
American Economic Review 2020, 110(9): 2819–2858 
https://doi.org/10.1257/aer.20191330

2819

Nonrivalry and the Economics of Data†

By Charles I. Jones and Christopher Tonetti*

Data is nonrival: a person’s location history, medical records, and 
driving data can be used by many firms simultaneously. Nonrivalry 
leads to increasing returns. As a result, there may be social gains to 
data being used broadly across firms, even in the presence of pri-
vacy considerations. Fearing creative destruction, firms may choose 
to hoard their data, leading to the inefficient use of nonrival data. 
Giving data property rights to consumers can generate allocations 
that are close to optimal. Consumers balance their concerns for pri-
vacy against the economic gains that come from selling data broadly. 
(JEL C80, D11, D21, D83, E22, K11, O34)

In recent years, the importance of data in the economy has become increasingly 
apparent. More powerful computers and advances in algorithms such as machine 
learning have led to an explosion in the usefulness of data. Examples include 
self-driving cars, real-time language translation, medical diagnoses, product recom-
mendations, and social networks.

This paper develops a theoretical framework to study the economics of data. We 
are particularly interested in how different property rights for data determine its use 
in the economy, and thus affect output, privacy, and consumer welfare. The starting 
point for our analysis is the observation that data is nonrival. That is, at a technolog-
ical level, data is infinitely usable. Most goods in economics are rival: if a person 
consumes a kilogram of rice or an hour of an accountant’s time, some resource with 
a positive opportunity cost is used up. In contrast, existing data can be used by any 
number of firms or people simultaneously, without being diminished. Consider a 
collection of one million labeled images, the human genome, the US Census, or the 
data generated by 10,000 cars driving 10,000 miles. Any number of firms, people, 
or machine learning algorithms can use these data simultaneously without reducing 
the amount of data available to anyone else.

The key finding in our paper is that policies related to data have important eco-
nomic consequences. When firms own data, they may not adequately respect the pri-
vacy of consumers. But nonrivalry leads to other consequences that are less obvious. 
Because data is nonrival, there are potentially large gains to data being used broadly. 
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Markets for data provide financial incentives that promote broader use, but if selling 
data increases the rate of creative destruction, firms may hoard data in ways that are 
socially inefficient.

An analogy may be helpful. Because capital is rival, each firm must have its own 
building, each worker needs her own desk and computer, and each warehouse needs 
its own collection of forklifts. But if capital were nonrival, it would be as if every 
auto worker in the economy could use the entire industry’s stock of capital at the 
same time. Clearly this would produce tremendous economic gains. This is what is 
possible with data. Obviously there may be incentive reasons why it is inefficient 
to have all data used by all firms. But an equilibrium in which firms own data and 
sharply limit its use by other firms may also be inefficient. Our numerical examples 
suggest that these costs can be large.

Another allocation we consider is one in which a government—perhaps out of 
concern for privacy—sharply limits the use of consumer data by firms. While this 
policy succeeds in generating privacy gains, it may potentially have an even larger 
cost because of the inefficiency that arises from a nonrival input not being used at 
the appropriate scale.

Finally, we consider an institutional arrangement in which consumers own the 
data associated with their behavior. Consumers then balance their concerns for pri-
vacy against the economic gains that come from selling data to all interested parties. 
This equilibrium results in data being used broadly across firms, taking advantage 
of the nonrivalry of data. Across a wide range of parameter values explored in our 
numerical example, consumer ownership of data generates consumption and wel-
fare that are substantially better than firm ownership.

To put this concretely, suppose doctors use software to help diagnose skin cancer. 
An algorithm can be trained using images of potential cancers labeled with pathol-
ogy reports and cancer outcomes. Imagine a world in which hospitals own data 
and each uses labeled images from all patients in its network to train the algorithm. 
Now compare that to a situation in which competing algorithms can each use all the 
images from all patients in the United States, or even the world. The software based 
on larger samples could help doctors everywhere better treat patients and save lives. 
The gain to any single hospital from selling its data broadly may not be sufficient to 
generate the broad use that is beneficial to society, either because of concerns related 
to creative destruction or perhaps because of legal restrictions. Consumers owning 
their medical data and selling it to all interested researchers, hospitals, and entrepre-
neurs may result in a world closer to the social optimum in which such valuable data 
is used broadly to help many.

The remainder of the paper is structured as follows. The introduction continues 
with a discussion of how we model data and on the similarities and differences 
between data and ideas—another nonrival good—and provides a literature review. 
Section I provides a simple model to demonstrate the link between nonrivalry and 
scale effects. Section II turns to the full model and presents the economic environ-
ment. Section III examines the allocation chosen by the social planner. Section IV 
turns to a decentralized equilibrium in which firms own data and shows that it may 
be privately optimal for a firm to both overuse its own data and to sharply limit 
data sales to other firms. Section V instead considers an allocation in which con-
sumers own data and, weighing privacy considerations, sell some data to multiple 
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firms. Section VI shows what happens if the government outlaws the selling of data. 
Section VII collects and discusses our main theoretical results while Section VIII 
presents a numerical simulation of our model to illustrate the various forces at work.

A.  Data versus Ideas

We find it helpful to define information as the set of all economic goods that are 
nonrival. That is, information consists of economic goods that can be entirely repre-
sented as bit strings, i.e., as sequences of ones and zeros. Ideas and data are types of 
information. Following Romer (1990), an idea is a piece of information that is a set 
of instructions for making an economic good, which may include other ideas. Data 
denotes the remaining forms of information. It includes things like driving data, med-
ical records, and location data that are not themselves instructions for making a good 
but that may still be useful in the production process, including in producing new 
ideas. An idea is a production function whereas data is a factor of production.

Some examples distinguishing data from ideas might be helpful. First, consider a 
million images of cats, rainbows, kids, buildings, etc., labeled with their main sub-
ject. Data like these are extremely useful for training machine learning algorithms, 
but these labeled images are clearly not themselves ideas, i.e., not blueprints. The 
same is true of the hourly heart-rate history of a thousand people or the speech sam-
ples of a population. It seems obvious at this level that data and ideas are distinct.

Second, consider the efforts to build a self-driving car. The essence is a machine 
learning algorithm, which can be thought of as a collection of nonlinear regres-
sions attempting to forecast what actions an expert driver will take given the data 
from various sensors including cameras, lidar, GPS, and so on. Data in this example 
includes both the collection of sensor readings and the actions taken by expert driv-
ers. The nonlinear regression estimates a large number of parameters to produce the 
best possible forecasts. A successful self-driving car algorithm—a computer pro-
gram, and hence an idea—is essentially just the forecasting rules that come from 
using data to estimate the parameters of the nonlinear model. The data and the idea 
are distinct: the software algorithm is the idea that is embedded in the self-driving 
cars of the future; data is an input used to produce this idea.

Another dimension along which ideas and data can differ is the extent to which 
they are excludable. On the one hand, it seems technologically easier to transmit 
data than to transmit ideas. Data can be sent at the press of button over the internet, 
whereas we invest many resources in education to learn ideas. On the other hand, 
data can be encrypted. Engineers change jobs and bring knowledge with them; peo-
ple move and communicate causing ideas to diffuse, at least eventually. Data, in 
contrast, especially when it is “big,” may be more easily monitored and made to be 
highly excludable. The “idea” of machine learning is public, whereas the driving 
data that is fed into the machine learning algorithm is kept private; each firm is 
gathering its own data.

B.  Relation to the Literature

The “economics of data” is a new but rapidly growing field. In this paper we 
provide a macro perspective. Since we emphasize nonrivalry, there are parallels 
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between how data appear in our model and how ideas appear in the growth literature. 
Compared to the growth literature, the most distinctive features of our model are:

	 (i)	 The use of nonrival goods: our setup features the simultaneous broad use of 
data by many firms; in Romer (1990) and Aghion and Howitt (1992) style 
models, each firm produces using a single idea.

	 (ii)	 The market for nonrival goods: our setup features markets through which 
each firm decides on a quantity of data to buy and sell; in idea-based models, 
typically the inventing firm produces itself or sells a single blueprint to a sin-
gle monopoly producer.

	 (iii)	 Property rights: in idea-based models, property rights for ideas are always 
held by firms; in our setup, comparing consumer versus firm ownership of 
data is fundamental.

At the core of our analysis of decentralized equilibria is a market for data. This 
feature is related to the market for ideas in Akcigit, Celik, and Greenwood (2016). 
In their setup the idea is used by only one firm at a time and the market helps to 
allocate the idea to the firm that could best make use of it. In contrast, our market for 
data allows multiple firms to use the nonrival good simultaneously. The literature on 
patent-licensing would be the closest to our paper since it studies legal arrangements 
under which multiple firms can use a given idea at the same time. From a more 
micro perspective, see Ali, Chen-Zion, and Lillethun (2020), which studies the sale 
of nonrival information in a search and matching decentralized market and empha-
sizes that nonrivalry generates inefficiency due to the under-utilization of infor-
mation. Ichihashi (2019) studies competition among data intermediaries. Akcigit 
and Liu (2016) shows in a growth context how the information that certain research 
paths lead to dead ends is socially valuable and how an economy may suffer from 
an inefficient duplication of research if this information is not shared across firms.

Given our macroeconomic perspective, we remain silent on many of the inter-
esting related topics in industrial organization. Varian (2019) provides a general 
discussion of the economics of data and machine learning. He emphasizes that data 
is nonrival and refers to a common notion that “data is the new oil.” Varian notes that 
this nonrivalry means that “data access” may be more important than “data owner-
ship” and suggests that while markets for data are relatively limited at this point, 
some types of data (like maps) are currently licensed by data providers to other 
firms. Our paper explores these and other insights in a formal model. Our results 
suggest that data ownership is likely to influence data access. In addition to thinking 
about property rights granted to firms who can sell their nonrival goods, we consider 
granting property rights to data to consumers. The fact that consumer interaction is 
necessary to create data in our setup makes the consumers-own-data property right 
regime a natural consideration, whereas the growth literature almost exclusively 
focuses on property rights granted to firms.

Data as a byproduct of economic activity also has analogues in the information eco-
nomics literature. For example, see Veldkamp (2005); Ordoñez (2013); Fajgelbaum, 
Schaal, and  Taschereau-Dumouchel (2017); and Bergemann and  Bonatti (2019).  



2823JONES AND TONETTI: NONRIVALRY AND THE ECONOMICS OF DATAVOL. 110 NO. 9

Arietta Ibarra et al. (2018) and Posner and Weyl (2018) emphasize a “data as labor” 
perspective: data is a key input to many technology firms, and people may not be 
adequately compensated for the data they provide, perhaps because of market power 
considerations.

Acquisti, Taylor, and Wagman (2016) discusses the economics of privacy and 
how consumers value the privacy of their data. In the context of medical records,  
Miller and Tucker (2017) finds that approaches to privacy that give users control 
over redisclosure encourage the spread of genetic testing, consistent with the mech-
anism that we highlight in this paper. See Ali, Lewis, and Vasserman (2019), which 
studies consumer disclosure of personal information to firms and the consequent 
pricing and welfare implications. Goldfarb and Tucker (2011) highlights a trade-off 
between privacy and the effectiveness of online advertising. Abowd and Schmutte 
(2019) emphasizes that privacy isn’t binary; there is an intensive margin to pri-
vacy with a choice of how much data to use. They propose a differential privacy 
framework to produce the socially optimal use of data that respects privacy con-
cerns. Our paper features such an intensive margin of data use with corresponding  
trade-offs.

