

The Facts of Economic Growth

Chad Jones

Stanford GSB

Prepared for the Handbook of Macroeconomics

Outline

- Facts of Frontier Growth (e.g. U.S. or West)
 - Basic facts
 - Growth accounting and components
 - Miscellaneous
- The Spread of Growth
 - Basic facts
 - Development accounting
 - Why such large TFP differences?

GDP per person in the United States

The Stability of U.S. Growth

Period	Growth Rate	Period	Growth Rate
1870–2007	2.03	1973–1995	1.82
1870-1929	1.76	1995–2007	2.13
1929–2007	2.23		
1900–1950	2.06	1995–2001	2.55
1950-2007	2.16	2001–2007	1.72
1950–1973	2.50		
1973–2007	1.93		

Economic Growth over the Very Long Run

Growth Accounting for the United States

			——— Contributions from ———		
Daviad	Output	77 / 37	Labor	Labor-Aug.	
Period	per hour	K/Y	Composition	TFP	
1948–2013	2.5	0.1	0.3	2.0	
1948–1973	3.3	-0.2	0.3	3.2	
1973–1990	1.6	0.5	0.3	8.0	
1990–1995	1.6	0.2	0.7	0.7	
1995–2000	3.0	0.3	0.3	2.3	
2000–2007	2.7	0.2	0.3	2.2	
2007-2013	1.7	0.1	0.5	1.1	

U.S. Investment in Physical Capital

U.S. Capital and Labor Shares of Factor Payments

U.S. Educational Attainment

College Graduates and the College Wage Premium

U.S. Research and Development Spending

Share of Employment in R&D

U.S. Patents

Employment in Agriculture

Health Spending as a Share of GDP

Average Annual Hours Worked

Top Income Inequality

GDP per person, Top 0.1% and Bottom 99.9%

The Real Price of Industrial Commodities

The Great Divergence

The Spread of Economic Growth since 1980

Convergence in the OECD

The Lack of Convergence Worldwide

Divergence since 1960

The Very Long-Run Distribution

	— Distribution — —			Years to
"Bin"	1960	2010	Long-Run	"Shuffle"
Less than 5 percent	14	29	27	1470
Between 5 and 10 percent	21	12	9	1360
Between 10 and 20 percent	25	13	8	1040
Between 20 and 40 percent	18	16	8	1120
Between 40 and 80 percent	14	18	28	1450
More than 80 percent	7	12	20	1500

The Distribution of World Income by Population

Development Accounting

	GDP per		Human		Share
	worker, y	$(K/Y)^{rac{lpha}{1-lpha}}$	capital, h	TFP	to TFP
U.S. France	1.000 0.790	1.000 1.184	1.000 0.840	1.000 0.795	 55.6%
U.K.	0.733	1.015	0.780	0.925	46.1%
Japan Argentina	0.683 0.376	1.218 1.109	0.903 0.779	0.620 0.435	63.9% 66.5%
China India	0.136 0.096	1.137 0.827	0.713 0.533	0.168 0.217	82.9% 67.0%
Malawi	0.021	1.107	0.507	0.038	93.6%
Average 1/Average	0.194 5.146	0.978 1.022	0.694 1.440	0.286 3.496	64.3% 70.4%

The Share of TFP in Development Accounting

Korea at Night

The Reversal of Fortune

GDP PER PERSON (US=1) IN 2011

Taxes and Growth in the United States

Tax Revenues as a Share of GDP

The Distribution of TFPR in 4-digit Manufacturing

Average Employment over the Life Cycle

< 5

5-9

10-14

15-19

20-24

25-29

35+

AGE

30-34

Technology Adoption is Speeding Up Over Time

Conclusion: Missing facts?

- Trade and growth
 - Something like Sachs-Warner open economies grow faster for awhile?
- Spread of growth feeds the frontier
 - PhD's in science/engineering in China
- Other
 - Hsieh-Moretti misallocation of population across space
 - Karabarbounis-Neiman factor shares for other countries