:

$$\underbrace{(\rho - \bar{\rho})\,Y}_{\text{mechanical gain}} + \underbrace{\frac{\partial Y}{\partial \tau} \cdot [(1 - \rho)\tau_0 + \rho\tau]}_{\text{behavioral loss}} = 0$$

where
$$\bar{
ho} \equiv \frac{\bar{w}(S_a + M)}{Y}$$

• Rearranging with $\Delta \rho \equiv \rho - \bar{\rho}$

$$\tau_{rm}^* = \frac{1 - \tau_0 \cdot \frac{1 - \rho}{\Delta \rho} \cdot \eta_{Y, 1 - \tau}}{1 + \frac{\rho}{\Delta \rho} \, \eta_{Y, 1 - \tau}}$$

Solution

$$au_{rm}^* = rac{1 - au_0 \cdot rac{1 -
ho}{\Delta
ho} \cdot \eta_{Y,1 - au}}{1 + rac{
ho}{\Delta
ho} \, \eta_{Y,1 - au}} \; \; ext{vs} \quad au_{ds}^* = rac{1}{1 + lpha \cdot \eta_{z_m,1 - au}}$$

Remarks: Two key differences

- $\begin{array}{c} \circ \;\; \eta_{{\scriptscriptstyle Y},1-\tau} \; \text{versus} \; \eta_{z_m,1-\tau} \\ \\ \eta_{{\scriptscriptstyle Y},1-\tau} \Rightarrow \text{How GDP changes if researchers keep more} \\ \\ \eta_{z_m,1-\tau} \Rightarrow \text{How average top incomes change} \end{array}$
- o If $\tau_0 > 0$, then τ^* is lower Distorting research lowers GDP \Rightarrow lowers revenue from other taxes!

Guide to Intuition

$\eta_{Y,1- au}$	The economic model
$ ho\eta_{\scriptscriptstyle Y,1- au}$	Behavioral effect via top earners
$(1- ho)\eta_{Y,1- au}$	Behavioral effect via workers
$\Delta\rho\equiv\rho-\bar\rho$	Tax base for τ , mechanical effect
$1-\Delta ho$	Tax base for $ au_0$

What is $\eta_{Y,1-\tau}$?

$$Y = \left(\nu \mathbb{E}[e\theta] S_a S_b^{\beta}\right)^{\gamma} \left(\mathbb{E}[e\theta] M\right)^{\psi} L^{1-\psi} \quad \Rightarrow \quad \eta_{\gamma,1-\tau} = (\gamma + \psi)\zeta$$

- γ = degree of IRS via ideas
- ψ = manager's share = 0.15 (not important)
- ζ is the elasticity of $\mathbb{E}[e\theta]$ with respect to $1-\tau$.
 - Standard Diamond-Saez elasticity: $\zeta = \eta_{z_m, 1-\tau}$
 - o How individual behavior changes when the tax rate changes
 - Cool insight from PublicEcon: all that matters is the value of this elasticity, not the mechanism!
 - So for now, just treat as a parameter (endogenized later)

Calibration

Parameter values for numerical examples

$$\gamma \in [1/8,1]$$

$$g_{tfp} = \gamma(1+\beta) \cdot g_S \approx 1\%.$$

$$\zeta \in \{0.1, 0.2, 0.3\}$$
 Uncompensated elasticity < Chetty, Saez

$$au_0 = 0.2$$
 Average tax rate outside the top.

$$\Delta \rho = 0.10$$
 Share of income taxed at the top rate; top returns account for 20% of taxable income.

$$ho=0.15$$
 So $rac{
ho}{\Delta
ho}=1.5$ as in Saez pareto parameter, $lpha.$

Revenue-Maximizing Top Tax Rate, τ_{rm}^*

	Behavioral Elasticity (ζ)		
Case	0.1	0.2	0.3
Diamond-Saez	0.87	0.77	0.69
No ideas, $\gamma=0$			
$ au_0=0$	0.98	0.96	0.94
$\tau_0 = 0.20$	0.95	0.91	0.87
Degree of IRS, γ			
1/8	0.92	0.84	0.77
1/4	0.88	0.77	0.67
1/2	0.81	0.65	0.52
1	0.69	0.45	0.27