Farboodi and Veldkamp (2019) is a paper complementary to ours. We focus 
on property rights and how the associated sale and use of nonrival data can affect 
efficiency. They emphasize that data is information that can be used to reduce 
forecast errors, suggesting a production function with bounded returns to data. 
Our main point is that there can be large losses when a nonrival input is not used 
broadly. Most of our analysis focuses on a level effect, although there is also a 
growth effect in the edge case in which data sales are outlawed. We suspect that 
these level effects would survive even with bounded returns; our Cobb-Douglas 
specification is helpful for tractability. Farboodi and  Veldkamp (2020) stud-
ies the implications of expanding access to data for financial markets. Begenau, 
Farboodi, and Veldkamp (2018) suggests that access to big data has lowered the 
cost of capital for large firms relative to small ones, leading to a rise in firm-size 
inequality.

Acemoglu et al. (2020) studies privacy and data markets. They note that in some 
settings, data about me can reveal some characteristics about you. Under some cir-
cumstances, these externalities can cause data markets to break down and deliver 
both inefficiently low prices for data and inefficiently large privacy losses, as we 
both sell our data at low prices because we think the other person is selling anyway. 
We suspect that these problems can be substantial for some kinds of data, such 
as health or social media information, but smaller for other kinds of data, such as 
speech recognition or driving data (or whenever data can be adequately anonymized 
and there are no adverse selection concerns).

Agrawal, Gans, and Goldfarb (2018) provides an overview of the economics of 
machine learning. Bajari et al. (2019) examines how the amount of data impacts 
weekly retail sales forecasts for product categories at Amazon. They find that fore-
casts for a given product improve with the square-root of the number of weeks 
of data on that product. However, forecasts of sales for a given category do not 
seem to improve much as the number of products within the category grows. 
Azevedo et al. (forthcoming) suggests that the distribution of outcomes in A/B test-
ing in internet search may be fat-tailed: rare outcomes can have very high returns. 



2824 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2020

Carriere-Swallow and Haksar (2019) notes that credit bureaus are a long-standing 
market institution that facilitates the broad use of nonrival data, at least in one con-
text. Hughes-Cromwick and Coronado (2019) views government data as a public 
good and studies its value to US businesses.

In order to emphasize the relationship between nonrivalry and scale effects and 
to study different property right regimes in a simple environment, our model omits 
some interesting features prevalent in the literature on data. In our model, data does 
not affect a firm’s ability to discriminate against consumers via price or quantity. 
For example, we do not model firms that are able to learn the degree to which indi-
viduals are price sensitive or to refuse to sell insurance to people with high health 
risks. These considerations are important, so we view our paper as emphasizing an 
underappreciated channel relevant to the design of data property rights, but it does 
not provide a complete accounting of the pros and cons of the widespread availabil-
ity and use of data.

A question that comes up immediately in this paper is why the Coase (1960) the-
orem does not apply: why does it matter whether firms or consumers own data ini-
tially? With trade and monetary transfers, why isn’t the allocation the same in either 
case? One could certainly set up the model so that this would be true. However, to 
illustrate the importance of data sharing, we assume that the Coase theorem fails. 
In particular, we assume that consumers cannot commit to sell their data to only a 
single firm. Notice that this issue arises solely because of nonrivalry: a given apple 
can only be eaten once. This lack of commitment serves to illustrate various prop-
erties of an economy with data; similar assumptions are typically made in growth 
models with knowledge spillovers and creative destruction. How it plays out in the 
real world is a distinct and interesting question, but we simply note that there are 
many recent episodes in the news in which firms display a remarkable inability to 
avoid selling or using data that they have access to, often at odds with public state-
ments on data-use policy, so this assumption—in addition to its pedagogical role—
may actually have real-world relevance. Dosis and Sand-Zantman (2019) provides 
a microfounded model of the failure of the Coase theorem in studying the property 
rights over the use of data. They emphasize that whether it is better for firms or con-
sumers to own data depends on the overall value of the data to the firm and on the 
extent to which consumers can monetize their data. They do not consider the nonri-
valry of data, however. See also Chari and Jones (2000) for some of the problems in 
implementing the Coase theorem in economies with public goods.

I.  A Simple Model

Suppose the economy consists of ​N​ varieties. To be concrete, think of self-driving 
cars (e.g., Tesla, Uber, Waymo, and so on). Consumption of each variety combines 
in a CES fashion to produce a utility aggregate ​Y​, which we also think of as aggre-
gate output. With symmetry, ​Y​ is given by

	​ Y  = ​​ (​∫ 
0
​ 
N
​​​Y​ i​ 

​ σ−1 _ σ  ​​ di)​​​ 
​  σ _ σ−1 ​

​​

	​ = ​ N​​ ​ 
σ _ σ−1 ​​ ​Y​i​​​.
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Variety ​i​ is produced by combining an idea of quality ​​A​i​​​ and labor ​​L​i​​​ ,

	​ ​Y​i​​  = ​ A​i​​ ​L​i​​​.

The nonrival nature of ideas means there are constant returns to labor and increasing 
returns to labor and ideas together; this is the Romer (1990) insight that the nonri-
valry of ideas gives rise to increasing returns.

Data is used to improve the quality of ideas,

	​ ​A​i​​  = ​ D​ i​ 
η​​.

Intuitively, a given amount of data can be used to train a machine learning algorithm 
to help make cars safer. With a little data, this may allow the car to apply emergency 
braking when needed. A machine learning algorithm trained on even more data may 
be able to drive on highways and in bumper-to-bumper traffic. In other words, data 
can be viewed as improving the quality of an idea.

Importantly, a given amount of data trains a machine learning algorithm that can 
then be used in 1 car, 1,000 cars, or 1 million cars simultaneously; this is the non-
rivalry of the idea that is produced by the data. This is distinct from the nonrivalry 
of data, which will make its appearance shortly when we note that the same data 
can be used by many different firms to produce their own trained machine learning 
algorithms. The parameter ​η​ will ultimately be a key determinant of the importance 
of data in the economy.

Putting these last two equations together,

	​ ​Y​i​​  = ​ D​ i​ 
η​ ​L​i​​  = ​ D​ i​ 

η​ L / N  = ​ D​ i​ 
η​ ν​,

where ​L​ is the total amount of labor in the economy, allocated symmetrically across 
varieties, and ​ν  ≡  L/N​ is firm size measured by employment.

Whenever a variety is consumed, it generates one piece of data: each mile driven 
generates data that raises the productivity of future trips. Data generated by Tesla 
cars are useful to Tesla. But data generated by Uber and Waymo could also poten-
tially be useful to Tesla. We formalize this as

(1)	​ ​D​i​​  =  αx​Y​i​​ + ​(1 − α)​B​

	​ =  αx​Y​i​​ + ​(1 − α)​​x ̃ ​ N ​Y​i​​​

	​ = ​ [αx + ​(1 − α)​​x ̃ ​ N]​​Y​i​​​.

In the first line, ​​Y​i​​​ is the amount of data generated by Tesla trips, and ​x​ is the fraction 
of that data that Tesla is allowed to use; ​B​ is the bundle of data from other varieties 
that Tesla—and every other firm—gets to use. The way this aggregate bundle ​B​ 
enters firm ​i​’s constraint in the first line is the most important feature of the model. 
This expression incorporates the key role of the nonrivalry of data: the bundle ​B​ 
can be used by any number of firms simultaneously. The parameter ​α​ measures the 
importance of Tesla’s own data relative to the data bundle from other firms.
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The second line in this expression uses the fact that ​B  ≡ ​ x ̃ ​ N​Y​i​​​. The quantity ​N​Y​i​​​ 
is the amount of data generated by Uber, Waymo, and the other varieties in the econ-
omy (because variety ​i​ is infinitesimal and because firms are symmetric), and ​​x ̃ ​​ is 
the fraction of other firms’ data that Tesla gets to use. Both ​x​ and ​​x ̃ ​​ are endogenous 
allocations in our richer model, chosen subject to privacy considerations. For now, 
though, we just treat them as parameters.

Substituting this expression for data back into variety ​i​’s production function 
gives

	​ ​Y​i​​  = ​​ (​​[αx + ​(1 − α)​​x ̃ ​ N]​​​ 
η
​ ν)​​​ 

​  1 _ 1−η ​
​​.

There is a multiplier associated with data. The more people consume your product, 
the more data you have. This raises productivity and generates more output and 
consumption and hence more data, completing the circle. The sum of this geometric 
series is ​1/(1 − η)​, which is the key exponent in this production function.

Finally, substituting into the CES aggregator,

	​ Y  = ​ N​​ ​ 
σ _ σ−1 ​​ ​​(​​[αx + ​(1 − α)​​x ̃ ​ N]​​​ 

η
​ν)​​​ 

​  1 _ 1−η ​
​​.

Or, in terms of output per person ​y  ≡  Y/L​ :

(2)	​ y  = ​ N​​ ​ 
1 _ σ−1 ​​ ​​(​[αx + ​(1 − α)​​x ̃ ​ N]​ν)​​​ 

​  η _ 1−η ​
​​,

where we’ve used ​L  =  ν N​ on the right side.
Income per person in this economy depends on the number of firms in two ways. 

The first is through the traditional expanding variety effect, associated with the  
​1/(σ − 1​) exponent, well-known since Dixit and Stiglitz (1977). What is new here 
is the second role of ​N​, entering through the data term and raised to the power ​η/
(1 − η)​. To understand this term, consider two allocations. In one, we prohibit the 
use of data by other firms by setting ​​x ̃ ​  =  0​. In this case, each firm learns only from 
its own consumers. For the second case, suppose ​​x ̃ ​  >  0​. In this case, each firm 
learns from every other firm in the industry: Tesla learns from the customers of Uber 
and Waymo as well as from its own customers. In this case, there is an additional 
scale effect: the more firms there are in the economy, the more data is created, so 
the more Tesla is able to learn, which raises Tesla’s productivity.1 But every firm 
benefits similarly, and so overall output per person is higher. This is one of the basic 
insights of the paper: because data is nonrival, there are social gains to having data 
be used broadly instead of narrowly.

To highlight the key role of the nonrivalry of data, suppose data were a rival input 
instead of nonrival. That case can be thought of by setting ​1 − α  =  0​. The result 
of this is immediately given by the analysis above where we set ​​x ̃ ​  =  0​. In both 

1 We are holding firm size ​ν​ constant in this comparative static, which means ​L​ must be rising as ​N​ rises. This 
is exactly the source of the scale effect we are considering. In the full model, this is micro-founded through entry.
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cases—whether it is illegal for the same data to be used by multiple firms or whether 
it is technologically impossible—there is no scale effect associated with data.

The richer model we develop in the rest of the paper builds on this simple frame-
work. We endogenize the number of firms by allowing for free entry, and we endog-
enize the allocation in the economy, including ​x​ and ​​x ̃ ​​, by incorporating concerns for 
privacy into the utility function.

II.  Economic Environment

The economic environment that we work with throughout the paper builds on 
the simple model above and is summarized in Table 1. There is a representative 
consumer with log utility over per capita consumption, ​​c​t​​​. There are ​​N​t​​​ varieties of 
consumer goods that combine to enter utility with a constant elasticity of substitu-
tion (CES) aggregator. There are ​​L​t​​​ people in the economy and population grows 
exogenously at rate ​​g​L​​​.

