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Abstract

The benefits of economic growth are widely touted in the literature. But
what about the costs? Pollution, nuclear accidents, global warming, the
rapid global transmission of disease, and bioengineered viruses are just some
of the dangers created by technological change. How should these be weighed
against the benefits, and in particular, how does the recognition of these
costs affect the theory of economic growth? This paper shows that taking
these costs into account has first-order consequences for economic growth.
The rising value of life associated with standard utility functions generates a
conservative bias to technological change, significantly slowing the optimal
rate of economic growth.
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Certain events quite within the realm of possibility, such as a major aster-
oid collision, global bioterrorism, abrupt global warming — even certain lab
accidents— could have unimaginably terrible consequences up to and in-
cluding the extinction of the human race... I am not a Green, an alarmist, an
apocalyptic visionary, a catastrophist, a Chicken Little, a Luddite, an anti-
capitalist, or even a pessimist. But... I have come to believe that what I shall
be calling the “catastrophic risks” are real and growing...

— Richard A. Posner (2004, p. v)

1. Introduction

In October 1962, the Cuban missile crisis brought the world to the brink of a
nuclear holocaust. President John F. Kennedy put the chance of nuclear war at
“somewhere between one out of three and even.” The historian Arthur Schlesinger,
Jr., at the time an adviser of the President, later called this “the most dangerous

moment in human history.”?

What if a substantial fraction of the world’s pop-
ulation had been killed in a nuclear holocaust in the 1960s? In some sense, the
overall cost of the technological innovations of the preceding 30 years would then
seem to have outweighed the benefits.

While nuclear devastation represents a vivid example of the potential costs of
technological change, it is by no means unique. The benefits from the internal
combustion engine must be weighed against the costs associated with pollution
and global warming. Biomedical advances have improved health substantially
but made possible weaponized anthrax and lab-enhanced viruses. The poten-
tial benefits of nanotechnology stand beside the “grey goo” threat that a self-
replicating machine could someday spin out of control. Experimental physics
has brought us x-ray lithography techniques and superconductor technologies
but also the remote possibility of devastating accidents as we smash particles
together at ever higher energies. These and other technological dangers are de-
tailed in a small but growing literature on so-called “existential risks”; Posner
(2004) is likely the most familiar of these references, but see also Bostrom (2002),

For these quotations, see (Rees, 2003, p. 26).
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Joy (2000), Overbye (2008), and Rees (2003).

Technologies need not pose risks to the existence of humanity in order to have
costs worth considering. New technologies come with risks as well as benefits.
A new pesticide may turn out to be harmful to children. New drugs may have
unforeseen side effects. Marie Curie’s discovery of the new element radium led
to many uses of the glow-in-the-dark material, including a medicinal additive to
drinks and baths for supposed health benefits, wristwatches with luminous dials,
and as makeup — at least until the dire health consequences of radioactivity were
better understood. Other examples of new products that were intially thought to
be safe or even healthy include thalidomide, lead paint, asbestos, and cigarettes.

The benefits of economic growth are truly amazing and have made enormous
contributions to welfare. However, this does not mean there are not also costs.
How does this recognition affect the theory of economic growth? This paper
shows that taking these costs into account has first-order consequences. In par-
ticular, the rising value of life associated with standard utility functions generates
a conservative bias to technological change, significantly slowing the optimal rate

of economic growth.

2. The Model

At some level, this paper is about speed limits. You can drive you car slowly and
safely, or fast and recklessly. Similarly, a key decision the economy must make
is to set a safety threshold: researchers can introduce many new ideas without
regard to safety, or they can select a very tight safety threshold and introduce
fewer ideas each year, slowing growth to some extent.

The model below is a standard idea-based growth model, along the lines of
Romer (1990) and Jones (1995). Researchers introduce new varieties of interme-
diate goods, and the economy’s productivity is increasing in the number of vari-
eties. The key change relative to standard models is that each variety i also comes
with a danger level, 2. Some ideas are especially dangerous (nuclear weapons or
lead paint) and have a high value of z*, while other ideas are relatively harmless
and have a low 2. The mortality rate in the economy depends on the values of

the 2 that are consumed as well as on the amount consumed.
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In the equilibrium allocation we study, firms that sell dangerous products
must pay a fee for each person they kill, and this fee is a price determined in
equilibrium.

2.1. The Economic Environment

The economy features three types of goods: consumption goods (which come in
a range of varieties), ideas, and people. People and ideas are the two key factors
of production, combining to produce the consumption goods and new ideas.

At any point in time, a variety of consumption goods indexed by i on the
interval [0, A,] are available for purchase. We could define utility directly over
this variety of goods, but for the usual reasons, it is easier to handle the aggrega-
tion on the production side. Hence, we assume these varieties combine in a CES
fashion to produce a single aggregate consumption good:

Ay 1/60
(Jt:(/ Xftdi) . 0>1 (1)
0

New varieties (ideas) are produced by researchers. If L, units of labor are
used in research with a current stock of knowledge A;, then research leads to the
discovery of oL}, AY new varieties. This technology for producing new ideas is
similar to Jones (1995).

What’s novel here is that each new variety 7 is also associated with a danger
level, 2. This danger level is drawn from a distribution with cdf F'(z) and is ob-
served as soon as the variety is discovered. Researchers decide whether or not
to complete the development of a new variety after observing its danger level.
Given that varieties are otherwise symmetric, this leads to a cutoff level z;: va-
rieties with a danger level below z; get implemented, whereas more dangerous
varieties do not. z; is a key endogenous variable determined within the model.
The fraction F'(z;) = Pr[2" < z] of candidate varieties get implemented, so the

additional number of new varieties introduced at any point in time is

Ay = aF(z)L)A), A given. )
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One unit of labor can produce one unit of any existing variety, and labor used
for different purposes cannot exceed the total amount available in the economy,

Nt:
Ay

Xidi+ Loy < Nj. 3)
0

This total population is assumed to grow over time according to
N, = (i —8&)N,, N, given. (4)

The parameter n captures exogenous fertility net of mortality unrelated to tech-
nological change.

Mortality from technological danger is denoted d;. In principle, it should de-
pend on the amount of each variety consumed and the danger associated with
each variety, and it could even be stochastic (nuclear weapons are a problem only
if they are used). There could also be timing issues: the use of fossil fuels today
creates global warming that may be a problem in the future.

