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The End of Economic Growth? Unintended 
Consequences of a Declining Population†

By Charles I. Jones*

In many models, economic growth is driven by people discovering 
new ideas. These models typically assume either a constant or grow-
ing population. However, in high income countries today, fertility is 
already below its replacement rate: women are having fewer than 
two children on average. It is a distinct possibility that global pop-
ulation will decline rather than stabilize in the long run. In stan-
dard models, this has profound implications: rather than continued 
exponential growth, living standards stagnate for a population that 
vanishes. Moreover, even the optimal allocation can get trapped 
in this outcome if there are delays in implementing optimal policy.  
(JEL I12, J11, J13, O41)

In many growth models based on the discovery of new ideas, the size of the 
population plays a crucial role. Other things equal, a larger population means more 
researchers which in turn leads to more new ideas and to higher living standards. 
This basic feature is shared by the original endogenous growth models of Romer 
(1990); Aghion and Howitt (1992); and Grossman and Helpman (1991) (hence-
forth, Romer/AH/GH) as well as by the semi-endogenous growth models of Jones 
(1995); Kortum (1997); and Segerstrom (1998) in which standard policies have 
level effects instead of growth effects. It is a feature of numerous other models.1

In a recent book entitled Empty Planet, Bricker and Ibbitson (2019) make the 
case based on a rich body of demographic research that global population growth in 
the future may not only fall to zero but may actually turn negative. For example, the 
natural rate of population growth (i.e., births minus deaths, ignoring immigration) is 
already negative in Japan and in many European countries such as Germany, Italy, 
and Spain (United Nations 2019).

Figure 1 shows historical data on the total fertility rate for various regions. This 
measure is the average number of live births a cohort of women would have over 
their reproductive life if they were subject to the fertility rates of a given five-year 

1 Examples include Kremer (1993); Acemoglu (1998); Ngai and Samaniego (2011); Doepke and Zilibotti 
(2014); Acemoglu and Restrepo (2018); Akcigit and Kerr (2018); Atkeson and Burstein (2019); and Buera and 
Oberfield (2020).
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period. To sustain a constant population requires a total fertility rate slightly greater 
than two in order to compensate for mortality. The graph shows that high income 
countries as a whole, as well as the United States and China individually, have been 
substantially below two in recent years. According to the United Nations’ World 
Population Prospects 2019, the total fertility rate in the most recent data is 1.8 for 
the United States, 1.7 for China and for High Income Countries on average, 1.6 for 
Germany, 1.4 for Japan, and 1.3 for Italy and Spain. In other words, fertility rates in 
the rich countries of the world are already consistent with negative long-run popu-
lation growth: women are having fewer than two children throughout much of the 
developed world.

A sharp downward trend in India and for the world as a whole is also evident in 
the figure. As countries get richer, fertility rates appear to decline to levels consis-
tent, not with a constant population, but actually with a declining population.

Conventional wisdom holds that in the future, global population will stabilize at 
something like eight or ten billion people. But maybe this is not correct. The fact 
that so many rich countries already have fertility below replacement indicates that 
a future with negative population growth is a possibility that deserves further con-
sideration. Because ideas diffuse across countries, the relevant population for each 
country’s living standards in the long run is the total population of the idea-creating 
countries, which perhaps encompasses the global population eventually. Either way, 
the evidence just discussed suggests that declines may be relevant.

The models of economic growth cited above assume a constant or growing pop-
ulation, and for understanding economic growth historically, that is clearly appro-
priate. The demographic evidence, however, suggests that this may not be the case 
in the future. Hence the focus of this paper: what happens to economic growth if 
population growth is negative?

Figure 1.  The Total Fertility Rate (Live Births per Woman)

Notes: The total fertility rate is the average number of live births a hypothetical cohort of women would have over 
their reproductive life if they were subject during their whole lives to the fertility rates of a given period and if they 
were not subject to mortality. Each data point corresponds to a five-year period.

Source: United Nations (2019)
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We show below—first in models with exogenous population growth and then 
later in a model with endogenous fertility—that negative population growth can be 
particularly harmful. When population growth is negative, both endogenous and 
semi-endogenous growth models produce what we call the Empty Planet result: 
knowledge and living standards stagnate for a population that gradually vanishes. 
In a model with endogenous fertility, a surprising result emerges: even the social 
planner can get stuck in this trap if society delays implementing the optimal alloca-
tion and suffers from inefficient negative population growth for a sufficiently long 
period. In contrast, if the economy switches to the optimal allocation soon enough, 
it can converge to a balanced growth path with sustained exponential growth: an 
ever-increasing population benefits from ever-rising living standards. Policies 
related to fertility may therefore determine whether we converge to an “Empty 
Planet” or to an “Expanding Cosmos”; they may be much more important than we 
have appreciated.

Literature Review.—Many models feature endogenous fertility, modeled in a 
variety of ways. Becker and Barro (1988) and Barro and Becker (1989) take an 
altruistic approach in which the utility of children enters the utility function for 
parents, giving rise to a dynastic utility function. Papers that follow this approach 
include Doepke (2004) and Manuelli and Seshadri (2009). Other papers empha-
size a “warm-glow” effect in which parents care about the number of their off-
spring; for example, see De la Croix and Doepke (2003); Hock and Weil (2012); and 
Doepke and Tertilt (2016). Finally, many papers feature a quantity-quality trade-off 
and assign a key role to education, often in the context of explaining the demo-
graphic transition and the emergence of modern economic growth. These include 
Becker, Murphy, and Tamura (1990); Galor and Weil (1996, 2000); Greenwood and 
Seshadri (2002); Kalemli-Ozcan (2002); Cervellati and Sunde (2015); and de Silva 
and Tenreyro (2020).

On the empirical side, Jones and Tertilt (2008) provide a detailed account of the 
decline in US fertility using census data, while Delventhal, Fernández-Villaverde, 
and Guner (2021) study the demographic transition using data from 186 coun-
tries and 250 years. Chatterjee and Vogl (2018) use extensive microdata from 255 
household surveys to study how fertility declines with economic growth. Song et 
al. (2015) note that urbanization can continue even if the population declines; if 
people in urban areas disproportionately invent ideas, urbanization could delay the 
onset of the Empty Planet result. Feyrer, Sacerdote, and Stern (2008) highlight neg-
ative population growth in Japan and parts of Europe and raise the possibility that 
it could revert back to being positive as the status of women in society improves. 
Young (2005) quantifies the neoclassical gain from higher capital-labor ratios that 
occurs when populations decline, in this case due to the shock from HIV and AIDS. 
Doepke and Tertilt (2016) and Greenwood, Guner, and Vandenbroucke (2017) pro-
vide surveys of family macroeconomics, including fertility. This literature some-
times recognizes the possibility that population growth could ultimately be negative, 
but that is not its emphasis.

More generally, demographic forces are garnering broader attention in the mac-
roeconomic literature. Several recent papers suggest that falling labor force growth 
may explain a substantial part of the decline in firm entry and dynamism in the US 
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economy, including Karahan, Pugsley, and Sahin (2019); Hopenhayn, Neira, and 
Singhania (2018); Engbom (2019); and Peters and Walsh (2021).

Galor and Moav (2002) suggest that evolutionary forces can play a key role in 
economic growth. In this context, one wonders if those forces might eventually 
favor groups with higher fertility, either for accidental genetic reasons or for cultural 
reasons. Berman (2000) suggests that the ultraorthodox community in Israel might 
be one such group, with fertility rates above seven in recent decades, which led a 
disproportionately larger fraction of school-age children to be from these communi-
ties. This is surely an important consideration to take into account in a broader study 
of fertility and growth. The point here is more narrow, namely to highlight some of 
the implications of negative population growth, were it to occur.

The literature that explicitly considers negative population growth in a growth 
context is much smaller. Manuelli and Seshadri (2009) explain the heterogeneity in 
international fertility rates by emphasizing that taxes and transfers in Europe may in 
part be responsible for low fertility. Sasaki and Hoshida (2017) study negative popu-
lation growth in a semi-endogenous growth setting. They show that the rate of tech-
nological change falls to zero as people endogenously exit the research sector. More 
surprisingly, they provide a setting where negative population growth leads to posi-
tive steady-state growth in income per person because capital per person rises as the 
number of people declines. However, this result is incomplete in that they assume a 
zero depreciation rate for capital: if there is a fixed amount of capital but the popula-
tion declines, then capital per person grows. One can easily generalize their result to 
positive depreciation rates using a Solow model. If the rate of population decline is ​
η​ and capital depreciates at rate ​δ​, then there are two possible regimes. If ​η  >  δ​, i.e., 
the rate of population decline is faster than the depreciation rate of capital, then ​K/L​ 
rises asymptotically along a balanced growth path. But when ​η  <  δ​, instead, you 
get the standard Solow result of constant ​K/L​ in steady state. Empirically, rates of 
population decline are perhaps 1 percent or smaller, whereas depreciation rates are 
3 percent or 5 percent or more. The Sasaki and Hoshida (2017) case of exponential 
growth in capital per person from declining population therefore seems implausible 
as an empirical matter. Christiaans (2011) has results along these lines in a model 
with increasing returns that results from externalities to capital, showing the two 
possible regimes.

This motivates Sasaki (2019a) to consider a model with nonrenewable resources, 
where a zero depreciation rate is more natural. In that case, though, one might won-
der about elasticities of substitution: if a single Robinson Crusoe populated an earth 
full of land and natural resources, would her income be extremely high? Sasaki 
(2019b) considers a Solow model with CES production and finds that with an elas-
ticity of substitution less than unity, the long-run growth rate is determined only by 
the rate of technological progress, with no contribution from the rising capital-labor 
ratio that results from negative population growth. Because capital is not essential, 
even an infinite capital-labor ratio gives finite output. These results suggests that 
capital and nonrenewable resources can be omitted from the model without much 
loss in generality, which is what we do below.

Finally, related results can also be found in other idea-driven growth models. 
Kremer (1993) emphasizes the broad historical evidence linking population and ris-
ing living standards. Interestingly, he notes that the technological stock in Tasmania 
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declined over thousands of years, while the small population of Flinders Island com-
pletely died off several thousand years after occupying the island. Kremer interprets 
these episodes as possibly indicating a role for the depreciation of knowledge but 
says they are likely “of limited importance when looking at the world as a whole” 
(footnote 21). Romer (1990) notes that exponential growth requires a sufficiently 
large population. If the population is too small, the “market size” effect is too weak 
and the incentives for research disappear. This failure would not occur in Kremer 
(1993) or in the setup below, where all people create ideas (perhaps with some low 
probability)—these models feature “learning by working” instead of “learning or 
working.” In that case, a constant population always produces a positive number of 
new ideas and living standards rise without bound, albeit at a rate that slows over 
time. Thus, there is an important difference between low population and negative 
population growth.

I.  The Empty Planet Result

How do idea-based growth models behave when the population declines? We 
begin by introducing exogenous, negative population growth into a simplified ver-
sion of the Romer/AH/GH endogenous growth models. This case turns out to be 
especially easy to analyze. Then we consider semi-endogenous growth models.

A. Fully Endogenous Growth as in Romer/AH/GH

Consider the following simplified version of idea-driven endogenous growth 
models:

(1)	​ ​Y​t​​  = ​ A​ t​ σ​​N​t​​,​

(2)	​ ​ ​​A ˙ ​​t​​ _ ​A​t​​
 ​  =  α  ​N​t​​,​

(3)	​ ​N​t​​  = ​ N​0​​  ​e​​ −η t​,  η  >  0​.

According to equation (1), a single consumption-output good is produced using 
people ​​N​t​​​ and the stock of ideas (“knowledge”) ​​A​t​​​. Crucially, as in Romer (1990), 
there is constant returns in this production function to rival inputs—here just 
people—and therefore increasing returns to people and ideas together. The degree 
of increasing returns is parameterized by ​σ​.

Equation  (2) is the endogenous growth equation. It says that the growth rate 
of knowledge is proportional to the population. The literature often distinguishes 
between researchers and workers who produce the consumption good, but not 
always. Here, we make the simplifying assumption that is closer in spirit to learning 
by doing: people can work to make consumption goods and get new ideas at the 
same time.

Let’s pause for a moment to recall the standard result from endogenous growth 
models. That is, ignore equation (3) and its negative population growth and instead 
assume that the population is constant at some value ​​N 

–
 ​​. In that case, equation 

(2) implies that the stock of ideas grows at a constant rate, ​α  ​N 
–
 ​​, and equation (1) 
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translates this into growth in income per person. A constant population delivers con-
stant exponential growth in living standards forever.