Privacy considerations also enter flow utility in two ways, as seen in equation (4). 
The first is via ​​x​it​​​, which denotes the fraction of an individual’s data on consumption 
of variety ​i​ that is used by the firm producing that variety. The second is through ​​​x ̃ ​​it​​​, 
which denotes the fraction of an individual’s data on variety ​i​ that is used by other 
firms in the economy. For example, ​​x​it​​​ could denote the fraction of data generated by 
Tesla drivers that is used by Tesla, while ​​​x ̃ ​​it​​​ is the fraction of that Tesla driving data 
that is used by Waymo and GM. Privacy costs enter via a quadratic loss function, 
where ​κ​ and ​​κ ̃ ​​ capture the weight on privacy versus consumption. Because there 
are ​​N​t​​​ varieties, we add up the privacy costs across all varieties and then assume the 
utility cost of privacy depends on the average. There is an additional ​1/​N​t​​​ scaling of 
the ​​x​it​​​ privacy cost. Because ​​​x ̃ ​​it​​​ reflects costs associated with data use by all other (​​N​t​​​) 
firms in the economy, it is natural that there is a factor of ​​N​t​​​ difference between these 
costs, and this formulation generates interior solutions along the balanced growth 
path.

A simplifying assumption is that the unweighted average of ​​x​it​​​ and ​​​x ̃ ​​it​​​ enters util-
ity. A more natural alternative would be to weight by the share of good ​i​ in the 
consumption bundle. In the more natural case, consumers would be tempted to buy 
more of a variety from a firm that better respects privacy. Our unweighted average 
shuts down this force, which simplifies the algebra without changing the spirit of 
the model.

Where does data come from? Each unit of consumption is assumed to gener-
ate one unit of data as a byproduct. This is our “learning by doing” formulation 
and is captured in equation (6): ​​J​it​​  = ​ c​it​​ ​L​t​​  = ​ Y​it​​​, where ​​J​it​​​ is data created about  
variety ​i​.

Firm ​i​ produces variety ​i​ according to equation (8) in the table, just as in the sim-
ple model. Recall ​​Y​it​​  = ​ A​it​​ ​L​it​​​ and ​​A​it​​  = ​ D​ it​ 

η ​​ and, therefore

	​ ​Y​it​​  = ​ D​ it​ 
η ​ ​L​it​​,  with η  ∈ ​ (0, 1)​​,

where ​​D​it​​​ is the amount of data used in producing the quality of variety ​i​ and ​​L​it​​​ 
is labor. As before, the parameter ​η​ captures the importance of data. We will show 



2828 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2020

some evidence in Section VIII suggesting that ​η​ might take a value of 0.03 to 0.10; 
we think of it as a small positive number.2

Data used by firm ​i​ is  the sum of two terms:

	​ ​D​it​​  ≤  α ​x​it​​ ​J​it​​ + ​(1 − α)​ ​B​t​​​.

The first term captures the amount of variety ​i​ data that is used to help firm ​i​ pro-
duce. In some of our allocations, firm ​i​ will be able to use all the variety ​i​ data: for 
example, if firms own data. However, if consumers own data, they may restrict the 
amount of data that firms are able to use (​​x​it​​  <  1​). The second part of the equation 
incorporates data from other varieties that is used by firm ​i​. Shared data on other 
varieties is aggregated into a bundle, ​​B​t​​​. For example, ​​x​it​​ ​J​it​​​ is the data from Tesla 
drivers that Tesla gets to use while ​​B​t​​​ is the bundle of data from other self-driving car 
companies like Waymo, GM, and Uber that is also available to Tesla. The weights ​α​ 
and ​1 − α​ govern the importance of own versus others’ data. The way the aggregate 
bundle ​​B​t​​​ enters the individual firm’s constraint in equation (9) is the most important 
feature of the model. This expression incorporates the key role of the nonrivalry of 
data: the bundle ​​B​t​​​ can be used by any number of firms simultaneously; hence it does 
not have an ​i​ subscript.

2 We require ​η  <  1/σ​. For firm size to be finite, the increasing returns from data must be smaller than the price 
elasticity with respect to size coming from CES demand.

Table 1—The Economic Environment

(3) ​​∫ 
0
​ 
∞

​​ ​e​​ −ρt​​L​t​​ u(​c​t​​, ​x​it​​, ​​x ̃ ​​it​​) dt​ Utility

(4) ​u (​c​t​​, ​x​it​​, ​​x ̃ ​​it​​)  =  log ​c​t​​ − ​ κ __ 
2
 ​ ​ 1 __ 
​N​ t​ 

2​
 ​ ​∫ 

0
​ 
​N​t​​

​​ ​x​ it​ 
2 ​ di − ​ ​κ ̃ ​ __ 

2
 ​ ​ 1 __ ​N​t​​

 ​ ​∫ 
0
​ 
​N​t​​

​​ ​​x ̃ ​​ it​ 2 ​  di​ Flow utility

(5) ​​c​t​​  = ​​ (​∫ 
0
​ 
​N​t​​

​​ ​c​ it​ 
​ σ−1 ___ σ ​ ​ di)​​​ 

​  σ ___ σ−1 ​

​  with σ  >  1​ Consumption per person

(6) ​​J​it​​  = ​ c​it​​ ​L​t​​​ Data creation

(7) ​​c​it​​  = ​ Y​it​​ /​L​t​​​ Variety resource constraint

(8) ​​Y​it​​  = ​ D​ it​ 
η ​ ​L​it​​  with η  ∈  (0, 1)​ Firm production

(9) ​​D​it​​  ≤  α ​x​it​​ ​J​it​​ + (1 − α)​B​t​​  with ​x​it​​  ∈  [0, 1]​ Data used by firm i

(10) ​​D​sit​​  = ​​ x ̃ ​​it​​ ​J​it​​  with ​​x ̃ ​​it​​  ∈  [0, 1]​ Data on variety i 
shared with others

(11) ​​B​t​​  = ​​ (​N​ t​ 
− ​ 1 _ ϵ ​​ ​∫ 

0
​ 
​N​t​​

​​ ​D​ sit​ 
​ ϵ−1 ___ ϵ ​ ​ di)​​​ 

​  ϵ ___ ϵ−1 ​

​  with ϵ  >  1​ Data bundle

(12) ​​​N ˙ ​​t​​  = ​  1 __ χ ​ ⋅ ​L​et​​​ Innovation (new varieties)

(13) ​​L​et​​ + ​L​pt​​  = ​ L​t​​  where ​ L​pt​​  ≡ ​ ∫ 
0
​ 
​N​t​​

​​ ​L​it​​ di​ Labor resource constraint

(14) ​​L​t​​  = ​ L​0​​ ​e​​ ​g​L​​t​​ Population growth 
(exogenous)

(15) ​​Y​t​​  ≡ ​ c​t​​ ​L​t​​​ Aggregate output

(16) ​δ(​​x ̃ ​​it​​)  = ​ 
​δ​0​​ __ 
2
 ​ ​​x ̃ ​​ it​ 2 ​​ Creative destruction
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How is the bundle of data created? Let ​​D​sit​​  ≡ ​​ x ̃ ​​it​​ ​J​it​​​ denote the data about vari-
ety ​i​ that is “shared” (hence the s subscript) and available for use by other firms to 
produce their varieties. Shared data is bundled together via a CES production func-
tion with elasticity of substitution ​ϵ​:

	​ ​B​t​​  = ​​ (​N​ t​ −​ 1 _ ϵ ​​ ​∫ 
0
​ 
​N​t​​​​ ​D​ sit​ 

​ ϵ−1 _ ϵ  ​​ di)​​​ 
​  ϵ _ ϵ−1 ​

​​.

We divorce the returns to variety from the elasticity of substitution in this CES func-
tion using the method suggested by Benassy (1996). In particular, this formulation 
implies that ​B​ will scale in direct proportion to ​N​ and is given by ​B  =  N​D​si​​​ in the 
symmetric allocation, which simplifies the analysis.

For tractability, we set up the model so that data produced today is used to produce 
output today, i.e., roundabout production. We think of this as a within-period tim-
ing assumption. We also assume that data depreciate fully every period. These two 
assumptions imply that data is not a state variable, greatly simplifying the analysis.

The creation of new varieties is straightforward: ​χ​ units of labor are needed to 
create a new variety. Total labor used for entry, ​​L​et​​​, plus total labor used in produc-
tion, ​​L​pt​​​, equals total labor available in the economy, ​​L​t​​​.

Equation (15) in Table 1 is simply a definition. Aggregate output in the econ-
omy, ​​Y​t​​​, equals aggregate consumption; there is no capital.

Notice that in our environment, ideas and data are well defined and distinct. 
An idea is a blueprint for producing a distinct variety, and each new blueprint is 
created by ​χ​ units of labor. Data is a byproduct of consumption, and each time 
a good is consumed, one unit of data is created that is in turn useful for improv-
ing productivity, which can be thought of as the quality of the idea. A new idea 
is a new production function for producing a variety while data is a factor of  
production.

Finally, equation (16) is not actually part of the economic environment, but it is 
an important feature of the economy. We’ve already mentioned one downside to the 
broad use of data—the privacy cost to individuals. Data sharing also increases the 
rate of creative destruction: ownership of variety ​i​ changes according to a Poisson 
process with an arrival rate ​δ(​​x ̃ ​​it​​)​. The more that competitors know about an incum-
bent firm, the greater the chance that the incumbent firm is displaced by an entrant. 
Since this is just a change in ownership, it is not part of the technology that con-
strains the planner.

Discussion.—There are alternative assumptions we could make about our eco-
nomic environment. For example, instead of having data be generated as a byproduct 
of consumption, we could instead assume firms have access to a separate production 
function for data (“learning or doing” instead of “learning by doing”). Both occur in 
the world: Tesla gathers data while people drive their cars, while Waymo sets up its 
own artificial towns in which they test-drive cars to generate data.

Second, economic growth (​​g​L​​  >  0​) is not necessary to make most of the main 
points of the paper; our results are almost entirely “level effects” rather than “growth 
effects” and would exist even with no aggregate growth. The presence of growth 
helps bring out the distinction between ideas and data and also simplifies the algebra.
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Third, another way to simplify the algebra is to have the bundle of data com-
bine with a firm’s own data using a Cobb-Douglas aggregator instead of our per-
fect substitutes approach. A further advantage of Cobb-Douglas is that the ​1 − α​ 
parameter that captures the nonrivalry of data shows up explicitly in key places 
including the growth rate of the economy (see online Appendix Section E.1). Given 
these advantages, future research may benefit from building on the Cobb-Douglas 
data aggregator case. The main downside, which was decisive for us, is that in the 
Cobb-Douglas case, the data bundle is essential and therefore we could not study 
laws that outlaw the selling of data.

Fourth, even without increasing returns to scale in the production of variety ​i​, the 
nonrivalry of data matters. For example, if we modeled ideas as rival by modifying 
the production function to be ​​Y​it​​  = ​ D​ it​ 

η ​ ​L​ it​ 
1−η​​, the long-run growth rate of the econ-

omy would be unchanged (see online Appendix Section E.2).
Fifth, we model privacy costs as a direct utility loss. We see this as a stand in for 

the many reasons people may not want firms to have their data. The main point of 
our paper is to highlight a way in which the broad use of data is beneficial, not to 
explore the precise nature of privacy costs. We include them to show that even when 
privacy costs are large, our mechanism can still be quantitatively important.

Finally, our model assumes that all firms benefit from data equally and that each 
firm’s data is equally useful. In this sense, the model might more naturally be com-
pared to a particular industry, such as radiology or autonomous cars. Output and 
welfare differences across property right regimes should therefore be interpreted as 
losses within an industry, most applicable for sectors in which data is an important 
input.

III.  The Optimal Allocation

The optimal allocation in our environment is easy to define and characterize. 
Using symmetry, the production structure of the economy can be simplified consid-
erably. Consumption per person is

(17)	​ ​c​t​​  = ​ N​ t​ 
​  σ _ σ−1 ​​ ​c​it​​  = ​ N​ t​ 

​  σ _ σ−1 ​​ ​ ​Y​it​​ _ ​L​t​​
 ​​ .

