

# Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

August 28, 2020

#### xkcd: Everyone's an Epidemiologist



I MEAN, IT'S NOT EXACTLY LIKE THAT.

IF THE ENTIRE WORLD'S POPULATION WERE SUDDENLY STRANDED ON MOUNTAINTOPS TOGETHER, A LOT OF PEOPLE WOULD UNDERSTANDABLY BE TRYING TO BECOME MOUNTAINEERING EXPERTS REALLY FAST.

OKAY, THAT'S FAIR.

BUT I DO WISH THEY WOULDN'T KEEP GOING ON TV AND SAYING "ACCORDING TO MY RESEARCH ON GRANTY, IF EVERYONE CURLS INTO A BALL AND ROLLS, WE'LL GET TO THE BOTTOM QUICKLY!"

YES, THAT'S DEFINITELY NOT HELPING.

Help macroeconomists with data and model

#### **Outline**

- Setup
  - $\circ$  SIR model with a time-varying  $\mathcal{R}_{0t}$
  - Recover  $\mathcal{R}_{0t}$  as the "Solow residual" of SIR to fit deaths
- Estimation and simulation
  - Different countries, U.S. states, and global cities
  - "Forecasts" from each of the last 7 days
- Re-opening and herd immunity
  - o How much can we relax social distancing?

Our dashboard contains 30+ pages of results for each of 100 cities, states, and countries



# **Basic Model**

#### **Notation**

Number of people who are (stocks):

 $S_t$  = Susceptible

 $I_t$  = Infectious

 $R_t$  = Resolving

 $D_t$  = Dead

 $C_t$  = ReCovered

Constant population size is N

$$S_t + I_t + R_t + D_t + C_t = N$$

#### **SIRD Model: Overview**

• Susceptible get infected at rate  $\beta_t I_t/N$ 

New infections = 
$$\beta_t I_t / N \cdot S_t$$

- Fraction  $\gamma$  of Infectious resolve each day, so the average number of days that a person is infectious is  $1/\gamma$  so  $\gamma = .2 \Rightarrow 5$  days
- Fraction  $\theta$  of Post-infectious cases resolve each day. E.g.  $\theta=.1 \ \Rightarrow 10$  days
- Resolution happens in one of two ways:
  - $\circ$  Death: fraction  $\delta$
  - Recovery: fraction  $1 \delta$

#### **SIRD Model: Laws of Motion**

$$\Delta S_{t+1} = \underbrace{-\beta_t S_t I_t/N}_{\text{new infections}}$$
 new infections 
$$\Delta I_{t+1} = \underbrace{\beta_t S_t I_t/N}_{\text{new infections}} - \underbrace{\gamma I_t}_{\text{resolving infectious}}$$
 
$$\Delta R_{t+1} = \underbrace{\gamma I_t}_{\text{resolving infectious}} - \underbrace{\theta R_t}_{\text{cases that resolve}}$$
 
$$\Delta D_{t+1} = \underbrace{\delta \theta R_t}_{\text{die}}$$
 
$$\Delta C_{t+1} = \underbrace{(1-\delta)\theta R_t}_{\text{reCovered}}$$

#### Recyled notation $\mathcal{R}_0$ : Initial infection rate

• Initial reproduction number  $\mathcal{R}_0 \equiv \beta/\gamma$ 

$$\mathcal{R}_0$$
 =  $\beta$  ×  $1/\gamma$  # of infections # of "adequate" # of days from one sick contacts per contacts are infectious

- $\mathcal{R}_0$  = expected number of infections via the first sick person
  - $\circ \ \mathcal{R}_0 > 1 \Rightarrow$  disease initially grows
  - $\circ~\mathcal{R}_0 < 1 \Rightarrow$  disease dies out: infectious generate less than 1 new infection
- If  $1/\gamma = 5$ , then easy to have  $\mathcal{R}_0 >> 1$

## **Basic Properties of Differential System (Hethcote 2000)**

- Continuous time, constant β
  - Initial exponential growth rate of infections is  $\beta \gamma = \gamma (\mathcal{R}_0 1)$
- Let  $s_t \equiv S_t/N$  = fraction susceptible
  - Infectious grow at  $\beta \gamma = \gamma \left( \mathcal{R}_0 s_t 1 \right)$
  - If  $\mathcal{R}_0 s_t > 1$ , the virus spreads, otherwise declines
- As  $t \to \infty$ , the total fraction of people ever infected,  $e^*$ , solves (assuming  $s_0 \approx 1$ )

$$e^* = -\frac{1}{\mathcal{R}_0} \log(1 - e^*)$$

Long run is pinned down by  $\mathcal{R}_0$  (and death rate),  $\gamma$  and  $\theta$  affect timing

#### **Social Distancing**

- What about a time-varying infection rate  $\beta_t$ ?
  - Disease characteristics fixed, homogeneous
  - Regional factors (NYC vs Montana) fixed, heterogeneous
  - Social distancing varies over time and space
- Reasons why  $\beta_t$  may change over time
  - Policy changes on social distancing
  - Individuals voluntarily change behavior to protect themselves and others
  - Masks, superspreading events

## Recovering $\beta_t$ and $\mathcal{R}_{0t}$

- Recover  $\beta_t$ , a latent variable, from the data:
  - Like the Solow Residual of the SIRD model!
- Notation
  - $D_{t+1}$ : stock of deaths as of the *end* of date t+1
  - ∘  $\Delta D_{t+1} \equiv d_{t+1}$ : number of people who die on date t+1
- With algebra, "invert" the SIRD model to obtain:

$$\beta_t = \frac{N}{S_t} \left( \gamma + \frac{\frac{1}{\theta} \Delta \Delta d_{t+3} + \Delta d_{t+2}}{\frac{1}{\theta} \Delta d_{t+2} + d_{t+1}} \right)$$

$$S_{t+1} = S_t \left( 1 - \beta_t \frac{1}{\delta \gamma N} \left( \frac{1}{\theta} \Delta d_{t+2} + d_{t+1} \right) \right)$$

## Recovering $\beta_t$ and $\mathcal{R}_{0t}$ (continued)

$$\beta_t = \frac{N}{S_t} \left( \gamma + \frac{\frac{1}{\theta} \Delta \Delta d_{t+3} + \Delta d_{t+2}}{\frac{1}{\theta} \Delta d_{t+2} + d_{t+1}} \right)$$

$$S_{t+1} = S_t \left( 1 - \beta_t \frac{1}{\delta \gamma N} \left( \frac{1}{\theta} \Delta d_{t+2} + d_{t+1} \right) \right)$$

- Use data on  $d_t$ , and initial condition  $S_0/N \approx 1$ ,
  - Iterate forward in time and recover  $\beta_t$  and  $S_{t+1}$
- Uses *future* deaths over the next 3 days to tell us about  $\beta_t$  today
- More general point about SIRD models
  - State-space representation that we can exploit
  - Richer structure possible (heterogeneity, general functions)

#### An endogenous $\mathcal{R}_{0t}$ when simulating future outcomes

- Individuals react endogenously to risk
  - Much of the reaction is not even government-mandated
  - Could solve a complex dynamic programming problem
- Instead, Cochrane (2020) suggests:

$$\mathcal{R}_{0t} = \mathsf{Constant} \cdot e^{-\alpha d_t}$$

where  $d_t$  is daily deaths per million people.

