Misallocation, Economic Growth, and Input-Output Economics

Charles I. Jones
Stanford GSB and NBER
August 21, 2010

Prepared for the Tenth World Congress of the Econometric Society, Shanghai, China

Introduction

Important theme of recent growth literature:

 Enhanced appreciation of the role that misallocation plays in explaining cross country income differences

Examples:

- Restuccia and Rogerson (2008), Banerjee and Duflo (2005), Hsieh and Klenow (2009)
- Parente and Prescott (1999), Caselli and Gennaioli (2005), Lagos (2006), Alfaro et al (2008), Buera and Shin (2008),
 Guner-Ventura-Xu (2008), Bartelsman et al (2009), Syverson (2010)

Three Points

- Misallocation: Overview of misallocation
- **Theory:** The input-output structure of the economy can amplify effects of misallocation
- Empirics: Quantifying the input-output multiplier

Asks more questions than it answers...

I. Misallocation

1. Misallocation and TFP: A Simple Example

Production:
$$X_{steel} = L_{steel}$$
, $X_{latte} = L_{latte}$

Resource constraint:
$$L_{steel} + L_{latte} = \bar{L}$$

GDP (aggregation):
$$Y = X_{steel}^{1/2} X_{latte}^{1/2}$$

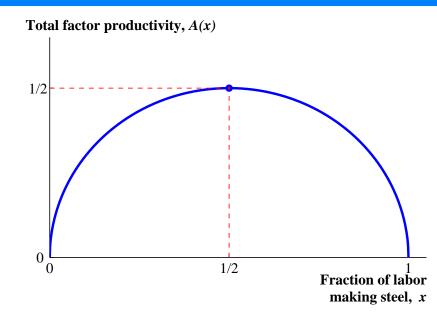
 $x \equiv L_{steel}/\bar{L}$ denotes the allocation (markets, distortions, central planner, etc).

Then GDP and TFP are

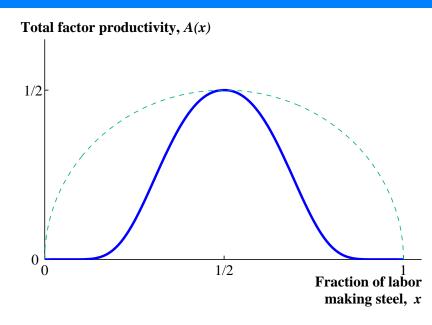
$$Y = A(x)\overline{L}$$

$$A(x) = \sqrt{x(1-x)}$$

Misallocation Reduces TFP



An Alternative View of Misallocation



Remarks

Advantages of "Alternative View"

- Intermediate degrees of misallocation can have large effects
- In a poor country, small improvements in the allocation may have small effects: growth miracles are hard.

What models deliver this "alternative view"?

- O-ring complementarity of Kremer (1993)?
- Others?

Simple example misleads on one key point

- Misallocation may not only be across sectors
- Within sector?
- Within firms and plants?

2. Misallocation of Ideas?

Romer (1990) variety framework

- Romer (1994) suggests effects can be large
- But not so when goods are highly substitutable
- Broda and Weinstein (2006): Gains from new varieties imported into the U.S. between 1972 and 2001 only 2.6% of GDP.

Is a different approach needed?

Quality ladders, a la Aghion-Howitt?

3. Key Questions

What is the nature of misallocation?

- Within sector? Between sectors? Within firms?
- Ideas?

Why is there misallocation?

- Active literature on political economy and growth
- Acemoglu, Johnson, and Robinson (2005)
- "Alternative view" of misallocation may help...

How does misallocation lead to 50-fold income differences?

- Amplification question.
- Significant in business cycle models; much more needed in growth!

II. Input-Output Economics: Overview

A Brief History of the Growth Literature

Capital multiplier: more $K \rightarrow$ more $Y \rightarrow$ more K, etc.

- Multiplier is $1 + \alpha + \alpha^2 + ... = \frac{1}{1-\alpha} = 3/2$ if $\alpha = 1/3$.
- Mankiw, Romer, and Weil (1992): This is too small...

A Brief History of the Growth Literature

Capital multiplier: more $K \rightarrow \text{more } Y \rightarrow \text{more } K$, etc.

- Multiplier is $1 + \alpha + \alpha^2 + ... = \frac{1}{1-\alpha} = 3/2$ if $\alpha = 1/3$.
- Mankiw, Romer, and Weil (1992): This is too small...