These issues are interesting and could be considered in future work. To keep
the present model tractable, however, we make some simplifying assumptions
in determining mortality. In particular, all of the deaths associated with any new
technology occur immediately when that technology is implemented, and the

death rate depends on average consumption across all varieties. That is,
o = SAtxtF<Zt)7 )

where x; = fOAt Xit/Nidi/A; is the average amount consumed of each variety and
[(z) = El']2" < %] = [} 2dF(z)/F(z) is the average mortality rate associated
with those new varieties. The mortality rate J;, then, is the product of the per
capita quantity of new varieties consumed, Az, and their average mortality rate.

Individuals care about expected utility, where the expectation is taken with
respect to mortality. Let S; denote the probability a person survives until date ¢
conditional on being alive at date 0. Expected utility is given by

U:/ e Pu(c;)Sydt, (6)
0
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Figure 1: Flow Utility u(c) for v > 1

Utility

7
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Consumption, ¢

Note: Flow utility is bounded for v > 1. If & = 0, then flow utility is
negative and dying is preferred to living.

where

St - _5tSt7 S() = 1
Finally, we assume that flow utility u(c) is

1—ry
U(Ct) =u-+ 1Ct s Cy = Ct/Nt, u > 0.

The key properties of this utility function are discussed next.

2.2. Flow Utility and the Value of Life

(7)

(8)

The cost of dying is the loss of future periods of utility. The flow lost in year ¢

depends directly on u(c;). Figure 1 shows this flow utility for the CRRA formu-

lation used in this paper, equation (8), for the special case in which v > 1. This

case turns out to be especially interesting in what follows. There are two points

to notice in this graph. First, if u = 0, then flow utility is negative. Since we

have (implicitly) normalized the utility of death at zero in writing lifetime utility,

utility would be maximized by never living in this case. Hence u > 0 is required
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for this model to make sense.

Second, flow utility is bounded for v > 1. Marginal utility goes to zero very
quickly for these preferences. Eating more sushi on a given day when one is al-
ready eating sushi for breakfast, lunch, and dinner has very low returns. Instead,
preserving extra days of life on which to eat sushi is the best way to increase
utility.

This point can also be made with the algebra. Valued in units of consumption
instead of utils and expressed as a ratio to current consumption, the flow value

of a year of life is

u?((cctt))ct - 1 i g ©)
For v > 1, the value of life rises faster than consumption; this is the essential
mechanism that leads the economy to tilt its allocation away from consumption
growth and toward preserving life in the model. This point is more general than
the particular utility function assumed here. For example, any bounded utility

function will deliver this result, as will log utility.?

2.3. A Rule of Thumb Allocation

Given the symmetry of X;;, there are two nontrivial allocative decisions that have
to be made in this economy at each date. First is the allocation of labor between
Ly and X;;. Second is the key tradeoff underlying this paper, the choice of the
safety threshold z;.. A high cutoff for z; implies that more new ideas are intro-
duced in each period but it also means a higher mortality rate. This is the model’s
analog to driving fast and recklessly instead of slowly and safely.

In the next main section, we will let markets allocate resources and study an
equilibrium allocation. To get a sense for how the model works, however, it is
convenient to begin first with a simple rule of thumb allocation. For this exam-
ple, we assume the economy puts a constant fraction 5 of its labor in research
and allocates the remainder symmetrically to the production of the consumption
goods. In addition, we assume the safety cutoff is constant over time at Z.

Let g, denote the growth rate of some variable = along a balanced growth

ZFor log preferences, u(c) = @ + logc. Because u'(c)c = 1, the value of a year of life in con-
sumption units is just u(c) itself, which increases without bound in consumption.
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path. Then, we have the following result (proofs for this and other propositions
are given in Appendix A):

Proposition 1 (BGP under the Rule of Thumb Allocation):  Under the rule of
thumb allocation, there exists a balanced growth path such that g. = og and

0" = dga(l — 5 (2) (10)
gy =M —0" (11)
s = A — 0%) A7 . 12)

I=¢  1-¢+(1-35I(2)

Along the balanced growth path, the mortality rate is constant and depends
on (a) how fast the economy grows, (b) the intensity of consumption, and (c) the
danger threshold. As in Jones (1995), the steady-state growth rate is proportional
to the rate of population growth. However, the population growth rate is now an
endogenous variable because of endenous mortality. For example, an increase in
research intensity 5 will reduce the steady-state mortality rate (a lower consump-
tion intensity) and therefore increase the long-run growth rate.

The effect of changing the danger threshold Z is more subtle and is shown
graphically in Figure 2. As emphasized earlier, there is indeed a basic tradeoff in
this model between growth and safety. Over the first 300+ years in the example,
the safer choice of Z leads to slower growth as researchers introduce fewer new
varieties. However, this tradeoff disappears in the long run because the growth
rate itself depends on population growth. A safer technology choice reduces the
mortality rate, raises the population growth rate, and therefore raises consump-
tion growth in the long run.

3. A Competitive Equilibrium with Patent Buyouts

The rule of thumb allocation suggests that this model will deliver a balanced
growth path with an interesting distinction between the medium-run and long-
run tradeoffs between growth and safety. Moreover, the model features endoge-
nous growth in the strong sense that changes in policy can affect the long-run
growth rate. Somewhat surprisingly, neither of these results will hold in the
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Figure 2: Growth under the Rule of Thumb Allocation
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Note: There is a medium-run tradeoff between growth and technological

danger, but no long-run tradeoff. In the long run, safer choices lead to
faster net population growth and therefore faster consumption growth.

competitive equilibrium, and our rule of thumb allocation turns out not to be
a particularly good guide to the equilibrium dynamics of the competitive equi-

librium.

3.1. An Overview of the Equilibrium

A perfectly competitive equilibrium will not exist in this model because of the
nonrivalry of ideas (Romer, 1990). Instead of following Romer and introducing
imperfect competition, we use a mechanism advocated by Kremer (1998). That
is, we consider an equilibrium in which research is funded entirely by “patent
buyouts”: the government in our model purchases new ideas at a price F,; and
makes the designs publicly available at no charge. The motivation for this ap-
proach is largely technical: it simplifies the model so it is easier to understand.
However, there is probably some interest in studying this institution in its own
right.

The other novel feature of this equilibrium is that we introduce a competitive
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market for mortality: idea producers pay a price v, for every person they kill,
and households “sell” their mortality as if survival were a consumer durable.
This market bears some resemblence to one that emerges in practice through the
legal system of torts and liabilities.

In equilibrium, these two institutions determine the key allocations. Patent
buyouts pin down the equilibrium amount of research and the mortality market

pins down the danger cutoff.