• We estimate  $\alpha$  from our data on  $\mathcal{R}_{0t}$ 



# **Estimates and Simulations**

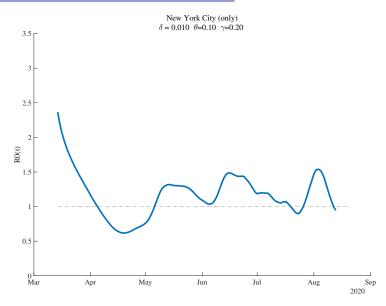
#### Parameters assumed fixed and homogeneous

- $\gamma = 0.2$ : average duration is 5 days (or  $\gamma = 0.1$ )
- $\theta = 0.1$ : average duration post-infectious is 10 days.
  - average case takes 10+5 = 15 days to resolve.
  - Long tail for exponential distribution
- $\alpha = 0.05$ : estimate  $\alpha_i$  for each location *i*.
  - Tremendous heterogeneity across locations
  - $\circ$   $\mathcal{R}_{0t}$  falls by 5 percent with each daily death
  - We report results with  $\alpha = 0$  and  $\alpha = .05$ .

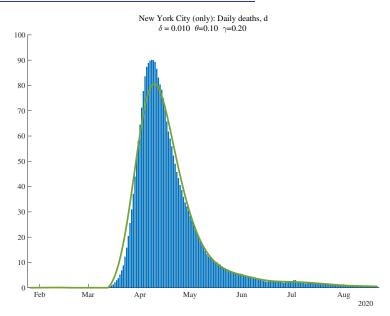
#### Mortality rate (IFR): $\delta = 1.0\%$

- Evidence from seroepidemiological national survey in Spain:
  - Stratified random sample of 61,000 people
  - $\delta$  in Spain is between 1% and 1.1%.
- Correction by demographics to other countries
  - Most countries cluster around 1%.
  - U.S.: 0.76% without correcting for life expectancy and 1.05% correcting by it.

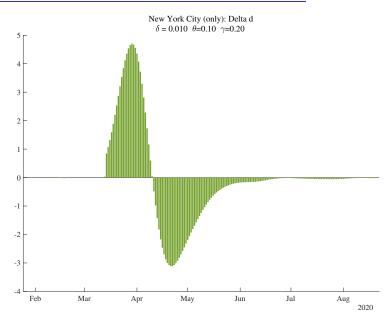
#### **Heterogeneity in Mortality Rates by Age**


- Mortality rates vary substantially by age
  - IFR for ages 65-69 in Spain = 1%
- Gompertz Law: mortality rate grows exponentially with age
  - COVID-19: doubles for every 5-year age group (?)
  - $\circ$  70 vs 20 year olds: 50 years = 10 doublings  $\Rightarrow$  1000-fold
  - 2 in 100 versus 2 in 100,000
- Our estimation does not feature this heterogeneity lack of data

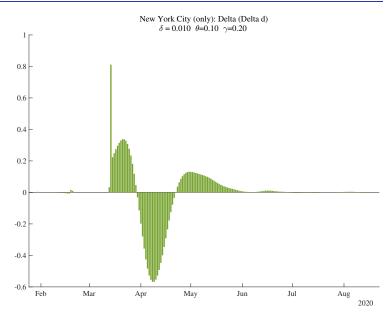
May underestimate herd immunity if many young people are increasingly infected


#### Estimation based entirely on death data

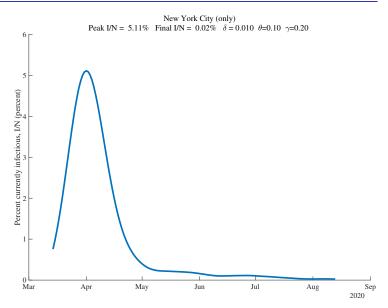
- Johns Hopkins University CSSE data
- Excess death issue
  - Currently no correction, just using the JHU/CSSE data
  - (previously adjusted upward by 33%)
- We use 7-day moving averages (centered)
  - Otherwise, very serious "weekend effects" in which deaths are underreported
  - Even zero sometimes, followed by a large spike
  - Further smoothing: HP-filter with smoothing parameter 800 after taking moving average