Now let’s see what happens when population growth is negative. Equation (3) 
specifies that the population declines exogenously at the rate ​η​. For example, ​
η  =  0.005​ corresponds to a population that declines exponentially at  one-half 
a percent per year. We write the model here and throughout the paper so that all 
parameter values (Greek letters) are positive.

Combining  (2) and  (3) gives the following differential equation, in which the 
growth rate of knowledge declines exponentially:

	​ ​ ​​A ˙ ​​t​​ _ ​A​t​​
 ​  =  α  ​N​0​​  ​e​​ −η t​​.

This differential equation is easy to solve, yielding the following result (derived in 
Appendix A.A1):

RESULT 1 (Romer/AH/GH with Negative Population Growth): In the Romer/AH/
GH model with negative population growth, the stock of knowledge ​​A​t​​​ is given by

	​ log ​A​t​​  =  log ​A​  0​​ + ​ ​g​A0​​ _ η  ​ ​(1 − ​e​​ −η t​)​​.

Both ​​A​t​​​ and income per person ​​y​t​​  ≡ ​ Y​t​​/​N​t​​​ converge to constant values ​​A​​ ∗​​ and ​​y​​ ∗​​ as ​
t​ goes to infinity, where

	​ ​A​​ ∗​  = ​ A​  0​​  exp​(​ ​g​A0​​ _ η  ​)​,​

	​ ​y​​ ∗​  = ​ y​0​​  exp​(​ 
​g​y 0​​ _ η  ​)​​,

where ​​g​xt​​​ denotes the exponential growth rate of some variable ​x​ at date ​t​, and vari-
ables indexed by 0 denote initial values.

We refer to this as the Empty Planet result. Economic growth stagnates as the 
stock of knowledge and living standards asymptote to constant values. Meanwhile, 
the population itself falls at a constant rate, gradually emptying the planet of people. 
This outcome stands in stark contrast to the conventional result in growth models 
in which knowledge, living standards, and even population grow exponentially: not 
only do we get richer over time, but these higher living standards apply to an ever 
rising number of people.

The last equation in Result 1 is amenable to calibration. For example, if ​​g​y  0​​  = ​
g​A0​​  =  1%​ and ​η  =  1%​, so that the population is falling at 1 percent per year, 
the long-run level of GDP per person will be ​​e​​ 1​  ≈  2.7​ times higher than current 
income. Slower declines in population would make this factor even higher.

In what follows, we explore the robustness of this finding. First, we see that it 
occurs in semi-endogenous growth models as well, and then we consider what hap-
pens when the population growth rate itself is an endogenous outcome.
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B. Semi-Endogenous Growth with Declining Population

With positive rates of population growth, semi-endogenous growth models in the 
tradition of Jones (1995); Kortum (1997); and Segerstrom (1998) give very differ-
ent results from the fully endogenous growth models. We see next that with negative 
population growth, the results are instead quite similar, and the Empty Planet result 
still emerges.

A simplified semi-endogenous growth model is obtained by changing the idea 
production function:

(4)	​ ​Y​t​​  = ​ A​ t​ σ​​N​t​​,​

(5)	​ ​ ​​A ˙ ​​t​​ _ ​A​t​​
 ​  =  α  ​N​ t​ λ​ ​A​ t​ −β​,​

(6)	​ ​N​t​​  = ​ N​0​​  ​e​​ −η t​,  η  >  0.​

Specifically, we introduce the parameter ​β  >  0​, capturing the extent to which new 
ideas (proportional improvements in productivity) are getting harder to find.2

Once again, let’s first remind ourselves of the standard result from semi-endogenous 
growth models. In particular, if we ignore the third equation and instead assume a 
constant positive rate of population growth, we have the standard semi-endogenous 
growth setup. The only way the left-hand side of equation  (5) can be constant 
is if the right-hand side is constant, which requires ​​N​ t​ λ​/​A​ t​ β​​ to be constant. But 
this requires the growth rate of ​​A​t​​​ to be proportional to the positive population 
growth rate. And that is the essence of semi-endogenous growth: the nonrivalry of 
ideas leads to increasing returns, and the growth rate of the economy is the product 
of the degree of increasing returns to scale and the rate at which scale is growing—
the population growth rate. This result reappears later in the paper so we postpone 
further discussion until that time and move on to the main point of this section.

Now assume population growth is negative instead of positive. Combining (5) 
and (6) gives the following differential equation:

	​ ​ ​​A ˙ ​​t​​ _ ​A​t​​
 ​  =  α  ​N​ 0​ λ​  ​e​​ −λη t​ ​A​ t​ −β​.​

Integrating this differential equation gives the next result (derived in Appendix 
A.A2):

RESULT 2 (Semi-Endogenous Growth with Negative Population Growth): In 
the semi-endogenous growth model with negative population growth, the stock of 
knowledge ​​A​t​​​ is given by

	​ ​A​t​​  = ​ A​  0​​​​[1 + ​ β ​g​A0​​ _ λ η  ​​(1 − ​e​​ −λη t​)​]​​​ 
1/β

​.​

2 An alternative in the literature is to write the idea production function as ​​​A ˙ ​​t​​  =  α  ​N​ t​ λ​ ​A​ t​ 
ϕ​​ with ​ϕ  <  1​. These are 

equivalent, with ​β  =  1 − ϕ​.
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Defining ​γ  ≡  λσ/β​ to capture the overall degree of increasing returns to scale 
(IRS) in this economy, both ​​A​t​​​ and income per person ​​y​t​​  ≡ ​ Y​t​​/​N​t​​​ converge to con-
stant values ​​A​​ ∗​​ and ​​y​​ ∗​​ as ​t​ goes to infinity, where

(7)	 ​​A​​ ∗​  = ​ A​  0​​​​(1 + ​ β ​g​A0​​ _ λ η  ​)​​​ 
1/β

​,​

	​ ​y​​ ∗​  = ​ y​0​​​​(1 + ​ 
​g​y  0​​ _ γ  η ​)​​​ 

γ/λ
​.​

Along the transition path, the growth rate satisfies

	​ ​ ​​y ˙ ​​t​​ _ ​y​t​​ ​  = ​ g​y  0​​ × ​​(​ ​y​t​​ _ ​y​0​​ ​)​​​ 
−​ λ _ γ ​

​​e​​ −λη t​  = ​ 
​g​y  0​​  ​e​​ −λη t​

  _____________  
1 + ​ 

​g​y  0​​ _ γ  η ​​(1 − ​e​​ −λη t​)​
 ​.​

In other words, the growth rate falls to zero slightly faster than ​​e​​ −λη t​​.

This result confirms that both endogenous growth and semi-endogenous growth 
lead to the Empty Planet outcome. Rather than sustained exponential growth in 
living standards and population, living standards stabilize for a vanishing number 
of people.

Quantitatively, however, the level at which lower living standards stagnate 
can be much lower with semi-endogenous growth. To illustrate, we need to cal-
ibrate one additional parameter relative to what we had before. Across a range 
of different case studies, Bloom et al. (2020) find estimates of ​β  ≈  3​ when ​
σ  =  1​ (a normalization when we do not observe ideas directly) and ​λ  =  1​.  
Alternatively, for ​λ  =  3/4​, they find ​β  ≈  2​. Both sets of parameters lead to ​
γ  ≈  1/3​. Plugging these values into equation (7), along with an initial total factor 
productivity (TFP) growth rate of ​1%​ and ​η  =  1%​ as before, the long-run level of 
GDP per person would be around 60–90 percent higher than current income. In the 
endogenous growth case, the gain is two to three times larger: with ​β  =  0​ (so that ​
γ  =  ∞​), long run income is 170 percent higher than current income for the same 
parameter values.

We can also say something about how long it takes to reach the steady state. In 
particular, the amount of time it takes for ​At​ to rise halfway to its steady state value 
can be computed easily. For the parameter values just considered, the half lives 
range from 85 to 133 years for the semi-endogenous growth model and around 250 
years for the Romer case.3

II.  Endogenous Fertility and the Equilibrium Allocation

We now endogenize the population growth rate itself, with an eye toward answer-
ing two questions. First, can the equilibrium of an endogenous fertility model feature 
negative population growth in steady state? Second, how does the optimal allocation 
behave for such a model?

3 Appendix A.A2 contains the details.
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There are many related ways to endogenize fertility, and the literature has not 
converged on a single best practice; see the literature review at the start of this paper 
for references. Almost all approaches assume that having offspring is a time inten-
sive activity, and this is at the center of the approach we take below.

In models of endogenous fertility, population growth in a decentralized equilibrium 
can be equal to, above, or below the optimal rate. In fact, because the number of peo-
ple is endogenous, the definition of “optimal” is itself unclear: how should the welfare 
of people who exist in some allocations but not others be taken into account (Golosov, 
Jones, and Tertilt 2007; De la Croix and Doepke 2021)? Here, we focus on a common 
welfare criterion considered in the literature, the welfare of a dynastic family. In the 
equilibrium we consider, parents do not fully internalize the fact that their offspring 
create nonrival ideas that benefit the entire economy, so equilibrium fertility is too low.

But there are also other possible nuances. For example, Farhi and Werning (2007) 
note that the social planner may care about future generations both because individu-
als care about their own children and because the social planner puts weight on each 
generation. This means that social welfare will generally put more weight on future 
generations than individuals do, also leading optimal fertility to be higher than equi-
librium fertility. Externalities to human capital in models with a quality-quantity 
trade-off can also give rise to inefficient fertility decisions. Alternatively, one can 
construct idea-based models in which optimal fertility is below equilibrium fertility; 
see Jones (2003) and Futagami and Hori (2010) for some discussion. Here, we do 
not attempt to draw any firm conclusion about the range of possible externalities that 
may exist. Instead, we focus on some general lessons that emerge when the equilib-
rium features negative population growth while the optimal allocation has positive 
population growth.

To simplify, we abstract from the demographic transition. That is, we are not 
focused on how fertility fell from 5 to 3 to 1.8 children per woman. Instead, the 
focus is on the stable fertility rate at the end of the demographic transition and what 
happens if it implies negative population growth.

A. Environment

The economic environment for the setup with endogenous fertility is in Table 1. It 
builds on our earlier model, with one enhancement. There is now a single allocative 
decision that has to be made at each date: each person is endowed with one unit of 
time that can be used to produce either consumption or offspring. Devoting ​​ℓ​t​​​ units 
of time to producing children leads to a fertility rate of ​b​(​ℓ​t​​)​  = ​ b 

–
​ ​ℓ​t​​​. The linear 

function is convenient analytically but not essential. There is a constant death rate,  
​δ​, and the population growth rate is ​​n​t​​  = ​ b 

–
​ ​ℓ​t​​ − δ​. Thus if ​​ℓ​t​​​ is sufficiently small, the 

population growth rate can be negative.
This setup excludes many other considerations that would be interesting to 

explore in the future such as human capital, physical capital, and a quantity-quality 
trade-off. We instead focus on the simplest model that allows us to highlight some 
important (and general) economic points.4

4 One question that comes up often is whether or not growth in the “quality” of people can make up for the lack 
of “quantity” of people. It is possible, but only in a knife-edge case that seems counterfactual. Let ​​h​t​​​ denote human 
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People obtain utility from consumption and from having descendants. The 
expected lifetime utility of a member of the generation born at date 0 is

	​ ​U​0​​  = ​ ∫ 
0
​ 
∞

​​ ​e​​ −​(​ρ – ​+δ)​t​ u​(​c​t​​, ​N​t​​)​dt,​

where ​​ρ – ​​ is the pure rate of time preference, ​​c​t​​​ is consumption, and ​​N​0​​  =  1​ so that ​​
N​t​​​ is the number of descendants of generation 0 at date ​t​. Discounting also occurs 
because of the death rate, and we define ​ρ  ≡ ​ ρ – ​ + δ​ as the overall discount rate.