3.2. Optimization Problems

The equilibrium introduces three prices: a wage w;, the price of mortality v;, and
the price of new ideas P,;. The equilibrium then depends on three optimization
problems.

First, a representative household supplies a unit of labor, chooses how much
of her life to sell in the mortality market, pays a lump-sum tax 7;, and eats the
proceeds. Our timing assumption is that mortality is realized at the end of the

period, after consumption occurs.
HH Problem: Given {w;, v;, 7; }, the representative household solves

max/ e Pu(c,)Sydt
{51} Jo

s.t. ¢, = wy + Utégl — T and St = —5?515
Next, a representative firm in the perfectly competitive market for the final

good (FG) solves the following profit maximization problem:

FG Problem: At each date ¢, given w; and A,,

Ay 1/0 Ay
max (/ Xftdi) — Wy Xidi.
{Xie} \Jo 0

Finally, a representative research firm produces ideas in the perfectly compet-
itive idea sector and chooses a cutoff danger level z; based on the price of mor-
tality. The research firm sees constant returns to idea production at productivity
ay, so the effects associated with A < 1 and ¢ # 0 are external:



THE COSTS OF ECONOMIC GROWTH 11

R&D Problem: At each date ¢, given F,;, wy, vy, x4, oy,

max PatOétF(Zt)Lat - that - UtétNt s.t 5t - 5.Z'tOétF<Zt)LatF<Zt).

Lat,zt

3.3. Defining the Competitive Equilibrium

The competitive equilibrium in this economy solves the optimization problems
given in the previous section and the relevant markets clear. The only remaining
issue to discuss is the government purchase of ideas. We’ve already assumed the
government pays a price F,; for any idea and releases the design into the public
domain. We assume this is the only option for researchers — there is no way to
keep ideas secret and earn a temporary monopoly profit. As discussed above, the
reason for this is to keep the model simple; nothing would change qualitatively
if we introduced monopolistic competition, either through secrecy or patents.

In addition, we assume the idea purchases are financed with lump-sum taxes
on households and that the government’s budget balances in each period. More-
over, we assume the government sets the price at which ideas are purchased so
that total purchases of ideas are a constant proportion [ of aggregate consump-
tion; we will relax this assumption later.

The formal definition of the equilibrium allocation follows:

Definition A CE with public support for R&D consists of quantities

{ct, 08, Xit, Aty Lag, Ny, T, 04, 24, o, 24+ and prices {wy, Py, v} such that
1. {c;, 6"} solve the HH Problem.

X, solve the FG Problem.

L, 2, 0, A; solve the R&D Problem.

wy clears the labor market: fOAt Xudi+ Lo = Ny

v, clears the mortality market: §)' = 4.

The government buys ideas: P A, = Bey Ny.

Lump sum taxes 7; balance the budget: 7, = P, A, /N

Other conditions: N, = (7 — 6;,)N,, oy = aL)'A?, and z, =

L[4 Xiudi /N,

® N o Ol LD
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3.4. The Benchmark Case

The equilibrium behavior of the economy depends in important ways on a few
parameters. We specify a benchmark case that will be studied in detail, and then
in subsequent sections consider the effect of deviating from this benchmark. In
specifying the benchmark, it is helpful to note that in equilbrium ¢; = A7(1 — s,),
where o = 122 s the elasticity of consumption with respect to the stock of ideas.
The benchmark case is then given by

Assumption A. (Benchmark Case) Let n = lim, o F'(2)z/F(z). Assume
Al. Finite elasticity of F'(z) as = — 0: n € (0,00)
A2. Rapidly declining marginal utility of consumption: > 1

A3. Knowledge spillovers are not too strong: ¢ < 1+ no(y —1).

We will discuss the nature and role of each of these assumptions in more detail
as we develop the results. The least familiar assumption is A1, but note that both
the exponential and the Weibull distributions have this property. In contrast, the
lognormal and Fréchet distributions have an infinite elasticity in the limit as z

goes to zero. This has interesting implications that we will explore in detail.

3.5. The Equilibrium Balanced Growth Path

We are now ready to solve for the equilibrium in this growth model with danger-

ous technologies. In particular, we can characterize a balanced growth path:

Proposition 2 (Equilibrium Balanced Growth): Under Assumption A, the compet-
itive equilibrium exhibits an asymptotic balanced growth path as t — oo such that

5 — % (13)

2 — 0 (and therefore 6, — 0) (14)
“fn =g =—(v—1)ge (15)

Cofcr = ge = 0ga = Aon (16)

1—¢+no(y—1)
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(17)

u'(c)vy —

|

The somewhat surprising result that emerges from the equilibrium under
Assumption A is that mortality and the danger threshold, rather than being con-
stant in steady state, decline at a constant exponential rate. Technological change
becomes increasingly conservative over time, as an increasing fraction of possible
new ideas are rejected because they are too dangerous.

The consequence of this conservative bias in technological change is no less
surprising: it leads to a slowdown in steady-state growth. There are several
senses in which this is true, and these will be explored as the paper goes on.
But two are evident now. First, the negative growth rate of z; introduces a neg-
ative trend in TFP growth for the idea sector, other things equal. Recall that the
idea production function is A, = aF(z,)L)A?. z declines at the rate (y — 1)g.,
ultimately getting arbitrarily close to zero. By Assumption Al, the elasticity of
the distribution F'(z) at zero is finite and given by 7, so F(z,) declines at rate
n(y —1)ge =n(y — 1)oga.

The second way to see how this bias slows down growth is to focus directly
on consumption growth itself. The steady-state rate of consumption growth is

B Ao,
1—¢+no(y—1)

9e (18)
The last term in the denominator directly reflects the negative TFP growth in the
idea production function resulting from the tightening of the danger threshold.

That this slows growth can be seen by considering the following thought ex-
periment. A feasible allocation in this economy is to follow the equilibrium path
until z is arbitrarily small and then keep it constant at this value. This results in a
mortality rate that is arbitrarily close to zero, and the growth rate in this case will
be arbitrarily close to Aon/(1 — ¢), which is clearly greater than the equilibrium
growth rate. Rather than keep z constant at a small level, the equilibrium con-
tinues to reduce the danger cutoff, slowing growth. Some numerical examples at
the end of this paper suggest that this slowdown can be substantial.

Of course, this raises a natural question: Why does the equilbrium allocation
lead the danger threshold to fall exponentially to zero? To see the answer, first
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consider the economic interpretation of the mortality price v;. This is the price at
which firms must compensate households per unit of mortality that their inven-
tions inflict. In the terminology of the health and risk literatures, it is therefore
equal to the value of a statistical life (VSL).?