# New York City: Estimates of $\mathcal{R}_{0t} = \beta_t/\gamma$

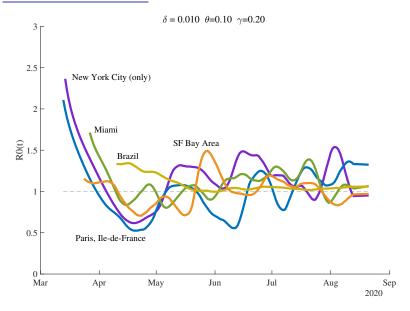



# New York City: Daily Deaths and HP Filter

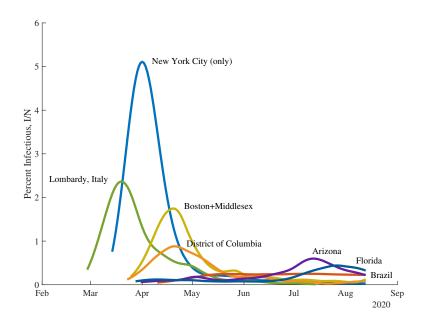



#### **New York City: Change in Smoothed Daily Deaths**

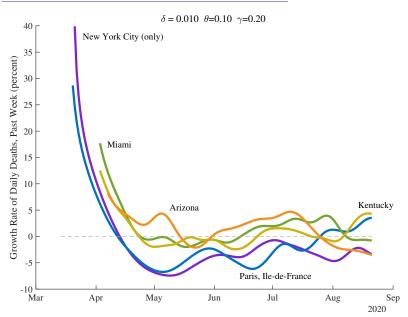



## New York City: Change in (Change in Smoothed Daily Deaths)




#### New York City: Percent of the Population Currently Infectious




# Estimates of $\mathcal{R}_{0t} = \beta_t/\gamma$



#### **Percent of the Population Currently Infectious**



## Daily Growth Rate of Daily Deaths, Past Week



|                      | Total (pm) | Growth | — T     | $\mathcal{E}_0$ — | % Ever   | % Infe | ectious |
|----------------------|------------|--------|---------|-------------------|----------|--------|---------|
|                      | Deaths, t  | rate   | initial | today             | infected | peak   | today   |
| New York City (only) | 2836       | -      | 2.36    | 0.94              | 28.6%    | 5.11%  | 0.02%   |
| Lombardy, Italy      | 1675       | -      | 2.20    | 0.20              | 16.8%    | 2.36%  | 0.01%   |
| Stockholm, Sweden    | 1465       | -      | 2.20    | 0.20              | 14.7%    | 1.68%  | 0.03%   |
| Madrid, Spain        | 1289       | -      | 2.22    | 0.20              | 12.9%    | 2.37%  | 0.04%   |
| Boston+Middlesex     | 1292       | 6.5%   | 2.08    | 1.90              | 13.1%    | 1.75%  | 0.12%   |
| District of Columbia | 853        | 2.7%   | 1.82    | 1.21              | 8.6%     | 0.88%  | 0.08%   |
| Paris, France        | 837        | -      | 2.13    | 0.72              | 8.4%     | 1.33%  | 0.02%   |
| Miami                | 811        | -      | 1.71    | 1.04              | 8.9%     | 0.69%  | 0.51%   |
| London, U.K.         | 652        | 2.3%   | 2.11    | 1.10              | 6.6%     | 1.21%  | 0.00%   |
| Arizona              | 644        | -      | 1.24    | 0.82              | 6.8%     | 0.60%  | 0.22%   |
| United States        | 532        | -      | 1.80    | 1.02              | 5.5%     | 0.39%  | 0.15%   |
| Brazil               | 532        | -      | 1.33    | 1.06              | 5.6%     | 0.25%  | 0.23%   |
| Texas                | 492        | -      | 1.28    | 0.99              | 5.5%     | 0.52%  | 0.41%   |
| Mexico               | 461        | -      | 1.23    | 0.91              | 4.9%     | 0.28%  | 0.20%   |
| California           | 304        | -      | 1.35    | 1.01              | 3.2%     | 0.18%  | 0.16%   |
| Kentucky             | 251        | 4.3%   | 1.51    | 1.27              | 2.6%     | 0.15%  | 0.14%   |
| SF Bay Area          | 143        | -      | 1.16    | 0.96              | 1.5%     | 0.08%  | 0.05%   |
| Germany              | 111        | -      | 1.50    | 1.04              | 1.1%     | 0.15%  | 0.00%   |
| Israel               | 93         | 1.1%   | 1.17    | 1.06              | 1.0%     | 0.08%  | 0.08%   |
| Norway               | 49         | -      | 1.33    | 0.20              | 0.4%     | 0.08%  | 0.02%   |

|                      | Total (pm) | Growth | $-\mathcal{R}_0$ — |       | % Ever   | % Infectious |       |
|----------------------|------------|--------|--------------------|-------|----------|--------------|-------|
|                      | Deaths, t  | rate   | initial            | today | infected | peak         | today |
| New York City (only) | 2836       | -      | 2.36               | 0.94  | 28.6%    | 5.11%        | 0.02% |
| Lombardy, Italy      | 1675       | -      | 2.20               | 0.20  | 16.8%    | 2.36%        | 0.01% |
| Stockholm, Sweden    | 1465       | -      | 2.20               | 0.20  | 14.7%    | 1.68%        | 0.03% |
| Madrid, Spain        | 1289       | -      | 2.22               | 0.20  | 12.9%    | 2.37%        | 0.04% |
| Boston+Middlesex     | 1292       | 6.5%   | 2.08               | 1.90  | 13.1%    | 1.75%        | 0.12% |
| District of Columbia | 853        | 2.7%   | 1.82               | 1.21  | 8.6%     | 0.88%        | 0.08% |
| Paris, France        | 837        | -      | 2.13               | 0.72  | 8.4%     | 1.33%        | 0.02% |
| Miami                | 811        | -      | 1.71               | 1.04  | 8.9%     | 0.69%        | 0.51% |
| London, U.K.         | 652        | 2.3%   | 2.11               | 1.10  | 6.6%     | 1.21%        | 0.00% |
| Arizona              | 644        | -      | 1.24               | 0.82  | 6.8%     | 0.60%        | 0.22% |
| United States        | 532        | -      | 1.80               | 1.02  | 5.5%     | 0.39%        | 0.15% |
| Brazil               | 532        | -      | 1.33               | 1.06  | 5.6%     | 0.25%        | 0.23% |
| Texas                | 492        | -      | 1.28               | 0.99  | 5.5%     | 0.52%        | 0.41% |
| Mexico               | 461        | -      | 1.23               | 0.91  | 4.9%     | 0.28%        | 0.20% |
| California           | 304        | -      | 1.35               | 1.01  | 3.2%     | 0.18%        | 0.16% |
| Kentucky             | 251        | 4.3%   | 1.51               | 1.27  | 2.6%     | 0.15%        | 0.14% |
| SF Bay Area          | 143        | -      | 1.16               | 0.96  | 1.5%     | 0.08%        | 0.05% |
| Germany              | 111        | -      | 1.50               | 1.04  | 1.1%     | 0.15%        | 0.00% |
| Israel               | 93         | 1.1%   | 1.17               | 1.06  | 1.0%     | 0.08%        | 0.08% |
| Norway               | 49         | -      | 1.33               | 0.20  | 0.4%     | 0.08%        | 0.02% |

|                      | Total (pm) | Growth | $-\mathcal{R}_0$ — |       | % Ever   | % Infectious |       |
|----------------------|------------|--------|--------------------|-------|----------|--------------|-------|
|                      | Deaths, t  | rate   | initial            | today | infected | peak         | today |
| New York City (only) | 2836       | -      | 2.36               | 0.94  | 28.6%    | 5.11%        | 0.02% |
| Lombardy, Italy      | 1675       | -      | 2.20               | 0.20  | 16.8%    | 2.36%        | 0.01% |
| Stockholm, Sweden    | 1465       | -      | 2.20               | 0.20  | 14.7%    | 1.68%        | 0.03% |
| Madrid, Spain        | 1289       | -      | 2.22               | 0.20  | 12.9%    | 2.37%        | 0.04% |
| Boston+Middlesex     | 1292       | 6.5%   | 2.08               | 1.90  | 13.1%    | 1.75%        | 0.12% |
| District of Columbia | 853        | 2.7%   | 1.82               | 1.21  | 8.6%     | 0.88%        | 0.08% |
| Paris, France        | 837        | -      | 2.13               | 0.72  | 8.4%     | 1.33%        | 0.02% |
| Miami                | 811        | -      | 1.71               | 1.04  | 8.9%     | 0.69%        | 0.51% |
| London, U.K.         | 652        | 2.3%   | 2.11               | 1.10  | 6.6%     | 1.21%        | 0.00% |
| Arizona              | 644        | -      | 1.24               | 0.82  | 6.8%     | 0.60%        | 0.22% |
| United States        | 532        | -      | 1.80               | 1.02  | 5.5%     | 0.39%        | 0.15% |
| Brazil               | 532        | -      | 1.33               | 1.06  | 5.6%     | 0.25%        | 0.23% |
| Texas                | 492        | -      | 1.28               | 0.99  | 5.5%     | 0.52%        | 0.41% |
| Mexico               | 461        | -      | 1.23               | 0.91  | 4.9%     | 0.28%        | 0.20% |
| California           | 304        | -      | 1.35               | 1.01  | 3.2%     | 0.18%        | 0.16% |
| Kentucky             | 251        | 4.3%   | 1.51               | 1.27  | 2.6%     | 0.15%        | 0.14% |
| SF Bay Area          | 143        | -      | 1.16               | 0.96  | 1.5%     | 0.08%        | 0.05% |
| Germany              | 111        | -      | 1.50               | 1.04  | 1.1%     | 0.15%        | 0.00% |
| Israel               | 93         | 1.1%   | 1.17               | 1.06  | 1.0%     | 0.08%        | 0.08% |
| Norway               | 49         | -      | 1.33               | 0.20  | 0.4%     | 0.08%        | 0.02% |