Moreover, the production of a variety is

(18)	​ ​Y​it​​  = ​ D​ it​ 
η ​ ​L​it​​  = ​ D​ it​ 

η ​ ⋅ ​ 
​L​pt​​ _ ​N​t​​

 ​​ .

Combining these two expressions, aggregate output in the symmetric economy is

(19)	​ ​Y​t​​  = ​ N​ t​ 
​  1 _ σ−1 ​​ ​D​ it​ 

η ​ ​L​pt​​​.

Next, symmetry allows us to further simplify the data component:

(20)	​ ​D​it​​  =  α ​x​it​​ ​Y​it​​ + ​(1 − α)​ ​N​t​​ ​​x ̃ ​​it​​​Y​it​​​

	​ = ​ [α ​x​it​​ + ​(1 − α)​ ​​x ̃ ​​it​​ ​N​t​​]​​Y​it​​​.
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This expression can be substituted into the production function for variety ​i​ in (18) 
to yield

(21)	​ ​Y​it​​  = ​​ [​​(α ​x​it​​ + ​(1 − α)​ ​​x ̃ ​​it​​ ​N​t​​)​​​ 
η
​ ​L​it​​]​​​ 

​  1 _ 1−η ​
​​.

The increasing returns associated with data shows up in the ​1/(1 − η)​ exponent. 
The term ​α ​x​it​​ + (1 − α) ​​x ̃ ​​it​​ ​N​t​​​ will appear frequently. This derivation shows that the ​
α ​x​it​​​ piece reflects firms using data from their own variety while the ​(1 − α) ​​x ̃ ​​it​​ ​N​t​​​ 
piece reflects firms using data from other varieties. Moreover, when data is shared, 
this data term scales with the measure of varieties, ​​N​t​​​. This ultimately provides an 
extra scale effect associated with data nonrivalry.

Finally, substituting the expression for ​​D​it​​​ into the aggregate production func-
tion in (19) and using the symmetry conditions ​​L​it​​  = ​ L​pt​​/​N​t​​​, ​​x​it​​  = ​ x​t​​​, and ​​​x ̃ ​​it​​  = ​​ x ̃ ​​t​​​ 
yields

(22)	​ ​Y​t​​  = ​ N​ t​ 
​  1 _ σ−1 ​​ ​​(​ α ​x​t​​ _ ​N​t​​

 ​ + ​(1 − α)​ ​​x ̃ ​​t​​)​​​ 
​  η _ 1−η ​

​ ​L​ pt​ 
​  1 _ 1−η ​

​​.

This equation captures the two sources of increasing returns in our model. The ​​N​ t​ 
​  1 _ σ−1 ​​​ 

is the standard increasing returns from love-of-variety associated with the nonri-

valry of ideas. The ​​L​ pt​ 
​  1 ____ 1−η ​​​ captures the increasing returns associated with data. In the 

optimal allocation, both play important roles.
We can now state the social planner problem concisely. The key allocations that 

need to be determined are how to allocate labor between production and entry and 
how much data to share. The optimal allocation solves

(23)	​​   max​ 
​{​L​pt​​,​x​t​​,​​x ̃ ​​t​​}​

​   ​ ​ ∫ 
0
​ 
∞

​​​e​​ −​ρ ̃ ​t​ ​L​0​​​(log ​c​t​​ − ​ κ _ 
2
 ​ ​ 1 _ 
N ​ ​x​ t​ 2​ − ​ ​κ ̃ ​ _ 

2
 ​ ​​x ̃ ​​ t​ 2​)​ dt, ​ ρ ̃ ​  ≡  ρ − ​g​L​​​,

subject to

	​ ​c​t​​  = ​ Y​t​​ / ​L​t​​​,

	​ ​Y​t​​  = ​ N​ t​ 
​  1 _ σ−1 ​​ ​​(​ α ​x​t​​ _ ​N​t​​

 ​ + ​(1 − α)​ ​​x ̃ ​​t​​)​​​ 
​  η _ 1−η ​

​ ​L​ pt​ 
​  1 _ 1−η ​

​​,

	​ ​​N ˙ ​​t​​  = ​  1 _ χ ​ ​(​L​t​​ − ​L​pt​​)​​,

	​ ​L​t​​  = ​ L​0​​ ​e​​ ​g​L​​t​​.

The planner wants to share variety ​i​ data with firm ​i​ because that increases pro-
ductivity and output. Similarly, the planner wants to share variety ​i​ data with other 
firms to take advantage of the nonrivalry of data, increasing the productivity and 
output of all firms. Tempering the planner’s desire for sharing are consumers’ pri-
vacy concerns. Finally, the planner weighs the gains from new varieties against the 
gains from producing more of the existing varieties when allocating labor to produc-
tion and entry. The optimal allocation is given in Proposition 1.
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PROPOSITION 1 (The Optimal Allocation): Along a balanced growth path, as ​​N​t​​​ 
grows large, the optimal allocation converges to

(24)	​ ​​x ̃ ​​it​​  = ​​ x ̃ ​​sp​​  = ​​ (​ 1 _ ​κ ̃ ​ ​ ⋅ ​ 
η _ 

1 − η ​)​​​ 
1/2

​​,

(25)	​ ​x​it​​  = ​ x​sp​​  = ​   α _ 
1 − α ​ ⋅ ​ ​κ ̃ ​ _ κ ​ ​​(​ 1 _ ​κ ̃ ​ ​ ⋅ ​ 

η _ 
1 − η ​)​​​ 

1/2

​​,

(26)	​ ​L​ i​ 
sp​  =  χρ ⋅ ​ σ − 1 _ 

1 − η ​  ≡ ​ ν​sp​​​,

(27)	​ ​N​ t​ sp​  = ​   ​L​t​​ _ χ ​g​L​​ + ​ν​sp​​ ​  ≡ ​ ψ​sp​​ ​L​t​​​,

(28)	​ ​L​ pt​ sp​  = ​ ν​sp​​ ​ψ​sp​​ ​L​t​​​,

(29)	​ ​Y​ t​ sp​  = ​​ [​ν​sp​​ ​​(1 − α)​​​ η​ ​​x ̃ ​​ sp​ η ​]​​​ 
​  1 _ 1−η ​

​ ​​(​ψ​sp​​ ​L​t​​)​​​ ​ 
1 _ σ−1 ​ + ​  1 _ 1−η ​​​,

(30)	​ ​c​ t​ sp​  = ​  ​Y​t​​ _ ​L​t​​
 ​  = ​​ [​ν​sp​​ ​​(1 − α)​​​ η​ ​​x ̃ ​​ sp​ η ​]​​​ 

​  1 _ 1−η ​
​ ​ψ​ sp​ 

​  1 _ σ−1 ​ + ​  1 _ 1−η ​​ ​ L​ t​ 
​  1 _ σ−1 ​ + ​  η _ 1−η ​

​​,

(31)	​ ​g​ c​ sp​  = ​ (​  1 _ σ − 1 ​ + ​  η _ 
1 − η ​)​ ​g​L​​​,

(32)	​ ​D​ i​ 
sp​  = ​​ [​(1 − α)​ ​​x ̃ ​​sp​​ ​ν​sp​​ ​ψ​sp​​ ​L​t​​]​​​ 

​  1 _ 1−η ​
​​,

(33)	​ ​D​​ sp​  =  N​D​i​​  = ​​ [​(1 − α)​ ​​x ̃ ​​sp​​ ​ν​sp​​]​​​ 
​  1 _ 1−η ​

​ ​​(​ψ​sp​​ ​L​t​​)​​​ 1+ ​  1 _ 1−η ​​​,

(34)	​ ​Y​ i​ 
sp​  = ​​ [​ν​sp​​ ​​(1 − α)​​​ η​ ​​x ̃ ​​ sp​ η ​]​​​ 

​  1 _ 1−η ​
​ ​​(​ψ​sp​​ ​L​t​​)​​​ ​ 

η _ 1−η ​​​,

(35)	​ ​U​0​​  = ​  1 _ ​ρ ̃ ​ ​ ​L​0​​​(log ​c​0​​ − ​ ​κ ̃ ​ _ 
2
 ​ ​​x ̃ ​​ sp​ 2 ​ + ​ ​g​c​​ _ ​ρ ̃ ​ ​)​​.

PROOF:
See online Appendix Section A.

The most important result in the proposition is the solution for aggregate output 
per person in equation  (30). In particular, that solution shows that output per per-
son is proportional to the size of the economy raised to some power. The exponent,  
​1/(σ − 1) + η/(1 − η)​, captures the degree of increasing returns to scale in the 
economy and is the sum of two terms. First is the standard “love of variety” effect that 
is smaller when varieties are more substitutable. The second term is new and reflects 
the increasing returns associated with the nonrivalry of data. It is increasing in ​η​, the 
importance of data to the economy. A larger economy is richer because it produces 
more data which then feeds back and makes all firms more productive. This equation 
also makes clear why we require ​η <  1​; if ​η ≥  1​, then the degree of increasing 
returns to scale is so large that the economy becomes infinitely rich: more output leads 
to more data, which leads to more output, and the virtuous circle explodes.
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The next equation, (31), expresses the implications for growth: the growth rate of 
consumption per person, in the long run, is proportional to the growth rate of popu-
lation, where the factor of proportionality is the degree of increasing returns to scale.

The remaining results in the optimal allocation break down in a simple way. First, 
optimal data sharing ​​​x ̃ ​​sp​​​ and ​​x​sp​​​ are decreasing in the privacy costs (​​κ ̃ ​​ and ​κ​) and 
increasing in the importance of data in the economy (​η​), as shown in equations (24) 
and (25).

Next, equation (27) shows that optimal variety ​​N​ t​ sp​​ is proportional to the popu-
lation in the economy, and the factor of proportionality is defined to be the param-
eter ​​ψ​sp​​​. Higher entry costs, a higher rate of time preference, and faster population 
growth all reduce variety along the balanced growth path. A higher elasticity of 
substitution between varieties makes new varieties less valuable and reduces ​​N​ t​ sp​​. 
Finally, if data is more important (​​​↑​​η​​) the economy devotes less resources to entry 
(which does not create data) and more resources to production (which does).

This is even more apparent in equation  (26), which shows employment per 
firm, ​​L​ it​ 

sp​​, which equals a combination of parameters that we define to be ​​ν​sp​​​. The 
comparative statics for firm size are essentially the opposite of those for variety. 
Optimal firm size is constant along a balanced growth path and invariant to the 
overall population of the economy. This reflects the assumption that the entry cost 
is a fixed amount of labor that does not change as the economy grows. The fact that 
the size distribution of firms seems stationary in the United States suggests this 
may be a reasonable assumption as Bollard, Klenow, and  Li (2016) documents. 
We show later that the key findings of our paper are robust to variations of this 
assumption.

We will return to these results after discussing other ways to allocate resources 
in this environment. The ​ν​ and ​ψ​ parameters for the different allocations will be an 
important part of that comparison.

IV.  Firms Own Data

We now explore one possible way to use markets to allocate resources. In this 
equilibrium, we assume that firms own data and decide whether to sell it. Data is 
bought and sold via a data intermediary that bundles together data from all vari-
eties and resells it to each individual firm. Throughout the paper, sellers of data 
always set prices if they have market power and buyers of data are always price 
takers.