Along the balanced growth path, the value of life satisfies equation (17):

U

u'(c)vy — (19)
This equation simply says that the value of life measured in utils is asymptot-
ically equal to the present discounted value of utility: as consumption goes to
infinity, flow utility converges to @, so lifetime utility is just @/p.

Viewed in another way, this equation implies that the value of life grows
faster than consumption. Given our functional form assumption for preferences,
W (ct) = ¢, 7. So ¢, 'v; converges to a constant, which means that g, — 7g.. Be-
cause 7 is larger than one, marginal utility falls rapidly, and the value of life rises
faster than consumption.

With this key piece of information, we can turn to the first-order condition for
the choice of z; in the R&D Problem. That first-order condition is

_ Pat, _ _ ﬁct
UtNt(S.Tt Ut(sgAt<1 - St) .

<t (20)
The first part of this equation says that the danger threshold z, equals the ratio
of two terms. The numerator is related to the marginal benefit of allowing more
dangerous technologies to be used, which is proportional the price at which the
additional ideas could be sold. The denominator is related to the marginal cost,
which depends on the value of the additional lives that would be lost.

The second equation in (20) uses the fact that P, A, = BC, to eliminate the
price of ideas. This last expression illustrates the key role played by the value
of life. In particular, we saw above that v, /c; grows over time since v > 1; the
value of life rises faster than consumption. Because both g4, and 1 — s, are con-

stant along the balanced growth path, the rapidly rising value of life leads to the

3Suppose the mortality rate is §, = .001 and v; = $1 million. In this example, each person
receives $1000 (= v:d;) for the mortality risk they face. For every thousand people in the economy,
one person will die, and the total compensation paid out for this death will equal $1 million.



THE COSTS OF ECONOMIC GROWTH 15

exponential decline in z,. More exactly, v;/c; grows at rate (y — 1)g,, so this is the
rate at which 2, declines, as seen in equation (15).

What is the economic intuition? Because v exceeds 1, flow utility u(c) is
bounded and the marginal utility of additional consumption falls very rapidly.
This leads the value of life to rise faster than consumption. The benefit of using
more dangerous technologies is that the economy gets more consumption. The
cost is that more people die. Because the marginal utility of consumption falls
so quickly, the costs of people dying exceed the benefit of increasing consump-
tion and the equilibrium delivers a declining threshold for technological danger.
Safety trumps economic growth.

3.6. Growth Consequences

From the standpoint of growth theory, there are some interesting implications
of this model. First, as we saw in the context of the rule-of-thumb allocation,
this model is potentially a fully endogenous growth model. Growth is propor-
tional to population growth, but because the mortality rate is endogenous, policy
changes can affect the mortality rate and therefore affect long-run growth, at least
potentially.

Interestingly, however, that is not the case in the equilibrium allocation. In-
stead, the mortality rate trends to zero and is unaffected by policy changes in the
long run. Hence, the equilibrium allocation features semi-endogenous growth,
where policy changes have long-run level effects but not growth effects. In par-
ticular, notice that the patent buyout parameter 3, which influences the long-run
share of labor going to research, is not a determinant of the long-run growth rate
in (18). Moreover, the invariance of long-run growth to policy is true even though
a key preference parameter, -, influences the long-run growth rate.

Finally, it is interesting to consider the special case of ¢ = 1, so the idea pro-
duction function resembles that in Romer (1990). In this case,

A
Zz = aF (%)L,

Here, growth does not explode even in the presence of population growth with
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¢ = 1, as can be seen in equation (18). Instead, the negative trend in z; and the
fact that the mortality rate depends on the growth rate conspire to keep growth

finite.

4. Extensions

The crucial assumptions driving the results have been collected together and la-
beled as Assumption A. In this section, we illustrate how things change when
these assumptions are relaxed. Briefly, there are two main findings. First, when
we consider distributions with an infinite elasticity at z = 0, the concern for safety
exhibits an even more extreme technological bias: equilibrium growth slows all
the way to zero asymptotically. Second, we highlight the role played by v > 1:
if instead v < 1, then the equilibrium allocation looks like the rule of thumb
allocation, selecting a constant danger threshold in steady state.

4.1. Relaxing Al: Letting n = oo

Recall that 7 is the elasticity of the danger distribution F'(z) in the limit as z — 0.
Intuitively, this parameter plays an important role in the model because F'(z) is
the fraction of new ideas that are used in the economy, and z is trending exponen-
tially to zero. The term ng. = —n(y—1)g. therefore plays a key role in determining
the growth rate of ideas along the balanced growth path:

B A
C1l—¢+no(y-1)

gaA (21)

Assumption A1l says that 7 is finite. This is true for a number of distributions,
including the exponential ( = 1), the Weibull, and the gamma distributions.
However, it is not true for a number of other distributions. Both the lognor-
mal and the Fréchet distributions have an infinite elasticity at zero, for example.
Given that we have no prior over which of these distributions is most relevant to
our problem, it is essential to consider carefully the case of 7 = oo.

In fact, it is easy to get a sense for what will happen by considering equa-
tion (21). As n rises in this equation, the steady-state growth rate of the economy
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declines. Intuitively, a 1% reduction in z has a larger and larger effect on F'(2): an
increasing fraction of ideas that were previously viewed as safe are now rejected
as too dangerous. This reasoning suggests that as 7 gets large, the steady-state
growth rate falls to zero, and this intuition is confirmed in the following propo-

sition:

Proposition 3 (Equilibrium Growth with n = oco): Let Assumptions A2 and A3
hold, but instead of A1, assume 1 = oo. In the competitive equilibrium, as t — oo

1. The growth rate of consumption falls to zero: ¢;/c; — 0
2. The level of consumption goes to infinity: ¢; — oo

3. The technology cutoff, the mortality rate, and the share of labor devoted to research
all go to zero: z; — 0,6, — 0, s, — 0.

When 7 = o0, the increasingly conservative bias of technological change
slows the exponential growth rate all the way to zero. However, this does not
mean that growth ceases entirely. Instead, the level of consumption still rises to

infinity, albeit at a slower and slower rate.