Broaden capital: Need $\alpha = 2/3 \Rightarrow$ **multiplier = 3**

human capital	Mankiw, Romer, and Weil (1992)
organizational capital	Chari, Kehoe, and McGrattan (1997)
ideas	Howitt (2000), Klenow/Rodriguez (2005)
human capital	Manuelli/Seshadri (05), Erosa et al (06)

A Brief History of the Growth Literature

Capital multiplier: more $K \rightarrow \text{more } Y \rightarrow \text{more } K$, etc.

- Multiplier is $1 + \alpha + \alpha^2 + ... = \frac{1}{1-\alpha} = 3/2$ if $\alpha = 1/3$.
- Mankiw, Romer, and Weil (1992): This is too small...

Broaden capital: Need $\alpha = 2/3 \Rightarrow$ **multiplier = 3**

	N. 11 D 1777 11 (1000)
human capital	Mankiw, Romer, and Weil (1992)
organizational capital	Chari, Kehoe, and McGrattan (1997)
ideas	Howitt (2000), Klenow/Rodriguez (2005)
human capital	Manuelli/Seshadri (05), Erosa et al (06)

Intermediate goods are another possibility!

- Very similar to capital, only depreciate fully in production
- Easily measured, share of gross output is large
- Ciccone (2002), Yi (2003)

A Simple Example

Gross output and intermediate goods

$$Q_{t} = \bar{A} \left(K_{t}^{\alpha} L_{t}^{1-\alpha} \right)^{1-\sigma} X_{t}^{\sigma}$$
$$X_{t+1} = \bar{x} Q_{t}$$

• GDP is $Y_t \equiv (1 - \bar{x})Q_t$. In steady state:

$$Y = \text{TFP} \cdot K^{\alpha} L^{1-\alpha}$$

$$\text{TFP} \equiv (\bar{A}\bar{x}^{\sigma}(1-\bar{x})^{1-\sigma})^{\frac{1}{1-\sigma}}$$

With capital accumulation...

• A constant fraction \bar{s} of GDP is invested:

$$K_{t+1} = \bar{s}Y_t + (1 - \delta)K_t$$

GDP per worker in steady state is

$$y^* \equiv \frac{Y}{L} = \left(\bar{A}\bar{x}^{\sigma}(1-\bar{x})^{1-\sigma} \left(\frac{\bar{s}}{\delta}\right)^{\alpha(1-\sigma)}\right)^{\frac{1}{(1-\alpha)(1-\sigma)}}$$

Remarks

The effects of misallocation and differences in \vec{A} are multiplied:

- A 1% increase in A raises output by more than 1% because of the multiplier $\frac{1}{(1-\alpha)(1-\sigma)}$
- With no intermediate goods, just the standard $\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + \dots$
- With intermediate goods, an additional effect from the induced production of intermediates, so multiplier is larger.
- Can be written as $\frac{1}{1-\beta}$, where $\beta \equiv \sigma + \alpha(1-\sigma)$ is the total factor share of produced goods

Quantitatively significant

- Standard values: $\alpha = 1/3$, $\sigma = 1/2$
- Share of produced goods: $\beta = \sigma + \alpha(1 \sigma) = 2/3$
- Total multiplier: $\frac{1}{(1-\alpha)(1-\sigma)} = 3$

Input-Output Economics: Model

Is the multiplier effect diluted by a realistic I-O structure?

Economic Environment: N sectors

$$Q_{i} = A \cdot A_{i} \left(K_{i}^{\alpha_{i}} H_{i}^{1-\alpha_{i}} \right)^{1-\sigma_{i}-\lambda_{i}} \underbrace{d_{i1}^{\sigma_{i1}} d_{i2}^{\sigma_{i2}} \cdot \ldots \cdot d_{iN}^{\sigma_{iN}}}_{\text{domestic IG}} \underbrace{m_{i1}^{\lambda_{i1}} m_{i2}^{\lambda_{i2}} \cdot \ldots \cdot m_{iN}^{\lambda_{iN}}}_{\text{imported IG}}$$

Resource constraint (j):
$$c_j + \sum_{i=1}^N d_{ij} = Q_j$$

Aggregation:
$$Y = c_1^{\beta_1} \cdot ... \cdot c_N^{\beta_N}$$

Resource constraint:
$$C + X = Y$$

Physical capital:
$$\sum_{i=1}^{N} K_i = K$$
 given

Human capital:
$$\sum_{i=1}^{N} H_i = H$$
 given

Balanced trade:
$$\bar{P}X = \sum_{i=1}^{N} \sum_{j=1}^{N} \bar{p}_{j} m_{ij}$$

Equilibrium with Misallocation

Allocation of Resources: A standard competitive equilibrium, where some heterogeneous fraction τ_i of firm i's output is expropriated.