A.  Decision Problems

Household Problem.—Households have one unit of labor that they supply inelas-
tically in exchange for the wage ​​w​t​​​. They hold assets that pay a return ​​r​t​​​ (these assets 
are claims on the value of the monopolistically competitive firms). The representa-
tive household solves

(36)	​ ​U​0​​  = ​ max​ 
​{​c​it​​}​

​   ​ ​ ∫ 
0
​ 
∞

​​​e​​ −​ρ ̃ ​t​ ​L​0​​ u​(​c​t​​, ​x​it​​, ​​x ̃ ​​it​​)​ dt​,
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subject to

(37)	​ ​c​t​​  = ​​ (​∫ 
0
​ 
​N​t​​​​ ​c​ it​ 

​ σ−1 _ σ  ​​ di)​​​ 
​  σ _ σ−1 ​

​​,

(38)	​  ​​ a ˙ ​​t​​  = ​ (​r​t​​ − ​g​L​​)​ ​a​t​​ + ​w​t​​ − ​∫ 
0
​ 
​N​t​​​​ ​p​it​​ ​c​it ​​ di​.

Notice that households do not choose how data is used or sold (​​x​it​​​ and ​​​x ̃ ​​it​​​) since firms 
are the ones who own data in this allocation. The price of ​​c​t​​​ is normalized to 1 so that 
all prices are expressed in units of ​​c​t​​​.

Firm Problem.—Each incumbent firm chooses how much data to buy and sell and 
how much labor to hire. Each sale generates data: ​​J​it​​  = ​ Y​it​​​. The firm uses the frac-
tion ​​x​it​​​ of this data itself and sells a fraction ​​​x ̃ ​​it​​​ to the data intermediary at a price ​​p​sit​​​ 
that it sets via monopolistic competition. Because of nonrivalry, the firm can both 
use and sell the same data simultaneously. In addition, the firm buys bundles of 
data ​​D​bit​​​ at price ​​p​bt​​​, which it takes as given. Finally, each firm takes demand for its 
variety (aggregating the FOC from the Household Problem) as given:

(39)	​ ​p​it​​  = ​​ (​ ​c​t​​ _ ​c​it​​ ​)​​​ 
​ 1 _ σ ​
​  = ​​ (​ ​Y​t​​ _ ​Y​it​​

 ​)​​​ 
​ 1 _ σ ​
​​.

Recall our simplifying assumption that the ​​x​it​​​ that enters the consumer’s utility func-
tion is an unweighted average, so that households do not demand more from a firm 
that uses or sells less of its data.

Letting ​​V​it​​​ denote the market value of firm ​i​, the incumbent firm problem is

(40) ​ ​r​t​​ ​V​it​​ = ​  max​ 
​{​L​it​​,​D​bit​​,​x​it​​,​​x ̃ ​​it​​}​

​   ​ ​​ (​ ​Y​t​​ _ ​Y​it​​
 ​)​​​ 

​ 1 _ σ ​
​ ​Y​it​​ − ​w​t​​ ​L​it​​ − ​p​bt​​ ​D​bit​​ + ​p​sit​​ ​​x ̃ ​​it​​ ​Y​it​​ + ​​V ̇ ​​it​​ − δ​(​​x ̃ ​​it​​)​ ​V​it​​​,

subject to

(41)	​ ​Y​it​​  = ​ D​ it​ 
η ​ ​L​it​​​,

(42)	​ ​D​it​​  =  α ​x​it​​ ​Y​it​​ + ​(1 − α)​ ​D​bit​​​,

(43)	​ ​x​it​​  ∈ ​ [0, 1]​, ​​ x ̃ ​​it​​  ∈ ​ [0, 1]​​,

(44)	​ ​p​sit​​  = ​ λ​DI​​ ​N​ t​ −​ 1 _ ϵ ​​ ​​(​  ​B​t​​ _ ​​x ̃ ​​it​​ ​Y​it​​
 ​)​​​ 

​ 1 _ ϵ ​
​​,

where the last equation is the downward-sloping demand curve for firm ​i​’s data from 
the data intermediary, which is described next. Firm ​i​ takes the aggregates ​​λ​DI​​​, ​​B​t​​​, ​​N​t​​​,  
and ​​Y​t​​​ as given in solving this problem.

Each firm wants to use all the data on its own variety: it owns the data already 
and does not consider consumers’ privacy concerns. The firm may also want to sell 
some of the data on its variety to other firms, but this desire is limited by the threat 
of creative destruction. When more information about the firm’s variety is available 
to competitors, the firm is more likely to be replaced by a competitor. The firm may 
want to buy some of the bundle of other firms’ data, weighing the cost of purchase 
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against the gains from increased productivity and sales. Finally, the firm hires labor 
to reach its desired scale, recognizing the downward sloping demand curve for its 
variety as governed by the elasticity of substitution across varieties, ​σ​, and that more 
sales generates more data.

Data Intermediary Problem.—The b and s notation for buying and selling becomes 
tricky with the data intermediary: ​​D​bit​​​ is the amount that firm ​i​ buys from the data 
intermediary, so it is the amount the data intermediary sells to firm ​i​. Similarly, ​​p​sit​​​ is 
the price at which firm ​i​ sells data to the data intermediary, so it is the price at which 
the data intermediary purchases data.

We originally hoped to model the data intermediary sector as perfectly competi-
tive. However, the nonrival nature of data makes this impossible: if agents could buy 
nonrival data at a given price and then sell data at a given price, they would want to 
buy one unit and sell it an infinite number of times. Nonrivalry poses problems for 
perfect competition, as in Romer (1990).

Our alternative seeks to minimize frictions in data intermediation by treating the 
market for data as contestable. We assume that the data intermediary is a monopolist 
subject to free entry at a vanishingly small cost, so that the data intermediary earns 
zero profits. Moreover, we assume the actual and potential data intermediaries take 
the price at which they buy data from firms, ​​p​sit​​​, as given. This setup delivers a limit 
pricing condition with zero profits even though data is nonrival.

The data intermediary takes its purchase price of data ​​p​sit​​​ as given and maximizes 
profits by choosing the quantity of data to purchase from each firm and the price at 
which it sells bundles of data to firms:

(45)	​​  max​ 
​{​p​bt​​,​D​sit​​}​

​   ​ ​ p​bt​​​∫ 
0
​ 
​N​t​​​​ ​D​bit​​ di − ​∫ 

0
​ 
​N​t​​​​ ​p​sit​​ ​D​sit​​ di​,

subject to

(46)	​ ​D​bit​​  ≤ ​ B​t​​  = ​​ (​N​ t​ −​ 1 _ ϵ ​​ ​∫ 
0
​ 
​N​t​​ ​​​​(​D​sit​​)​​​ ​ 

ϵ−1 _ ϵ  ​ ​ di)​​​ 
​  ϵ _ ϵ−1 ​

​  ∀ i​,

(47)	​ ​p​bt​​  ≤ ​ p​ bt​ ∗ ​​,

subject to the demand curve ​​p​bt​​​(​D​bit​​)​​ from the Firm Problem above, where ​​p​ bt​ ∗ ​​ is the 
limit price associated with the zero profit condition that comes from free entry.

This expression for profits combined with the resource constraint on data in (46) 
incorporates the fact that the data intermediary can buy data once and sell it multiple 
times, i.e., the nonrivalry of data. This is shown in the first term of profits, where 
revenue essentially equals ​​N​t​​  ​p​bt​​ ​B​t​​​: the firm is able to sell the same bundle ​​B​t​​​ multi-
ple times. For example, location data from consumers can, technologically, be sold 
to every firm in the economy, not just to the store in which consumers happen to be 
shopping at the moment.

Firm Entry and the Creation of New Varieties.—A new variety can be designed 
and created at a fixed cost of ​χ​ units of labor. In addition, new entrants are the 
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beneficiaries of business stealing: they obtain the property rights to the varieties that 
suffer from creative destruction.3 Then, the free entry condition is

(48)	​ χ ​w​t​​  = ​ V​it​​ + ​ 
​∫ 0​ 

​N​t​​​​ δ​(​​x ̃ ​​it​​)​​V​it​​  di
  _________ 

​​N ˙ ​​t​​
 ​ ​ .

The left side ​χ ​w​t​​​ is the cost of the ​χ​ units of labor needed to create a new variety. 
The right side has two terms. The first is the value of the new variety that is created. 
The second is the per-entrant portion of the rents from creative destruction.

B.  The Equilibrium when Firms Own Data

The equilibrium in which firms own data consists of quantities ​{​c​t​​, ​Y​t​​, ​c​it​​, ​x​it​​,  
​​x ̃ ​​it​​, ​a​t​​,​Y​it​​, ​L​it​​, ​D​it​​,​ D​bit​​, ​B​t​​, ​D​sit​​, ​N​t​​, ​L​pt​​, ​L​et​​, ​L​t​​ }​ and prices ​{ ​p​it​​, ​p​bt​​, ​p​sit​​, ​w​t​​, ​r​t​​, ​V​it​​}​, such that

	 (i)	​ {​c​t​​, ​c​it​​, ​a​t​​}​ solve the Household Problem;

	 (ii)	​ {​L​it​​, ​Y​it​​, ​p​it​​, ​p​sit​​, ​D​bit​​, ​D​it​​, ​x​it​​, ​​x ̃ ​​it​​, ​V​it​​}​ solve the Firm Problem;

	 (iii)	​ (​D​sit​​, ​B​t​​)​ Data markets clear: ​​D​bit​​  = ​ B​t​​​ and ​​D​sit​​  = ​​ x ̃ ​​it​​ ​Y​it​​​;

	 (iv)	​ ( ​p​bt​​)​ Free entry into data intermediation gives zero profits there (constrains ​​p​b​​​ 
as a function of ​​p​s​​​);

	 (v)	​ (​L​et​​)​ Free entry into producing a new variety leads to zero profits, as in 
equation (48);

	 (vi)	 Definition of ​​L​pt​​​: ​​L​pt​​  = ​ ∫ 0​ 
​N​t​​​​ ​L​it​​ di​;

	 (vii)	​ ​w​t​​​ clears the labor market: ​​L​pt​​ + ​L​et​​  = ​ L​t​​​;

	(viii)	​ ​r​t​​​ clears the asset market: ​​a​t​​ ​L​t​​  = ​ ∫ 0​ 
​N​t​​​​ ​V​it​​ di​;

	 (ix)	​ ​N​t​​​ follows its law of motion: ​​​N ˙ ​​t​​  = ​  1 _ χ ​ ​(​L​t​​ − ​L​pt​​)​​;

	 (x)	​ ​Y​t​​  ≡ ​ c​t​​ ​L​t​​​ denotes aggregate output;

	 (xi)	 Exogenous population growth: ​​L​t​​  = ​ L​0​​ ​e​​ ​g​L​​t​​.

In Section VII, we compare this equilibrium allocation to the optimal allocation 
as well as to alternative allocations. Before that, we define the alternative alloca-
tions, allowing us to efficiently make the comparisons all at once. For this reason, 
we turn next to an equilibrium in which consumers own data.

3 We could alternatively assume that existing firms get these benefits or that they are split in some proportion. 
How the rents from business stealing are assigned is not the main focus of our paper, and this assumption simplifies 
the analysis in the numerical exercise later. In particular, it acts as a subsidy to entry so that the equilibrium number 
of varieties is closer to optimal.
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V.  Consumers Own Data

We now consider an allocation in which consumers own data associated with 
their purchases. They can sell data to a data intermediary and choose how much data 
to sell to balance the gain in income versus the cost to privacy. Firms own zero data 
as it is created but can purchase data from the data intermediary. As we discussed 
earlier, consumers cannot commit to sell their data to only a single firm. Thus, it is 
not possible for firm ​i​ to charge consumers a lower price in exchange for the con-
sumers agreeing not to sell their data to others.