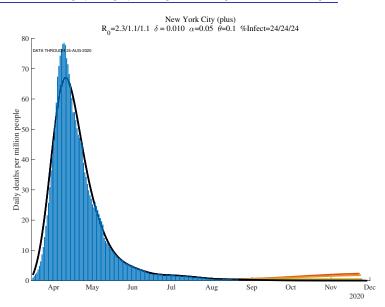
|                      | Total (pm) | Growth | $-\mathcal{R}_0$ — |       | % Ever   | % Infectious |       |
|----------------------|------------|--------|--------------------|-------|----------|--------------|-------|
|                      | Deaths, t  | rate   | initial            | today | infected | peak         | today |
| New York City (only) | 2836       | -      | 2.36               | 0.94  | 28.6%    | 5.11%        | 0.02% |
| Lombardy, Italy      | 1675       | -      | 2.20               | 0.20  | 16.8%    | 2.36%        | 0.01% |
| Stockholm, Sweden    | 1465       | -      | 2.20               | 0.20  | 14.7%    | 1.68%        | 0.03% |
| Madrid, Spain        | 1289       | -      | 2.22               | 0.20  | 12.9%    | 2.37%        | 0.04% |
| Boston+Middlesex     | 1292       | 6.5%   | 2.08               | 1.90  | 13.1%    | 1.75%        | 0.12% |
| District of Columbia | 853        | 2.7%   | 1.82               | 1.21  | 8.6%     | 0.88%        | 0.08% |
| Paris, France        | 837        | -      | 2.13               | 0.72  | 8.4%     | 1.33%        | 0.02% |
| Miami                | 811        | -      | 1.71               | 1.04  | 8.9%     | 0.69%        | 0.51% |
| London, U.K.         | 652        | 2.3%   | 2.11               | 1.10  | 6.6%     | 1.21%        | 0.00% |
| Arizona              | 644        | -      | 1.24               | 0.82  | 6.8%     | 0.60%        | 0.22% |
| United States        | 532        | -      | 1.80               | 1.02  | 5.5%     | 0.39%        | 0.15% |
| Brazil               | 532        | -      | 1.33               | 1.06  | 5.6%     | 0.25%        | 0.23% |
| Texas                | 492        | -      | 1.28               | 0.99  | 5.5%     | 0.52%        | 0.41% |
| Mexico               | 461        | -      | 1.23               | 0.91  | 4.9%     | 0.28%        | 0.20% |
| California           | 304        | -      | 1.35               | 1.01  | 3.2%     | 0.18%        | 0.16% |
| Kentucky             | 251        | 4.3%   | 1.51               | 1.27  | 2.6%     | 0.15%        | 0.14% |
| SF Bay Area          | 143        | -      | 1.16               | 0.96  | 1.5%     | 0.08%        | 0.05% |
| Germany              | 111        | -      | 1.50               | 1.04  | 1.1%     | 0.15%        | 0.00% |
| Israel               | 93         | 1.1%   | 1.17               | 1.06  | 1.0%     | 0.08%        | 0.08% |
| Norway               | 49         | -      | 1.33               | 0.20  | 0.4%     | 0.08%        | 0.02% |

|                      | Total (pm) | Growth | $-\mathcal{R}_0$ $-$ |       | % Ever   | % Infectious |       |
|----------------------|------------|--------|----------------------|-------|----------|--------------|-------|
|                      | Deaths, t  | rate   | initial              | today | infected | peak         | today |
| New York City (only) | 2836       | -      | 2.36                 | 0.94  | 28.6%    | 5.11%        | 0.02% |
| Lombardy, Italy      | 1675       | -      | 2.20                 | 0.20  | 16.8%    | 2.36%        | 0.01% |
| Stockholm, Sweden    | 1465       | -      | 2.20                 | 0.20  | 14.7%    | 1.68%        | 0.03% |
| Madrid, Spain        | 1289       | -      | 2.22                 | 0.20  | 12.9%    | 2.37%        | 0.04% |
| Boston+Middlesex     | 1292       | 6.5%   | 2.08                 | 1.90  | 13.1%    | 1.75%        | 0.12% |
| District of Columbia | 853        | 2.7%   | 1.82                 | 1.21  | 8.6%     | 0.88%        | 0.08% |
| Paris, France        | 837        | -      | 2.13                 | 0.72  | 8.4%     | 1.33%        | 0.02% |
| Miami                | 811        | -      | 1.71                 | 1.04  | 8.9%     | 0.69%        | 0.51% |
| London, U.K.         | 652        | 2.3%   | 2.11                 | 1.10  | 6.6%     | 1.21%        | 0.00% |
| Arizona              | 644        | -      | 1.24                 | 0.82  | 6.8%     | 0.60%        | 0.22% |
| United States        | 532        | -      | 1.80                 | 1.02  | 5.5%     | 0.39%        | 0.15% |
| Brazil               | 532        | -      | 1.33                 | 1.06  | 5.6%     | 0.25%        | 0.23% |
| Texas                | 492        | -      | 1.28                 | 0.99  | 5.5%     | 0.52%        | 0.41% |
| Mexico               | 461        | -      | 1.23                 | 0.91  | 4.9%     | 0.28%        | 0.20% |
| California           | 304        | -      | 1.35                 | 1.01  | 3.2%     | 0.18%        | 0.16% |
| Kentucky             | 251        | 4.3%   | 1.51                 | 1.27  | 2.6%     | 0.15%        | 0.14% |
| SF Bay Area          | 143        | -      | 1.16                 | 0.96  | 1.5%     | 0.08%        | 0.05% |
| Germany              | 111        | -      | 1.50                 | 1.04  | 1.1%     | 0.15%        | 0.00% |
| Israel               | 93         | 1.1%   | 1.17                 | 1.06  | 1.0%     | 0.08%        | 0.08% |
| Norway               | 49         | -      | 1.33                 | 0.20  | 0.4%     | 0.08%        | 0.02% |

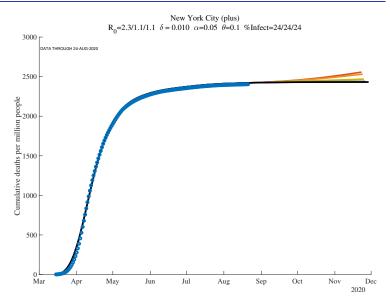


# Repeated "Forecasts" from the past 7 days of data

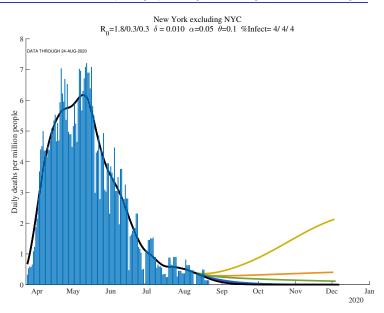
- After peak, forecasts settle down.
- Before that, very noisy!