- Could be a tax.
- Could also be theft, regulations, special relationships, etc.
- A more general model could allow input-specific distortions at the firm level as well.
- To keep presentation short, I omit a formal definition of equilibrium (see paper).

Proposition 1 (Solution for *Y* and *C*)

In the competitive equilibrium with misallocation, the solution for total production of the aggregate final good is

$$Y = A^{\tilde{\mu}} K^{\tilde{\alpha}} H^{1-\tilde{\alpha}} \epsilon$$

where

$$\mu' \equiv \frac{\beta'(I-B)^{-1}}{1-\beta'(I-B)^{-1}\lambda}$$
 ($N \times 1$ vector of multipliers)
 $\tilde{\mu} \equiv \mu' \mathbf{1}$
 $\log \epsilon \equiv \omega + \mu' \tilde{A}$, where $\tilde{A}_i \equiv A_i (1 - \tau_i)$.

Understanding the Key Multiplier, $\tilde{\mu}$

$$\mu' \equiv \frac{\beta'(I-B)^{-1}}{1-\beta'(I-B)^{-1}\lambda}$$

The matrix $L \equiv (I - B)^{-1}$ is known as the Leontief inverse.

- *I* is the $N \times N$ identity matrix
- B is the $N \times N$ input-output matrix, with typical element σ_{ij}
- Let ℓ_{ii} denote the typical element of L
- Then a 1% increase in A_i raises output in sector i by ℓ_{ij} %

Then $\beta'(I-B)^{-1}$ just adds up these effects across all sectors

- Weight by value-added
- Typical element reveals the effect of sector *j* on GDP.

Finally $\tilde{\mu} \equiv \mu' \mathbf{1}$

• This reveals the effect on GDP if economy-wide productivity rises by 1%.

Proposition 2 (Multiplier in a special case)

• Assume each sector has the same total exponent on intermediate goods (though composition can vary):

$$\sigma_i \equiv \sum_{j=1}^N \sigma_{ij} = \hat{\sigma}$$
 and $\lambda_i \equiv \sum_{j=1}^N \lambda_{ij} = \hat{\lambda}$ for all i .

- Define $\bar{\sigma} \equiv \hat{\sigma} + \hat{\lambda} < 1$ to be the total intermediate goods share.
- Then,

$$\frac{\partial \log Y}{\partial \log A} = \mu' \mathbf{1} = \frac{\beta' (I-B)^{-1} \mathbf{1}}{1-\beta' (I-B)^{-1} \lambda} = \frac{1}{1-\bar{\sigma}}.$$

Proposition 3 (Symmetry and Distortions)

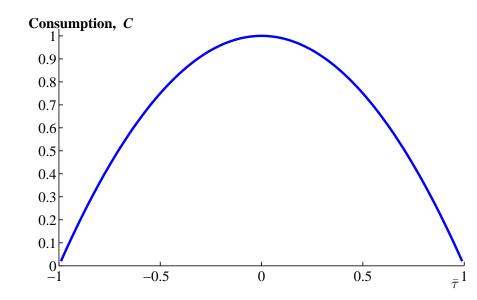
• Suppose all parameters are identical across sectors:

$$\sigma_{ij} = \hat{\sigma}/N$$
, $\lambda_{ij} = \hat{\lambda}/N$, $\beta_i = 1/N$, and $\tau_i = \bar{\tau}$

- Define $\bar{\sigma} \equiv \hat{\sigma} + \hat{\lambda} < 1$ to be the total intermediate goods share.
- Then,

$$\log C = \text{Constant} + \frac{\bar{\sigma}}{1 - \bar{\sigma}} \log(1 - \bar{\tau}) + \log(1 - \bar{\sigma}(1 - \bar{\tau}))$$

Consumption vs. $\bar{\tau}$ with $\bar{\sigma} = 1/2$



Proposition 4 (Symmetry with Random Distortions)

Suppose all parameters are identical across sectors:

$$\sigma_{ij} = \hat{\sigma}/N$$
, $\lambda_{ij} = \hat{\lambda}/N$, and $\beta_i = 1/N$

- Define $\bar{\sigma} \equiv \hat{\sigma} + \hat{\lambda} < 1$ to be the total intermediate goods share.
- Assume $\log(1-\tau_i) \sim N(\theta, v^2)$ and let $1-\bar{\tau} \equiv e^{\theta+\frac{1}{2}v^2}$ reflect the average distortion.
- Then,

$$\operatorname{plim} \log C = \tfrac{\bar{\sigma}}{1 - \bar{\sigma}} \cdot (1 - \bar{\tau}) + \log \left(1 - \bar{\sigma}(1 - \bar{\tau})\right) - \tfrac{1}{1 - \bar{\sigma}} \cdot \tfrac{1}{2} \cdot v^2$$

