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Abstract

During the Covid-19 pandemic, the United States effectively “spent” about 4

percent of GDP — via reduced economic activity — to address a mortality risk of

roughly 0.3 percent. Many experts believe that catastrophic risks from advanced

A.I. over the next decade are at least this large, suggesting that a comparable miti-

gation investment could be worthwhile. Existing lives are valued by policymakers

at around $10 million each in the United States. To avoid a 1% mortality risk, this

value implies a willingness to pay of $100,000 per person — more than 100% of per

capita GDP. If the risk is realized over the next two decades, an annual investment of

5% of GDP toward mitigating catastrophic risk could be justified, depending on the

effectivess of such investment. This back-of-the-envelope intuition is supported

by the model developed here. For example, it is optimal to invest at least 1% of

GDP annually to mitigate A.I. risk in most of the scenarios considered, even without

placing any value on the welfare of future generations.

*I am grateful to Maya Eden, Tom Houlden, Matt Kahn, Anton Korinek, Toby Ord, Phil Trammell, and
to participants at the Economics of Transformative AI conference for helpful feedback and suggestions.
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1. Introduction

The rise of artificial intelligence (A.I.) in recent years is breathtaking, and the pace of

progress shows little sign of slowing.1 Experts including Sam Altman, Dario Amodei,

Demis Hassabis, Geoff Hinton, and Ilya Sutskever — among many others — have all

highlighted the double-edged nature of A.I.: it can be an incredible technology that

raises global living standards, but only if we take care to avoid potentially catastrophic

outcomes, either from malicious use or even from a superintelligent A.I. itself. Creating

an artificial intelligence that is significantly better than humans at most tasks and that

can be scaled up simply by adding more computers could be world changing. A hun-

dred million virtual Einsteins, Von Neumanns, and Doudnas could advance science

and technology in a myriad of ways, perhaps leading to nearly free clean energy, an era

of economic abundance, and cures for cancer and other health problems (Aschenbren-

ner, 2024; Amodei, 2024).

However, experts also warn that such a technology could potentially create catas-

trophic harm: it may be more important than the internet or electricity but also more

dangerous than nuclear weapons. The case that the existential risk from A.I. merits

serious concern has been made by Joy (2000), Bostrom (2002, 2014), Rees (2003), and

Yudkowsky et al. (2008). Hendrycks, Mazeika and Woodside (2023) and Ngo, Chan and

Mindermann (2023) provide recent overviews. Grace, Stewart, Sandkühler, Thomas,

Weinstein-Raun and Brauner (2024) survey more than 2,500 researchers who have pub-

lished in “top-tier” AI outlets. When asked to quantify the existential risk from A.I., the

median estimate was 5% or 10% and mean estimates exceeded 10% (depending on the

exact question). There is obviously uncertainty about the risk itself, but the fact that

experts take it seriously suggests that it is a problem worth considering.

This paper studies a question that at first struck me as too open-ended to be usefully

addressed by standard economics: How much should we spend to reduce the existen-

tial risks associated with A.I.? But our recent experience with Covid-19 provides a key

insight into this question.

1For example, in December 2024, OpenAI previewed their o3 model. On PhD-level exams and in com-
puter coding competitions, the model performs significantly better than domain experts, for example by
scoring 87.7% on the GPQA PhD-level science benchmark (versus around 70% for in-field PhD students).
Just a few months earlier, the o1 model was scoring 78%. See https://www.datacamp.com/blog/o3-openai
and Rein et al. (2023).

https://www.datacamp.com/blog/o3-openai
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Covid-19 was a catastrophic pandemic that killed 1.3 million people in the United

States and more than 7 million people worldwide with a mortality rate of around 0.3%

(Worldometer, 2024). In response to this catastrophic threat to life, individuals sub-

stantially limited economic activity, leading to losses of nearly 4% of GDP in the United

States and in many other economies (Goolsbee and Syverson, 2021; Fernández-Villaverde

and Jones, 2020).