4.2. Relaxing A2: Assume 7y < 1

The most important assumption driving the results in this paper is that marginal
utility diminishes quickly, in the sense that v > 1. For example, the value of a
year of life in year ¢ as a ratio to consumption is

u(cy) o 1

:uct 1"‘:

For v > 1, this rises to infinity as consumption grows. But for v < 1, it converges
to 1/(1—+): the value of life is proportional to consumption. In this case, the elas-
ticity of utility with respect to consumption remains positive rather than falling
to zero, which keeps the value of life and consumption on equal footing. The
result is that the conservative bias of technological change disappears: the econ-
omy features exponential growth in consumption with a constant danger cutoff

and a constant, positive mortality rate:
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Proposition 4 (Equilibrium Growth with v < 1): Let Assumptions A1 and A3 hold,
but instead of A2, assume v < 1. The competitive equilibrium exhibits an asymptotic
balanced growth path as t — oo such that

2z — 2" € (0,00), & — 6" € (0,00)

51— 2
1+ (1 -2
¢ A — %) Aon

—>gc— - N * *
¢ 1—9¢ 1—¢+ (1 —s)(2¥)
Ut 1 1

ﬁ .
¢ 1=y p+0*—=(1-7)g

For v < 1, the economy looks very similar to the rule of thumb allocation;
for example, compare the growth rate to that in Proposition 1. The economy
features a constant danger cutoff as well as endogenous growth: an increase in
idea purchases by the government (a higher ) will shift more labor into research,

lower the mortality rate, and increase the long-run growth rate.*

4.3. Optimality

In this section, we study the allocation of resources that maximizes a social wel-
fare function. There are three reasons for this. First, it is important to verify that
the declining danger threshold we uncovered in the equilibrium allocation is not
a perverse feature of our equilibrium. Second, in the equilibrium allocation, in-
dividuals put no weight on the welfare of future generations; it is a purely selfish
equilibrium. It is interesting to study the effect of deviations from this bench-
mark. Finally, our equilibrium allocation employed a particular institution for
funding research: patent buyouts where spending on new ideas is in constant
proportion to consumption. This institution is surely special (and not generally
optimal), so it is important to confirm that it is not driving the results. The bot-
tom line of this extension to an optimal allocation is that all of the previous results

4The intermediate case of log utility (y = 1) requires separate consideration. In this case, the
technology cutoff z; still declines to zero, but this decline is slower than exponential. The long-run
growth rate is then precisely back to the semi-endogenous growth case: g4 = Aiv/(1 — ¢).
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hold up well.

In this environment with multiple generations, there is no indisputable social
welfare function. However, a reasonably natural choice that serves our purposes
is to treat flows of utility from different people symmetrically and to discount
flows across time at rate p. This leads to the following definition of an optimal
allocation:

Definition An optimal allocation in this economy is a time path for

{st, z¢} that solves

max/ e "' Nyu(c;)dt subject to
{st,ze} Jo

e =A7(1 —s1)
Ay = aF(2)s) N} A?
Nt - (’f_l - 5t)Nt

b = das) N) AP (1 — st)/ zf(2)dz.
0

The optimal allocation can then be characterized as follows.
Proposition 5 (Optimal Balanced Growth): Under Assumption A and the optimal
allocation, the economy exhibits an asymptotic balanced growth path as t — oo such that

Sy A0ga
ﬁ

l—s  (A+n)p—n+(y—1)g) + (1 —d)ga —noga

2 — 0 (and therefore 6, — 0)
4fz— —(v—1)ge
G/t = e,
where g. and g4 are the same as in the competitive equilibrium.

The key properties of the competitive equilibrium carry over into the optimal
allocation. In particular, the danger threshold declines exponentially to zero at
the rate (y — 1)g., and this technological bias slows the growth rate of the econ-

omy. The long-run growth rate is the same as in the equilibrium allocation.
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Table 1: Benchmark Parameter Values

Parameter Value Comment
v=15 Slightly more curvature than log utility
n=1 F(z) is an exponential distribution
B =0.02 Government spends 2% of consumption on ideas
A=1,¢=1/2 Idea production function: A, = aF(z)A, Loy
n = .01 Long-run population growth rate
o= Elasticity of consumption wrt ideas
p=".05 Rate of time preference
§ =50 Mortality rate intercept

Note: These are the baseline parameter values for the numerical examples.

5. Numerical Examples

We now report a couple of numerical examples to illustrate how this economy
behaves along the transition path. We make some attempt to choose plausible pa-
rameter values and to produce simulations that have a “realistic” look to them.
However, the model abstracts from a number of important forces shaping eco-
nomic growth and mortality, so the examples should not be taken too literally.
Mainly, they will illustrate the extent to which growth can be slowed by concerns
about the dangers of certain technologies.

The first example features sustained exponential growth (1 < oo). The second
assumes a distribution F'(z) with an elasticity that rises to infinity as z falls to
zero. According to Proposition 3, this example exhibits a growth rate that de-

clines to zero, even though consumption itself rises indefinitely.

5.1. Benchmark Example

The basic parameterization of the benchmark case is described in Table 1. For the

curvature of marginal utility, we choose v = 1.5; large literatures on intertempo-
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Figure 3: Equilibrium Dynamics: Benchmark Case
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Note: Simulation results for the competitive equilibrium using the param-
eter values from Table 1. Consumption growth settles down to a constant
positive rate, substantially lower than what is feasible. The danger thresh-
old and mortality rate converge to zero.

ral choice (Hall 1988), asset pricing (Lucas 1994), and labor supply (Chetty 2006)
suggest that this is a reasonable value. For F'(z), we assume an exponential dis-
tribution so that n = 1; we also assume this distribution has a mean of one. We
set 3 = .02: government spending on ideas equals 2% of aggregate consumption.
For the idea production function, we choose A = 1 and ¢ = 1/2, implying that in
the absence of declines in z;, the idea production function itself exhibits produc-
tivity growth. Finally, we assume a constant population growth rate of 1% per
year. The other parameter values are relatively unimportant and are shown in
the table. Other reasonable choices for parameter values will yield similar results
qualitatively. The model is solved using a reverse shooting technique, discussed
in more detail in Appendix B.

Figure 3 shows an example of the equilibrium dynamics that occur in this
economy for the benchmark case. The economy features a steady-state growth
rate of per capita consumption of 1.33%. This constant growth occurs while the
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danger threshold and the mortality rate decline exponentially to zero; both 2, and
0, grow at -0.67%.

Several other features of the growth dynamics are worth noting. First, the par-
ticular initial conditions we’ve chosen have the growth rate of consumption de-
clining along the transition path; a different choice could generate a rising growth
rate, although declining growth appears to be more consistent with the value of
life in the model (more on this below).

Second, consider total factor productivity for the idea production function.
With A\ = 1, TFP is aF(z)A{. Because we've assumed ¢ = 1/2, this production
function has the potential to exhibit positive TFP growth as knowledge spillovers
rise over time. However, a declining danger threshold can offset this. In steady
state, TFP growth for the idea production function is ¢g4 + 9. = —0.33%. That
is, even though a given number of researchers are generating more and more
candidate ideas over time, the number that get implemented is actually declining
because of safety considerations.