Flow utility takes the form considered in the dynastic utility frameworks of Barro 
and Becker (1989) and Jones and Schoonbroodt (2010), which we will refer to as 
“generalized Barro-Becker preferences”:

	​ u​(​c​t​​, ​N​t​​)​  = ​ 
​​(​N​ t​  ε​ ​c​t​​)​​​ 1−θ​

 _ 
1 − θ  ​,​

where ​ε​ and ​θ​ are greater than zero.5 A Cobb-Douglas aggregator of people and 
consumption sits inside constant relative risk aversion preferences with a constant 
elasticity of intertemporal substitution ​1/θ​. For the traditional reasons well known 
in macro, the Cobb-Douglas unitary elasticity of substitution is necessary so that 
a constant interior time allocation—here leading to a constant interior population 
growth rate—can coexist with exponential growth in consumption.

capital per person, and suppose the input into producing ideas is ​​h​t​​ ​N​t​​​. Assume human capital evolves according 
to ​​​h ˙ ​​t​​  =  α  ​ℓ​h​​  ​h​ t​ 

ψ​ − δ ​h​t​​​ where ​​ℓ​h​​​ is time spent accumulating human capital. Clearly if ​ψ  <  1​, then ​h​ converges to a 
constant and growth in quality cannot make up for growth in quantity. On the other hand, if ​ψ  >  1​, quality growth 
explodes and you get faster than exponential growth. Only in the specific case of Lucas (1988) with ​ψ  =  1​ will 
quality grow exponentially. For that knife-edge case, you have to believe something like the following: can each 
generation spending a constant 16 years in school generate exponential growth in quality forever? If each gener-
ation starts with the same initial “de novo” amount of human capital, ​​h​  0​​​, then this would require rising returns to 
education and/or experience across generations, which have not been documented in the microdata. It seems more 
natural to imagine that if knowledge is constant, 16 years of schooling allows each generation to achieve a constant 
high level of human capital, consistent with ​ψ  <  1​.

5 Barro and Becker (1989) considered the case of ​​N​​   α​ ​c​​ 1−θ​​ with ​α  >  0​ and ​0  <  θ  <  1​. Jones and Schoonbroodt 
(2010) extended the analysis to the equation in the main text with ​θ  >  1​, which implicitly corresponds to  
​α  ≡  ε​(1 − θ)​  <  0​.

Table 1—Economic Environment: Endogenous Fertility Model

Final output ​​Y​t​​  = ​ A​ t​ σ​(1 − ​ℓ​t​​)​N​t​​​

Population growth ​​ ​​N ˙ ​​t​​ _ ​N​t​​
 ​  = ​ n​t​​  =  b(​ℓ​t​​) − δ​

Fertility ​b(​ℓ​t​​)  = ​ b 
–
​ ​ℓ​t​​​

Ideas ​​ ​​A ˙ ​​t​​ _ ​A​t​​
 ​  = ​ N​ t​ λ​ ​A​ t​ −β​​

Generation 0 utility ​​U​0​​  = ​ ∫ 0​ 
∞​​​e​​ −ρt​u​(​c​t​​, ​N​t​​)​dt, ​ N​0​​  =  1​, ​ ρ  ≡ ​ ρ – ​ + δ​

Flow utility ​u(​c​t​​, ​N​t​​)  = ​  ​(​N​ t​  ε​ ​c​t​​)​​ 1−θ​ ______ 
1 − θ ​ ​

Consumption ​​c​t​​  = ​ Y​t​​/​N​t​​​
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B. A Competitive Equilibrium with Externalities

As in Romer (1990), the nonrivalry of ideas leads to increasing returns. Some 
departure from pure perfect competition is necessary, and the equilibrium in general 
will not be efficient. We consider a simple equilibrium in which the production of 
ideas is purely external. Also, we start with the equilibrium allocation because it is 
designed to be simple. Section III below considers an optimal allocation.

Firms produce final output in perfectly competitive markets, taking the stock of 
ideas ​​A​t​​​ as exogenous. Each person chooses time spent raising children versus work-
ing in the market sector, ​​ℓ​t​​​ versus ​1 − ​ℓ​t​​​, in order to maximize utility, also taking the 
time path of ​​A​t​​​ as exogenous. Hence ideas evolve according to the idea production 
function entirely as an externality: people do not recognize that by having children, 
their kids may produce new knowledge in the future that makes the entire economy 
more productive. Markets are perfectly competitive, subject to the idea externality, 
and the only price is the wage per unit of work, given by ​​w​t​​  = ​ A​ t​ σ​​ in equilibrium.

Taking ​​{​w​t​​}​​ as given, people in the representative initial generation solve

	​ ​max​ 
​{​ℓ​t​​}​

​ ​ ​∫ 
0
​ 
∞

​​ ​e​​ −ρt​u​(​c​t​​, ​N​t​​)​dt​

subject to

	​ ​​N ˙ ​​t​​  = ​ (b​(​ℓ​t​​)​ − δ)​​N​t​​,​

	​ ​c​t​​  = ​ w​t​​​(1 − ​ℓ​t​​)​,​

and given the function forms assumed in Table 1.
The Hamiltonian for this problem is

	​   =  u​(​c​t​​, ​N​t​​)​ + ​v​t​​​[b​(​ℓ​t​​)​ − δ]​​N​t​​,​

where ​​v​t​​​ is the shadow price (in utils) of another person.
The equilibrium allocation is then characterized in the following result (derived 

in Appendix A.A3):

RESULT 3 (The Equilibrium with Endogenous Fertility): The equilibrium alloca-
tion of labor to fertility is given by

(8)	​ ​ℓ​t​​  =  1 − ​  1 ____ 
​b –​​​V ̃ ​​t​​

 ​,  where  ​​V ̃ ​​t​​  ≡ ​  ​v​t​​ ​N​t​​ _ ​u​ct​​ ​c​t​​ ​.​

When there is an interior solution, population growth satisfies

(9)	​ ​n​t​​  = ​ b 
–
​ − δ − ​ 1 _ 

​​V​t​​ ̃ ​
 ​.​
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Finally, there exists a steady state with a constant allocation of time devoted to 
offspring and therefore a constant population growth rate. The shadow value of the 
population in steady state is

(10)	​ ​​V ̃ ​​eq​​  = ​   ε  _____________________   
ρ − ε​(1 − θ)​​n​eq​​ − ​(1 − θ)​​g​ c​ eq​

 ​.​

The steady state population growth rate is

(11)	​ ​n​eq​​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩
​
​ 1 _ θ ​​(​b 

–
​ − δ − ​ ρ _ ε ​)​,

​ 
if  ​b 

–
​ − δ − ​ ρ _ ε ​  <  0;

​    
​  ​b 

–
​ − δ − ρ/ε  __________  

1 − ​(1 − θ)​​(​ ε + γ _ ε  ​)​
 ​,
​ 

otherwise.
 ​​ ​

Depending on parameter values, equilibrium population growth can be positive or 
negative. The Empty Planet result can therefore be supported as an equilibrium 
outcome with endogenous fertility.

The variable ​​​V ̃ ​​t​​​ is important and has the following economic interpretation: it is 
the shadow value of the entire population ​​v​t​​ ​N​t​​​, converted into output units by divid-
ing by the marginal utility (MU) of consumption ​​u​ct​​  ≡  ∂  u​(​c​t​​, ​N​t​​)​/∂  ​c​t​​​, as a ratio to 
consumption per person. In other words, it is the shadow value of people measured 
in years of per capita consumption. With the generalized Barro-Becker preferences, 
it is constant in steady state.

Depending on parameter values, steady-state population growth can be positive 
or negative. The negative case is the one that is novel and of interest here. It can 
occur if ​ε​ is sufficiently small, for example, so that people do not care that much 
about their offspring. In that case, we have an equilibrium setup with endogenous 
fertility that feeds naturally into the results from Section I. The negative population 
growth combined with the idea production function implies that the equilibrium 
with endogenous fertility features a growth rate that falls to zero so that output per 
person converges to a steady state, as in equation (7). Therefore, the Empty Planet 
result can be supported as an equilibrium outcome with endogenous fertility.

III.  The Optimal Allocation

Now instead consider the optimal allocation in this economic environment. With 
endogenous fertility, there is no unique criterion for social welfare. Instead, we con-
sider the allocation that maximizes the dynastic utility of a representative genera-
tion. The key reason this differs from the equilibrium allocation considered above is 
that the optimal allocation takes into account the fact that a larger population gener-
ates more nonrival ideas, raising everyone’s income. This will lead optimal fertility 
to be higher than its equilibrium rate.

Defined this way, the optimal allocation solves

	​ ​max​ 
​{​ℓ​t​​}​

​ ​ ​∫ 
0
​ 
∞

​​ ​e​​ −ρt​u​(​c​t​​, ​N​t​​)​dt​
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subject to

	​ ​​N ˙ ​​t​​  = ​ (b​(​ℓ​t​​)​ − δ)​​N​t​​,​

	​ ​ ​​A ˙ ​​t​​ _ ​A​t​​
 ​  = ​ N​ t​ λ​ ​A​ t​ −β​,​

	​ ​c​t​​  = ​ Y​t​​/​N​t​​  = ​ A​ t​ σ​​(1 − ​ℓ​t​​)​.​

The Hamiltonian for the optimal allocation is

	​   =  u​(​c​t​​, ​N​t​​)​ + ​μ​t​​ ​N​ t​ λ​ ​A​ t​ 1−β​ + ​v​t​​​[b​(​ℓ​t​​)​ − δ]​​N​t​​,​

where ​​μ​t​​​ is the shadow price of an idea and ​​v​t​​​ is the shadow price of another person. 
The first-order condition for this problem with respect to ​​ℓ​t​​​ is

(12)	​ ​ ​​ v​t​​ ​N​t​​  ​b ′ ​​(​ℓ​t​​)​ 
⏟

​​  
MU of time in fertility

​​  = ​ ​​  
​u​c​​​(​c​t​​, ​N​t​​)​​c​t​​ _ 

1 − ​ℓ​t​​
 ​ . 


​​  

MU of time in making goods

​​​

Recall that the shadow value of the total population measured in years of per capita 
consumption is ​​​V ̃ ​​t​​  ≡ ​  ​v​t​​ ​N​t​​ _ ​u​ct​​ ​c​t​​ ​​. This first-order condition can be rewritten as

	​ ​ℓ​t​​  =  1 − ​  1 ___ 
​b 
–
​​​V ̃ ​​t​​

 ​,​

and therefore the population growth rate is

(13)	​ ​n​t​​  = ​ b 
–
​ − δ − ​ 1 _ 

​​V​t​​ ̃ ​
 ​,​

where we’ve left implicit the constraint that ​ℓ  ≥  0​ and therefore ​n  ≥  −δ​. The two 
equations above have the same form as the equilibrium solutions in Result 3; how-
ever, the shadow value of people, ​​​V ̃ ​​t​​​, will be different. We abuse notation for now by 
not using a different letter for the equilibrium versus optimal ​​​V ̃ ​​t​​​.

The first-order condition with respect to ​​A​t​​​ can be expressed as an arbitrage 
equation:

	​ ρ  = ​  ​​μ ˙ ​​t​​ _ ​μ​t​​ ​ + ​ 1 _ ​μ​t​​ ​​[σ ​ ​u​ct​​ ​c​t​​ _ ​A​t​​
 ​  + ​μ​t​​​(1 − β)​ ​ ​​A ˙ ​​t​​ _ ​A​t​​

 ​]​.​

The required rate of return is ​ρ​, and the production of ideas yields both a capital gain 
and a dividend. Continuing this analogy, this equation can be solved to yield the 
shadow price of an idea along a balanced growth path (BPG) as the initial dividend 
divided by “r-g”:

(14)	​ ​μ​t​​  = ​ 
σ ​ ​u​ct​​ ​c​t​​ _ ​A​t​​

 ​
  _______________  

ρ − ​g​μt​​ − ​(1 − β)​​g​At​​
 ​.​

It turns out to be very useful to define a new variable:

	​ ​z​t​​  ≡ ​  ​μ​t​​ ​​A ˙ ​​t​​ _ ​u​ct​​ ​c​t​​ ​  = ​   σ​g​At​​  _______________  
ρ − ​g​μt​​ − ​(1 − β)​​g​At​​

 ​,​
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where ​​z​t​​​ is the social value of the new ideas produced in period ​t​, measured in years 
of per capita consumption. It is constant along a BGP and given by6

(15)	​ ​z​​ ∗​  = ​   σ​g​ A​ ∗ ​  ___________________________    
ρ − ε​(1 − θ)​​n​​ ∗​ + ​[β − σ​(1 − θ)​]​​g​ A​ ∗ ​

 ​.​

Importantly, notice that if ​​n​​ ∗​  <  0​ so that ​​g​ A​ ∗ ​  =  0​, the social value of the flow of 
ideas ​​z​​ ∗​​ is also zero: there are no ideas being produced in the Empty Planet, so the 
value is zero.