There are of course many limitations to this analogy, and I do not want to dwell on

it. However, it is a quite suggestive benchmark both for the empirical answer it suggests

and because it motivates a way to use economic analysis to address the question. We

can model the existential risk from A.I. just like we modeled mortality in the Covid-

19 pandemic. The mortality risk to people already alive more than justifies spending

large amounts to mitigate A.I.’s existential risk. Placing value on the welfare of future

generations would of course raise the amount. But the point that we are very likely

underinvesting in mitigation is already implied by a selfish perspective.

Section 2 develops a simple model of existential risk and mitigation. Section 3

calibrates the model and derives estimates of optimal mitigation spending as a share

of GDP. Across a range of simulations, spending at least 1% of GDP every year over

the next decade to mitigate the existential risk associated with A.I. is desirable in most

cases, even ignoring future generations. And the average optimal mitigation share

across a range of Monte Carlo simulations exceeds a stunning 8% of GDP. Adding a

modest value of altruism toward future generations or increasing the potential level of

risk substantially increases these numbers. There are scenarios in which one would not

want to invest in mitigation. These essentially involve low extinction risks combined

with an ineffective technology for reducing risk.

One place where the Covid-19 analogy breaks down is that the pandemic was rel-

atively short and there is little sense that the 4% of GDP we spent mitigating Covid-19

was optimal. The model in this paper is similar to one that Hall, Jones and Klenow

(2020) constructed to compute society’s willingness to pay to avoid Covid-19 deaths.

Assuming a mortality rate of 0.44% from Covid-19 (based on early estimates), that pa-

per found that society would be willing to pay 28% of GDP to avoid the pandemic.

The intuition for large numbers in both that paper and this one is straightforward.

Standard estimates of the “value of life” are high. U.S. government agencies imple-
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menting safety policies routinely use numbers on the order of $10 million or more for

the value of life for an average American today (U.S. Environmental Protection Agency,

2024; U.S. Department of Transportation, 2025). To avoid a mortality risk of 1%, this

value implies a willingness to pay of 1% × $10 million = $100, 000. Average GDP per

person is around $85,000, so this willingness to pay is more than 100% of GDP. Note

that income is an annual number whereas the willingness to pay values the stock of

remaining life — perhaps 40 years or more. If the mortality risk is realized once in the

next 10 to 20 years, an annual investment of 5–10% of income could be justified.

Related literature. Many recent papers emphasize the potentially large benefits of

A.I., including Brynjolfsson and McAfee (2014), Aghion, Jones and Jones (2019), Tram-

mell and Korinek (2020), Davidson (2021), Nordhaus (2021), and Erdil and Besiroglu

(2023). Brynjolfsson, Korinek and Agrawal (2024) propose a research agenda to study

the economics of transformative A.I. Other papers consider potential economic costs in

terms of the labor market (Acemoglu and Restrepo, 2022; Autor and Thompson, 2024;

Deming et al., 2025).

Jones (2016) considers the tradeoffs between the economic benefits of new tech-

nologies and their potential costs in terms of lost lives: as we get richer, life gets more

valuable, and it may be optimal to slow or even stop the development of risky new

technologies. Jones (2024) studied the application to A.I. explicitly. There, the question

was simply: if A.I. development raises growth to 10% per year but comes with a one-

time risk of killing everyone, what risks are we willing to take? A surprising finding

is that if A.I. reduces mortality, then relatively large risks can be worth taking. The

current paper considers a complementary question: assuming A.I. will be developed,

how much should we invest to mitigate its risks?

Aschenbrenner (2020) and Aschenbrenner and Trammell (2024) focus on existential

risk and suggest we may live in a “time of perils” in which we are advanced enough to

face high risk but not rich enough to spend sufficiently on mitigation. Interestingly,

they suggest that it may be optimal to accelerate growth to pass through the time of

perils more quickly. Growiec and Prettner (2025) provide a thorough review of the

work, often outside of economics, related to existential risk and A.I. They develop a

rich framework for thinking about the tradeoff between the benefits of A.I. and the risk
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of existential catastrophe. Martin and Pindyck (2015, 2020) consider catastrophes and

how the value of a statistical life can be used to evaluate the gains from avoiding catas-

trophes. Much of this work builds on Rosen (1988), Murphy and Topel (2003), Nordhaus

(2003), and Hall and Jones (2007) in thinking about how to value lives. Acemoglu and

Lensman (2024) show that the optimal adoption of transformative technologies that

involve large costs and benefits can be delayed if the costs are irreversible.