Finally, the steady-state growth rate of 1.33% can be compared to an alterna-
tive path. It is feasible in this economy to let the technology-induced mortality
rate fall to some arbitrarily low level — such as 1 death per billion people — and
then to keep it constant at that rate forever by maintaining a constant technology
cutoff z. As this constant cutoff gets arbitrarily small, the steady state growth rate
of the economy converges to A\on/(1 — ¢) — that is, to the rule-of-thumb growth
rate from Proposition 1. For our choice of parameter values, this feasible steady-
state growth rate is 4.0% per year. That is, concerns for safety make it optimal in
this environment to slow growth considerably relative to what is possible in the
steady state.

The reason for this, of course, is the rising value of life, shown for this exam-
ple in Figure 4. The value of life begins in period 0 at about 100 times annual
consumption; if we think of per capita consumption as $30,000 per year, this cor-
responds to a value of life of $3 million, very much in the range considered in
the literature (Viscusi and Aldy 2003; Ashenfelter and Greenstone 2004; Murphy
and Topel 2005). Over time, the value of life relative to consumption rises ex-
ponentially at a rate that converges to 0.67%, the same rate at which mortality
declines.



THE COSTS OF ECONOMIC GROWTH 23

Figure 4: The Value of Life: Benchmark Case
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Note: Simulation results for the competitive equilibrium using the param-
eter values from Table 1. The value of life rises faster than consumption.

5.2. Numerical Example When n = 0o

One element of the model that is especially hard to calibrate is the distribution
from which technological danger is drawn, F'(z). The previous example assumed
an exponential distribution so that = 1; in particular, the elasticity of the distri-
bution as z approaches zero is finite. However, this need not be the case. Both the
Fréchet and the lognormal distributions feature an infinite elasticity. In Proposi-
tion 3, we showed that this leads the growth rate of consumption to converge
to zero asymptotically. For this example, we consider the Fréchet distribution to
illustrate this result: F(z) = ¢=* " and we set ¢) = 1.1.> Other parameter values
are unchanged from the benchmark case shown in Table 1, except we now set
6 = 1, which is needed to put the value of life in the right ballpark.

Figure 5 shows the dynamics of the economy for this example. The growth

rate of consumption now converges to zero as 7(z) gets larger and larger, mean-

>We require 1) > 1 so that the mean (and hence conditional expectation) exist. The elasticity
of this cdf is n(z) = ¥z~%, so a small value of 1 leads the elasticity to rise to infinity relatively
slowly.
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Figure 5: Equilibrium Dynamics: Fréchet Case
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Note: Dynamics when F'(z) is Fréchet, so n = co: growth slows to zero
asymptotically. See notes to Figure 3.

ing that a given decline in the danger threshold eliminates more and more po-
tential ideas. Interestingly, this rising elasticity means that the danger threshold
itself declines much more gradually in this example.

Figure 6 — with its logarithmic scale — suggests that this declining consump-
tion growth rate occurs as consumption gets arbitrarily high. The value of life still

rises faster than consumption, but the increase is no longer exponential.

6. Discussion and Evidence

The key mechanism at work in this paper is that the marginal utility of con-
sumption falls quickly, leading the value of life to rise faster than consumption.
This tilts the allocation in the economy away from consumption growth and to-
ward preserving lives. Exactly this same mechanism is at work in Hall and Jones
(2007), which studies health spending. In that paper, v > 1 leads to an income
effect: as the economy gets richer over time (exogenously), it is optimal to spend
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Figure 6: Consumption and the Value of Life: Fréchet Case
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Note: Dynamics when F'(z) is Fréchet, so 7 = oco: consumption still rises
to infinity. See notes to Figure 4.

an increasing fraction of income on health care in an effort to reduce mortality.
The same force is at work here in a very different context. Economic growth com-
bines with sharply diminishing marginal utility to make the preservation of life
a luxury good. The novel finding is that this force has first-order effects on the

determination of economic growth itself.

6.1. Empirical Evidence on the Value of Life

Direct evidence on how the value of life has changed over time is surprisingly
difficult to come by. Most of the empirical work in this literature is cross-sectional
in nature; see Viscusi and Aldy (2003) and Ashenfelter and Greenstone (2004), for
example. Two studies that do estimate the value of life over time are Costa and
Kahn (2004) and Hammitt, Liu and Liu (2000). These studies find that the value
of life rises roughly twice as fast as income, supporting the basic mechanism in
this paper.

Less direct evidence may be obtained by considering our changing concerns
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Figure 7: Mortality Rate from Accidental Drowning
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Note: Taken from various issues of the National Center for Health Statis-
tics, Vital Statistics Data. Breaks in the data imply different sources and
possibly differences in methodology.

regarding safety. It is a common observation that parents today are much more
careful about the safety of their children than parents a generation ago. Perhaps
that is because the world is a more dangerous place, but perhaps it is in part our
sensitivity to that danger which has changed.

I am searching for formal data on how safety standards have changed over
time and how they compare across countries. One source of information comes
from looking at accidental deaths from drowning. Perhaps to a greater extent
than for other sources of mortality, it does not seem implausible that advances
in health technologies may have had a small effect on drowning mortality: if
one is underwater for more than several minutes, there is not much that can be
done. Nevertheless, there have been large reductions in the mortality rate from
accidental drowning in the United States, as shown in Figure 7. At least in part,
these are arguably due to safety improvements.

Safety standards also appear to differ significantly across countries, in a way
that is naturally explained by the model. While more formal data is clearly de-
sirable, different standards of safety in China and the United States have been
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vividly highlighted by recent events in the news. Eighty-one deaths in the United
States have been linked to the contamination of the drug heparin in Chinese fac-
tories (Mundy 2008). In the summer of 2007, 1.5 million toys manufactured for
Mattel by a Chinese supplier were recalled because they were believed to contain
lead paint (Spencer and Ye 2008). And in an article on the tragic health conse-
quences for workers producing toxic cadmium batteries in China, the Wall Street
Journal reports

As the U.S. and other Western nations tightened their regulation of
cadmium, production of nickel-cadmium batteries moved to less-developed
countries, most of it eventually winding up in China. “Everything

was transferred to China because no one wanted to deal with the
waste from cadmium,” says Josef Daniel-Ivad, vice president for re-
search and development at Pure Energy Visions, an Ontario battery
company. (Casey and Zamiska 2007)

6.2. The Environmental Kuznets Curve

Another interesting application of the ideas in this paper is to the environmental
Kuznets curve. As documented by Selden and Song (1994) and Grossman and
Krueger (1995), pollution exhibits a hump-shaped relationship with income: it
initially gets worse as the economy develops but then gets better. To the extent
that one of the significant costs of pollution is higher mortality — as the Chinese
cadmium factory reminds us — the declines in pollution at the upper end of the
environmental Kuznets curve are consistent with the mechanism in this paper.
As the economy gets richer, the value of life rises substantially and the economy
features an increased demand for safety.

