

Population and Welfare:

The Greatest Good for the Greatest Number

Pete Klenow, Chad Jones, Mark Bils, and Mohamad Adhami

Swan Lecture – August 2023 Econometric Society 2023 Australasia Meeting

Motivation

- Economic growth is typically measured in per capita terms
 - Puts zero weight on having more people extreme!
- *Hypothetical:* Two countries with same TFP_t . One has constant N but rising c, the other has constant c but rising N.
 - Example: Japan is 6x richer p.c. than in 1960, while Mexico is 3x richer
 But Mexico's population is 3x larger than in 1960 vs. 1.3x for Japan
 - Example: Population growth over thousands of years

Key Question:

How much has population growth contributed to aggregate welfare growth?

Examples of how this could be useful

- The Black Death, HIV/AIDS, or Covid-19
- China's one-child policy
- What fraction of GDP should we spend to mitigate climate change in 2100?
 - How many people today versus in the year 2100?

- How much to spend to avoid existential risks (asteroids, nuclear war)?
 - Many billions of people-years in the future

What we're not doing

- We use the MRS in aggregate welfare between people N and per capita c
- Answering other key questions would require the social MRT from the production side (externalities from ideas, human capital, pollution)
 - Optimal fertility?
 - Was the demographic transition good or bad?
- Our approach is just accounting with total welfare need fewer assumptions

Outline

- Part I. Baseline calculation with only population and consumption
- Part II. Adjusting for migration (who gets credit?)
- Part III. Incorporating parental altruism and endogenous fertility

Part I. Baseline calculation with only population and consumption

Flow Aggregate Welfare

- Setup
 - \circ c_t consumption per person
 - $u(c_t) \ge 0$ is flow of utility enjoyed by each person
 - N_t identical people
- Summing over people ⇒ aggregate utility flow

$$W(N_t, c_t) = N_t \cdot u(c_t)$$

- Non-existence is valued at zero
- Assumes "utility when not born" = "utility when dead"

7

Total utilitarianism

- Critiques
 - Repugnant conclusion (Parfit, 1984)
 - Inalienable rights
- Versus per capita utilitarianism
 - o e.g. Jones and Klenow (2016)
 - Sadistic conclusion
- Zuber et al. (2020), De la Croix and Doepke (2021), MacAskill (2022)

Growth in consumption-equivalent aggregate welfare

$$\frac{dW_t}{W_t} = \frac{dN_t}{N_t} + \frac{u'(c_t)c_t}{u(c_t)} \cdot \frac{dc_t}{c_t}$$

$$\underbrace{\frac{u(c_t)}{u'(c_t)c_t} \cdot \frac{dW_t}{W_t}}_{\text{CE-Welfare growth}} = \underbrace{\frac{u(c_t)}{u'(c_t)c_t} \cdot \frac{dN_t}{N_t}}_{\text{U}(c_t)c_t} + \frac{dc_t}{c_t}$$

- v(c) = value of having one more person live for a year
 - expressed relative to one year of per capita consumption
- \circ 1 pp of population growth is worth v(c) pp of consumption growth

9

Calibrating v(c) in the U.S. in 2006

Using the EPA's VSL of \$7.4m in 2006:

$$v(c) \equiv \frac{u(c)}{u'(c) \cdot c} = \frac{\mathsf{VSLY}}{c} \approx \frac{\mathsf{VSL}/e_{40}}{c} \approx \frac{\$7,400,000/40}{\$38,000} = \frac{\$185,000}{\$38,000} \approx 4.87$$

 \circ 1 pp population growth is worth \sim 5 pp consumption growth

Measuring v(c) in other years and countries

• Baseline: Assume $u(c) = \bar{u} + \log c$

$$v(c) \equiv \frac{u(c)}{u'(c) \cdot c} = u(c) = \bar{u} + \log c$$

Higher consumption raises the value of a year of life

- Calibration:
 - Normalize units so that $c_{2006, US} = 1$
 - Then $v(c_{2006, US}) = 4.87$ implies $\bar{u} = 4.87$

11

v(c) over time in the U.S.