Posner (2004) and Matheny (2007) use value-of-life considerations to argue that the

willingness to pay to avoid existential risks of various kinds is high. Ord (2020) and

MacAskill (2022) emphasize the potentially trillions of future people whose existence

is risked by the decisions of current generations related to nuclear, biological, and A.I.

technologies. Shulman and Thornley (forthcoming), like the present paper, observes

that this “longtermist” approach is not essential — standard cost-benefit analysis that

places no weight on future generations can justify spending large amounts to mitigate

existential risk. Nielsen (2024) offers a thoughtful and nuanced discussion of A.I.’s

existential risk and how we should approach it.

2. Model

Consider a representative agent deciding how much to consume today versus how

much to spend to reduce existential risk. The agent has an exogenous endowment yt,

which can be thought of as growing rapidly because of A.I. The consumption side of the

problem is standard: consumption gives utility u(ct). There is a one-time existential

risk realized at the end of the first period — think of periods as T years long, where T is

perhaps 5 or 10 years. If the representative agent spends xt, then the extinction risk is

δ(xt), a decreasing function of xt. The agent’s (selfish) decision problem is

max
xt

u(ct) + (1− δ(xt))β Vt+1

s.t. ct + xt = yt

(1)

where Vt+1 =
∑

∞

τ=0 β
τu(ct+1+τ ) is future lifetime utility and cτ = yτ for τ > t.

The first order condition for this problem is

u′(ct) = −δ′(xt)βVt+1 (2)
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That is, the marginal utility of consumption today equals the marginal benefit of reduc-

ing existential risk. This marginal benefit in turn depends on the remaining lifetime

utility; we spend for one period to gain a potentially long life.

Multiplying both sides by xt/δ(xt) and rearranging leads to an elegant expression.

Let ηδ,x ≡ −
δ′(xt)xt

δ(xt)
be the elasticity of extinction risk with respect to spending, and let

st ≡ xt/yt be the fraction of income spent to reduce existential risk. Then the first order

condition can be rewritten as

st

1− st
= ηδ,x(xt)

effectiveness

of spending

> 0.01?

· δ(xt)

risk to be

mitigated

1%?

· β
Vt+1

u′(ct) ct

value of

life

> 180

(3)

The left hand side of this equation is the fraction of GDP devoted to reducing exis-

tential risk relative to the fraction devoted to consumption. The equation shows that

this is the product of three factors. The first is the elasticity of extinction risk with

respect to spending, ηδ,x. We will impose functional forms and calibrate everything

more carefully below, but it is helpful to have some back-of-the-envelope numbers. In

this case, it seems plausible that if N people each spend one percent more on reducing

existential risk for a T -year period, the probability of extinction falls by at least 0.01%.

The second factor is the amount of extinction risk to be mitigated, δ(xt). As dis-

cussed in the introduction, estimates of this risk are uncertain, but a reasonable bench-

mark is a 1% risk over the next two decades.

Finally, the last factor is the future value of life from today’s perspective — that

is, discounted, converted to consumption units by dividing by the marginal utility of

consumption today, and expressed as a ratio to today’s consumption: Ṽt+1 ≡ β Vt+1

u′(ct) ct
.

A standard value of life used by policymakers is $10 million. Per capita consumption

in the United States in 2023 was $56,000, suggesting a ratio of around 180: the value

of an average American’s remaining life is around 180 times annual consumption per

person. To the extent that A.I. stimulates economic growth, leading to rapid progress

in the future, the relevant Ṽt+1 is even larger.

