

Artificial Intelligence and Economic Growth

P. Aghion, B. Jones, and C. Jones

in Agrawal et al The Economics of Artificial Intelligence, 2019

What are the implications of A.I. for economic growth?

- Build some growth models with A.I.
 - A.I. helps to make goods
 - o A.I. helps to make ideas
- Implications
 - Long-run growth
 - Share of GDP paid to labor vs capital
 - o Firms and organizations
- Singularity?

Two Main Themes

- A.I. modeled as a continuation of automation
 - Automation = replace labor in particular tasks with machines and algorithms
 - Past: textile looms, steam engines, electric power, computers
 - Future: driverless cars, paralegals, pathologists, maybe researchers, maybe everyone?
- A.I. may be limited by Baumol's cost disease
 - Baumol: growth constrained not by what we do well but rather by what is essential and yet hard to improve

Outline

• Basic model: automating tasks in production

• A.I. and the production of new ideas

• Singularity?

Some facts

The Zeira 1998 Model

Simple Model of Automation (Zeira 1998)

Production uses n tasks/goods:

$$Y = AX_1^{\alpha_1}X_2^{\alpha_2} \cdot \ldots \cdot X_n^{\alpha_n},$$

where $\sum_{i=1}^{n} \alpha_i = 1$ and

$$X_{it} = egin{cases} L_{it} & ext{if not automated} \ K_{it} & ext{if automated} \end{cases}$$

Substituting gives

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

- Comments:
 - \circ α reflects the *fraction* of tasks that are automated
 - Embed in neoclassical growth model ⇒

$$g_y = \frac{g_A}{1-\alpha}$$
 where $y_t \equiv Y_t/L_t$

- Automation: $\uparrow \alpha$ raises both capital share and LR growth
 - Hard to reconcile with 20th century
 - Substantial automation but stable growth and capital shares

Subsequent Work

- Acemoglu and Restrepo (2017, 2018, 2019, 2020, 2021, ...)
 - Old tasks are gradually automated as new (labor) tasks are created
 - Fraction automated can then be steady
 - Rich framework, with endogenous innovation and automation, all cases worked out in great detail
- Peretto and Seater (2013), Hemous and Olson (2016), Agrawal, McHale, and Oettl (2017)

В

Automation and Baumol's Cost Disease

Baumol's Cost Disease and the Kaldor Facts

- Baumol: Agriculture and manufacturing have rapid growth and declining shares of GDP
 - ... but also rising automation
- Aggregate capital share could reflect a balance
 - Rises within agriculture and manufacturing
 - But falls as these sectors decline
- Maybe this is a general feature of the economy!
 - First agriculture, then manufacturing, then services

AJJ Economic Environment

Final good	$Y_t = \left(\int_0^1 X_{it}^{rac{\sigma-1}{\sigma}} di ight)^{rac{\sigma}{\sigma-1}}$ where $\sigma < 1$
Tasks	$X_{it} = egin{cases} K_{it} & ext{ if automated } i \in [0, eta_t] \ L_{it} & ext{ if not automated } i \in [eta_t, 1] \end{cases}$
Capital accumulation	$\dot{K}_t = I_t - \delta K_t$
Resource constraint (K)	$\int_0^1 K_{it} di = K_t$
Resource constraint (L)	$\int_0^1 L_{it} di = L$
Resource constraint (Y)	$Y_t = Cons_t + I_t$
Allocation	$I_t = \bar{s}_K Y_t$

Automation and growth

Combining equations

$$Y_t = \left[\beta_t \left(\frac{K_t}{\beta_t}\right)^{\frac{\sigma-1}{\sigma}} + (1-\beta_t) \left(\frac{L}{1-\beta_t}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

- How β interacts with K: two effects
 - β: what fraction of tasks have been automated
 - \circ β: Dilution as $K/β \Rightarrow K$ spread over more tasks
- Same for labor: $L/(1-\beta_t)$ means given L concentrated on fewer tasks, raising "effective labor"

Rewriting in classic CES form

• Collecting the β terms into factor-augmenting form:

$$Y_t = F(B_t K_t, C_t L_t)$$

where

$$B_t = \left(rac{1}{eta_t}
ight)^{rac{1}{1-\sigma}} \; ext{ and } \; C_t = \left(rac{1}{1-eta_t}
ight)^{rac{1}{1-\sigma}}$$

• Effect of automation: $\uparrow \beta_t \Rightarrow \downarrow B_t$ and $\uparrow C_t$