v(c) across countries in 2019

Recap

$$g_{\lambda} = v(c) \cdot g_N + g_c$$

 λ is consumption-equivalent welfare

 g_N is population growth

 g_c is the growth rate of per capita consumption

- \circ If v(c) = 1, then CE-Welfare growth is just aggregate consumption growth
- \circ But v(c) = 3 or 5 implies much larger weight on population growth

14

Baseline samples

Penn World Tables 10.0

Years	# of OECD countries	# of non-OECD countries		
1960-2019	38	63		

Maddison (2020), BEA, Barro and Ursua (2008)

Years	Sample
1840-2018	United States
1850-2018	The "West"
1500-2018	The World

Overview of baseline results for 101 countries from 1960 to 2019

Average $g_c = 2.1\%$ and average $g_N = 1.8\%$ across the 101 countries

	Baseline	— Robus	stness —
	$\bar{u} = 4.87$	$\bar{u} = 4.44$	$\bar{u}=6.16$
CE-Welfare Growth	6.2%	5.4%	8.5%
Contribution of population	4.1%	3.3%	6.4%
Average value of life $v(c)$	2.7	2.3	4.0
Pop Share of CE-Welfare Growth	66%	63%	73%
Pop Share (if weight by population)	51%	46%	62%
# of countries with pop share $\geq 50\%$	78	69	89

Decomposing welfare growth in select countries, 1960–2019

	g_{λ}	g_c	g_N	v(c)	$v(c) \cdot g_N$	Pop Share
Mexico	8.6	1.8	2.1	3.4	6.8	79%
Brazil	7.9	3.1	1.8	2.8	4.8	61%
South Africa	7.9	1.4	2.1	3.1	6.4	82%
United States	6.5	2.2	1.0	4.4	4.3	66%
China	5.7	3.8	1.3	1.8	2.0	34%
India	5.3	2.6	1.9	1.6	2.8	52%
Japan	4.9	3.2	0.5	3.8	1.7	34%
Ethiopia	4.4	2.5	2.7	0.7	1.9	44%
Germany	3.8	2.9	0.2	4.0	0.8	22%

Average CE welfare growth for select countries, 1960–2019

Some big differences in percentiles, 1960–2019 growth

Average CE welfare growth by region, 1960–2019

Plot of CE-Welfare growth against consumption growth, 1960-2019

Robustness to constant v(c) = 2.7, **1960–2019**

Scatterplot with constant v(c) = 2.7, 1960-2019

Average annual growth in Japan

Average annual growth in China

Average annual growth in Sub-Saharan Africa

v(c) for different values of γ

Weight on population growth is very high, either in past or future or both!

Robustness to alternative values of γ

	$\gamma = 1$	$\gamma=2$	$\gamma = 0.794$
CE-Welfare Growth	6.2%	4.2%	10.9%
Contribution of population	4.1%	2.1%	8.8%
Average value of life $v(c)$	2.7	1.3	4.9
Pop Share of CE-Welfare Growth	66%	53%	76%
Pop Share (if weight by population)	51%	40%	70%
# of countries with pop share $\geq 50\%$	78	47	90

Notes: In our calibration, when $\gamma=0.794,\,v=4.87$ for all country-years.

Part II. Adjusting for migration

Aggregation to deal with immigration

- Should countries receive "credit" for population growth from immigration?
- Affects the Western Hemisphere vs. Europe in past century-plus
- Looking at "The West" as a whole should mitigate this problem
 - Includes Western Europe, U.S., Canada, Australia, New Zealand

We do so back to 1820 to encompass the Age of Mass Migration

Cumulative growth in "The West", 1820-2018

West CE-Welfare growth over the long run, 1820-2018

World CE-Welfare growth over the long run, 1500-2018

World cumulative growth, 1500-2018

Growth in country welfare adjusted for migration

- Who should receive "credit" for population growth from immigration?
- Our baseline credits all immigrants to destination country
- Migration adjustment credits them to source country instead

Countries for which in-migration biases our baseline upward

Countries for which out-migration biases our baseline downward

Part III. Parental altruism and endogenous fertility *a la* Barro-Becker (1989)