Summary

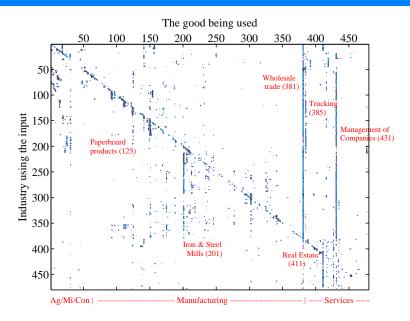
Key Result: The input-output structure of the economy multiplies the effects of distortions.

- Closely related to the Diamond-Mirrlees result about not taxing intermediate goods.
- It would be nice to derive a result for log-normal distortions in the general input-output model, but I have not been able to do so thusfar.
- The multiplier $\tilde{\mu}$ surely plays a key role.

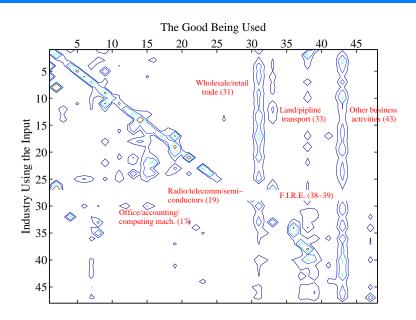
III. Input-Output Economics: Data

The empirical version of the point that $\tilde{\mu} \approx \frac{1}{1-\bar{\sigma}}$

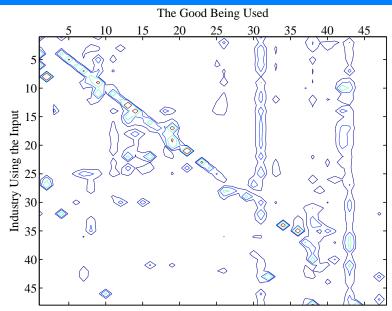
The U.S. Input-Output Matrix, 480 Industries



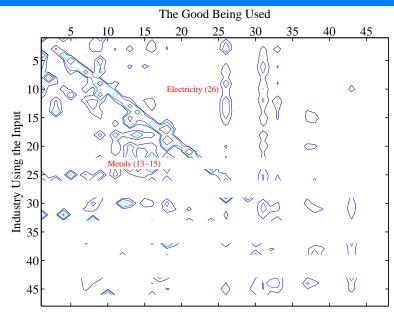
The U.S. Input-Output Matrix, 48 Industries



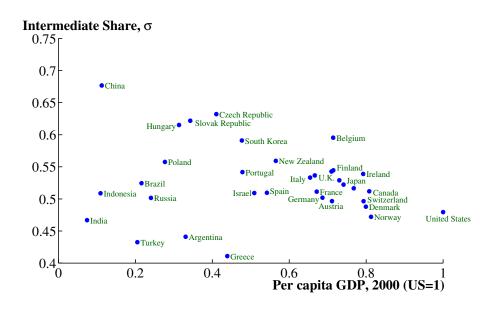
Japan's Input-Output Matrix, 48 Industries



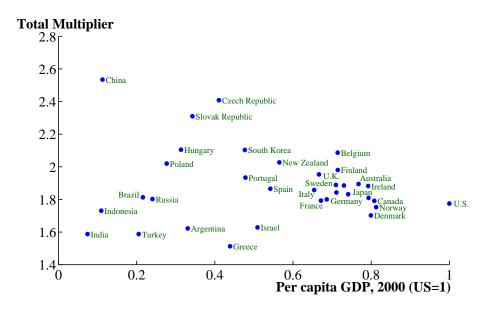
China's Input-Output Matrix, 48 Industries



The Intermediate Goods Share across Countries



The Multiplier, $\tilde{\mu}$, from 48 Industries



Conclusions

Input-Output Data

- The simple $1/1 \sigma$ formula works remarkably well.
- Input-output matrices are surprisingly similar across countries.

Input-Output Models

- The input-output structure of an economy has the potential to substantially amplify the effect of distortions.
- If 1/2 of output gets stolen at each stage of production, then the effect on final GDP is much larger: 1/2 of the steel is lost, 1/2 of the cars are lost, and 1/2 of the pizzas are lost so the steel is essentially stolen three times!

Misallocation

- Intermediate goods are misallocated, just like capital and labor.
- Would be valuable to redo the Hsieh-Klenow (2009) exercise taking this into account.