#### **Guide to Graphs**

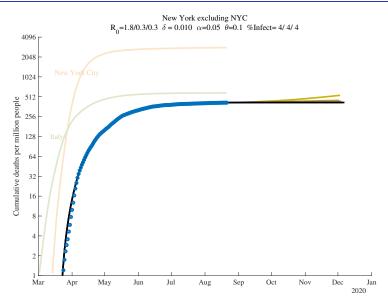
- 7 days of forecasts: Rainbow color order!
   ROY-G-BIV (old to new, low to high)
  - Black=current
  - Red = oldest, Orange = second oldest, Yellow = third oldest...
  - Violet (purple) = one day earlier
- For robustness graphs, same idea
  - Black = baseline (e.g.  $\delta = 1.0\%$ )
  - Red = lowest parameter value (e.g.  $\delta = 0.8\%$ )
  - Green = highest parameter value (e.g.  $\delta = 1.2\%$ )


#### **Guide to Graphs (continued)**

- $\mathcal{R}_0$  in subtitle:
  - Initial / Today / Final
- "%Infect"
  - Today / t+30 / Final
  - This is the percent ever infected
  - (so fraction  $\delta$  will eventually be deaths)


# New York City (7 days): Daily Deaths per Million People

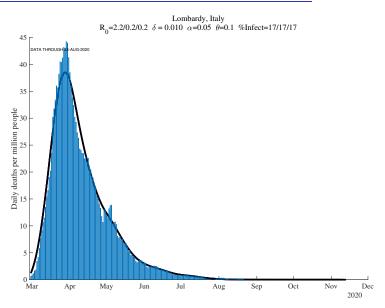



## New York City (7 days): Cumulative Deaths per Million (Future)

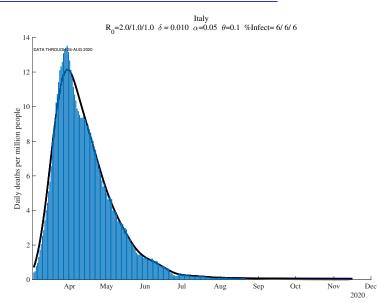


#### New York excl NYC (7 days): Daily Deaths per Million People

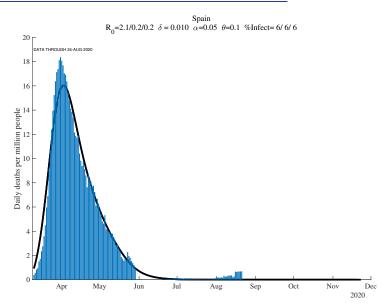



#### New York excl NYC (7 days): Cumulative Deaths per Million (Future)

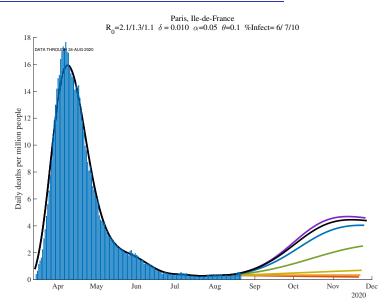



# Stylized Experiences to Keep in Mind

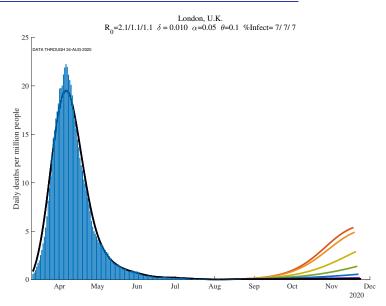
|                                | Total (pm)<br>Deaths, t | Peak Daily<br>Deaths (pm) |
|--------------------------------|-------------------------|---------------------------|
| New York City (only)           | 2800                    | 80                        |
| Paris = London = Washington DC | 800                     | 20                        |
| NY excl NYC = Atlanta          | 400                     | 5                         |