Why is this departure from the Coase theorem helpful? Motivated by concerns 
about creative destruction, firm ​i​ would like to strike a deal with consumers: we will 
pay you for exclusive access to your data. At the right price, individual consumers 
would accept, and firms would be better off. But this would reproduce the firms own 
data allocation that limits data sales. Instead, we assume here that such deals cannot 
be struck (for example, either because of a law that prohibits exclusive contracts or 
because of a commitment problem). This allows us to study an equilibrium in which 
data is used more widely across firms.

A.  Decision Problems

Household Problem.—The household problem is similar to when firms own data, 
except now the household chooses how much data to sell. Consumers license the 
same data in two ways when selling it: they sell data on variety ​i​ with a license that 
allows firm ​i​ to use it and, separately, they sell data on variety ​i​ with a license that 
allows it to be bundled and sold to all other firms. Because data can be sold in two 
ways, there are two different prices, which consumers take as given: data on variety ​
i​ that will be used only by firm ​i​ sells at price ​​p​ st​ a ​​, while data on variety ​i​ that can be 
bundled and sold to any firm sells at price ​​p​ st​ b ​​. The representative household solves

(49)	​ ​U​0​​  = ​  max​ 
​{​c​it​​,​x​it​​,​​x ̃ ​​it​​}​

​   ​ ​ ∫ 
0
​ 
∞

​​ ​e​​ −​ρ ̃ ​t​ ​L​0​​ u​(​c​t​​, ​x​it​​, ​​x ̃ ​​it​​)​ dt​,

subject to

(50)	​ ​c​t​​  = ​​ (​∫ 
0
​ 
​N​t​​​​ ​c​ it​ 

​ σ−1 _ σ  ​​ di)​​​ 
​  σ _ σ−1 ​

​​,

(51)	 ​​​a ˙ ​​t​​  = ​ (​r​t​​ − ​g​L​​)​ ​a​t​​ + ​w​t​​ − ​∫ 
0
​ 
​N​t​​​​​p​it​​ ​c​it​​ di + ​∫ 

0
​ 
​N​t​​​​ ​x​it​​ ​p​ st​ a ​ ​c​it​​ di + ​∫ 

0
​ 
​N​t​​​​ ​​x ̃ ​​it​​ ​p​ st​ b ​ ​c​it​​ di​

	​ = ​ (​r​t​​ − ​g​L​​)​ ​a​t​​ + ​w​t​​ − ​∫ 
0
​ 
​N​t​​​​ ​q​it​​ ​c​it​​ dt​,

where ​​q​it​​  ≡ ​ p​it​​ − ​x​it​​ ​p​ st​ a ​ − ​​x ̃ ​​it​​ ​p​ st​ b ​​ is the effective price of consumption, taking into 
account that the fractions ​​x​it​​​ and ​​​x ̃ ​​it​​​ of each good consumed generate income when 
the associated data is sold.

Firm Problem.—Each incumbent firm chooses how much data to buy. Two types 
of data are available for purchase: data from the firm’s own variety (​​D​ait​​​) and data 
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from other varieties (​​D​bit​​​). Each firm sees the downward-sloping demand for its 
variety (aggregating the FOC from the Household Problem):

(52)	​ ​q​it​​  = ​​ (​ ​c​t​​ _ ​c​it​​ ​)​​​ 
​ 1 _ σ ​
​  = ​​ (​ ​Y​t​​ _ ​Y​it​​

 ​)​​​ 
​ 1 _ σ ​
​  = ​ p​it​​ − ​x​it​​ ​p​ st​ a ​ − ​​x ̃ ​​it​​ ​p​ st​ b ​​,

so that

(53)	​ ​p​it​​  = ​​ (​ ​Y​t​​ _ ​Y​it​​
 ​)​​​ 

​ 1 _ σ ​
​ + ​x​it​​ ​p​ st​ a ​ + ​​x ̃ ​​it​​ ​p​ st​ b ​​ .

Letting ​​V​it​​​ denote the market value of firm ​i​, the incumbent firm problem is

(54)	​ ​r​t​​ ​V​it​​  = ​   max​ 
​L​it​​,​D​ait​​,​D​bit​​

​   ​​ [​​(​ ​Y​t​​ _ ​Y​it​​
 ​)​​​ 

​ 1 _ σ ​
​ + ​x​it​​ ​p​ st​ a ​ + ​​x ̃ ​​it​​ ​p​ st​ b ​]​​Y​it​​ − ​w​t​​ ​L​it​​ − ​p​at​​ ​D​ait​​ − ​p​bt​​ ​D​bit​​​

	​ + ​​V ̇ ​​it​​ − δ​(​​x ̃ ​​it​​)​​V​it​​​,

subject to

	​ ​Y​it​​  = ​ D​ it​ 
η ​ ​L​it​​​,

(55)	​ ​D​it​​  =  α ​D​ait​​ + ​(1 − α)​​D​bit​​​,

	​ ​D​ait​​  ≥  0, ​ D​bit​​  ≥  0​.

Firms no longer face a simple constant elasticity demand curve because the effec-
tive price that consumers pay is different from the price that firms receive (because 
consumers sell data). From the perspective of the firm, ​​D​ait​​​ and ​​D​bit​​​ are perfect sub-
stitutes: the firm is indifferent between using its own data versus an appropriately 
sized bundle of other firms’ data.

Data Intermediary Problem.—Because we have two types of data, we now intro-
duce two different data intermediaries: one handles the sale of “own” data and the 
other handles the bundle. Each is modeled as earlier, i.e., as a monopolist who is 
constrained by free entry into data intermediation.

Taking the price ​​p​ st​ a ​​ of data purchased from consumers as given, the data interme-
diary for own data solves the following problem at each date ​t​:

(56)	​​   max​ 
​{​p​ait​​,​D​ cit​ a  ​}​

​ 
 
 ​  ​∫ 

0
​ 
​N​t​​​​ ​p​ait​​ ​D​ait​​ di − ​∫ 

0
​ 
​N​t​​​​ ​p​ st​ a ​ ​D​ cit​ a  ​ di​,

subject to

(57)	​ ​D​ait​​  ≤ ​ D​ cit​ a  ​  ∀ i​,

(58)	​ ​p​ait​​  ≤ ​ p​ ait​ ∗ ​​,

subject to the demand curve ​​p​ait​​(​D​ait​​)​ from the Firm Problem above, where ​​p​ ait​ ∗ ​​ is 
the limit price associated with the zero profit condition that comes from free entry.
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Similarly, taking the price ​​p​ st​ b ​​ of data purchased from consumers as given, the data 
intermediary for bundled data solves

(59)	​​   max​ 
​{​p​bit​​,​D​ cit​ b  ​}​

​   ​ ​ ∫ 
0
​ 
​N​t​​​​ ​p​bit​​ ​D​bit​​ di − ​∫ 

0
​ 
​N​t​​​​ ​p​ st​ b ​ ​D​ cit​ b  ​ di​,

subject to

(60)	​ ​D​bit​​  ≤ ​ B​t​​  = ​​ (​N​ t​ −​ 1 _ ϵ ​​ ​∫ 
0
​ 
​N​t​​​​​ ​(​D​ cit​ b  ​)​​​ ​ 

ϵ−1 _ ϵ  ​
​ di)​​​ 

​  ϵ _ ϵ−1 ​

​  ∀ i​,

(61)	​ ​p​bit​​  ≤ ​ p​ bit​ ∗ ​​,

subject to the demand curve ​​p​bit ​​(​D​bit​​)​ from the Firm Problem above, where ​​p​ bit​ ∗ ​​ is 
the limit price associated with the zero profit condition that comes from free entry.

The two data intermediaries are monopolists who choose the prices ​​p​ait​​​ and ​​p​bit​​​ 
of data as well as how much data to buy from consumers of each variety and type, 
taking the prices ​​p​ st​ a ​​ and ​​p​ st​ b ​​ as given. From the standpoint of the consumer, one unit 
of consumption generates one unit of data and data from all varieties sell at the same 
price, while each type of license may sell at a different price.

The constraints on the data intermediary problems are critical. Equation (57) says 
that the largest amount of own data the intermediary can sell to firm ​i​ is the amount 
of variety ​i​ data that the data intermediary has purchased. In contrast, equation (60) 
recognizes that data from all varieties can be bundled together and resold to each 
individual firm.

Zero profits from free entry into data intermediation together with the fact that 
the two types of data are perfect substitutes in the firm production function pin down 
the prices ​​p​a​​​ and ​​p​b​​​.

B.  Equilibrium when Consumers Own Data

An equilibrium in which consumers own data consists of quantities ​{​c​t​​, ​Y​t​​,  
​c​it​​, ​x​it​​, ​​x ̃ ​​it​​, ​a​t​​, ​Y​it​​, ​L​it​​, ​D​it​​, ​D​ait​​, ​D​bit​​, ​D​ cit​ a  ​, ​D​ cit​ b  ​, ​B​t​​, ​N​t​​, ​L​pt​​, ​L​et​​, ​L​t​​}​ and prices ​{​q​it​​, ​p​it​​, ​p​ait​​, ​p​bit​​,  
​p​ st​ a ​,​ p​ st​ b ​, ​w​t​​,​ r​t​​,​V​it​​}​, such that

	 (i)	​ {​c​t​​, ​c​it​​, ​x​it​​, ​​x ̃ ​​it​​, ​a​t​​}​ solve the Household Problem;

	 (ii)	​ {​L​it​​, ​Y​it​​, ​p​it​​, ​D​ait​​, ​D​bit​​, ​D​it​​, ​V​it​​}​ solve the Firm Problem;

	 (iii)	 (​​q​it​​​) The effective consumer price is ​​q​it​​  = ​ p​it​​ − ​x​it​​ ​p​ st​ a ​ − ​​x ̃ ​​it​​ ​p​ st​ b ​​;

	 (iv)	​ ​D​ cit​ a  ​​, ​​D​ cit​ b  ​​, ​​B​t​​​, ​​p​ait​​​, and ​​p​bit​​​ solve the Data Intermediary Problem subject to the 
constraint that there is free entry into this sector, so it makes zero profits;

	 (v)	​ ​p​ st​ a ​​ clears the data market so that supply equals demand: ​​D​ cit​ a  ​  = ​ x​it​​ ​c​it​​ ​L​t​​​;

	 (vi)	​ ​p​ st​ b ​​ clears the data market so that supply equals demand: ​​D​ cit​ b  ​  = ​​ x ̃ ​​it​​ ​c​it​​ ​L​t​​​;

	 (vii)	​ (​L​et​​)​ Free entry into producing a new variety leads to zero profits (including the 

entrant’s share of the rents from creative destruction): ​χ ​w​t​​ = ​V​it​​ + ​ 
​∫ 0​ 

​N​t​​​​δ​(​​x ̃ ​​it​​)​​V​it ​​ di
 _______ 

​​N ˙ ​​t​​
 ​ ​;
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	(viii)	 Definition of ​​L​pt​​: ​L​pt​​  = ​ ∫ 0​ 
​N​t​​​​ ​L​it​​ di​;

	 (ix)	​ ​w​t​​​ clears the labor market: ​​L​pt​​ + ​L​et​​  = ​ L​t​​​;

	 (x)	​ ​r​t​​​ clears the asset market: ​​a​t​​ ​L​t​​  = ​ ∫ 0​ 
​N​t​​​​ ​V​it​​ di​;

	 (xi)	​ ​N​t​​​ follows its law of motion: ​​​N ˙ ​​t​​  = ​  1 _ χ ​ (​L​t​​ − ​L​pt​​)​;

	 (xii)	​ ​Y​t​​  ≡ ​ c​t​​ ​L​t​​​ denotes aggregate output;

	(xiii)	 Exogenous population growth: ​​L​t​​  = ​ L​0​​ ​e​​ ​g​L​​t​​.