The formula in equation (6) is reminiscent of the calculation in Hall, Jones and

Klenow (2020). That paper considered society’s willingness to pay to avoid the deaths



6 CHARLES I. JONES

associated with Covid-19 and found that the answer was approximately δṼt+1. This

product equals the value of the deaths averted as a share of per capita consumption.

There, the mitigation technology was essentially shutting down the economy. Here, we

have to consider ηδ,x in addition.

Multiplying these lower bounds together suggests that

s

1− s
≥ 0.01× 1%× 180 = 1.8%.

That is, it is likely optimal to spend at least 1.8% of GDP on reducing existential risk.

This back-of-the-envelope calculation ignores the endogeneity of ηδ,x, δ(xt) and ct =

yt − xt, but as we will see below, the calculation is informative.

Future generations. One way in which the calculation so far might understate opti-

mal mitigation investment is that it ignores the welfare lost by future generations if the

existential risk is realized. Incorporating future generations is relatively straightforward

in that we can simply augment Vt+1 with an additional term that captures the extent to

which the aggregate welfare of future generations is valued, WF . That is, the Vt+1 in

the first order condition is replaced by Vt+1 + WF . While this is straightforward at a

mathematical level, it obviously introduces complicated philosophical issues when it

comes to calibrating WF . We discuss this below.

Other existential risks. This paper is framed around the existential risk associated

with A.I., but it is related to other existential risks in two ways. First, the general frame-

work could readily be applied to mitigating other kinds of existential risk such as from

asteroids or climate change. Second, including other risks could affect our willingness

to invest to mitigate A.I.’s risk, as in the competing risks framework of Dow, Philipson

and Sala-i-Martin (1999). Such risks could readily be included via the discount factor β.

To the extent that these other risks are are small — e.g., see Ord (2020) — the calibration

will not be much affected.
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3. Functional Forms, Intuition, and Numerical Results

Functional forms. To make additional progress, we assume

δ(x) = (1− φ)δ0 + φδ0e
−αNx (4)

u(c) = ū+
c1−θ

1− θ
(5)

With zero mitigation effort, existential risk is δ0. With infinite mitigation efforts, risk

falls to (1− φ)δ0; that is, φ is the fraction of the risk that can be eliminated by spending.

The parameter α governs the effectiveness of total mitigation spending, where the total

is Nx: N is the number of people each spending x.

Calibration. To solve the model, we need to calibrate the various parameters, sum-

marized in Table 1. We choose the units of population and GDP so that N = 1 and

y0 = 1. The parameters of the existential risk function δ(x) are obviously important,

and we consider a wide range of values. The parameter δ0 is the probability of extinction

with zero mitigation effort. We start with a relatively conservative range and consider

values between 0% to 2%, with a baseline value of 1%; recall this is a one-time risk that

applies over the next decade or so. The parameter φ is the fraction of extinction that

can be mitigated by spending; (1 − φ)δ0 is the level of risk that cannot be eliminated.

We consider values of φ ranging from 0 to 1 with a baseline value of 0.5.

The parameter α is the effectiveness of spending at reducing existential risk. We

calibrate this parameter by expressing it in a different way: What fraction of the risk

that can be mitigated would be eliminated by investing 100% of GDP for a single year?

Let ξ denote this fraction. In the model, the existential risk is realized after one period,

but this risk could occur over 5 or 10 or even 20 years. Let T denote the number of years

in one period. Then αN = −T log(1− ξ) ≈ ξT .2 We consider values of ξ from 0 to 0.99,

with a baseline value of 0.5.

The remaining parameters in equation (6) are more conventional. The marginal

2The amount of risk that can be mitigated is φδ0. One year’s worth of GDP is such that x = 1/T since a
period is T years long. Therefore α solves the equation

δ(1/T )− δ(∞) = (1− ξ)φδ0

which gives the solution in the text.
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Table 1: Baseline Parameter Values

Parameter Value Distribution

Extinction risk, no mitigation δ0 1% Uniform (0%, 2%)

Share that can be eliminated φ 0.5 Uniform (0, 1)

Effectiveness of spending ξ 0.5 Uniform (0, 0.99)

Value of life Vt+1/u
′(yt) 180 Uniform (0.5*180, 1.5*180)

Time of perils (period length) T 10 years Uniform (5, 20)

CRRA θ 2 ...