# Lombardy (7 days): Daily Deaths per Million People

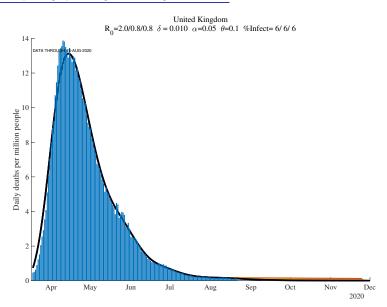



#### Italy (7 days): Daily Deaths per Million People

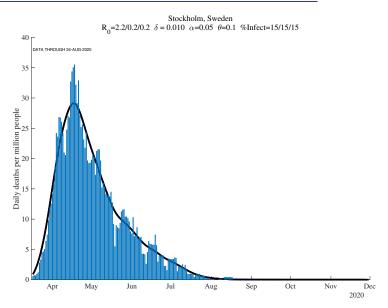



#### Spain (7 days): Daily Deaths per Million People

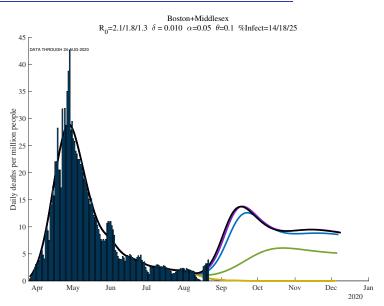



#### Paris (7 days): Daily Deaths per Million People

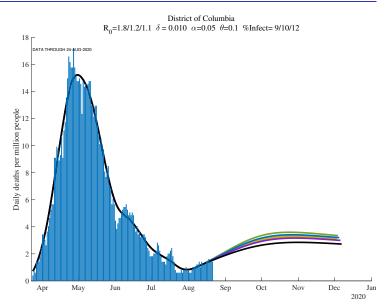



#### London (7 days): Daily Deaths per Million People

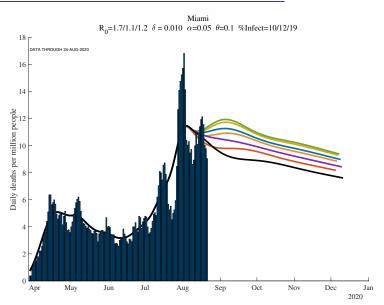



#### U.K. (7 days): Daily Deaths per Million

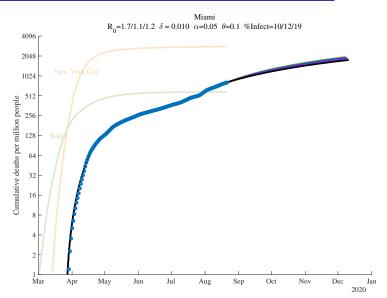



#### Stockholm (7 days): Daily Deaths per Million People

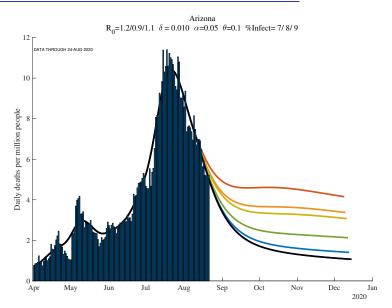



#### Boston (7 days): Daily Deaths per Million People

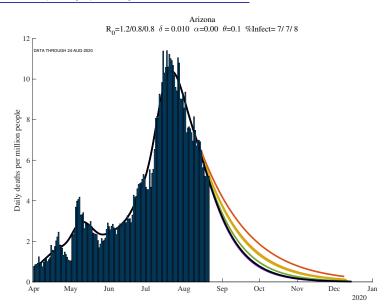



#### District of Columbia (7 days): Daily Deaths per Million People

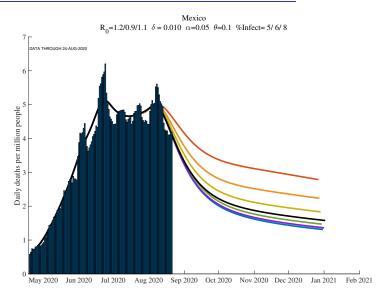



#### Miami (7 days): Daily Deaths per Million People

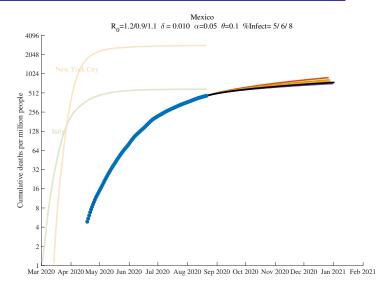



# Miami (7 days): Cumulative Deaths per Million (Future)

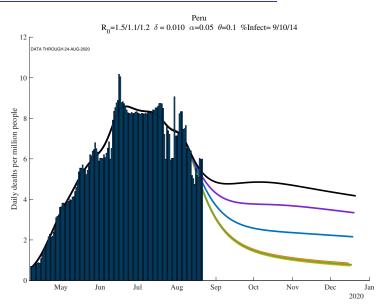



# Arizona (7 days): Daily Deaths per Million People

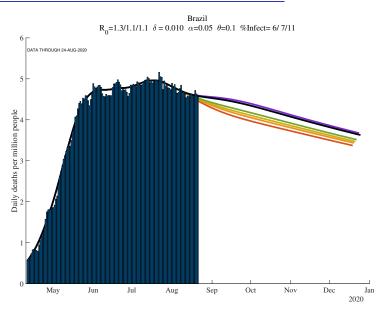



#### Arizona (7 days): Daily Deaths with $\alpha=0$

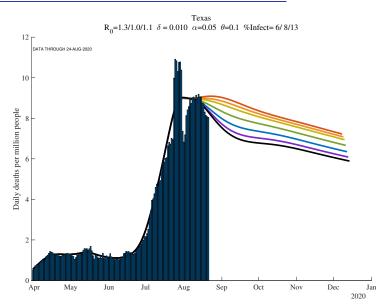



#### Mexico (7 days): Daily Deaths per Million People

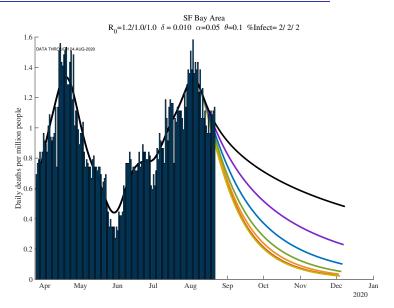



#### Mexico (7 days): Cumulative Deaths per Million (Future)

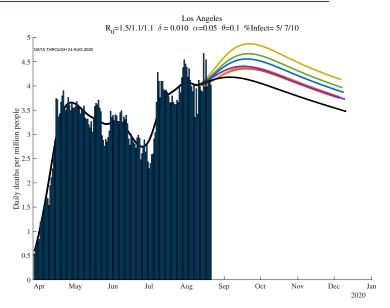



#### Peru (7 days): Daily Deaths per Million People




#### **Brazil (7 days): Daily Deaths per Million People**




#### Texas (7 days): Daily Deaths per Million People



#### SF Bay Area (7 days): Daily Deaths per Million People



#### Los Angeles (7 days): Daily Deaths per Million People





# Reopening and Herd Immunity

# Percent Ever Infected would be very informative

|                        | <ul> <li>Percent Ever Infected (today) —</li> </ul> |                |                |
|------------------------|-----------------------------------------------------|----------------|----------------|
|                        | $\delta = 0.5\%$                                    | $\delta=1.0\%$ | $\delta=1.2\%$ |
| New York City (only)   | 57                                                  | 29             | 24             |
| Lombardy, Italy        | 34                                                  | 17             | 14             |
| Stockholm, Sweden      | 29                                                  | 29 15          |                |
| Madrid, Spain          | 26                                                  | 13             | 11             |
| Boston+Middlesex       | 27                                                  | 14             | 11             |
| Philadelphia           | 23                                                  | 11             | 9              |
| Belgium                | 18                                                  | 9              | 7              |
| District of Columbia   | 18                                                  | 9              | 7              |
| Paris, France          | 17                                                  | 8              | 7              |
| Miami                  | 19                                                  | 10             | 8              |
| London, U.K.           | 13                                                  | 7              | 5              |
| Spain                  | 12                                                  | 6              | 5              |
| Arizona                | 14                                                  | 7              | 6              |
| Italy                  | 12                                                  | 6              | 5              |
| United States          | 11                                                  | 6              | 5              |
| Texas                  | 12                                                  | 6              | 5              |
| Mexico                 | 10                                                  | 5              | 4              |
| New York excluding NYC | 8                                                   | 4              | 3              |
| Houston (Harris Co.)   | 10                                                  | 5              | 4              |
| Kentucky               | 6                                                   | 3              | 2              |
| SF Bay Area            | 3                                                   | 2              | 1              |
| Israel                 | 2                                                   | 1              | 1              |
| Norway                 | 1                                                   | 0              | 0              |

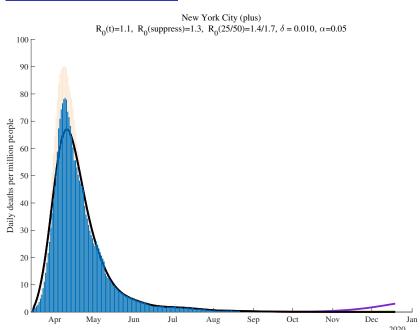
# **Herd Immunity**

- How far can we relax social distancing?
- Let s(t) = S(t)/N = the fraction still susceptible
  - The disease will die out as long as

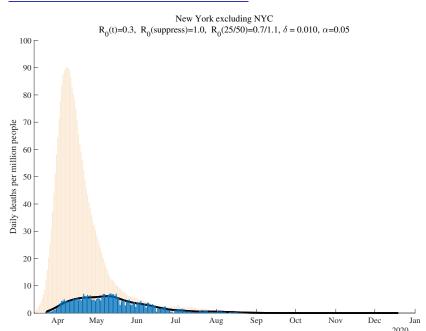
$$\mathcal{R}_0(t)s(t) < 1$$

- That is, if the "new"  $\mathcal{R}_0$  is smaller than 1/s(t)
- Today's infected people infect fewer than 1 person on average
- We can relax social distancing to raise  $\mathcal{R}_0(t)$  to 1/s(t)