Intuition: dilution effects just get magnified since $\sigma < 1$

Automation

• Suppose a constant fraction of non-automated tasks get automated every period:

$$\dot{\beta}_t = \theta(1 - \beta_t)$$

$$\Rightarrow \beta_t \to 1$$

• What happens to $1 - \beta_t =: m_t$?

$$\frac{\dot{m}_t}{m_t} = -\theta$$

The fraction of labor-tasks falls at a constant exponential rate

Putting it all together

$$Y_t = F(B_t K_t, C_t L_t)$$
 where $B_t = \left(rac{1}{eta_t}
ight)^{rac{1}{1-\sigma}}$ and $C_t = \left(rac{1}{1-eta_t}
ight)^{rac{1}{1-\sigma}}$

- $\beta_t \to 1 \Rightarrow B_t \to 1$
- But C_t grows at a constant exponential rate!

$$\frac{\dot{C}_t}{C_t} = -\frac{1}{1-\sigma} \frac{\dot{m}_t}{m_t} = \frac{\theta}{1-\sigma}$$

• When a constant fraction of remaining goods get automated and $\sigma < 1$, the automation model features an asymptotic BGP that satisfies Uzawa

Factor Shares of Income

Ratio of capital share to labor share:

$$\frac{\alpha_{K_t}}{\alpha_{L_t}} = \left(\frac{\beta_t}{1 - \beta_t}\right)^{1/\sigma} \left(\frac{K_t}{L_t}\right)^{\frac{\sigma - 1}{\sigma}}$$

- Two offsetting effects (σ < 1):
 - $\circ \uparrow \beta_t$ raises the capital share
 - $\circ \uparrow K_t/L_t$ lowers the capital share

These balance and deliver constant factor shares in the limit

$$\alpha_{Kt} \equiv \frac{F_K K}{Y} = \beta_t^{\frac{1}{\sigma}} \left(\frac{K_t}{Y_t}\right)^{\frac{\sigma - 1}{\sigma}} \to \left(\frac{\bar{s}_K}{g_Y + \delta}\right)^{\frac{\sigma - 1}{\sigma}} < 1$$

Intuition for AJJ result

- Why does automation lead to balanced growth and satisfy Uzawa?
 - \circ $\beta_t \to 1$ so the KATC piece "ends" eventually (all tasks automated)
 - Labor per task: $L/(1-\beta_t)$ rises exponentially over time!
 - Constant population, but concentrated on an exponentially shrinking set of goods
 exponential growth in "effective" labor
- Baumol logic
 - Agr/Mfg shrink as a share of the economy...
 - Labor still gets 2/3 of GDP! Vanishing share of tasks, but all else is cheap (Baumol)

Interesting question: What fraction of tasks automated today? β_{2022} (B. Jones and X. Liu 2022 on capital-embodied technical change)

Simulation: Automation and Asymptotic Balanced Growth

Simulation: Capital Share and Automation Fraction

Constant Factor Shares?

- Consider $g_A > 0$ technical change beyond just automation
- Alternatively, factor shares can be constant if automation follows

$$g_{\beta t} = (1 - \beta_t) \left(\frac{-\rho}{1 - \rho}\right) g_{kt},$$

- Knife-edge condition...
- Surprise: growth rates increase not decrease. Why? Requires

$$g_{Yt} = g_A + \beta_t g_{Kt}.$$

• $g_A = 0$ means zero growth. $g_A > 0$ means growth rises

Simulation: Constant Capital Share

Simulation: Constant Capital Share

Simulation: Switching regimes...

Simulation: Switching regimes...

A.I. and Ideas

Al in the Ideas Production Function

- Let production of goods and services be $Y_t = A_t L_t$
- Let idea production be:

$$\dot{A}_t = A_t^{\phi} \left(\int_0^1 X_{it}^{\frac{\sigma - 1}{\sigma}} di \right)^{\frac{\sigma}{\sigma - 1}}, \ \sigma < 1$$

• Assume fraction β_t of tasks are automated by date t. Then:

$$\dot{A}_t = A_t^{\phi} F(B_t K_t, C_t S_t)$$

where

$$B_t = \left(rac{1}{eta_t}
ight)^{rac{1}{1-\sigma}} \; ext{ and } \; C_t = \left(rac{1}{1-eta_t}
ight)^{rac{1}{1-\sigma}}$$

This is like before...