Discount factor β 0.99T ...

Value of future generations WF 0 ...

utility of consumption is u′(c) = c−θ; we assume θ = 2. For the baseline value of life

with zero mitigation spending, we choose $10 million. As discussed in the introduction,

this is a conventional value even ignoring any benefits from A.I. and so is conservative.

Given that we choose units so that per capita consumption today is 1, this leads to

Vt+1/u
′(yt) = 180. That is, the remaining life of a 40-year American is worth around 180

years of average consumption.3

In the model, the existential risk is realized after one period. How long is that time?

Given the advances in A.I. in recent years, we consider a baseline of 10 years and con-

sider robustness to a range from 5 to 20 years.4 We choose an annual discount factor of

0.99; with the period length of 10 years β = 0.9910. Finally, our baseline calculation is

entirely selfish and does not consider the value of future generations (WF = 0).

3This uses consumption per person in 2023 of around $56,000.
4In solving the model, we scale down the value of life by the period length to account for the fact that

the risk is realized in T years, by which time life expectancy will be lower.
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3.1 Analytic Solutions and Intuition

Using the functional form for δ(x) in (4), optimal spending satisfies

eαNxt = αNφδ0

effectiveness

term

· β
Vt+1

u′(ct)

value of life

(in dollars)

(6)

Notice that u′(ct) = (yt − xt)
−θ, so the right-hand side of the equation is decreasing in

x. Since the left-hand side is increasing in x, there is typically a unique solution to this

equation.

For additional intuition, consider the following approximations: eαNx = 1 + αNx

which is valid for αNx small, u′(c) = u′(y − x) = u′(y) which is valid for x small. In

addition, recall that αN = −T log(1− ξ) ≈ ξT . With these approximations, the solution

in equation (6) can be written as

s ≡
xt
yt

≈ φδ0β
Vt+1

u′(yt)yt

WTP = willing-

ness to pay

−
1

ξTyt
effectiveness

of mitigation

(7)

The optimal mitigation share is the sum of two terms. The first termφδ0βVt+1/u
′(yt)yt

is the “willingness to pay” (WTP): the expected value of the lives that could be lost

to the mitigable portion of existential risk, measured as a ratio to per capita GDP (or

consumption). For example, start with the value of life as $10 million for a 40-year old

with 40 years to live. Since a period is 10 years, the person only has 30 years to live

one period from now, so we use $7.5m. Including discounting, this value is roughly 120

times a year’s per capita consumption (the same as GDP in this model). The baseline

existential risk is δ0 (e.g. 1%) and a fraction φ (e.g. 1/2) of that can be mitigated. The

willingness to pay if all the risk could be mitigated is 1.2 year’s worth of GDP (1% of

120), but since only half that risk can be mitigated, the WTP term equals 0.6, i.e. 60% of

a year’s GDP. That’s the baseline value of the first term.

The second term, −1
ξTyt

, adjusts this WTP for the overall effectivness of spending: ξ is

the fraction of the mitigable risk that would be eliminated by spending one year of GDP,

we spend for one period which equals T years, and yt converts this to a share of GDP.
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In our baseline calibration, ξ = 1/2, T = 10, and yt = 1. With these values, the second

term subtracts off 0.2 or 20%. The net of the first and second terms, then, is 0.60−0.20 =

0.40, suggesting that s = 40% of GDP! This is so large that the approximations are not

valid, but it gives an indication of how large amounts of spending can be optimal.

For a more conservative calibration, suppose the baseline risk δ0 is half as large at

0.5%. In that case, the WTP term is half as large at 30% of GDP. Subtracting the 0.20

mitigation effectiveness term means that optimal mitigation spending is around 10%

of GDP (for T years). As we will see in the next section, the numerical solution for these

parameter values is 8.3% of GDP, so the approximation is relatively good.