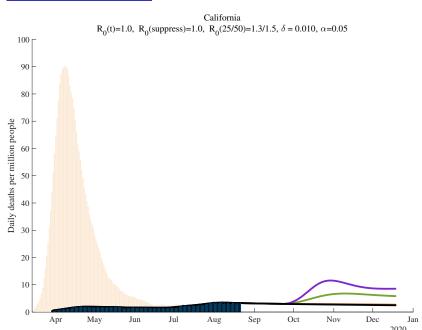
61


# Herd Immunity and Opening the Economy? $\delta=1.0\%$

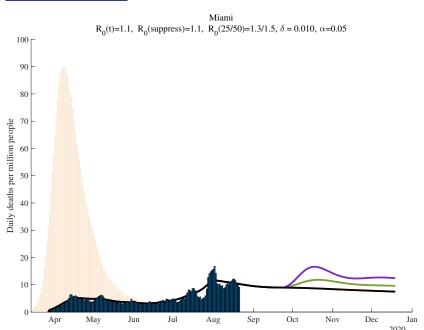
|                      | $\mathcal{R}_0$ | $\mathcal{R}_0(t)$ | Percent<br>Susceptible<br>t+30 | $\mathcal{R}_0$ (t+30) with no outbreak | Percent<br>way back<br>to normal |
|----------------------|-----------------|--------------------|--------------------------------|-----------------------------------------|----------------------------------|
| New York City (only) | 2.4             | 1.0                | 71.4                           | 1.4                                     | 31.8                             |
| Lombardy, Italy      | 2.2             | 0.2                | 83.2                           | 1.2                                     | 49.9                             |
| Stockholm, Sweden    | 2.2             | 0.2                | 85.3                           | 1.2                                     | 48.2                             |
| Madrid, Spain        | 2.2             | 0.2                | 87.1                           | 1.1                                     | 46.0                             |
| Chicago              | 1.9             | 1.3                | 88.9                           | 1.1                                     | -40.0                            |
| Belgium              | 2.1             | 1.1                | 91.0                           | 1.1                                     | 2.2                              |
| District of Columbia | 1.8             | 1.2                | 90.5                           | 1.1                                     | -13.3                            |
| Paris, France        | 2.1             | 0.7                | 91.5                           | 1.1                                     | 26.0                             |
| Miami                | 1.7             | 1.1                | 87.7                           | 1.1                                     | 11.4                             |
| London, U.K.         | 2.1             | 1.1                | 93.4                           | 1.1                                     | -2.7                             |
| United Kingdom       | 2.0             | 0.8                | 93.9                           | 1.1                                     | 19.2                             |
| Italy                | 2.0             | 1.0                | 94.1                           | 1.1                                     | 1.8                              |
| Sweden               | 1.8             | 1.3                | 93.8                           | 1.1                                     | -61.5                            |
| United States        | 1.8             | 1.0                | 93.5                           | 1.1                                     | 5.6                              |
| Brazil               | 1.3             | 1.1                | 92.7                           | 1.1                                     | 6.8                              |
| France               | 2.0             | 1.2                | 95.2                           | 1.1                                     | -18.4                            |
| Mexico               | 1.2             | 0.9                | 94.1                           | 1.1                                     | 42.2                             |
| California           | 1.4             | 1.0                | 95.6                           | 1.0                                     | 8.0                              |
| Kentucky             | 1.5             | 1.2                | 95.3                           | 1.0                                     | -57.9                            |
| SF Bay Area          | 1.2             | 1.0                | 98.2                           | 1.0                                     | 25.5                             |
| Germany              | 1.5             | 1.0                | 98.9                           | 1.0                                     | -5.8                             |
| Israel               | 1.2             | 1.0                | 98.3                           | 1.0                                     | -26.0                            |
| Norway               | 1.3             | 0.2                | 99.6                           | 1.0                                     | 71.1                             |


#### Simulations of Re-Opening

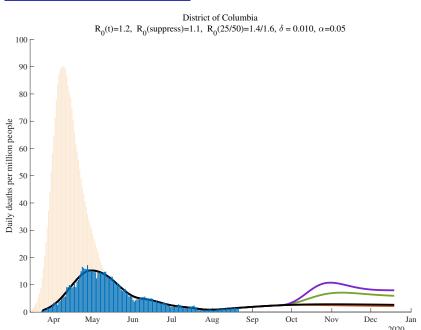
- Begin with the basic estimates shown already
- Different policies are then adopted starting around July 20
  - Black: assumes  $\mathcal{R}_0$ (today) remains in place forever
  - Red: assumes  $\mathcal{R}_0$ (suppress)= 1/s(today)
  - o Green: we move 25% of the way from  $\mathcal{R}_0$ (today) back to initial  $\mathcal{R}_0$  = "normal"
  - Purple: we move 50% of the way from  $\mathcal{R}_0$ (today) back to initial  $\mathcal{R}_0$  = "normal"
- We assume these  $\mathcal{R}_0$  values adjust to daily deaths via  $\alpha$ 
  - $\circ$  Each daily death reduces  $\mathcal{R}_0$  by 5 percent