Returning to the Hamiltonian, the first-order condition for ​​N​t​​​ in arbitrage form is

	​ ρ  = ​  ​​v ˙ ​​t​​ _ ​v​t​​ ​ + ​ 1 _ ​v​t​​ ​​(​u​Nt​​ + ​μ​t​​ λ ​ ​​A ˙ ​​t​​ _ ​N​t​​
 ​ + ​v​t​​ ​n​t​​)​.​

Rearranging gives

	​ ​v​t​​  = ​ 
​u​Nt​​ + ​μ​t​​ λ ​ ​​A ˙ ​​t​​ _ ​N​t​​

 ​
  _  ρ − ​g​vt​​ − ​n​t​​ ​,​

and therefore

	​ ​​V ̃ ​​t​​  ≡ ​  ​v​t​​ ​N​t​​ _ ​u​ct​​ ​c​t​​ ​  = ​ 
​ ​u​Nt​​ ​N​t​​ _ ​u​ct​​ ​c​t​​ ​ + ​ λ ​μ​t​​ ​​A ˙ ​​t​​ _ ​u​ct​​ ​c​t​​ ​  _  ρ − ​g​vt​​ − ​n​t​​ ​  = ​   ε + λ ​z​t​​ _  ρ − ​g​vt​​ − ​n​t​​ ​.​

The optimal shadow value of the population ​​V ̃ ​​ is constant along a BGP and given by

(16)	​ ​​V ̃ ​​ sp​  ∗ ​  = ​   ε + λ ​z​​ ∗​  ____________________   
ρ − ε​(1 − θ)​​n​​ ∗​ − ​(1 − θ)​​g​ c​ ∗​

 ​.​

Comparing this equation to the equivalent condition in the equilibrium, equation 
(10), reveals that they differ because of the presence of ​​z​​ ∗​​: the optimal allocation 
values people not only for the direct utility they provide (​ε​), but also because of the 
additional ideas they produce.

Finally, steady-state population growth is given by evaluating the first-order con-
dition in (13) at this ​​​V ̃ ​​​   ∗​​:

(17)	​ ​n​ sp​ ∗ ​  = ​ b 
–
​ − δ − ​ 1 _ 

​​V ̃ ​​ sp​  ∗ ​
 ​.​

Then the three equations (15), (16), and (17) together determine the steady state for ​
z​, ​n​, and ​​V ̃ ​​.

A. The Empty Planet Steady State

We can now solve these three equations and characterize the steady state. The 
major surprise that emerges is that when the equilibrium allocation features negative 
population growth in steady state, this Empty Planet steady state is also a solution 
to the planner problem. Moreover, the planner problem can feature multiple steady 
states.

6 The derivation just involves computing the growth rate of ​​μ​t​​​ along a BGP from equation (14).
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The intuition underlying this result is tied to a fundamental nonconvexity in the 
math that we have highlighted since the beginning of the paper. In particular, steady 
state growth is

	​ ​g​ y​ ∗​  =  σ​g​ A​ ∗ ​  =  σ​​(​ ​N​ t​ λ​ _ 
​A​ t​ β​

 ​)​​​ 
∗

​.​

If population growth is positive, the constancy of the right-hand side of this equa-
tion requires ​​N​ t​ λ​​ and ​​A​ t​ β​​ to grow at the same rate, which requires the growth rate of ​​
A​t​​​ to be proportional to the rate of population growth: ​​g​ A​ ∗ ​  =  λ ​n​​ ∗​/β​. If population 
growth is negative, then ​​y​t​​​ and ​​A​t​​​ are bounded, as we saw in Section II of the paper. 
Therefore, steady state growth is given by

(18)	​ ​g​ y​ ∗​  = ​ {​
γ  ​n​​ ∗​,

​ 
if ​n​ sp​ ∗ ​  >  0;

​  
0,

​ 
if ​n​ sp​ ∗ ​  ≤  0.

 ​​​

In this semi-endogenous growth setup, the long-run growth rate is the product of 
the overall degree of increasing returns to scale, ​γ  ≡  λσ/β​, and the rate at which 
scale is growing, ​​n​ sp​ ∗ ​​. Alternatively, if the planner solution features zero or negative 
population growth in the steady state, then ​​g​ A​ ∗ ​  = ​ g​ y​ ∗​  =  0​; see Figure 2.

These two growth regimes were the focus of the first part of the paper. If 
steady-state population growth is positive, then steady-state knowledge growth is 
proportional to ​n​. But if population growth is negative, then steady-state knowledge 
growth is zero. This kink—these two regimes—is ultimately responsible for one of 
the key results of the paper, which we state now:

RESULT 4 (The Empty Planet Result as an Optimal Steady State): Consider the 
case where ​​b 

–
​ − δ − ρ/ε  <  0​—that is, the case where the equilibrium allocation 

features negative population growth (the Empty Planet result). Then this Empty 
Planet steady state is also a steady state of the optimal allocation problem.

The result is easy to see from equations (15) and (16). Guess that ​​n​​ ∗​  <  0​ is a 
solution. Then ​​g​ A​ ∗ ​  =  0​. As we noted above, this means that ​​z​​ ∗​  =  0​ as well: if no 
ideas are being produced, the social value of the new idea flow is zero. But when ​​
z​​ ∗​  =  0​, ​​​V ̃ ​​ sp​  ∗ ​  = ​​ V ̃ ​​ eq​  ∗ ​​ as can be seen by comparing equations (16) and (10): when the 
idea value of people is zero, both the planner and the households value people solely 
through the Barro-Becker preference associated with ​ε​. They therefore choose the 
same population growth rate, verifying that the Empty Planet steady state is a solu-
tion to the optimal allocation.

B. Multiple Steady States

What we just showed is that if the equilibrium allocation has negative population 
growth in the steady state, then this Empty Planet steady state is also a solution of the 
planner problem. This is true despite the fact that in the equilibrium, there is a pos-
sibly substantial externality: individuals do not take into account that their fertility 
decisions influence the overall production of ideas and therefore long-run growth. It 
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is just that this externality shrinks to zero when there is negative population growth 
because the flow of new ideas vanishes relative to the stock; that is, ​z  →  0​.

We now show that, provided the idea externality (​γ​) is sufficiently large, an alter-
native steady state with positive population growth will also be a solution to the 
planner problem. That is, the planner problem will involve multiple steady states. 
This turns out to be easiest to see in the case in which ​θ  =  1​, the log case, though it 
holds more generally as we show in the Appendix. We begin by motivating the case 
of ​θ  =  1​ as one of interest and then proceed with it.

Motivating the Log Case (​θ  =  1​).—Our model so far has considered general-
ized Barro-Becker preferences ​u​(c, N)​  = ​​ (​N​​  ε​ c)​​​ 1−θ​/​(1 − θ)​​. Barro and Becker 
(1989) originally considered only the case of ​0  <  θ  <  1​. Jones and Schoonbroodt 
(2010) extended the analysis to ​θ  >  1​. On the one hand, this is the case that econ-
omists typically focus on. However, ​θ  >  1​ means that the cross-partial derivative  
​​∂​​  2​u​(c, N)​/∂  c∂  N  <  0​. That is, the marginal utility of adding more people declines 
as consumption increases when ​θ  >  1​. Instead, when ​θ  <  1​, this cross partial is 
positive: the value of adding more people is higher whenever consumption per per-
son is higher, which seems like the “natural” case. This raises a quandary: on the one 
hand, we often like ​θ  ≥  1​ in thinking about intertemporal trade-offs. On the other 
hand, we also like the cross-partial to be positive, which requires ​θ  <  1​.

What all of this points out is that the ​θ  =  1​ case is intermediate and so in some 
sense balances these trade-offs. Moreover, in Section IV, we will see that the ​θ  =  1​ 
case is tremendously helpful in simplifying the analysis of transition dynamics and 

Figure 2. Knowledge Growth and Population Growth in Steady State

Notes: There is a fundamental “kink” in the technology for generating steady-state growth in the model. If popu-
lation growth is positive, then steady-state knowledge growth is proportional to ​n​. But if population growth is neg-
ative, then steady-state knowledge growth is zero. This kink—these two regimes—gives rise to the possibility of 
multiple steady states.
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gaining intuition. For all these reasons we will now focus on this case. The case of ​
θ  =  1​ corresponds to log preferences, so ​u​(c, N)​  =  ε log N + log c​.7

Multiple Steady States in the Log Case.—A useful property of the log case is that 
the effects of the growth rate on the discount rate in computing present values drops 
out. This is readily seen by rewriting (15) and (16) when ​θ  =  1​:

(19)	​ ​​V ̃ ​​ sp​  ∗ ​  = ​  ε + λ ​z​​ ∗​ _ ρ  ​,​

where

(20)	​ ​z​​ ∗​  = ​   σ​g​ A​ ∗ ​ _ ρ + β ​g​ A​ ∗ ​ ​.​

Combining these equations gives us one of the relationships between ​​V ̃ ​​ and ​n​ in the 
steady state. Dropping the asterisks,

(21)	​ ​​V ̃ ​​sp​​​(n)​  = ​
⎧
 

⎪

 ⎨ 
⎪
 

⎩
​
​ 1 _ ρ ​​(ε + ​  γ _ 

1 + ​ ρ _ λ n ​
 ​)​,

​ 
if n  >  0;

​   
​ ε _ ρ ​,

​ 
if n  ≤  0;

​​​

where the presence of two distinct cases is precisely driven by the kink shown above 
in Figure 2.

In contrast, the equilibrium value of ​​V ̃ ​​ from equation (10) is very simple when ​
θ  =  1​:

(22)	​ ​​V ̃ ​​eq​​  = ​  ε _ ρ ​.​

That is, ​​​V ̃ ​​eq​​​ is constant over time, even along the transition path. And of course for 
both allocations, population growth satisfies a second relation

(23)	​ n​(​V ̃ ​)​  = ​ b 
–
​ − δ − ​ 1 _ 

​V ̃ ​
 ​.​

These equations determine the steady states for the equilibrium and optimal alloca-
tions in the case of ​θ  =  1​. They are characterized graphically in Figures 3 and 4.

A Conventional Case When ​​n​ eq​ ∗ ​  >  0​:—Figure 3 considers the case in which 
equilibrium population growth is positive. In this case, there is a unique solution 
to equations (21) and (23). The optimal allocation features a unique steady state in 
which optimal population growth exceeds the equilibrium rate, i.e., ​​n​ sp​ ∗ ​  > ​ n​ eq​ ∗ ​​. In 
some sense, this is exactly what one would expect in a model like this. There is a 
positive externality in equilibrium in that households when choosing their fertility 
ignore the effect of having more kids on the production of future ideas. The planner 
takes this into account and chooses a higher population growth rate and therefore a 
higher growth rate for the economy.

7 As usual, seeing this limit involves specifying flow utility as ​​(​k​​ 1−θ​ − 1)​/​(1 − θ)​​ where ​k  ≡  ​N​​  ε​ c​.
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When the Equilibrium Features Negative Population Growth.—The case of inter-
est in this paper, however, is when equilibrium population growth is negative; rela-
tive to Figure 3, consider lowering the value of ​​b 

–
​ − δ​, for example. This case gives 

rise to a rich set of outcomes, as suggested by Figure 4. With ​​n​ eq​ ∗ ​  <  0​, the optimal 
allocation then features three steady states. A high “Expanding Cosmos” steady 
state has positive population growth. The low steady state has the same negative 
population growth rate as the equilibrium allocation; this is the Empty Planet out-
come. Finally, there is a middle steady state in between. We will see shortly that 
this steady state is unstable and would never be reached along the optimal path. 
Appendix A.A5 solves analytically for the multiple steady states and the conditions 
under which they occur, but the formulas are not especially helpful.

Using the graph in Figure 4, however, some key comparative statics can be appre-
ciated. First, as we have just seen, changes in ​​b 

–
​ − δ​ (the maximum possible fertility 

rate if 100 percent of time was devoted to fertility) shift the blue ​n​(​V ̃ ​)​​ schedule up 
and down. A higher ​​b 

–
​ − δ​ raises both the equilibrium and optimal fertility rates, 

and it is only for ​​b 
–
​ − δ​ sufficiently small that the equilibrium fertility rate can be 

negative and therefore the Empty Planet result emerges.
Second, a higher ​γ​—that is, a larger degree of increasing returns associated 

with ideas and therefore the larger the “idea value of people”—rotates the green  
​​V ̃ ​​(n)​​ schedule down and to the right and therefore increases the population growth 
rate associated with the Expanding Cosmos steady state. Intuitively, the size of the 
gap between the Empty Planet and the Expanding Cosmos is pinned down by the 
importance of ideas in the economy. As the importance of ideas vanishes to zero, the 

Figure 3. A Unique Steady State for the Optimal Allocation when ​​n​ eq​ ∗ ​ >  0​

Notes: In the case of ​θ  =  1​, when ​​b 
–
​ − δ − ρ/ε  >  0​, equilibrium fertility is positive. There is then a unique solu-

tion to equations (21) and (23). That is, the optimal allocation features a unique steady state with ​​n​ sp​ ∗ ​  >  ​n​ eq​ ∗ ​​.
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green ​​V ̃ ​​(n)​​ schedule rotates backward and eventually the planner problem features a 
unique steady state that is the same as the equilibrium.