In fact, the consequences for economic growth are also potentially consistent
with the environmental Kuznets curve. One of the ways in which pollution has
been mitigated in the United States is through the development of new, cleaner
technologies. Examples include scrubbers that remove harmful particulates from
industrial exhaust and catalytic converters that reduce automobile emissions. Re-
searchers can spend their time making existing technologies safer or inventing

new technologies. Rising concerns for safety lead them to divert effort away from
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new inventions, which reduces the output of new varieties and slows growth.

7. Conclusion

Safety is a luxury good. For a large class of standard preferences used in applied
economics, the value of life rises faster than consumption. The marginal utility
associated with more consumption on a given day runs into sharp diminishing
returns, and adding additional days of life on which to consume is a natural,
welfare-enhancing response. Economic growth therefore leads to a dispropor-
tionate concern for safety.

This force is so strong, in fact, that concerns for safety eventually outweigh a
society’s demand for economic growth. In the economy studied here, safety con-
siderations lead to a conservative bias in technological change that slows growth
considerably relative to what could otherwise be achieved. Depending on exactly
how the model is specified, this can take the form of an overall reduction in ex-
ponential growth to a lower but still positive rate. Alternatively, the exponential
growth rate itself may be slowed to zero.

From the standpoint of the growth literature, this is a somewhat surprising
result. Some literatures focus on the importance of finding policies to increase
the long-run growth rate; others emphasize the invariance of long-run growth to
policies. Hence, the result that concerns for safety lead to a substantial reduction
in the optimal growth rate is noteworthy.

The finding can also be viewed from another direction, however. A litera-
ture on sustainability questions the wisdom of economic growth; for example,
see Ehrlich (1968), Meadows et al. (1972), and Mishan (1993). The model studied
here permits very strong concerns for safety and human life. And while the con-
sequences are slower rates of economic growth — even rates that slow to zero
asymptotically — it is worth noting that the key driving force in the model is an
income effect that operates only as consumption goes to infinity. That is, even
the most aggressive slowing of growth found in this paper features unbounded
growth in individual consumption; it is never the case that all growth should
cease entirely.

This paper suggests a number of different directions for future research on
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the economics of safety. It would clearly be desirable to have precise estimates
of the value of life and how this has changed over time; in particular, does it
indeed rise faster than income and consumption? More empirical work on how
safety standards have changed over time — and estimates of their impacts on
economic growth — would also be valuable. Finally, the basic mechanism at
work in this paper over time also applies across countries. Countries at different
levels of income may have very different values of life and therefore different
safety standards. This may have interesting implications for international trade,
standards for pollution and global warming, and international relations more

generally.

A Appendix: Proofs of the Propositions

This appendix contains outlines of the proofs of the propositions reported in the

paper.

Proof of Proposition 1. BGP under the Rule of Thumb Allocation

Equations (10) and (11) follow immediately from the setup. The growth rate of
ideas then comes from taking logs and derivatives of both sides of the following
equation, evaluated along a balanced growth path, and using the fact that 0* =

5ga(1 —35)I(2): ' .
Ay 52V

QED.

Proof of Proposition 2. Equilibrium Balanced Growth

Solving the optimization problems that help define the equilibrium and mak-
ing some substitutions leads to the following seven key equations that pin down

the equilibrium values of {c;, s;, vy, 2, Ay, 0r, Nt}

Cp = Ag(l — St) (22)
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St :5_@:5(1_”2)) (23)
1—s; Cy z
u(c;)/u'(cr)
= 24
o p_'_(st‘i_rygct_gvt ( )
Bey
Z = - 25
! 'Ut(sgAt(]- — St) ( )
At o S?Nt)\
E = OéF(Zt)P (26)
6 = 0ga(1 — )T () (27)
N,
Fz =1 — 6 (28)

We begin by studying the value of life, in equation (24). With our specifi-
cation of utility, u(c;)/u'(¢) = ac] + /(1 — 7). Since v > 1, the growth rate
of the value of life must be equal to vg. along an (asymptotic) balanced growth
path. Equation (24) then implies the last result in the proposition, namely that
W (ep)vy — u/p.

The fact that g, = vg. immediately implies from (25) that the danger cutoff
2z, converges to zero along a balanced growth path, because v;/¢, rises to infinity
with v > 1. Similarly, g, = —(y — 1)g.. And since z; — 0, equation (27) implies
that 6, — 0 as well.

To get the growth rate of the economy as a whole, recall that

Taking logs and derivatives of this equation along the balanced growth path, and

using the fact that = lim, o F"(2)z/F (%) is finite from Assumption A, we have

The growth rate results of the proposition then follow quickly, after we note that
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gc =0gaand g, = —(y — 1)g.. For example

B A7
S 1l—¢+no(y—1)

ga

Finally, the share of labor devoted to research in steady state can be found
from equation (23). By L'hopital’s rule, limI'(z)/z = I'(0). Using the definition

of the conditional expectation, one can calculate that

v = (1- 22 ) oo

z

where 7(z) = 2F'(z)/F(z). Taking the limit as = — 0 and noting that 7 is finite
reveals that lim I'(z)/z = n/(1+n). Substituting this into (23) yields the asmptotic
value for s. QED.

Proof of Proposition 3. Equilibrium Growth with n = oo

First, we show ¢, — oo, by contradiction. Suppose not. That is, suppose
¢t — ¢* € (0,00). The contradiction arises because the model has a strong force
for idea growth and therefore consumption growth. By (24), v; — v* and (23)
and (25) imply that s;, — s* € (0,1) and z — 2* > 0. Studying the system of
differential equations in (26), (27), and (28) reveals that

A, A\

A T T ora(—sre

But since ¢, = AY(1 — s;), this means ¢; — oo, which contradicts our original
supposition that ¢, — ¢*. Therefore this supposition was wrong, and ¢, does in
fact go to oo.