C.  Understanding the Equilibrium when Consumers Own Data

While Section VII will discuss the key features of this allocation, it is worth paus-
ing here to highlight some smaller results.

First, because own data and the bundle of other-variety data are perfect substi-
tutes (see equation (55)), in equilibrium

(62)	​ ​p​at​​  = ​   α _ 
1 − α ​ ​p​bt​​​,

where we’ve dropped the ​i​ subscript because of symmetry. At any other price ratio, 
firms would buy only one type of data and not the other. Similarly, the consumer 
prices for each type of data satisfy

(63)	​ ​p​ st​ a ​  = ​ p​at​​  and ​ p​ st​ b ​  = ​ N​t​​ ​p​bt​​​ .

Second, consider the inequality constraints in the Data Intermediary problems. 
In equilibrium, the data intermediary will sell any data that it buys. Moreover, 
because of nonrivalry, data can be bought once and sold multiple times. This 
means that both inequality constraints will bind. First, ​​D​ait​​  = ​ D​ cit​ a  ​  = ​ x​it​​ ​Y​it​​​ ; that 
is, all data on variety ​i​ that the data intermediary purchases will be sold to firm ​i​.  
Second, ​​D​bit​​  = ​ B​t​​  =  N​D​ cit​ b  ​  =  N ​​x ̃ ​​it​​ ​Y​it​​​ (using symmetry); that is, all data that is 
licensed for sharing that the data intermediary buys will be sold to all firms as bun-
dled data.

VI.  Outlaw Data Sales

The final allocation that we consider is motivated by recent concerns over data 
privacy. In the world in which firms own data, suppose the government, in an effort 
to protect privacy, limits the use of data. In particular, it mandates that

	​ ​​x ̃ ​​it​​  =  0​,

	​ ​x​it​​  ≤ ​ x –​  ∈ ​ (0, 1]​​.
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That is, firms are not allowed to sell their data to any third parties: ​​​x ̃ ​​it​​  =  0​. A similar 
allocation without the broad use of data may arise from an opt-out law that grants 
consumers the right to prevent firms from selling their data, since there are privacy 
costs to the consumer and no counteracting direct income gain. Moreover, the gov-
ernment may restrict firms to use less than 100 percent of their own-variety data, 
parameterized by ​​x​it​​  = ​ x –​​. We require ​​x –​  >  0​ in our setting; otherwise output of 
each firm would be zero because data is an essential input to production.

With this determination of ​​​x ̃ ​​it​​​ and ​​x​it​​​, the rest of the equilibrium looks exactly like 
the firms-own-data case, so we will not repeat that setup here. Instead, we turn next 
to comparing the equilibrium outcomes across these different allocations.

VII.  Key Insights from Comparing the Different Allocations

This section delivers the payoff from the preparation we’ve made in the previous 
sections: we see how the different allocation mechanisms we’ve studied lead to 
different outcomes. We compare the allocations on the balanced growth path for the 
social planner (sp), when consumers own data (c), when firms own data ( f ), and 
when the government outlaws the selling of data (os). When firms restrict the sale 
of data to limit their exposure to creative destruction, what are the consequences? 
When consumers own data and can sell it, is the allocation optimal? What if selling 
data is banned out of a concern for privacy?

Privacy and Data Sales.—The steady-state fraction of data that is used by other 
firms is given by4

(64)	​ ​​x ̃ ​​sp​​  = ​​ (​ 1 _ ​κ ̃ ​ ​  ⋅ ​   η _ 
1 − η ​)​​​ 

1/2

​​,

(65)	​ ​​x ̃ ​​c​​  = ​​ (​ 1 _ ​κ ̃ ​ ​  ⋅ ​   η _ 
1 − η ​  ⋅ ​  σ − 1 _____ σ ​ )​​​ 

1/2

​​,

(66)	​ ​​x ̃ ​​f​​  = ​​
(

​  2Γρ _ 
​(2 − Γ)​​δ​0​​

 ​
)

​​​ 
1/2

​  where Γ  ≡ ​ 
η ​(σ − 1)​
 _ ​  ϵ _ ϵ − 1 ​ − ση ​​,

(67)	​ ​​x ̃ ​​os​​  =  0​.

Interestingly, even when consumers own and sell their data, the equilibrium allo-
cation features inefficiently low data sales because of the ​(σ − 1)/σ  <  1​ term in 
equation (65). The equilibrium price of data that consumers receive in exchange for 
selling is influenced by this same factor:

	​ ​p​ st​ b ​  = ​   η _ 
1 − η ​  ⋅ ​  σ − 1 _____ σ ​   ⋅ ​  1 _ ​​x ̃ ​​c​​

 ​ ​​(​ψ​c​​ ​L​t​​)​​​ ​ 
1 _ σ−1 ​​​ .

4 We assume ​​  ϵ _ ϵ − 1 ​  >  ση​ and ​​  ϵ _ ϵ − 1 ​  >  ​ 3 _ 2 ​σ η − ​ 1 _ 2 ​ η​ so that ​Γ  ∈  (0, 2)​ holds in equation (66).
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Recall that ​σ/(σ − 1​) is the standard monopoly markup in the goods market, so the 
intuition is that the monopoly markup distortion leads data to sell for a price that is 
inefficiently low, causing consumers to sell too little data.

The strong similarity between the consumer and optimal ​​x ̃ ​​ can be contrasted with 
data sales when firms own data, given in equation (66). First, the utility cost asso-
ciated with privacy ​​κ ̃ ​​ does not enter the firm solution, as firms do not inherently 
care about privacy. Second, ​​​x ̃ ​​f​​​ depends on ​​δ​0​​​, capturing the crucial role of creative 
destruction—which does not enter the planner or consumer solutions for ​​x ̃ ​​. As we 
will see in our numerical examples, reasonable values for ​​δ​0​​​ mean that creative 
destruction concerns are first-order for firms, so they may sell little data to other 
firms and choose a small ​​​x ̃ ​​f​​​. Thus, firms inadvertently deliver privacy benefits to 
consumers. But as we will see, this aversion to selling data has other consequences. 
An extreme version of this allocation is the one that outlaws data sales entirely, so 
that ​​​x ̃ ​​os​​  =  0​.

The privacy considerations that involve only firm ​i​ and consumption of variety ​i​ 
are similar. In particular,

(68)	​ ​x​sp​​  = ​   α _ 
1 − α ​ ​ ​κ ̃ ​ _ κ ​ ⋅ ​​x ̃ ​​sp​​​,

(69)	​ ​x​c​​  = ​   α _ 
1 − α ​ ​ ​κ ̃ ​ _ κ ​ ⋅ ​​x ̃ ​​c​​​,

(70)	​ ​x​f​​  =  1​,

(71)	​ ​x​os​​  = ​ x –​  ∈ ​ (0, 1]​​.

These equations show that when firms own data, they overuse it. That is, firms 
set ​​x​f​​  =  1​, while the social planner and consumers take into account the privacy 
costs associated with ​κ​ and generally choose less direct use of data, ​​x​c​​  < ​ x​sp​​  <  1​.

Firm Size.—Because of symmetry, firm size ​​L​it​​​ equals the ratio of production 
employment to varieties, ​​L​pt​​/​N​t​​​. This quantity plays an important role in all of the 
allocations and is denoted by the parameter ​ν​ :

(72)	​ ​L​ it​ alloc​  = ​​ (​ 
​L​pt​​ _ ​N​t​​

 ​)​​​ 
alloc

​  ≡ ​ ν​alloc​​,  for alloc  ∈ ​ {sp, c, f, os}​​,

where

(73)	​ ​ν​sp​​  ≡  χρ ⋅ ​ σ − 1 _ 
1 − η ​​ ,

(74)	​ ​ν​c​​  ≡  χ ​g​L​​ ⋅ ​ 
ρ + δ​(​​x ̃ ​​c​​)​ _ 
​g​L​​ + δ​(​​x ̃ ​​c​​)​

 ​  ⋅ ​  σ − 1 _ 
1 − ση ​​ ,

(75)	​ ​ν​f​​  ≡  χ ​g​L​​ ⋅ ​ 
ρ + δ​(​​x ̃ ​​f​​)​ _ 
​g​L​​ + δ​(​​x ̃ ​​f​​)​

 ​  ⋅ ​   σ − 1 _  
1 − ση  ​ ϵ − 1 _ ϵ  ​

 ​​,

(76)	​ ​ν​os​​  ≡  χρ ⋅ ​ σ − 1 _ 
1 − ση ​​ .
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For all allocations, firm size as measured by employees is constant. This is 
because the entry cost technology is such that a fixed number of workers can create 
a new variety. Several economic forces determine firm size. First, notice how simi-
lar ​​ν​sp​​​ and ​​ν​os​​​ are. That is, steady-state firm size in the allocation with no data sales 
features a firm size that looks superficially similar to the optimal firm size. Both are 
increasing in ​χ​ (the entry cost) and ​ρ​ (the rate of time preference). Higher values of 
these parameters deter entry, and since the two uses for labor are entry and produc-
tion, this increases labor used in production.

The only difference between the two expressions is that the optimal firm size 
depends on ​1 − η​ where the equilibrium firm size depends on ​1 − ση​. This differ-
ence is subtle and important to understand, as this same difference plays an import-
ant role throughout the allocations. Ultimately, this wedge results from the standard 
appropriability problem, that the profit earned by creating a new variety is less than 
the social surplus. To understand this difference in detail, we rewrite the optimal 
allocation as

(77)	​ ​​(​ 
​L​pt​​ _ ​N​t​​

 ​)​​​ 
sp

​  = ​ ν​sp​​  =  Const ⋅ ​ 
1/​(1 − η)​
 _ 

1/​(σ − 1)​ ​​ .

The left-hand side of this expression is the ratio of production labor to the amount 
of varieties, and variety is closely related to entry. The right-hand side is the ratio 
of two elasticities. The numerator, ​1/(1 − η)​, is the degree of increasing returns 
to scale at the firm level that results from the nonrivalry of data. The denominator, ​
1/(σ − 1)​, is the degree of increasing returns to scale associated with the love of 
variety. The planner makes the ratio of production labor to the amount of varieties 
proportional to the ratio of these two elasticities, which capture the social value of 
production labor and entry.

In contrast, consider the equilibrium allocation when selling data is outlawed. 
Flipping the numerator and denominator, equation (76) can be expressed as

(78)	​ ​​(​ ​N​t​​ _ ​L​pt​​
 ​)​​​ 

os

​  = ​  1 _ ​ν​os​​ ​  =  Const ⋅ ​ 1 − ση _ σ − 1 ​​ .

As shown in online Appendix equation (A.73), this expression derives from the 
equilibrium free entry condition. The number of firms in the economy, ​​N​t​​​, depends 
on profits earned after entry relative to entry costs. Aggregate profits as a share 
of aggregate output equals ​(1 − ση)/σ ⋅ 1/(1 − η)​, while aggregate payments to 
production labor as a share of output equals ​(σ − 1)/σ ⋅ 1/(1 − η)​. Equation (78) 
says that the equilibrium amount of varieties is proportional to this ratio.

Equations (73) and (76) imply that firm employment is larger in the equilibrium 
with no data sales than in the optimal allocation since ​σ  >  1​. This occurs because 
of the profit share term. Intuitively, the equilibrium allocation creates varieties based 
on profits, while the social planner creates varieties based on the full social surplus. 
Because of the standard appropriability problem, the outlaw-sales equilibrium fea-
tures too few firms. The flip side is that firms in equilibrium are inefficiently large.

Going even further, the nonrivalry of data is essential to generating a wedge 
between equilibrium and optimal entry. If ​α  =  1​ such that data were rival, then 
equilibrium entry and firm size would be optimal for all property right regimes.
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We will discuss the equations for ​​ν​c​​​ and ​​ν​f​​​ after considering the number of firms 
and varieties, next.