As discussed in Appendix A.A5, a similar graph characterizes the steady states 
when ​θ  ≠  1​, but it is more complicated. When ​θ  >  1​, the ​​V ̃ ​​(n)​​ schedule eventu-
ally “bends backward” heading back to ​​V ̃ ​  =  0​ as ​n​ goes to infinity. When instead ​
θ  <  1​, the ​​V ̃ ​​(n)​​ schedule flattens out at a finite ​n​ as ​​V ̃ ​​ goes to infinity. The three 
steady states exist for a range of plausible parameter values. At some level, we know 
this is intuitively true. We showed above in Result 4 that the Empty Planet steady 
state is a solution of the optimal allocation for any ​θ​. And by the “positive externality 
of people” argument, one would expect a high steady state to exist as long as ideas 
are sufficiently important, i.e., for ​γ​ sufficiently large.

At this point, a key question remains: what then determines which steady state 
is reached? Would the optimal allocation ever involve going to the Empty Planet 
steady state? To answer these questions, we turn to the transition dynamics of the 
model.

IV.  Stability and Transition Dynamics

Given the presence of three steady states in the optimal allocation, the transition 
dynamics are subtle. Moreover, because our model has two state variables, ​​A​t​​​ and ​​
N​t​​​, as well as one control variable, ​​ℓ​t​​​, transition dynamics can be hard to visualize. 
However, an advantage of the log case (​θ  =  1​) is that a redefinition of the state 
variables simplifies the dynamics.

Figure 4. Multiple Steady States in the Optimal Allocation when ​​n​ eq​ ∗ ​ <  0​

Notes: When equilibrium fertility is negative and there exists an “Expanding Cosmos” steady state for the plan-
ner problem, there are three solutions to equations (21) and (23) that characterize the steady state for ​γ​ sufficiently 
large. We will see later that the middle steady state is unstable and can be ruled out.
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In particular, redefine the state variables as ​​p​t​​  ≡  log ​N​t​​​ and ​​x​t​​  ≡ ​ A​ t​ β​/​N​ t​ λ​​. We 
will refer to ​​x​t​​​ as “knowledge per person,” which is a slight abuse of language in that 
it ignores the exponents. The optimal allocation of labor can be expressed solely 
as a function of ​​x​t​​​, which means that population growth can as well. This allows 
us to study the transition dynamics in a simple two-dimensional plane. It is also 
useful to keep in mind that with this definition of the state, ​​​A ˙ ​​t​​/​A​t​​  =  1/​x​t​​​. That is, 
the state-like variable ​​x​t​​​ can also be interpreted as the inverse of the growth rate of 
knowledge. On an interior balanced growth path, ​​x​t​​​ will be constant. Finally, notice 
that a bigger ​x​ is not necessarily better: it is the ratio of two state variables that are 
each good for welfare, ​A​ and ​N​. The results are summarized more precisely below 
(derived in Appendix A.A6):

RESULT 5: (Transition Dynamics for the Log Case): When ​θ  =  1​, we can define 
new state variables ​​x​t​​  ≡ ​ A​ t​ β​/​N​ t​ λ​​ and ​​p​t​​  ≡  log ​N​t​​​ and then the following results 
emerge:

	 (i)	 The value function ​​(​x​t​​, ​p​t​​)​/ρ​ can be expressed as ​W​(​x​t​​)​ + ν  ​p​t​​​ where ​ν  ≡ ​
(ε + γ)​/ρ​.

	 (ii)	 The policy function for optimal population growth depends only on ​​x​t​​​ and not 
on ​​p​t​​​.

	 (iii)	 The first order necessary conditions governing the optimal allocation can be 
expressed as two differential equations in ​​x​t​​​ and ​​n​t​​​:

(24)	​ ​​x ˙ ​​t​​  =  β − λ ​n​t​​ ​x​t​​,​

(25)	​ ​​n ˙ ​​t​​  =  −​​(​b 
–
​ − δ − ​n​t​​)​​​ 

2
​​[​(ρ + ​ β _ ​x​t​​ ​)​​(ν − ​  1 ________ 

​b 
–
​ − δ − ​n​t​​

 ​)​ − γ]​.​

These differential equations—together with an initial condition ​​x​  0​​​ and a transver-
sality condition—pin down the optimal path of population growth. Figure 5 shows 
the phase diagram corresponding to the differential equations, with the green dashed 
line showing the path for the optimal allocation. The high steady state is saddle-path 
stable. The middle steady state is unstable. And the asymptotic Empty Planet steady 
state is stable as well.

Rather than discuss these dynamics in detail now, it proves helpful to first cali-
brate the parameters of the model and solve for the transition dynamics numerically. 
That way we can discuss the transition dynamics in the context of somewhat realis-
tic numbers.

A. Numerical Solution of the Transition Dynamics

Table 2 summarizes our parameter choices. Values are chosen to be realistic, but 
the general results are robust to a range of alternative values.

Because we do not observe ideas directly, it is convenient to normalize ​σ  =  1​ 
so that ​A​ has the units of total factor productivity. The extensive evidence on idea 
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production functions in Bloom et al. (2020) suggests that ​β  >  0​ so that the expo-
nential growth of ideas is getting harder to achieve. With some decreasing returns 
to research at a point in time (​λ  =  0.75​), their evidence is consistent with ​β  =  2​. 
These choices imply that the overall implied degree of increasing returns to scale is ​
γ  ≡  λσ/β  =  0.375​.

We assume a conventional death rate of ​δ  =  1/90  ≈  1.1%​, corresponding to 
a life expectancy of 90 years. We then set the overall rate of time preference as ​
ρ  =  δ  ≈  1.1%​ as well.

Motivated by the recent fertility experience in the OECD, Japan, and the United 
States, we assume ​​n​ eq​ ∗ ​  =  −0.5%​, so that in equilibrium, the population will decline 
at one-half a percent per year. Finally, we assume that the typical person spends 
about one-eighth of his or her time endowment producing and raising children.8

Given these assumptions, the following four equations determine the values of ​​b 
–
​​, ​

ε​, ​​n​ sp​ ∗ ​​, and ​​ℓ​ sp​ ∗ ​​:

(26)	​ ​n​ eq​ ∗ ​  = ​ b 
–
​​ℓ​ eq​ ∗ ​ − δ  =  −0.5%,​

(27)	​ ​ℓ​ eq​ ∗ ​  =  1 − ​ ρ __ 
​b 
–
​ε
 ​  =  1/8,​

8 Taking a broad interpretation of time, i.e., including education, this value is reasonable. Smaller values pro-
duce qualitatively similar results. However, for ​​ℓ​eq​​  ≤  1/10​, for example, the dynamics around the middle steady 
state feature spirals and jumps; these are discussed in more detail in Jones (2020). Given that this makes the discus-
sion more complicated without adding much insight, we’ve chosen the slightly higher value of 1/8.

Figure 5. The Phase Diagram for the Optimal Allocation

Notes: This figure shows the phase diagram for the optimal allocation in ​​(x, n)​​ space based on the differential equa-
tions in (24) and (25) when parameters are such that equilibrium population growth is negative. Arrows indicate 
dynamics and there are two interior steady states where the curves intersect. The dashed green line shows the path 
for the optimal allocation.
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(28)	​ ​n​ sp​ ∗ ​  = ​ b 
–
​​ℓ​ sp​ ∗ ​ − δ,​

(29)	​ ​ℓ​ sp​ ∗ ​  =  1 − ​  ρ ________ 
​b 
–
​​(ε + λ ​z​​ ∗​)​ ​,​

where ​​z​​ ∗​​ is given by (20).

Implied Parameter Values and Steady-State Results.—The implied parameter val-
ues and steady-state outcomes are shown in the bottom part of Table 2. For the high 
steady state, the optimal population growth rate given these values is substantially 
higher than the equilibrium rate: 1.16 percent versus −0.5 percent. Even with sharp 
dynamic diminishing returns in the idea production function (​β  =  2​), there is a 
large positive externality to offspring in this calibration. The associated steady-state 
growth rate of income per person is 0.43 percent. This is lower than growth rates 
observed for the past century in the United States because this model omits other—
transitory—sources of growth such as rising educational attainment and declining 
misallocation that have been important. See Jones (2022a) for a discussion and for 
broader evidence suggesting that this seemingly low long-run growth rate, driven 
primarily by ​γ  =  0.375​, is a plausible calibration.

Table 2—Parameter Values and Steady-State Results

Parameter/moment Value Comment

Panel A.  Key assumed values as inputs to quantitative analysis

​θ​ 1 Dramatically simplifies analysis

​σ​ 1 Normalization

​λ​ 0.75 Duplication effects

​β​ 2 Bloom et al. (2020)
​δ​ 1/90 Death rate, life expectancy is 90 years

​ρ​ ​δ​ All discounting is from mortality, ​ρ  =  δ  =  1.11%​

​​n​ eq​ ∗ ​​ −0.5% Suggested by fertility rates in Europe, Japan, United States

​​ℓ​ eq​ ∗ ​​ 1/8 Time spent raising children

Result Value Comment

Panel B.  Implied parameter values and steady-state results
​​b 
–
​​ 0.049 ​​n​ eq​ ∗ ​  = ​ b 

–
​​ℓ​ eq​ ∗ ​ − δ  =  −0.5%​

​ε​ 0.260 From equation (27) for ​​ℓ​ eq​ ∗ ​​
​γ​ 0.375 Overall degree of IRS, ​γ  ≡  λσ/β​

High “Expanding Cosmos” steady state
​​n​ sp​ ∗ ​​ 1.16% From equations (28) and (29) for ​​ℓ​ sp​ ∗ ​​ and ​​n​ sp​ ∗ ​​
​​ℓ​ sp​ ∗ ​​ 0.46 From equations  (28) and (29) for ​​ℓ​ sp​ ∗ ​​ and ​​n​ sp​ ∗ ​​
​​g​ y​ sp​​ 0.43% Equals ​γ  ​n​ sp​ ∗ ​​

Unstable middle SS
​​n​ sp​ ∗ ​​ 0.26% From equations (28) and (29) for ​​ℓ​ sp​ ∗ ​​ and ​​n​ sp​ ∗ ​​
​​ℓ​ sp​ ∗ ​​ 0.28 From equations (28) and (29) for ​​ℓ​ sp​ ∗ ​​  and ​​n​ sp​ ∗ ​​
​​g​ y​ sp​​ 0.10% Equals ​γ  ​n​ sp​ ∗ ​​

Notes: Panel A shows key assumptions that are an input into the numerical examples. Panel B 
shows implied parameter values and steady-state results given these assumptions.
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The last part of Table 2 shows the values associated with the unstable middle 
steady state. We will discuss these values more shortly.

Stability and Dynamics.—As a warm-up exercise, Figure 6 shows the transition 
dynamics for the equilibrium allocation. When ​θ  =  1​, the equilibrium actually fea-
tures a constant value of ​​​V ̃ ​​t​​  = ​​ V ̃ ​​eq​​  = ​  ε _ ρ ​​. Because the shadow value of people is 
constant over time, so is the population growth rate. In other words, the population 
growth rate is always equal to −0.5 percent per year in this calibration. (Details are 
in Appendix A.A3.)

With a constant negative population growth rate, ​​x​t​​  ≡ ​ A​ t​ β​/​N​ t​ λ​​ increases over 
time: intuitively, ​​A​t​​​ rises to an upper bound, while ​​N​t​​​ is falling, which causes ​​
x​t​​​ to increase. The Empty Planet steady state occurs as ​​x​t​​​ goes to infinity, so that  
​​​A ˙ ​​t​​/​A​t​​  =  1/​x​t​​​ falls to zero. These dynamics are shown in Figure 6 and are very sim-
ple, but this is a good way to introduce the figure and it complements the dynamics 
of the optimal allocation, which we turn to now.

Figure 7 shows the more complicated dynamics of the optimal allocation; the 
numerical solution method is discussed in Appendix B. The high Expanding Cosmos 
steady state is saddle-path stable. There is a wide range of potential starting points 
for knowledge per person, ​x​, such that the optimal allocation ultimately converges to 
the high steady state. This is what one would generally expect in a problem like this.