Next, we show everything else, such as g, — 0. With ¢, — oo and v > 1,
v/, — oo from (24), as the value of life rises faster than consumption. Then (25)
implies that

w B B(L+ B(1 = T(2)/=)

Ct - 52t9At(1 - St) - SztgAt

But then v;/¢; — oo if and only if z,g4; — 0.

First, we show that z, has to go to zero. Why? Suppose not. That is, suppose
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2z — 2" and g4y — 0. From (23), s;, — s* € (0,1). And then from (27), it must be
that 6 — 0. But then population grows at rate n eventually and the law of motion
for ideas (26) would lead to exponential growth in A;, which is a contradiction.
Therefore z; has to go to zero.

Is it possible that g4, does not then also go to zero? No. Notice that z, — 0 as
rapidly as consumption (and therefore A;) go to infinity. But the fact that n = oo
means that F'(z;) goes to zero faster than V; and A, are rising.

The fact that s, — 0 comes from (23) because, as we show next, lim, o I'(z)/z =
1 when 7 = co. By L'hopital’s rule, imI'(z)/z = I(0). Using the definition of the
conditional expectation, one can calculate that

v = (1- 22 ) oo

z

where 7(z) = zF'(z)/F(z). Since n(z) # 0, we can divide both sides by 7(z) and
consider the limit as z — 0:
limM =1 —limM.
n(z) z
The left-hand size is zero since 7)(2) — oo by assumption, which proves the result.
The fact that z;, — 0, g4y — 0, and s, — 0 imply that §; — 0 and g, — 0. QED.

Proof of Proposition 4. Equilibrium Growth with v < 1

The equilibrium with v < 1 is characterized by the same seven equations
listed above in the proof of Proposition 2, equations (22) through (28). The proof
begins in the same way, by studying the value of life in equation (24). With our
specification of utility, u(¢;)/u'(¢;) = uc]+c:/(1—7). Since vy < 1, the constant term
disappears asymptotically and the growth rate of the value of life equals g. along
an (asymptotic) balanced growth path. Equation (24) then implies the last result
in the proposition, giving the constant ratio of the value of life to consumption.

The fact that v; /¢, converges to a constant means that z; converges to a nonzero
value, according to equation (25). Similarly, J; does as well, according to equa-
tion (27). The solution for the growth rate and the research share are found in

ways similar to those in the proof of Proposition 2. QED.
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Proof of Proposition 5. Optimal Balanced Growth

The Hamiltonian for the optimal growth problem is
H = Nyu(cy)+paF (z)s) N] AL+ 119, N, (ﬂ — SaF(z)s) N)AYTH (1 - st)/ zf(z)dz) :
0

Applying the Maximum Principle, the first order necessary conditions are

H, =0 Nyt (1) A7 = puphd — i Ny(A2 — 2

St l—st

H, =0 piae = pae N0z - 1;—?

K1t K1t

Arbitrage(4;): p =1t 4 L (Ntul(ct)az_tt + M1t¢ﬁ—z — poeNi(¢ — 1),%)

Arbitrage(N;): p= % + t (U(Ct) + ,Ult)\% + pge(n — 0;) — NZtNt)\]%)
together with two transversality conditions: lim; ., p1Are ™ = 0 and limy_, o poy Nie™?' =
0.

Combining these first order conditions (use the first and second to get an ex-

pression for ji5, and substitute this into the arbitrage equation for NV;) and rear-

ranging yields:
P g — (A= 0) £ M —Mgad(l—s)an _ ule) (0 pg
)\ggAtZt 1;t8t o litst ()\ 1;t5t _ ]_) U’(Ct)ct t).

This is the key equation for determining the asymptotic behavior of z;. In partic-
ular, along a balanced growth path, the right-hand-side goes to infinity for v > 1.
This requires that z; — 0 so that the denominator of the left side goes to zero
(since §; — 0 as well). Moreover, with some effort, one can show that the de-
nominator on the left side grows at the same rate as z; along the balanced growth
path, which implies that g, = —(y — 1)g. from the usual value-of-life argument
used earlier.

The result for the growth rate of A, and ¢, follows by the same arguments as
in the proof of Proposition 2. Finally, one can combine the first order conditions

to solve for the allocation of research. QED.
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Table 2: Key “State-Like” Variables for Studying Transition Dynamics

Variable Meaning Steady-State Value
by = ”Z—ft Value of life x mortality =014
my = Gas Growth rate of A; m* = gy
0 Mortality rate 0" =0
wy = u,“((cctt))q S Value of a year of life rela- w*=p

tive to mortality price

B Appendix: Solving the Model Numerically

The transition dynamics of the equilibrium allocation can be studied as a sys-
tem of four differential equations in four “state-like” variables that converge to
constant values: ¢;, my, J;, and w,. These variables, their meaning, and their
steady-state values are displayed in Table 2.

Letting a “hat” denote a growth rate, the laws of motion for these state-like

variables are

o pt 0 —w o+ (y— Dom, + A7 - 6) — (1— @)m,

0, (30)
L+ ki (6% - 7) + e
A n(z) Ak ) 5 _

my = — + li+Xn—06)— (1 —¢p)m 31
= (P YA - - om 6D

L H(Zt) ~
6t =Mmy; + (kt — 71 — Q(Zt)) ft (32)

R R 1) A
Wy = 0p — Uy + (’Y—l+—t) (Umt‘l’ktgt) (33)
wtﬁt

where 6(z) = 2I"(2)/I'(2) = n(z)(z/I'(2) — 1) is the elasticity of the conditional
expectation function and k; = ¢, /(1+ 5 —¥;). The only other variable that must be
obtained in order to solve these differential equations is z;, and it can be gotten
as follows. First, s; = (6 —{;)/(1+ 5 — {;). With s; in hand, I'(z;) can be recovered
from the state-like variables using the mortality rate: §; = dm;(1—s,)I'(z;). Finally,
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2z = B (2¢) /4y

We solve the system of differential equations using “reverse shooting”; see
Judd (1998, p. 355). That is, we start from the steady state, consider a small
departure, and then run time backwards. For the results using the exponential
distribution, we set 7" = 600; for the results using the Fréchet distribution, we set
T = 12150.

An interesting feature of the numerical results is that /, ~ 0 holds even far
away from the steady state. The reason is that lim._.,#(2) = 1: if z changes by a
small percent starting close to zero, the conditional expectation changes by this
same percentage. But this means that /, ~ 0 since there is a 1/(1 — 6(z)) term in
the denominator. But since z,/I'(z;) = (3/4,, if ¢, does not change by much, then
2 will not change by much either. QED.
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