Revenue-Maximizing Top Tax Rate, $\tau_{\!\mathit{rm}}^*$

	Behavioral Elasticity (ζ)		
Case	0.1	0.2	0.3
Diamond-Saez	0.87	0.77	0.69
No ideas, $\gamma=0$			
$\tau_0 = 0$	0.98	0.96	0.94
$\tau_0=0.20$	0.95	0.91	0.87
Degree of IRS, γ			
1/8	0.92	0.84	0.77
1/4	0.88	0.77	0.67
1/2	0.81	0.65	0.52
1	0.69	0.45	0.27

Revenue-Maximizing Top Tax Rate, $\tau_{\!\mathit{rm}}^*$

	Behavioral Elasticity (ζ)		
Case	0.1	0.2	0.3
Diamond-Saez	0.87	0.77	0.69
No ideas, $\gamma=0$			
$ au_0=0$	0.98	0.96	0.94
$\tau_0 = 0.20$	0.95	0.91	0.87
Degree of IRS, γ			
1/8	0.92	0.84	0.77
1/4	0.88	0.77	0.67
1/2	0.81	0.65	0.52
1	0.69	0.45	0.27

Intuition: Double the "keep rate" $1-\tau$

- What is the long-run effect on GDP?
 - Answer: $2^{\eta_{Y,1-\tau}} = 2^{\gamma\zeta}$
 - Baseline: $\gamma = 1/2$ and $\zeta = 0.2 \Rightarrow 2^{1/10} \approx 1.07$

Going from $\tau = 75\%$ to $\tau = 50\%$ raises GDP by just 7%!

- With $\Delta \rho = 10\%$, the revenue cost is 2.5% of GDP
 - 7% gain to everyone...
 - > redistributing 2.5% to the bottom half!
- 7% seems small, but achieved by a small group of researchers working 15% harder...

Maximizing Worker Welfare

- In Saez (2001), revenue max = max worker welfare
- Not here! Ignores effect on consumption
- Worker welfare yields a clean closed-form solution

Choose τ and τ_0 to Maximize Worker Welfare

• Workers:
$$c^w = w(1 - \tau_0)$$

$$u_w(c) = \theta \log c$$

Government budget constraint

$$\tau_0 Y + (\tau - \tau_0)[\rho Y - \bar{w}(S_a + M)] = \Omega Y$$

Exogenous government spending share of GDP = Ω (to pay for basic research, legal system, etc.)

• Problem:
$$\max_{\tau,\tau_0}\,\log(1-\tau_0) + \log Y(\tau) \quad \text{s.t.}$$

$$\tau_0 Y + (\tau-\tau_0)[\rho Y - \bar{w}(S_a+M)] = \Omega Y.$$

First Order Conditions

The top rate that maximizes worker welfare satisfies

$$\tau_{ww}^* = \frac{1 - \eta_{Y,1-\tau} \left(\frac{1-\rho}{\Delta\rho} \cdot \tau_0^* + \frac{1-\Delta\rho}{\Delta\rho} \cdot (1-\tau_0^*) - \frac{\Omega}{\Delta\rho} \right)}{1 + \frac{\rho}{\Delta\rho} \eta_{Y,1-\tau}}.$$

Three new terms relative to Saez:

$$\eta \frac{1-\rho}{\Delta \rho} \cdot \tau_0^*$$
 Original term from RevMax

$$\begin{array}{ll} \eta \frac{1-\Delta\rho}{\Delta\rho} \cdot (1-\tau_0^*) & \text{ Direct effect of a higher tax rate reducing GDP} \\ \Rightarrow \text{reduce workers consumption} \end{array}$$

$$\eta \frac{\Omega}{\Delta \rho}$$
 Need to raise Ω in revenue

Intuition

When is a "flat tax" optimal?

$$\tau \le \tau_0 \iff \eta_{Y,1-\tau} \ge \frac{\Delta \rho}{1-\Delta \rho}.$$

Two ways to increase c^w :

- $\circ \downarrow \tau \Rightarrow \text{ raises GDP by } \eta_{Y,1-\tau}$
- Redistribute \Rightarrow take from $\Delta \rho$ people, give to $1 \Delta \rho$
- Baseline parameters: $\eta_{\gamma,1-\tau} = \frac{1}{5}(\gamma + \psi)$ and $\frac{\Delta \rho}{1-\Delta \rho} = \frac{1}{9}$.

$$\gamma + \psi > 5/9 \approx 0.56 \implies \tau < \tau_0.$$

Tax Rates that Maximize Worker Welfare

Degree of	$-\zeta =$	0.2 —	$\zeta=0.1$	$\zeta = 0.3$
IRS, γ	$ au_{ww}^*$	$ au_0^*$	$ au_{ww}^*$	$ au_{ww}^*$
0	0.76	0.14	0.88	0.64
1/8	0.57	0.16	0.78	0.38
1/4	0.40	0.18	0.68	0.15
1/2	0.09	0.21	0.50	-0.26
1	-0.43	0.27	0.18	-0.90

The top rate that maximizes worker welfare can be negative!