Figure 6. Transition Dynamics for the Equilibrium Allocation

Notes: This figure shows the transition dynamics in the equilibrium allocation with ​θ  =  1​ and negative population 
growth. The state variable on the horizontal axis is ​​x​t​​  ≡  ​A​ t​ β​/​N​ t​ λ​​, which we somewhat loosely refer to as “knowl-
edge per person.” The law of motion for ​​x​t​​​ is ​​​x ˙ ​​t​​  =  β − λ ​n​t​​ ​x​t​​​. Clearly, if ​​n​t​​​ is negative, then ​​x ˙ ​  >  0​. Arrows indicate 
these transition dynamics. The equilibrium features a constant negative rate of population growth, which causes ​​x​t​​​ 
to increase over time.
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As suggested by the phase diagram back in Figure 5, the middle steady state is 
unstable. For values of ​x​ just to the left of the middle steady state, the dynamics 
take the economy to the high steady state. Alternatively, if ​x​ is just above the middle 
steady state, the dynamics take the economy to the right, ultimately converging to 
the Empty Planet steady state.9

The intuition for the stability of the steady states is easiest to see if we begin at the 
Empty Planet. Close to the Empty Planet steady state (i.e., for large ​​x​t​​​) ​​n​t​​​ is negative 
so that population is declining. Because ​​x​t​​  ≡ ​ A​ t​ β​/​N​ t​ λ​​, ​​x​t​​​ will increase when ​​N​t​​​ is 
declining (because ​​A​t​​​ is always increasing). This means that the Empty Planet steady 
state is stable. Interestingly, ​x​ can also increase even when ​n​ is positive, provided ​n​ 
is sufficiently small. Recall that its law of motion is ​​​x ˙ ​​t​​  =  β − λ ​n​t​​ ​x​t​​​. Clearly if ​​n​t​​​ is 
negative, then ​​x ˙ ​  >  0​, but this is sufficient rather than necessary: ​​​x ˙ ​​t​​  >  0​ can occur 
with positive population growth as long as ​​n​t​​​ is sufficiently small. This explains how 
the transition dynamics feature rising ​​x​t​​​ to the right of the middle steady state.

Further intuition goes as follows. An increase in knowledge per person ​​x​t​​​ causes 
optimal fertility to decline because the extra ideas produced by offspring have a 
diminishing marginal benefit; this explains the negative slope of ​n​(x)​​ in Figure 7. 

9 For higher values of ​γ​ than we assume in our baseline, the unstable middle steady state can become a spiral 
“Skiba point” instead of a source. The dynamics are slightly more complicated than here, but the bottom line points 
are unchanged. See Jones (2020) for the analysis of this case.

Figure 7. Transition Dynamics for the Optimal Allocation

Notes: This figure shows the transition dynamics in the optimal allocation with ​θ  =  1​. The state variable on the 
horizontal axis is ​x  ≡  ​A​​ β​/​N​​ λ​​, which we somewhat loosely refer to as “knowledge per person.” Arrows indicate 
transition dynamics. If the economy begins with a stock of knowledge per person that is not too high, it converges 
to the stable “high” steady state. Alternatively, if knowledge per person is sufficiently high, the economy converges 
to the Empty Planet steady state with negative population growth, which equals the equilibrium rate. The “middle 
steady state” is unstable and divides the two regions.
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If equilibrium fertility were positive, then optimal fertility would also remain posi-
tive—the planner values people at least as much as the equilibrium. But if equilib-
rium fertility is negative, then for ​​x​t​​​ high enough, optimal fertility becomes negative 
as well. This is because as ​​x​t​​​ goes to infinity, the stock of knowledge divided by the 
number of people is so high that the “knowledge value” of additional offspring falls 
to zero. But once population growth is negative, ​​x​t​​​ increases over time rather than 
decreases since the denominator of ​x  ≡ ​ A​​ β​/​N​​ λ​​ is falling. That causes ​​x​t​​​ to increase, 
reinforcing the change. That is the intuition for the bifurcation in Figure 7 and the 
perhaps surprising stability of the Empty Planet outcome.

What do the transition dynamics look like for alternative parameter val-
ues? The intuition for the answer can be found by looking at the ​n​(​V ̃ ​)​​ and ​​V ̃ ​​(n)​​ 
figure that characterized the multiple steady states several pages back in Figure 4. 
If we reduce the importance of ideas in the economy—i.e., if we reduce ​γ​, say by 
making ideas even harder to find via a higher ​β​—the ​V​(n)​​ curve rotates back to the 
left. This pushes down the Expanding Cosmos steady state and raises the middle 
steady state. That is, the two points get closer together. In Figure 7, this shrinks the 
range of ​x​ values for which the transition dynamics lead ​​x​t​​​ to decline. If we con-
tinue to lower ​γ​ and reduce the importance of ideas, eventually the ​n​(​V ̃ ​)​​ and ​​V ̃ ​​(n)​​ 
curves are tangent—the “high” and “middle” steady states become the same point. 
If we reduce the importance of ideas even further, so that the ​n​(​V ̃ ​)​​ curve in Figure 4 
lies entirely below the ​​V ̃ ​​(n)​​ schedule, the transition dynamics then always involve ​
x​ increasing, and the only steady state is the Empty Planet outcome. Intuitively, if 
ideas are not very important, both the equilibrium and the optimal allocations will 
feature negative population growth.

B. The Economics of the Transition Dynamics

The transition dynamics lead to an important economic point, summarized in 
Figure 8. Consider an economy that is governed by the equilibrium allocation. It 
features negative population growth at rate ​​n​ eq​ ∗ ​​, and suppose the economy is initially 
endowed with a certain population and stock of knowledge such that knowledge 
per person, ​​x​  0​​​, equals 50 (and therefore ​​​A ˙ ​​  0​​/​A​  0​​  =  1/​x​  0​​  =  2%​). The social plan-
ner would like the economy to have a much higher fertility rate and converge to 
the Expanding Cosmos steady state with positive population growth and positive 
economic growth: both the number of people and income per person would rise 
exponentially forever. In contrast, the equilibrium allocation will simply move the 
economy steadily to the right, to higher values of ​x​, along the lower line: there will 
be a constant negative rate of population growth, so knowledge per person, ​x​, will 
rise as the number of people declines.

At any point in time, society may adopt better policies, such as a fertility sub-
sidy, that move the economy to the optimal allocation. If this occurs at ​x  =  100​ or ​
x  =  400​, then the economy will eventually transition to the high steady state and 
exhibit exponential growth forever. Notice that the TFP growth rate of the economy 
is just ​1/​x​t​​​, so these values of ​x​ correspond to TFP growth rates of 1 percent or 0.25 
percent, helping us to think about mapping this diagram into our actual economy.

However—and this is the surprising point—if the economy delays adopting 
good policies for too long, eventually knowledge per person ​x​ will rise above the 
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value associated with the middle steady state. In our calibration, this occurs at ​​
x​ middle​ ∗ ​   =  1020​ and therefore when TFP growth is ​​​A ˙ ​​t​​/​A​t​​  =  1/​x​ middle​ ∗ ​   =  0.1%​.10  
Once this happens, the optimal regime changes. Adopting good policies that deliver 
the optimal allocation now puts the economy along a path that takes it to the right. 
Knowledge per person continues to grow and the economy will converge to the low 
steady state. Population growth eventually turns permanently negative, the popula-
tion declines, knowledge will remain below an upper bound, and income per person 
will stagnate. This is the Empty Planet outcome. The surprise is that if society waits 
too long to adopt good policies, the optimal allocation switches from one of sus-
tained exponential growth in population, knowledge, and living standards to one of 
stagnation and an Empty Planet.

In our quantitative analysis, we can also compute how much growth remains once 
the optimal population growth rate turns negative (at around ​x  =  1600​). From that 
point forward, growth is already so low that income per person only increases by a 
further 31 percent before stagnating at the Empty Planet steady state.

This discussion is summarized in our last main result.

10 In exploring different plausible parameter values in the calibration, TFP growth at the middle steady state was 
typically very low. As discussed above, higher values of ​γ​ push population growth and TFP growth at the middle 
steady state even lower.

Figure 8. Transition Dynamics: Summary

Notes: The bottom line in the figure shows the transition dynamics for the equilibrium allocation while the curved 
lines show the dynamics for the optimal allocation. An economy governed by the equilibrium dynamics can get 
trapped in the Empty Planet outcome if it waits too long to switch to the optimal allocation. In this calibration, that 
would occur if knowledge per person, ​x​, rises above about 1,020 or, equivalently, when TFP growth slows to less 
than 0.1 percent.
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RESULT 6 (The Optimal Allocation with Endogenous Fertility): The allocation that 
maximizes the welfare of each generation converges to one of two steady states. If the 
economy adopts the optimal allocation while knowledge per person, ​x​, is sufficiently 
low, it leads to the Expanding Cosmos outcome of sustained exponential growth in 
population, knowledge, and living standards. Alternatively, if the economy waits too 
long to switch to the optimal path, it converges to the Empty Planet outcome: living 
standards stagnate as the population gradually declines toward zero.

V.  Conclusion

Historically, fertility rates in high-income countries have fallen from five children 
per women to four, three, two, and now even fewer. From a family’s standpoint, 
there is nothing special about “above two” versus “below two” and the demographic 
transition may lead families to settle on fewer than two children. The macroeco-
nomics of the problem, however, make this distinction one of critical importance: 
it is the difference between an Expanding Cosmos of exponential growth in both 
population and living standards and an Empty Planet, in which incomes stagnate 
and the population vanishes.

Endogenizing fertility leads to an additional subtlety. When the equilibrium fer-
tility rate is negative, the optimal allocation typically features two stable steady 
states. If the economy adopts the optimal allocation soon enough, it converges to the 
Expanding Cosmos. But if the economy waits too long to switch, even the optimal 
allocation can be trapped by the Empty Planet outcome.

We’ve presented our results in the context of simple models that omit many 
other considerations related to fertility, including the demographic transition, a 
quality-quantity trade-off, urbanization, and rising female labor force participation. 
This is not because these other forces are unimportant but rather reflects an effort to 
highlight the key mechanisms in the paper as cleanly as possible. The “idea value 
of people” is tied to the flow of new ideas that are created at each point in time and 
is, at least partially, a positive externality that would lead optimal population growth 
to exceed the equilibrium rate in many models. With negative population growth, 
however, the flow of new ideas goes to zero. It is this force that allows the optimal 
allocation to be trapped in an Empty Planet, and this mechanism would also be 
at work in richer models of fertility and growth. In that sense, we believe the key 
results in this paper would generalize to richer setups.

One force we have abstracted from here is the possible depreciation of knowl-
edge. It is well known by historians that fundamental ideas have been lost with the 
decline of some civilizations. That may not be a problem here in that living stan-
dards continue to increase in this model, so that our technologies for storing knowl-
edge may remain effective. However, if knowledge were to depreciate at a constant 
exogenous rate, it is easy to show in the simple models at the start of this paper that 
this would lead to declining living standards in the presence of negative population 
growth, an even more dire outcome.

Of course, the results in this paper are not a forecast—the paper is designed to 
suggest that a possibility we have until now not considered carefully deserves more 
attention. There are ways in which this model could fail to predict the future even 
though the forces it highlights are operative. Automation and artificial intelligence 
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could enhance our ability to produce ideas sufficiently that growth in living stan-
dards continues even with a declining population, for example. Or new discoveries 
could eventually reduce the mortality rate to zero, allowing the population to grow 
despite low fertility. Or evolutionary forces could eventually favor groups with high 
fertility rates (Galor and Moav 2002). Nevertheless, the emergence of negative pop-
ulation growth in many countries and the possible consequences for the future of 
economic growth make this a topic worthy of further exploration.