Parental altruism and fertility

- Parents have kids because they love them missing in our baseline
 - Account for reduced fertility on parental welfare (Cordoba, 2015)
- But falling fertility may be compensated by higher per capita utility:
 - Quantity / quality trade-off ⇒ fewer but "better" kids
- Accordingly, extend framework to incorporate:
 - Broader measure of flow utility, including quantity/quality of kids
 - Privately optimal fertility, consumption, and time use by parents

Flow aggregate welfare

$$W(N_t^p, \, N_t^k, \, c_t, \, l_t, \, c_t^k, \, h_t^k, \, b_t) \; = \; N_t^p \cdot u(c_t, \, l_t, \, c_t^k, \, h_t^k, \, b_t) + N_t^k \cdot \widetilde{u}(c_t^k)$$

- N^p = number of adults
- N^k = number of children
- b = number of children per adult

$$\implies N = N^p + N^k = (1+b) \cdot N^p$$

- *c* = adult consumption
- *l* = adult leisure
- c^k = child consumption
- h^k = child human capital

Double counting kids' consumption downweights all non-consumption terms

Parental utility maximization problem

$$\max_{c,\ l,\ c^k,\ h^k,\ b} u(c_t,\ l_t,\ c^k_t,\ h^k_t,\ b_t)$$
 subject to: $c_t + b_t \cdot c^k_t \leq w_t \cdot h_t \cdot l_{ct}$
$$h^k_t = f_t(h_t \cdot e_t) \quad \text{and} \quad l_{ct} + l_t + b_t \cdot e_t \leq 1$$

- w = wage per unit of human capital
- h =parental human capital, equals inherited h^k
- l_c = parental hours worked
- e = parental time investment per child

Data to implement generalized growth accounting

- To implement calculation need series for:
 - # Children = 0-19 years old
 - # Adults = 20+ years old
 - \circ $b_t =$ Children / Adults

- l_{ct} = paid work
- o $b_t e_t$ = total child care
- o l_t = 16 hrs $-l_{ct}-b_t \cdot e_t$
- Childcare from time use is main data constraint, restrict to 6 countries:
 - o US (2003–2019)
 - Netherlands (1975–2006)
 - Japan (1991–2016)

- South Korea (1999–2019)
- Mexico (2006–2019)
- South Africa (2000-2010)
- Additional data sources: PWT for per capita consumption and average market hours worked for ages 20-64, World Bank for population by age group

CEW Growth: Macro vs Micro

	——— MACRO ———			MICRO						
	CEW	pop	cons	CEW	pop	cons	leisure	quality	quantity	
	growth	term	term	growth	term	term	term	term	term	
USA	5.4	3.9	1.5	5.0	3.2	1.5	0.1	0.5	-0.3	
NLD	4.5	2.5	2.1	4.3	2.0	2.1	0	0.7	-0.4	
JPN	2.3	0.4	1.9	2.2	0.3	1.9	0	0.3	-0.4	
KOR	4.4	1.7	2.6	4.7	1.5	2.6	0.6	0.7	-0.8	
MEX	6.5	4.9	1.6	4.4	3.8	1.6	-0.3	0.2	-0.8	
ZAF	6.8	4.3	2.6	6.4	3.3	2.6	1	0.6	-1	

Share of population in CEW growth: Macro vs Micro

	MACRO		MICRO					
		Baseline	Robustness					
			Larger θ	Smaller θ	Larger v_k	Smaller v_k		
USA	72%	65%	66%	63%	65%	64%		
NLD	54%	46%	47%	44%	44%	47%		
JPN	16%	13%	15%	11%	2%	22%		
KOR	40%	32%	34%	30%	26%	37%		
MEX	76%	87%	89%	84%	86%	87%		
ZAF	63%	52%	54%	51%	51%	54%		

Tentative Conclusions

- Population growth contributes 1/2 to 2/3 of growth in country welfare
 - Complementary perspective to per capita consumption growth
- Because consumption runs into diminishing returns, each additional point of population growth is worth ...
 - 5pp of consumption growth in rich countries today
 - an average of 2.7pp for the world as a whole
- Results are robust to adjusting for migration and incorporating parent utility from children and privately optimal fertility choices