3.2 Numerical Solutions for Specific Parameter Values

Figure 1 shows the optimal share of GDP devoted to reducing existential risk for a

range of parameter values, solving equation (6) numerically. At the baseline parameter

values, the optimal share is 15.8%. Even if the extinction risk is lower at δ0 = 0.5% —

roughly at the Covid-19 level — the optimal share remains high at 8.3%. The intuition

for these large spending shares is precisely that given above and revealed by our expe-

rience with Covid-19: the value of life for the average American is high — around $10

million and thus more than 120x our annual consumption per person. It is therefore

worth spending a large fraction of GDP over the next decade to reduce existential risk.

The remaining bars in Figure 1 vary one parameter at a time away from the baseline

values. In all cases, optimal mitigation remains high — above 5% of GDP in all cases.

For example, the case of φ = 0.20 supposes that only 20% of the extinction risk can be

eliminated, even with infinite spending (as opposed to 50% in the baseline). The case

of ξ = 0.20 supposes that investing a year’s worth of GDP only reduces the mitigable risk

by 20% (again as opposed to 50% in the baseline). If the value of life is only $5 million

instead of $10 million, optimal mitigation is 8.3% of GDP.

The cases of T = 5 and T = 20 show how the results vary with the length of our “time

of peril.” If we only have 5 years until the existential risk is realized, the model says we

should spend an even larger fraction of GDP on mitigation (16.9%). If the risk is further

away at 20 years, the optimal share per year falls to 10.2%: more years of investment

can make up for less investment per year.

Finally, the last case in Figure 1 introduces a degree of altruism toward future gen-
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Figure 1: Optimal Spending to Reduce Existential Risk

erations that is missing from our selfish baseline. To understand the calibration in this

case, we suppose that WF = NFVF , where VF is the average value of life for future gener-

ations and NF is the effective number of future people being considered (relative to the

current population of N = 1). If the existential risk associated with A.I. is not realized,

then future generations could be much better off, both because their consumption is

high and, importantly, because their life expectancy may increase (Jones, 2024). Never-

theless, to be conservative, we set VF = 2Vt+1. Recall that Vt+1 is the value of remaining

life for an average American, i.e. someone about 40 years old. Since VF is the value of

life for a newborn, we multiply by two. And for the number of future generations that

benefit from A.I., we consider NF = 1. That is, the effective number of future people we

are considering is equal in size to the current population. With these parameter values,

the results will be equivalent to tripling the value of Vt+1. With this quite limited degree

of altruism toward future generations, optimal mitigation spending rises from 15.8% to

29.5%.

The bottom line is that in all of these variations, it is optimal to invest more than 5%

of GDP each year to mitigate existential risk.
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When would we not invest? One way to study the robustness of these results is to

consider the scenarios that would lead to low or even zero investment toward mitigat-

ing existential risk. To see this, return to equation (2). In particular, it is optimal to not

invest in mitigation when

u′(y0) > −δ′(0)βVt+1

that is, when the marginal utility of consumption today, even when doing no mitigation

so that ct = y0, exceeds the marginal benefit of mitigation. Plugging in our functional

form for δ(x) as in equation (6) gives

1 > αN · φδ0β
Vt+1

u′(y0)
≈ ξ T

effectiveness

of spending

· φδ0β
Vt+1

u′(y0)

WTP

= EV of lives

lost to x-risk

(8)

where the approximation uses the fact that αN = −T log(1− ξ) ≈ ξT .

The last part of equation (8) is the product of the same two terms we saw earlier in

the approximation in equation (7). The first, ξT , is the overall effectiveness of spending.

The second, φδ0βVt+1/u
′(y0), is the “willingness to pay” (WTP) — the expected value of

the lives that could be lost to the mitigable portion of existential risk, measured as a

ratio to per capita GDP (since y0=1).

Simplifying the expression, optimal mitigation investment would be zero only if

ξ T · WTP < 1

For our baseline parameter values, ξ = 1/2, T = 10, and WTP= 60% of GDP, so the left

side takes a value of 3, far exceeding one, which is why optimal investment is large.