Appendix A. Derivation of Results

A1. Derivation of Result 1: Romer/AH/GH with Negative Population Growth

Integrate the differential equation:

	​​ ∫ 
 
​ 
 
​​  ​ d ​A​t​​ _ ​A​t​​

 ​ =  α  ​N​0​​ ​∫ 
 
​ 
 
​​ ​e​​ −η t​dt,​

which gives

	​ log ​A​t​​  = ​ C​0​​ − ​ α  ​N​0​​ _ η  ​ ​e​​ −η t​.​

Setting ​t  =  0​ to solve for the constant gives

	​ ​C​0​​  =  log ​A​  0​​ + ​ α  ​N​0​​ _ η  ​.​

Next, note that ​​g​A0​​  =  α  ​N​0​​​. Then the time path for the stock of ideas over time:

	​ log ​A​t​​  =  log ​A​  0​​ + ​ ​g​A0​​ _ η  ​ ​(1 − ​e​​ −η t​)​,​

so that as ​t  →  ∞​,

	​ log ​A​t​​  →  log ​A​​ ∗​  ≡  log ​A​  0​​ + ​ ​g​A0​​ _ η  ​.​

In other words, an exponentially declining growth rate leads to a steady state level 
of technology and income per person:

	​ ​y​t​​  → ​ y​​ ∗​  ≡ ​​ (​A​  0​​  ​e​​ ​g​A0​​/η​)​​​ 
σ
​.​

Finally, converting fully into output terms using ​​g​y​​  =  σ​g​A​​​:

	​ ​ ​y​​ 
∗​ _ ​y​0​​ ​  = ​ e​​ ​g​y  0​​/η​  =  exp​(​ 

​g​y  0​​ _ η  ​)​.​

The time it takes ​​A​t​​​ to reach ​​(​A​​ ∗​ + ​A​  0​​)​/2​ is then

	​ ​t​1/2​​  =  − ​ 1 _ η ​ log​[1 − ​ η _ ​g​A0​​ ​ log​(​ 1 _ 
2
 ​ ​ ​A​  0​​ + ​A​​ ∗​ _ ​A​  0​​

 ​ )​]​.​
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A2. Derivation of Result 2: Semi-Endogenous Growth 
with Negative Population Growth

Integrate the differential equation:

	​​ ∫ 
 
​ 
 
​​ ​A​ t​ β−1​ d ​A​t​​  =  α  ​N​ 0​ λ​ ​∫ 

 
​ 
 
​​ ​e​​ −λη t​dt,​

which gives

	​ ​ 1 _ β ​   ​A​ t​ β​  = ​ C​0​​ − ​ α ​N​ 0​ λ​ _ λη  ​ ​e​​ −λη t​.​

Setting ​t  =  0​ to solve for the constant gives

	​ ​C​0​​  = ​  1 _ β ​   ​A​ 0​ 
β​ + ​ α  ​N​ 0​ λ​ _ λη  ​.​

Then the time path for the stock of ideas over time:

	​ ​A​ t​ β​  = ​ A​ 0​ 
β​ + ​ β α  ​N​ 0​ λ​ _ λη  ​ ​(1 − ​e​​ −λη t​)​.​

Dividing by ​​A​ 0​ 
β​​ and noting that ​​g​A0​​  =  α  ​N​ 0​ λ​ ​A​ 0​ −β​​ gives

	​ ​ ​A​t​​ _ ​A​  0​​
 ​  = ​​ [1 + ​ β ​g​A0​​ _ λη  ​ ​(1 − ​e​​ −λη t​)​]​​​ 

1/β

​.​

Converting to output using ​y  = ​ A​​ σ​​ and defining ​γ  ≡  λσ/β​ to measure the over-
all degree of increasing returns to scale:

(A1)	​ ​ ​y​t​​ _ ​y​0​​ ​  = ​​ [1 + ​ 
​g​y  0​​ _ γ  η ​ ​(1 − ​e​​ −λη t​)​]​​​ 

γ/λ
​.​

Taking the limit as ​t  →  ∞​,

	​ ​ ​y​​ 
∗​ _ ​y​0​​ ​  = ​​ (1 + ​ 

​g​y  0​​ _ γ  η ​)​​​ 
γ/λ

​.​

Taking logs and derivatives of equation (A1) gives the growth rate over time:

	​ ​ ​​y ˙ ​​t​​ _ ​y​t​​ ​  = ​ g​y  0​​ × ​​(​ ​y​t​​ _ ​y​0​​ ​)​​​ 
−​ λ _ γ ​

​​e​​ −λη t​  = ​ 
​g​y  0​​  ​e​​ −λη t​

  _____________  
1 + ​ 

​g​y  0​​ _ γ  η ​ ​(1 − ​e​​ −λη t​)​
 ​.​

The time it takes ​​A​t​​​ to reach ​​(​A​​ ∗​ + ​A​  0​​)​/2​ is then

	​ ​t​1/2​​  =  − ​ 1 _ λη ​ log​{1 + ​ λη _ β ​g​A0​​
 ​​[1 − ​​(​ 1 _ 

2
 ​ ​ ​A​  0​​ + ​A​​ ∗​ _ ​A​  0​​

 ​ )​​​ 
β

​ ]​}​.​



3518 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2022

A3. Derivation of Result 3: The Equilibrium with Endogenous Fertility

The Hamiltonian for this problem is

	​   =  u​(​c​t​​, ​N​t​​)​ + ​v​t​​​[b​(​ℓ​t​​)​ − δ]​​N​t​​,​

where ​​v​t​​​ is the shadow price (in utils) of another person.
The first-order condition for this problem with respect to ​​ℓ​t​​​ is

(A2)	​ ​ ​​ u​c​​​(​c​t​​, ​N​t​​)​​w​t​​ 
​​  

MU of time in making goods

​​  = ​ ​​  v​t​​ ​N​t​​ ​b ′ ​​(​ℓ​t​​)​ 
⏟

​​  
MU of time in fertility

​​.​

On the right side, spending a little more time on fertility leads each of ​​N​t​​​ people to 
have ​b′​(​ℓ​t​​)​​ additional offspring, valued at shadow price ​​v​t​​​. Alternatively, the time 
could be spent working to earn the wage ​​w​t​​​, which is converted to utility units using 
the marginal utility of consumption. At the maximum, individuals are indifferent 
between these two options.

Using our function form assumptions with some algebra, this condition can be 
rewritten as

	​ ​ℓ​t​​  =  1 − ​  1 ___ 
​b 
–
​​​V ̃ ​​t​​

 ​,  where ​​ V ̃ ​​t​​  ≡ ​  ​v​t​​ ​N​t​​ _ ​u​ct​​ ​c​t​​ ​.​

The variable ​​​V ̃ ​​t​​​ is important and has the following economic interpretation: it is the 
shadow value of the entire population ​​v​t​​ ​N​t​​​, converted into output units by dividing 
by the marginal utility of consumption ​​u​ct​​  ≡  ∂  u​(​c​t​​, ​N​t​​)​/∂  ​c​t​​​, as a ratio to consump-
tion per person. In other words, it is the shadow value of the population measured 
in years of per capita consumption. Time spent having kids, ​​ℓ​t​​​, and therefore overall 
fertility ​​n​t​​  = ​ b 

–
​ ​ℓ​t​​ − δ​, depends on this key variable:

	​ ​n​t​​  = ​ b 
–
​ − δ − ​ 1 _ 

​​V​t​​ ̃ ​
 ​.​

The first-order condition for ​​N​t​​​ gives an arbitrage-like equation for the shadow 
price of another person:

(A3)	​ ρ  = ​  ​​v ˙ ​​t​​ _ ​v​t​​ ​ + ​ 1 _ ​v​t​​ ​ ​(​u​Nt​​ + ​v​t​​ ​n​t​​)​,​

where ​​u​Nt​​  ≡  ∂  u​(​c​t​​, ​N​t​​)​/∂  ​N​t​​​ is the marginal utility of having another person in the 
dynasty. Rearranging to solve for ​​v​t​​​ gives

	​ ​v​t​​  = ​   ​u​Nt​​ _  ρ − ​g​vt​​ − ​n​t​​ ​.​

Along a BGP, ​​g​vt​​​ and ​​n​t​​​ are constant, so the growth rate of ​​v​t​​​ is given by the 
growth rate of ​​u​Nt​​​. To see its value, notice that the Cobb-Douglas structure gives  
​​u​Nt​​ ​N​t​​  =  ε​(1 − θ)​u​(​c​t​​, ​N​t​​)​​ and ​​u​ct​​ ​c​t​​  = ​ (1 − θ)​u​(​c​t​​, ​N​t​​)​​. Therefore ​​g​v​​  = ​ g​u​​ − n​ 
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and ​​g​u​​  =  ε​(1 − θ)​n + ​(1 − θ)​​g​c​​​. Substituting these equations into the equation 
for ​​v​t​​​ along the BGP gives

(A4)	​ ​​V ̃ ​​​ ∗​  = ​   ε  ____________________   
ρ − ε​(1 − θ)​​n​​ ∗​ − ​(1 − θ)​​g​ c​ ∗​

 ​.​

Fertility along the BGP is then

(A5)	​ ​n​​ ∗​  = ​ b 
–
​ − δ − ​ 1 _ 

​​V ̃ ​​​ ∗​
 ​.​

The equilibrium allocation in steady state is given by the solution of these two equa-
tions in ​​n​​ ∗​​ and ​​​V ̃ ​​​ ∗​​.

If ​​n​​ ∗​  <  0​, then ​​g​ c​ ∗​  =  0​. Combining these two equations to solve for ​​n​ eq​ ∗ ​​ then 
leads to

(A6)	​ ​n​ eq​ ∗ ​  = ​  1 _ θ ​​(​b 
–
​ − δ − ​ ρ _ ε ​)​,​

which is negative if ​​b 
–
​ − δ − ρ/ε  <  0​.

Alternatively, if ​​b 
–
​ − δ − ρ/ε  >  0​, then ​​n​​ ∗​  >  0​ and ​​g​ c​ ∗​  =  γ  ​n​​ ∗​​. In this case, 

solving the two equations in two unknowns gives11

(A7)	​ ​n​ eq​ ∗ ​  = ​   ​b 
–
​ − δ − ρ/ε

  _____________  
1 − ​(1 − θ)​​(​ ε + γ _ ε  ​)​

 ​.​

The Special Case of ​θ  =  1​.—In the special case of ​θ  =  1​, it is obvious 
from equation (A4) that ​​​V ̃ ​​ eq​ ∗ ​  = ​  ε _ ρ ​​. But in fact, it turns out that ​​​V ̃ ​​t​​  = ​​ V ̃ ​​ eq​ ∗ ​​ at all 
points in time. This can be seen by noting that the utility function when ​θ  =  1​ is  
​u​(c, N)​  =  log c + ε log N​ (see Section IIIB) so that ​​u​N​​  =  ε/N​. The law of motion 
for ​​v​t​​​ in equation (A3) can then be written as

	​​​​ V ̃ ​ ˙ ​ ​t​​  =  ρ​​V ̃ ​​t​​ − ε.​

This differential equation has a rest point at ​​​V ̃ ​​ eq​ ∗ ​​ which is unstable. Any solution 
other than ​​​​V ̃ ​ ˙ ​ ​t​​  =  0​ for all ​t​ turns out to violate the transversality condition or a 
resource constraint.

The constancy of ​​​V ̃ ​​t​​​ when ​θ  =  1​ means that equilibrium population growth is 
also constant over time:

(A8)	​ ​n​t​​  = ​ b 
–
​ − δ − ​ ρ _ ε ​  for all  t.​

A4. Derivation of Result 4: The Empty Planet Result as an Optimal Steady State

These results are derived in the main text.

11 This case requires further conditions on parameters. For example, ​​n​ eq​ ∗ ​  <  ​  ρ _  
​(1 − θ)​​(ε + γ)​ ​​ to keep the denomi-

nator in equation (A4) positive.
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A5. Multiple Steady States with Barro-Becker Preferences

The three equations (15), (16), and (17) together determine the steady state for  
​z​, ​n​, and ​​V ̃ ​​. Result 4 already showed that there can exist an Empty Planet steady state 
that involves negative population growth. We show in this section  the conditions 
under which the Expanding Cosmos steady state and a middle unstable steady state 
can exist. In particular, our focus is on the case shown in Figure 4 when the two inte-
rior steady states involve positive population growth. Relative to that figure, though, 
we do this for the generalized Barro-Becker preferences that permit ​θ  ≠  1​. We see 
below that two conditions that support the presence of multiple steady states are (i) ​​
n​ eq​ ∗ ​  <  0​ and (ii) ​γ​ sufficiently large.

For steady states that feature positive population growth, ​​g​ A​ ∗ ​  =  λ ​n​​ ∗​/β​ and ​​
g​ c​ ∗​  =  γ  ​n​​ ∗​​. Making these substitutions, equations (15), (16), and (17) can be writ-
ten as

(A9)	​ ​z​​ ∗​  = ​   σ  γ  ​n​​ ∗​  ____________________   
ρ + λ ​n​​ ∗​ − ​(1 − θ)​​(ε + γ)​​n​​ ∗​

 ​,​

(A10)	​ ​​V ̃ ​​​   ∗​  = ​   ε + λ ​z​​ ∗​  _______________  
ρ − ​(1 − θ)​​(ε + γ)​​n​​ ∗​

 ​,​

(A11)	​ ​n​​ ∗​  = ​ b 
–
​ − δ − ​ 1 _ 

​​V ̃ ​​​   ∗​
 ​.​

Defining ​ϕ  ≡ ​ (1 − θ)​​(ε + γ)​​ to simplify the notation, these equations can be 
written as a quadratic equation in ​​n​​ ∗​​:

(A12)  ​  ​​​[λ​(ε + γ)​ − ​(ε + λ)​ϕ + ​ϕ​​ 2​]​   


​​  
≡ a

​ ​​​ (​n​​ ∗​)​​​ 2​ 

	 − ​​​[​(ε + γ)​​(​b 
–
​ − δ)​ − ​ εϕ _ λ ​ ​n​ eq​ log​ − ρ​(1 + ​ ε − ϕ _ λ  ​)​]​     


​​   

≡ b

​ ​​ n​​ ∗​ ​​− ρ ε ​n​ eq​ log​ 
⏟

​​ 
≡ c

​ ​   =  0,​

where ​​n​ eq​ log​  ≡ ​ b 
–
​ − δ − ρ/ε​ denotes the equilibrium population growth rate in the 

log preference case ​θ  =  1​.
There exist parameter values such that this quadratic equation has two positive 

real roots. To see this, notice that examples would feature ​a  >  0​, ​b  >  0​, and ​
c  >  0​. This last piece, ​c  >  0​, is true when the equilibrium population growth rate 
is negative, illustrating the important role played here by a negative equilibrium 
population growth rate. Next, notice that ​θ  =  1​ implies ​ϕ  =  0​. So ​a  >  0​ is guar-
anteed when ​θ  =  1​ and in fact is true for any ​θ  >  1​ and more generally as long as ​
θ​ is not too small.