# **New York City: Re-Opening**

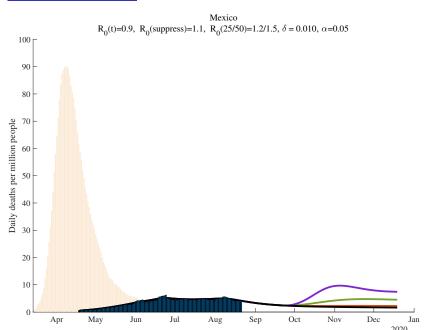



### **New York excluding NYC: Re-Opening**

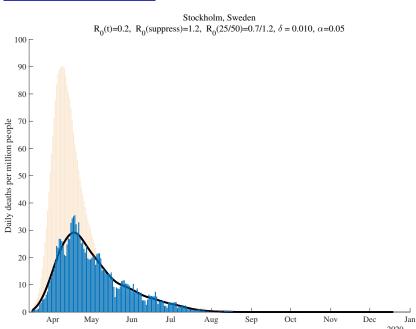



# California: Re-Opening



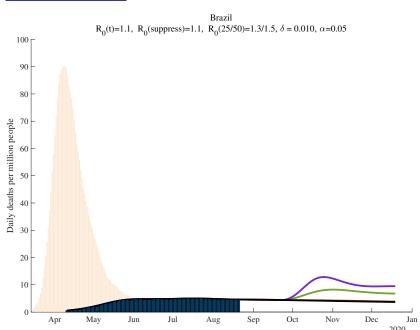

# Miami: Re-Opening



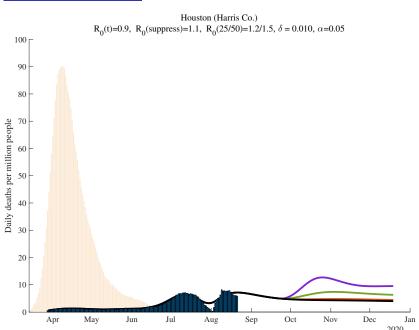

# Washington, DC: Re-Opening



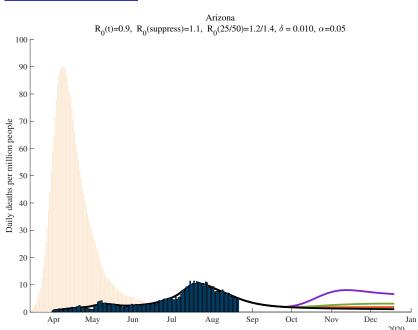
# **Mexico: Re-Opening**




# Stockholm: Re-Opening



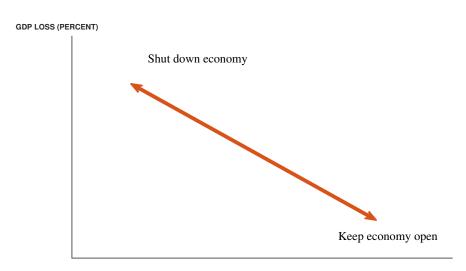

70


# **Brazil: Re-Opening**



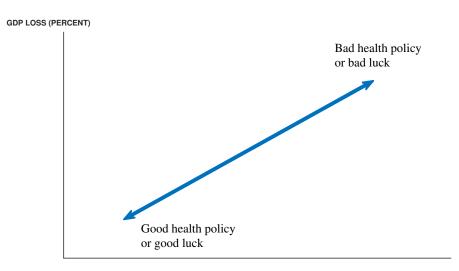
# **Houston: Re-Opening**




# **Arizona: Re-Opening**

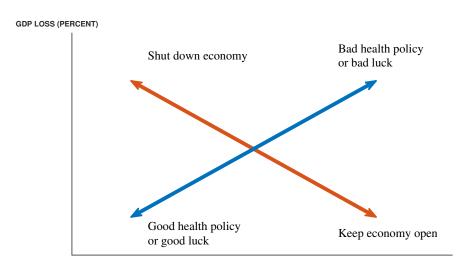





# Macroeconomic Outcomes

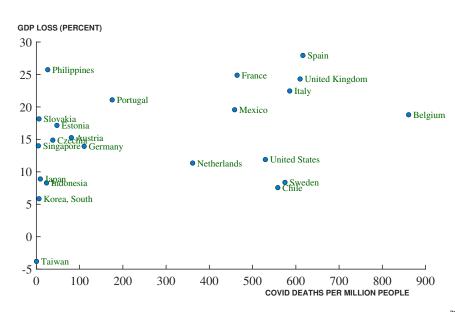
# **Economic Policy Trade Off, Holding Health Policy and Luck Constant**



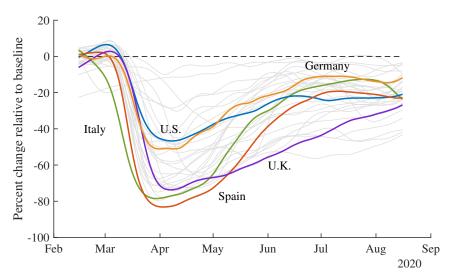

**COVID DEATHS PER MILLION PEOPLE** 

### Health Policy Decisions and Luck Can Shift the Tradeoff

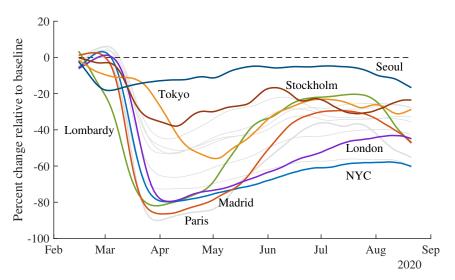



COVID DEATHS PER MILLION PEOPLE

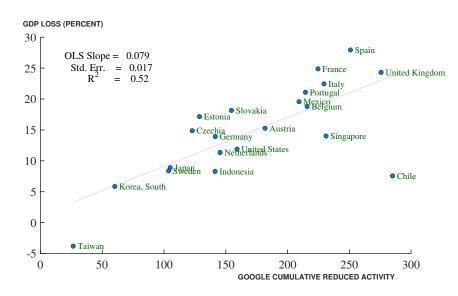
# Putting together...



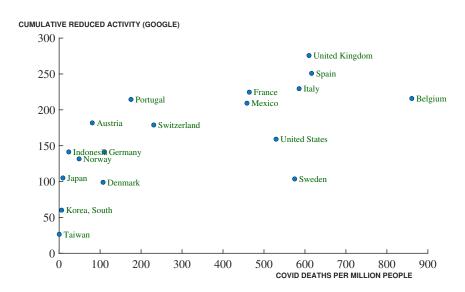

COVID DEATHS PER MILLION PEOPLE


#### International Covid Deaths and Lost GDP, 2020

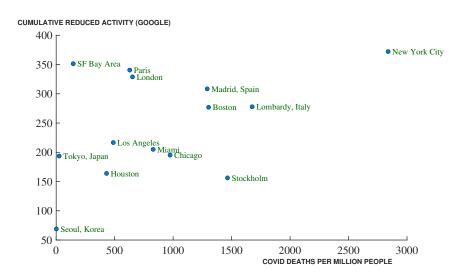



## **Google Activity Tracker: International Evidence**

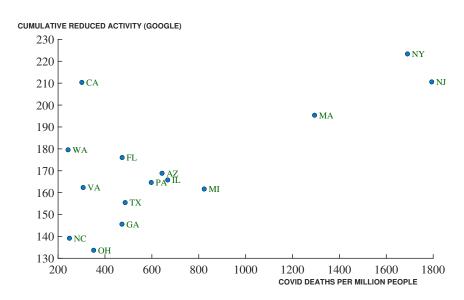



# **Google Activity Tracker for Key Global Cities**




### **Cumulative Google Activity and Lost GDP**




#### **Covid Deaths and Cumulative Google Activity**

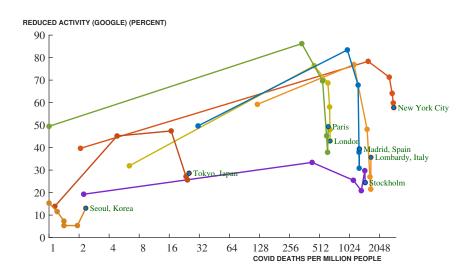


## Global Cities: Covid Deaths and Cumulative Google Activity



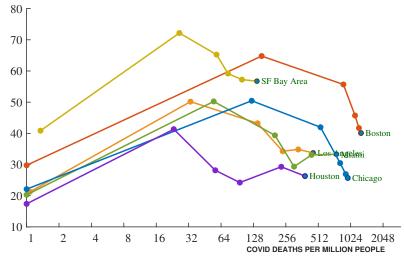
### U.S. States: Covid Deaths and Cumulative Google Activity




#### **Summary**

GDP LOSS

**New York City** Lombardy California United Kingdom [lucky? too tight?] Madrid [unlucky? bad policy?] Germany Norway Sweden Japan, S. Korea [unlucky? too loose?] Kentucky [lucky? good policy?]


COVID DEATHS

# **Global Cities: Monthly Evolution from March to August**



# **Global Cities: Monthly Evolution from March to August**





#### **Conclusions and Questions**

#### Speculations based on model, we are not epidemiologists

- Things I wonder about
  - What is the distribution of outcomes for young people? (hospitalizations? long-term effects?)
  - What if every at risk person had an N95 mask?
  - What did Tokyo and Seoul do that we should learn from?
  - o Next wave?
  - Paper/saliva tests

Our dashboard contains 30+ pages of results for each of 100 cities, states, and countries