What could make the left side small? Clearly ξ and φ could be small if mitigation is

not effective. For example, suppose the fraction of risk that can be mitigated (φ) is 5x

lower — which lowers WTP by 5x. Or suppose mitigation spending is 5x less effective,

reducing ξ by a factor of 5. Both of these would reduce the LHS to 3/5, below one,

so that zero investment would be optimal. Alternatively, if the baseline risk δ0 were

very small — say only 0.1% instead of 1%, then the left side would be 10x smaller and
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Figure 2: When is optimal spending ≥ 0.5% of GDP?

Note: The figure displays combinations of parameter values that lead to optimal spending of at least 0.5%
of GDP. The parameter ξ answers the question “What fraction of the risk that can be mitigated would be
eliminated by investing 100% of GDP for one year?”

optimal investment would again be zero. These are the kind of scenarios that deliver

zero mitigation investment — we will see examples of this in the Monte Carlo exercises

shortly.

When is optimal spending≥0.5% of GDP? Motivated by this intuition, Figure 2 shows

the combinations of key effectiveness parameters that lead to optimal spending of at

least 0.5% of GDP.5 The scenarios that lead to low mitigation investment essentially

involve low extinction risks combined with an ineffective technology for reducing risk.

3.3 Monte Carlo Results

There is obviously a great deal of uncertainty regarding the appropriate values of the

various parameters. To incorporate this uncertainty — and to illustrate the robustness

5One can draw a similar plot where the cutoff is zero instead; that plot looks extremely similar to
Figure 2: the gradient of spending with respect to the key parameter values is very steep, consistent with
the results already shown in Figure 1.
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Figure 3: Monte Carlo Results for Optimal Spending
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Note: The figures plot the distribution of optimal mitigation spending as a share of GDP across 10 million
simulations using the distributions of parameters in Table 1. For example, δ0 is Uniform[0,2%].

of our main result — we consider a large number of simulations with different param-

eter values. The distributions we choose for the key parameters are summarized in the

last column of Table 1. For example, we assume the extinction risk is uniformly dis-

tributed between 0% and 2%, and the fraction of risk that can be mitigated is uniformly

distributed between 0% and 100%. For the value of life, we take a uniform distribution

with a minimum of $5 million (e.g. if one believes existing estimates overstate the value

of life) and a maximum of $15 million (e.g. incorporating some of the benefits of A.I.,

such as longer lives) so that the mean matches our baseline value of $10 million.

Figure 3 shows the distribution of optimal mitigation across 10 million Monte Carlo

simulations for the baseline case of a selfish allocation that places no value on future

generations. Summary statistics for these distributions are given in Table 2 — that is,

for the distributions reported in Table 1. Figure 4 shows the distributions for two other

cases: a scenario that allows for modest altruism toward a future that is the size of the

present (NF = 1) and a scenario that allows for a higher maximum extinction risk (δ0 is

Uniform[0,10%]).

In all three of the Monte Carlo graphs, a significant share of the runs — between 12%

and 33% — lead to zero mitigation investment. Recall that our uniform distributions
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Figure 4: Monte Carlo Results: Robustness
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(b) Higher possible risk (δ0 is Uniform[0,10%])

Note: See notes to Figure 3.
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Table 2: Summary Statistics for Monte Carlo Simulations

Selfish baseline Higher risk

(NF = 0) Modest altruism (NF = 0)
δ0 ∼ Uniform[0,2%] (NF = 1) δ0 ∼ Uniform[0,10%]

Optimal share, mean 8.1% 18.4% 20.7%

Fraction with st = 0 33.1% 15.0% 12.8%

Fraction with st ≥ 1% 65.1% 84.2% 86.5%

Note: The table shows summary statistics for the distributions of optimal mitigation
spending across 10 million simulations based on the distributions of parameters in Table 1,
except as noted.

allow for the possibility that the existential risk is very small or that it is very hard to

mitigate. As discussed in the previous section, those are the scenarios that lead to zero

investment.