Third, we need ​b  >  0​. To see that this can occur notice that when ​θ  =  1​ so that ​
ϕ  =  0​, we have

	​ b  >  0  ⇔ ​ b 
–
​ − δ − ​ ρ _ λ ​ ​ ε + λ _ ε + γ ​  >  0.​

Clearly this condition will hold for ​γ​ sufficiently large.
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Figure A1 shows examples with multiple steady states for different values of ​θ​ 
starting from the baseline parameters we use in the main paper given in Table 2. 
Panel A shows that our baseline parameter values deliver multiple steady states 
when ​θ  =  0.7​. When ​θ  =  1.5​ in panel B, there is a unique steady state at the 
Empty Planet for our baseline value of ​γ  =  0.375​; the idea value of people is too 
small to create the high steady state in this case. But when ideas are more import-
ant—say for ​γ  =  1​—the multiple steady states reappear. This illustrates the basic 
message that when equilibrium population growth is negative and when ideas are 
sufficiently important (i.e., when ​γ​ is sufficiently high), the optimal allocation fea-
tures multiple steady states.

A6. Derivation of Result 5: Transition Dynamics for the Log Case (​θ  =  1​)

Define new state variables ​​x​t​​  ≡ ​ A​ t​ β​/​N​ t​ λ​​ and ​​p​t​​  ≡  log ​N​t​​​. Using the laws of 
motion for ​​A​t​​​ and ​​N​t​​​, these state variables evolve according to

	​ ​​x ˙ ​​t​​  =  β − λ ​n​t​​ ​x​t​​,​

	​ ​​p ˙ ​​t​​  = ​ n​t​​  = ​ b 
–
​ ​ℓ​t​​ − δ.​

Consumption per person is ​​c​t​​  = ​ x​ t​ 
γ/λ​ ​N​ t​ 

 γ​​(1 − ​ℓ​t​​)​​. Taking logs, flow utility when ​
θ  =  1​ is

       ​       u​(​c​t​​, ​N​t​​)​  =  log ​c​t​​ + ε log ​N​t​​​

	​ = ​  γ _ λ ​ log ​x​t​​ + ​(ε + γ)​ ​p​t​​ + log​(1 − ​ℓ​t​​)​,​

Figure A1. Multiple Steady States with Barro-Becker Preferences

Notes: The graphs show the possibility of multiple steady states for the generalized Barro-Becker preferences when ​
θ  ≠  1​. Steady states occur where the ​n​(​V ̃ ​)​​ and the ​​V ̃ ​​(n)​​ schedules intersect. These graphs are based on our base-
line parameters given in Table 2. When ​θ  =  1.5​ in panel B, there is a unique steady state with negative population 
growth (the Empty Planet) for our baseline value of ​γ  =  0.375​; the idea value of people is too small to create the 
high steady state in this case. But for ​γ  =  1​, the multiple steady states reappear.
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n(Ṽ )
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and therefore the Hamiltonian for the optimal allocation is linear in ​​p​t​​​:

	​   = ​  γ _ λ ​ log ​x​t​​ + ​(ε + γ)​ ​p​t​​ + log​(1 − ​ℓ​t​​)​ + ​μ​t​​​(β − λ n​(​ℓ​t​​)​​x​t​​)​ + ​ν​t​​ n​(​ℓ​t​​)​.​

The first-order condition with respect to ​​ℓ​t​​​, ​​​ℓ​​  =  0​, can be written as

	​ ​ℓ​t​​  =  1 − ​  1 __________  
​b 
–
​​(​ν​t​​ − λ ​μ​t​​ ​x​t​​)​

 ​,​

which then implies

(A13)	​ ​n​t​​  = ​ b 
–
​ − δ − ​  1 _  

​(​ν​t​​ − λ ​μ​t​​ ​x​t​​)​
 ​.​

The first-order condition with respect to ​​x​t​​​ is

(A14)	​ ​ ​​μ ˙ ​​t​​ _ ​μ​t​​ ​  =  ρ + λ ​n​t​​ − ​ γ _ λ ​ × ​  1 _ ​μ​t​​ ​x​t​​ ​.​

The first-order condition with respect to ​​p​t​​​ is

	​ ​ ​​ν ˙ ​​t​​ _ ​ν​t​​ ​  =  ρ − ​ 1 _ ​ν​t​​ ​ ​(ε + γ)​.​

This can be rewritten as

	​ ​​ν ˙ ​​t​​  =  ρ ​ν​t​​ − ​(ε + γ)​.​

This differential equation has a rest point which is unstable. Any solution other than ​​
ν ˙ ​  =  0​ for all ​t​ turns out to violate the transversality condition or a resource con-
straint. Therefore we have

(A15)	​ ​ν​t​​  =  ν  ≡ ​  ε + γ _ ρ  ​.​

This means the Hamiltonian can be written as

(A16) ​   = ​  γ _ λ ​ log ​x​t​​ + log​(1 − ​ℓ​t​​)​ + ​μ​t​​​(β − λ n​(​ℓ​t​​)​​x​t​​)​ + ν  n​(​ℓ​t​​)​ + ​(ε + γ)​ ​p​t​​.​

Moreover, the first-order conditions above in equations (A13) and (A14) are inde-
pendent of ​p​ given the constant ​ν​. Since the value function is ​/ρ​, it can therefore 
be written as ​W​(​x​t​​)​ + ν  ​p​t​​​ once we recognize that ​n​ is some function of ​​x​t​​​ only.

The remaining piece of the result is to derive the law of motion for ​​n​t​​​ in terms of ​​
n​t​​​ and ​​x​t​​​ only. To do this, it useful to define an intermediate variable ​​m​t​​  ≡  λ ​μ​t​​ ​x​t​​​. 
Note that

	​ ​ ​​m ˙ ​​t​​ _ ​m​t​​ ​  = ​  ​​μ ˙ ​​t​​ _ ​μ​t​​ ​ + ​ ​​x ˙ ​​t​​ _ ​x​t​​ ​​

	​ = ​ (ρ + λ ​n​t​​ − ​ γ _ ​m​t​​ ​)​ + ​(​ β _ ​x​t​​ ​ − λ ​n​t​​)​​

	​ =  ρ + ​ β _ ​x​t​​ ​ − ​ γ _ ​m​t​​ ​,​
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so that

	​ ​​m ˙ ​​t​​  = ​ (ρ + ​ β _ ​x​t​​ ​)​​m​t​​ − γ.​

Next, from (A13), we have

(A17)	​ ​n​t​​  = ​ b 
–
​ − δ − ​  1 _ 

​(ν − ​m​t​​)​
 ​.​

Taking time derivatives,

	​ ​​n ˙ ​​t​​  =  −​​(ν − ​m​t​​)​​​ −2​ ​​m ˙ ​​t​​​

	​ =  −​​(​b 
–
​ − δ − ​n​t​​)​​​ 

2
​ ​​m ˙ ​​t​​​

	​ =  −​​(​b 
–
​ − δ − ​n​t​​)​​​ 

2
​​[​(ρ + ​ β _ ​x​t​​ ​)​​m​t​​ − γ]​.​

Finally, we can replace ​​m​t​​​ in this equation by rewriting equation (A17) as

	​ ​m​t​​  =  ν − ​  1 ________ 
​b 
–
​ − δ − ​n​t​​

 ​.​

A7. Derivation of Result 6: The Optimal Allocation with Endogenous Fertility

These results are derived in the main text and in Appendix  B on transition 
dynamics.

Appendix B. Solving Numerically for Transition Dynamics

The key differential equations characterizing the optimal allocation were given in 
Result 5 in equations (24) and (25):

(B1)	 ​​​x ˙ ​​t​​  =  β − λ ​n​t​​ ​x​t​​,​

(B2)	​ ​​n ˙ ​​t​​  =  −​​(​b 
–
​ − δ − ​n​t​​)​​​ 

2
​​[​(ρ + ​ β _ ​x​t​​ ​)​​(ν − ​  1 ________ 

​b 
–
​ − δ − ​n​t​​

 ​)​ − γ]​.​

The steady state of this system is

	​ ​x​​ ∗​  = ​   β _ λ ​n​​ ∗​ ​,​

	​ ​n​​ ∗​  = ​  1 _ 
2
 ​ ​b ̃ ​ ± ​√ 

_

  ​ 1 _ 
4
 ​ ​​b ̃ ​​​ 2​ + ​ 

ε ​n​ eq​ log​
 _ λ ν  ​ ​,​

where

	​ ​b ̃ ​  ≡ ​ b 
–
​ − δ − ​ ε + λ _ λ ν  ​  >  0​,
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and

	​ ​n​ eq​ log​  ≡ ​ b 
–
​ − δ − ​ ρ _ ε ​.​

The numerical solution of the transition dynamics for the optimal allocation pro-
ceeds in two steps, first listed here and then described in more detail below.

	 (i)	 We linearize the transition dynamics associated with these two differential 
equations to see that the high steady state is stable while the middle steady 
state is unstable.

	 (ii)	 We solve the original nonlinear system of differential equations in ​​(​x​t​​, ​n​t​​)​​ 
numerically using a “reverse shooting” approach together with a starting 
guess close to the steady state from the linearized system; see the Matlab 
program OptimalDynamics.m.

B1. Linearizing around the Interior Steady States

Linearizing this differential system around the steady state gives

	​ ​​x ˙ ​​t​​  =  −λ ​n​​ ∗​​(​x​t​​ − ​x​​ ∗​)​ − λ  ​x​​ ∗​​(​n​t​​ − ​n​​ ∗​)​,​

	​ ​​n ˙ ​​t​​  =  β​​(​ ​b 
–
​ − δ − ​n​​ ∗​  ________ ​x​​ ∗​ ​ )​​​ 

2

​​(ν − ​  1 ________  
​b 
–
​ − δ − ​n​​ ∗​

 ​)​​(​x​t​​ − ​x​​ ∗​)​​

	​ + ​[2​(​b 
–
​ − δ − ​n​​ ∗​)​​(ε + λ ν  ​n​​ ∗​)​ − ρ − λ ​n​​ ∗​]​​(​n​t​​ − ​n​​ ∗​)​.​

Expressing the linearized system in matrix form with ​X  ≡ ​ [x  n]​​′ allows us to 
write it as ​​​X ˙ ​​t​​  =  B​(​X​t​​ − ​X​​ ∗​)​​ where ​B​ is the matrix of coefficients, which in turn 
depends on various steady-state values.

We can now evaluate this linearized system around the steady states using the 
parameter values in Table 2. First, consider the “high” steady state. The matrix ​​B​high​​​ 
has one negative eigenvalue and one positive eigenvalue, both real, indicating a 
saddle-path stable steady state. In contrast, the “middle” steady state is unstable: 
both its eigenvalues are positive and real. These results are computed in the Matlab 
program OptimalDynamics.m.

This general characterization is broadly robust to the parameter values and shows 
our first point: the high steady state is stable, while the middle steady state is an 
unstable source.

B2. Numerical Transition Dynamics Using the Original Hamiltonian

We solve the full nonlinear system numerically using a “reverse shooting” 
approach. To begin, we start from the high steady state, move a tiny amount away 
according to the negative eigenvalue and corresponding eigenvector of the linearized 
system, and solve the full nonlinear dynamics backwards to characterize the optimal 
path. In one direction, this takes us “up and to the left” in Figure 7 while in the other 
it takes us toward the middle steady state. Finally, to get the dynamics between the 
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middle steady state and the Empty Planet steady state, we begin with ​​x​  0​​  =  26,000​ 
(corresponding to an initial growth rate of ​1/26,000  ≈  0%​) and ​​ℓ​ 0​​  = ​ ℓ​eq​​​, i.e., 
close to the “low” steady state. We then solve backwards so this takes us along the 
optimal path back to the unstable middle steady state.
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