Maximizing Utilitarian Social Welfare

Entrepreneurs and Managers

Utility function depends on consumption and effort:

$$u(c,e) = \varphi \log c - \frac{\varepsilon}{1+\varepsilon} e^{\frac{1+\varepsilon}{\varepsilon}}$$

• Researcher with talent θ solves

$$\begin{split} \max_{c,e} \ & u(c,e) \quad \text{s.t.} \\ c &= \bar{w}(1-\tau_0) + [w_s e \theta - \bar{w}](1-\tau) + R \\ &= \bar{w}(1-\tau_0) - \bar{w}(1-\tau) + w_s e \theta (1-\tau) + R \\ &= \bar{w}(\tau-\tau_0) + w_s e \theta (1-\tau) + R \end{split}$$

where R is a lump sum rebate.

• FOC:

$$e = \left(\frac{\varphi w_s \theta (1 - \tau)}{c}\right)^{\varepsilon}$$

SE/IE and Rebates

- Log preferences imply that SE and IE cancel: $\frac{\partial e}{\partial au} = 0$
- Standard approach is to rebate tax revenue to neutralize the IE.
 - Tricky here because IE's are heterogeneous!
- Shortcut: heterogeneous rebates that vary with θ to deliver

$$c_{\theta} = w_s e \theta (1 - \tau)^{1 - \alpha}$$

$$e_{\theta} = e^* = [\varphi(1-\tau)^{\alpha}]^{\frac{\varepsilon}{1+\varepsilon}} \equiv [\varphi^{1/\alpha}(1-\tau)]^{\zeta_u}$$

where ζ_u is the uncompensated elasticity of effort wrt $1-\tau$

- $\circ \eta_{Y,1-\tau} = (\gamma + \psi)\zeta_u$ and $\zeta_u \equiv \alpha \frac{\varepsilon}{1+\varepsilon}$
- $\circ \alpha$ governs tradeoff with redistribution

Utilitarian Social Welfare

Social Welfare:

$$SWF \equiv Lu(c^w) + S_bu(c^b) + S_a \int u(c_z^s, e_z^s) dF(z) + M \int u(c_z^m, e_z^m) dF(z)$$

Substitution of equilibrium conditions gives

$$SWF \propto \log Y + \ell \log(1 - \tau_0) + s[(1 - \alpha)\log(1 - \tau) - \frac{\zeta_u}{\alpha}(1 - \tau)^{\alpha}]$$

where
$$s \equiv \frac{S_a + M}{L + S_b + S_a + M}$$
, $\ell \equiv 1 - s$,

Tax Rates that Maximize Social Welfare

- Proposition 2 gives the tax rates, written in terms of the "keep rates" $\kappa \equiv 1 \tau$ and $\kappa_0 \equiv 1 \tau_0$.
- Two well-behaved nonlinear equations:

$$\zeta_{u}s\kappa^{\alpha} + \frac{\kappa}{\kappa_{0}} \cdot \frac{\ell}{1 - \Delta\rho} \left(\Delta\rho + \bar{\rho}\eta\right) = \eta \left(1 + \frac{\bar{\rho}\ell}{1 - \Delta\rho}\right) + s(1 - \alpha)$$
$$\kappa_{0}(1 - \Delta\rho) + \kappa\Delta\rho = 1 - \Omega.$$

Maximizing Social Welfare: $\alpha=1$

Tax Rates that Maximize Social Welfare ($\alpha=1$)

		$\zeta_u = 0.2$ —		
Degree of		GDP loss	$\zeta_u = 0.1$	$\zeta_u = 0.3$
IRS, γ	$ au^*$	if $\tau = 0.75$	$ au^*$	$ au^*$
0	0.77	-0.3%	0.87	0.68
1/8	0.59	2.6%	0.77	0.44
1/4	0.42	6.4%	0.68	0.22
1/2	0.12	15.1%	0.49	-0.17
1	-0.40	32.7%	0.16	-0.81

Tax Rates that Maximize Social Welfare ($\alpha = 1/2$)