Nevertheless, the main conclusion to be drawn from the simulation results is that it

is optimal to spend a remarkably large share of GDP to mitigate existential risk. Even

without considering the value of future generations, the average optimal mitigation

share is 8.1% of GDP. When we consider some modest altruism toward future genera-

tions or a great maximum extinction risk, the optimal spending shares are even higher.

4. Conclusion

Just as it made sense to spend around 4% of GDP to limit deaths from the Covid-19

pandemic (with a 0.3% mortality risk), it may be worthwhile to spend large amounts to

mitigate a potential catastrophic risk from artificial intelligence. Standard estimates of

the value of life in the United States are around $10 million. This implies a willingness

to pay of $100,000 per person to avoid a 1% mortality risk, more than 100% of GDP. If the

risk is realized over the next decade, the willingness to pay exceeds 10% of annual GDP.

This willingness to pay must be multiplied by the effectiveness of mitigation spend-

ing. For example, even if only 50% of the risk can be mitigated and even if mitigation

spending is not that effective (e.g. spending a full year of GDP would reduce this risk by
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only 50%), then optimal mitigation spending is, stunningly, more than 8% of GDP each

year. Note that this calculation is selfish in the sense that it puts zero value on future

generations. Even a selfish perspective implies that we should be spending significant

amounts to mitigate existential risk.

More broadly, there are many related questions that merit further study. For ex-

ample, there are clearly huge externalities to the actions taken by the A.I. labs, and the

equilibrium allocation without intervention is almost certainly Pareto inefficient. What

policies are called for? Should we tax GPUs and use the revenue to fund safety research?

References

Acemoglu, Daron and Pascual Restrepo, “Tasks, Automation, and the Rise in U.S. Wage

Inequality,” Econometrica, 2022, 90 (5), 1973–2016.

and Todd Lensman, “Regulating Transformative Technologies,” American Economic Review:

Insights, September 2024, 6 (3), 359–76.

Aghion, Philippe, Benjamin F. Jones, and Charles I. Jones, “Artificial Intelligence and Economic

Growth,” in Ajay Agrawal, Joshua Gans, and Avi Goldfarb, eds., The Economics of Artificial

Intelligence: An Agenda, University of Chicago Press, 2019, pp. 237–282.

Amodei, Dario, “Machines of Loving Grace: How AI Could Transform the World for the Better,”

October 2024.

Aschenbrenner, Leopold, “Existential Risk and Growth,” September 2020. Global Priorities

Institute Working Paper No. 6-2020.

, “Situational Awareness: The Decade Ahead,” June 2024.

and Philip Trammell, “Existential Risk and Growth,” February 2024. Global Priorities Institute

at Oxford, manuscript.

Autor, David and Neil Thompson, “Does automation replace experts or augment expertise? The

answer is yes,” August 2024. Schumpeter Lecture, European Economic Association.



18 CHARLES I. JONES

Bostrom, Nick, “Existential Risks,” Journal of Evolution and Technology, March 2002, 9.

, Superintelligence: Paths, Dangers, Strategies, Oxford University Press, 2014.

Brynjolfsson, Erik and Andrew McAfee, The Second Machine Age: Work, Progress, and Prosperity

in a Time of Brilliant Technologies, W.W. Norton, 2014.

, Anton Korinek, and Ajay Agrawal, “The Economics of Transformative AI: A Research

Agenda,” December 2024.

Davidson, Tom, “Could Advanced AI Drive Explosive Economic Growth?,” June 2021. Open

Philanthropy report.

Deming, David J, Christopher Ong, and Lawrence H Summers, “Technological Disruption in the

Labor Market,” Working Paper 33323, National Bureau of Economic Research January 2025.

Dow, William H., Tomas J. Philipson, and Xavier Sala-i-Martin, “Longevity Complementarities

under Competing Risks,” American Economic Review, December 1999, 89 (5), 1358–1371.

Erdil, Ege and Tamay Besiroglu, “Explosive growth from AI automation: A review of the

arguments,” 2023.
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