Al in the Ideas Production Function

• Intuition: with $\sigma < 1$ the scarce factor comes to dominate

$$F(B_tK_t, C_tS_t) = C_tS_tF\left(\frac{B_tK_t}{C_tS_t}, 1\right) \to C_tS_t$$

So, with continuous automation

$$\dot{A}_t \to A_t^{\phi} C_t S_t$$

And asymptotic balanced growth path becomes

$$g_A = \frac{g_C + g_S}{1 - \phi}$$

We get a "boost" from continued automation (g_C)

Can automation replace population growth?

- Maybe! Suppose S is constant, $g_S = 0$
 - Intuition: Fixed S is spread among exponentially-declining measure of tasks
 - So researchers per task is growing exponentially!
- However
 - This setup takes automation as exogenous and at "just the right rate"
 - What if automation is endogenized?
 - Is population growth required to drive automation?
 - o Could a smart/growing AI entirely replace humans?

Singularities

Singularities

- Now we become more radical and consider what happens when we go "all the way" and allow AI to take over all tasks.
- Example 1: Complete automation of goods and services production.

$$Y_t = A_t K_t$$

 \rightarrow Then growth rate can accelerate exponentially

$$g_Y = g_A + sA_t - \delta$$

we call this a "Type I" growth explosion

Singularities: Example 2

Complete automation in ideas production function

$$\dot{A}_t = K_t A_t^{\phi}$$

Intuitively, this idea production function acts like

$$\dot{A}_t = A_t^{1+\phi}$$

Solution:

$$A_t = \left(\frac{1}{A_0^{-\phi} - \phi t}\right)^{1/\phi}$$

• Thus we can have a true **singularity** for $\phi > 0$. A_t exceeds any finite value before date $t^* = \frac{1}{\phi A_s^{\phi}}$.

Singularities: Example 3 – Incomplete Automation

• Cobb-Douglas, α and β are fraction automated, S constant

$$\dot{K}_t = \bar{s}L^{1-\alpha}A_t^{\sigma}K_t^{\alpha} - \delta K_t.$$

$$\dot{A}_t = K_t^{\beta} S^{\lambda} A_t^{\phi}$$

• Standard endogenous growth requires $\gamma = 1$:

$$\gamma := \frac{\sigma}{1 - \alpha} \cdot \frac{\beta}{1 - \phi}.$$

- If $\gamma > 1$, then growth explodes!
 - Can occur without full automation
 - Example: $\alpha = \beta = \phi = 1/2$ and $\sigma > 1/2$.

Objections to singularities

- **1** Automation limits (no $\beta_t \rightarrow 1$)
- 2 Search limits

$$\dot{A}_t = A_t^{1+\phi}$$
 or even $A_t \leq \bar{A}$

but $\phi < 0$ (e.g., fishing out, burden of knowledge...)

Ostal Laws

$$Y_t = \left(\int_0^1 (a_{it}Y_{it})^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}}$$
 where $\sigma < 1$

now can have $a_{it} \to \infty$ for many tasks but no singularity

 Baumol theme: growth determined not by what we are good at, but by what is essential yet hard to improve

Final Thoughts

Conclusion: A.I. in the Production of Goods and Services

- Introduced Baumol's "cost disease" insight into Zeira's model of automation
 - Automation can act like labor augmenting technology (surprise!)
 - Can get balanced growth with a constant capital share well below 100%, even with nearly full automation

Conclusion: A.I. in the Ideas Production Function

- Could A.I. obviate the role of population growth in generating exponential growth?
- Discussed possibility that A.I. could generate a singularity
 - Derived conditions under which the economy can achieve infinite income in finite time
- Discussed obstacles to such events
 - Automation limits, search limits, and/or natural laws (among others)

Extra Slides

Some Facts

Capital Share of Income: Transportation Equipment

Adoption of Robots and Change in Capital Share

Al, Organizations, and Wage Inequality

- Usual story: robots replace low-skill labor, hence ↑ skill premium (e.g., Krusell et al. 2000)
- But solving future problems, incl. advancing AI, might be increasingly hard, suggesting

 complementarities across workers,

 teamwork, and changing firm boundaries (Garicano 2000, Jones 2009)
- Aghion et al. (2017) find evidence along these lines
 - outsouce higher fraction of low-skill workers
 - pay increased premium to low-skill workers kept

Al, Organizations, and Wage Inequality

AI, Skills, and Wage Inequality