Degree of		GDP loss	$\zeta_u = 0.1$	$\zeta_u = 0.3$
IRS, γ	$ au^*$	if $ au=0.75$	$ au^*$	$ au^*$
0	0.46	2.3%	0.51	0.40
1/8	0.28	5.6%	0.42	0.16
1/4	0.12	9.6%	0.33	-0.06
1/2	-0.17	18.2%	0.16	-0.45
1	-0.67	35.4%	-0.15	-1.07

Intuition: First-Best Effort

- What if social planner could choose consumption and effort?
- The tax rate that implements first-best effort satisfies

$$(1-\tau)^{\alpha} = \frac{\gamma}{s_a}$$

- \Rightarrow **Negative** top tax rate if $s_a < \gamma$.
- Illustrates a key point:

the fact that a small share of people, s create nonrival ideas that drive growth via γ constrains the top tax rate, τ

Summary of Calibration Exercises

Exercise	$\zeta_u = .1$	$\zeta_u = .2$	$\zeta_u = .3$
No ideas, $\gamma=0$			
Revenue-maximization, $\tau_0=0$	0.98	0.96	0.94
Revenue-maximization, $\tau_0=0.20$	0.95	0.91	0.87
With ideas, $\gamma=1/2$			
Revenue-maximization	0.81	0.65	0.52
Maximize worker welfare	0.50	0.09	-0.26
Maximize utilitarian welfare ($lpha=1$)	0.49	0.12	-0.17
Maximize utilitarian welfare ($lpha=1/2$)	0.16	-0.17	-0.45

Incorporating ideas sharply lowers the top tax rate.

40

Discussion

Evidence on Growth and Taxes? Important and puzzling!!!

- Stokey and Rebelo (1995)
 - Growth rates flat in the 20th century
 - Taxes changed a lot!
- But the counterfactual is unclear
 - Government investments in basic research after WWII
 - Decline in basic research investment in recent decades?
 - \circ Maybe growth would have slowed sooner w/o $\downarrow au$
- Short-run vs long-run?
 - Shift from goods to ideas may reduce GDP in short run...

Taxes in the United States

U.S. GDP per person

U.S. R&D Spending Share

The Social Return to Research

- How big is the gap between equilibrium share and optimal share to pay for research?
- Jones and Williams (1998) social rate of return calculation here:

$$\tilde{r} = g_Y + \lambda g_y \left(\frac{1}{\rho_s (1 - \tau)} - \frac{1}{\gamma} \right)$$

- \Rightarrow After tax share of payments to entrepreneurs should equal γ
- Simple calibration: $\tau = 1/2 \Rightarrow \tilde{r} = 39\%$ if $\rho_s = 10\%$
 - Consistent with SROR estimates e.g. Bloom et al. (2013)
 - But those are returns to formal R&D...

Environment for Full Growth Model

Final output
$$Y_t = \int_0^{A_t} x_{it}^{1-\psi} di \left(\mathbb{E}(e\theta) M_t\right)^{\psi}$$
 Production of variety i
$$x_{it} = \ell_{it}$$
 Resource constraint (ℓ)
$$\int \ell_{it} di = L_t$$
 Resource constraint (N)
$$L_t + S_{bt} = N_t$$
 Population growth
$$N_t = \bar{N} \exp(nt)$$
 Entrepreneurs
$$S_{at} = \bar{S}_a \exp(nt)$$
 Managers
$$M_t = \bar{M} \exp(nt)$$
 Applied ideas
$$\dot{A}_t = \bar{a} (\mathbb{E}(e\theta) S_{at})^{\lambda} A_t^{\phi_a} B_t^{\alpha}$$
 Basic ideas
$$\dot{B}_t = \bar{b} S_{bt}^{\lambda} B_t^{\phi_b}$$
 Talent heterogeneity
$$\theta_i \sim F(\theta)$$
 Utility (S_a, M)
$$u(c, e) = \varphi \log c - \frac{\varepsilon}{1+\varepsilon} e^{\frac{1+\varepsilon}{\varepsilon}}$$

Conclusion

- Lots of unanswered questions
 - Why is evidence on growth and taxes so murky?
 - What is true effect of taxes on growth and innovation?
 Akcigit et al (2018) makes progress...
 - At what income does the top rate apply?
 - Capital gains as compensation for innovation
 - Transition dynamics
- Still, innovation is a key force that needs to be incorporated
 - Distorting the behavior of a small group of innovators can affect all our incomes