Number of Firms and Varieties.—The effect of the appropriability problem on 
the measure of varieties can be seen more directly in our next set of equations. The 
number of firms (varieties) in an allocation is proportional to the labor force:

(79)	​ ​N​ t​ alloc​  = ​ ψ​alloc​​ ​L​t​​  where  ​ψ​alloc​​  ≡ ​   1 _  χ ​g​L​​ + ​ν​alloc​​ ​​.

Notice that the last half of the denominator of the ​ψ​ expression is just the ​ν​ term 
itself. For ​​g​L​​​ small, variety is basically inversely proportional to firm size, verifying 
intuition provided above about firm size and variety.

Next, we compare firm size and variety between the equilibrium in which 
consumers own data and the outlaw-sales equilibrium in which firms own data. 
Equations (74) and (76) show that firm sizes differ in these two allocations only 
because of creative destruction, which enters in two ways. In the numerator of (74), 
there is a ​ρ + δ(​​x ̃ ​​c​​)​ term. This captures the extent to which creative destruction 
raises the effective rate at which firms discount future profits. In the denominator, 
however, there is an additional term involving ​δ(​​x ̃ ​​c​​)​. This term captures the rents 
from destroyed firms as they flow to new entrants—business stealing—essentially 
raising the return to entry. If ​ρ  = ​ g​L​​​, then these two terms cancel and creative 
destruction does not influence firm size and variety creation.

A similar effect impacts firm size and the number of firms in the equilibrium when 
firms own data and can legally buy and sell it, as seen in equation (75). However, in 
that allocation, data sales are typically lower than when consumers own data, imply-
ing that creative destruction is also lower, reducing the role of this term.

Aggregate Output and Economic Growth.—The key finding of the paper is how 
data use influences living standards. The next set of equations shows aggregate out-
put in the various allocations. For the allocations that feature some data sharing, the 
equation for aggregate output is

(80)	​ ​Y​ t​ alloc​  = ​​ [​ν​alloc​​ ​​(1 − α)​​​ η​ ​​x ̃ ​​ alloc​ 
η  ​]​​​ 

​  1 _ 1−η ​
​ ​​(​ψ​alloc​​ ​L​t​​)​​​ 1+ ​  1 _ σ−1 ​ + ​  η _ 1−η ​​  for alloc  ∈ ​ {sp, c, f }​​.

There are essentially three key terms in this expression, and all have a clear inter-
pretation. First, ​​ν​alloc​​​ captures the size of each individual firm, and it is raised to the 
power ​1/(1 − η)​ because of the increasing returns to scale at the firm level asso-
ciated with data. Second, the term ​(1 − α) ​​x ̃ ​​alloc​​​ captures data. In particular, recall 
(e.g., from equation (33)) that

(81)	​ ​D​it​​  = ​ [α ​x​it​​ + ​(1 − α)​ ​​x ̃ ​​it​​ ​N​t​​]​ ​Y​it​​  = ​ N​t​​​[​ 
α ​x​it​​ _ ​N​t​​

 ​ + ​(1 − α)​ ​​x ̃ ​​it​​]​​Y​it​​​ .

As ​​N​t​​​ grows large, the own-use term ​α ​x​it​​/​N​t​​​ disappears, and data is ultimately pro-
portional to ​(1 − α) ​​x ̃ ​​alloc​​​. This is raised to the power ​η​ because of the usual ​​D​ it​ 

η ​​ 
term in the production function for output, and it is further raised to the power 
​1/(1 − η)​ because of the feedback effect through ​​Y​it​​​. Finally, the last term in 
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equation (80) is ​​N​t​​  = ​ ψ​alloc​​ ​L​t​​​ raised to the power ​1 + 1/(σ − 1) + η/(1 − η)​. This 
exponent captures the overall degree of increasing returns to scale in the economy:  
​1/(σ − 1)​ comes from the standard variety effect associated with the nonrivalry of 
ideas while ​η/(1 − η)​ comes from the extra degree of increasing returns associated 
with the nonrivalry of data. This last effect enters directly because of the ​​N​t​​​ term 
associated with broad data use in (81) that we just discussed.

Aggregate output when there is some data sharing can be contrasted with output 
when selling data is outlawed,

(82)	​ ​Y​ t​ os​  = ​​ [​ν​os​​ ​α​​ η​ ​x​ os​ η ​]​​​ ​  1 _ 1−η ​​ ​​(​ψ​os​​ ​L​t​​)​​​ 1+ ​  1 _ σ−1 ​​​ .

Two main differences stand out. The first is related to the ​ν​ and ​ψ​ terms and the 
differences in the allocations in these two economies. But the second is perhaps 
surprising and potentially even more important: there is a fundamental differ-
ence in the role of scale between the allocations that involve data sharing and the 
outlaw-sales equilibrium. In the allocations with broad data use, the exponent on ​​L​t​​​ is  
​1 + 1/(σ − 1) + η/(1 − η)​, while in the outlaw-sales equilibrium, the additional 
returns associated with broad data use ​η/(1 − η)​ are absent. The reason for this 
can be seen directly in equation (81) above: when ​​x ̃ ​  =  0​, the additional scale term 
associated with ​(1 − α)​x ̃ ​ ​N​t​​​ disappears and the amount of data just depends on ​α ​x​os​​​. 
That is, firms learn only from their own production and not from the ​​N​t​​​ other firms 
in the economy.

The results for per capita income illustrate this even more clearly. In this econ-
omy, consumption per person equals output per person, ​​Y​t​​ / ​L​t​​​. Dividing the equa-
tions above by ​​L​t​​​ gives

(83)	​ ​c​ t​ alloc​  ∝ ​ L​ t​ 
​  1 _ σ−1 ​ + ​  η _ 1−η ​

​  for alloc  ∈ ​ {sp, c, f }​​,

(84)	​ ​c​ t​ os​  ∝ ​ L​ t​ 
​  1 _ σ−1 ​​​ .

This effect can be seen by taking logs and derivatives of these equations to obtain 
the growth rate of income and consumption per person along a balanced growth path:

(85)	​ ​g​ c​ alloc​  = ​ (​  1 _ σ − 1 ​ + ​  η _ 
1 − η ​)​ ​g​L​​  for alloc  ∈ ​ {sp, c, f }​​,

(86)	​ ​g​ c​ os​  = ​ (​  1 _ σ − 1 ​)​ ​g​L​​​ .

Even though this is a semi-endogenous growth setup in which standard policies have 
level effects but not growth effects, we see that data use is different. Allocations in 
which data is used broadly feature faster long-run rates of economic growth.

The nature of data use matters for all of these results related to the degree of 
increasing returns to scale in equations (80) to (86), whether in levels or in growth 
rates. If every firm sells to 10 others, then this mimics the “outlaw selling” equilib-
rium because the number of firms benefiting from the data does not grow with the 
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economy. Conversely, if all firms sell their data to one-quarter of the other firms, 
then this economy features the additional scale effect: the number of firms benefit-
ing from data increases as the economy grows larger.

In an economy in which firms do not sell data, firms learn only from their own 
production. Because the entry cost is a fixed number of units of labor, the number 
of firms is directly proportional to the amount of labor in the economy. But this is 
just another way of saying that firm size is invariant to the overall population of the 
economy: a bigger economy has more firms but not larger firms. This means that 
in the outlaw-sales economy, there is no additional data benefit to having a larger 
economy. Contrast this with an economy in which data is used more broadly. In 
that case, the amount of data that each firm can learn from is an increasing function 
of the size of the economy. Therefore, the scale of the economy and the increasing 
returns associated with the nonrivalry of data interact.5

Data and Firm Production.—This difference in the returns to scale shows up 
throughout the allocations. This can be seen, for example, in the comparisons of data 
used by each firm and aggregate data use:

(87)	​ ​D​ it​ alloc​  = ​​ [​ν​alloc​​​(1 − α)​ ​​x ̃ ​​alloc​​ ​ψ​alloc​​ ​L​t​​]​​​ 
​  1 _ 1−η ​

​  for alloc  ∈ ​ {sp, c, f }​​,

(88)	​ ​D​ it​ os​  = ​​ [​ν​os​​ α ​x​os​​]​​​ ​ 
1 _ 1−η ​​​,

and

(89)	​ ​D​ t​ alloc​ = N​D​i​​ = ​​[​ν​alloc​​​(1 − α)​ ​​x ̃ ​​alloc​​]​​​ 
​  1 _ 1−η ​

​ ​​(​ψ​alloc​​ ​L​t​​)​​​ 1+​  1 _ 1−η ​​    for alloc  ∈ ​ {sp, c, f }​,​

(90)	​ ​D​ t​ os​ = ​​[​ν​os​​ α ​x​os​​]​​​ ​ 
1 _ 1−η ​​ ​ψ​os​​ ​L​t​​​ .

The scale difference also shows up in firm production. While firm size measured 
by employment is invariant to the size of the economy, firm production is not invari-
ant when data is used broadly. In that case, firm production grows with the overall 
size of the economy because of the nonrivalry of data:

(91)	​ ​Y​ it​ alloc​  = ​​ [​ν​alloc​​ ​​(1 − α)​​​ η​ ​​x ̃ ​​ alloc​ 
η  ​]​​​ 

​  1 _ 1−η ​
​ ​​(​ψ​alloc​​ ​L​t​​)​​​ ​ 

η _ 1−η ​​  for alloc  ∈ ​ {sp, c, f }​​,

(92)	​ ​Y​ it​ os​  = ​​ [​ν​os​​ ​α​​ η​ ​x​ os​ η ​]​​​ ​  1 _ 1−η ​​​ .

5 Notice that this finding is robust to specifying the entry cost differently. For example, if the entry cost is such 
that the number of firms is ​N =  ​L​​ β​​, then firm size will be ​L/N =  ​L​​ 1−β​​ and firm data will grow in proportion. Notice 
that ​β​ could be less than 1 or greater than 1: it is possible that firm size is decreasing in the overall scale of the economy 
if varieties are easy to create. Contrast that with the data sharing case, in which each firm benefits from all data in the 
economy: ​​D​i​​ ∝  N ​Y​i​​ ∝  N ⋅ (L/N) =  L​. That is, regardless of ​β​, the full scale effect is passed through.
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Wages, Profits, and Pricing.—In the equilibrium allocations, i.e.,  
​alloc  ∈  {c, f, os}​, the factor income share of production labor and profits in aggre-
gate output add to 1 and are given by

(93)	​ ​​(​ 
​w​t​​ ​L​pt​​ _ ​Y​t​​

 ​ )​​​ 
c

​  = ​​ (​ 
​w​t​​ ​L​pt​​ _ ​Y​t​​

 ​ )​​​ 
os

​  = ​   σ − 1 _ 
σ​(1 − η)​ ​​ , ​ ​​(​ 

​w​t​​ ​L​pt​​ _ ​Y​t​​
 ​ )​​​ 

f

​  = ​   σ − 1 ___________  
σ​(1 − η ​ ϵ − 1 _ ϵ  ​)​

 ​​,

(94)	​ ​​(​ ​N​t​​ ​π​t​​ _ ​Y​t​​
 ​ )​​​ 

c

​  = ​​ (​ ​N​t​​ ​π​t​​ _ ​Y​t​​
 ​ )​​​ 

os

​  = ​  1 − ση _ 
σ​(1 − η)​ ​​ ,	​ ​​(​ ​N​t​​ ​π​t​​ _ ​Y​t​​

 ​ )​​​ 
f

​  = ​   1 − ση ​ ϵ − 1 _ ϵ  ​  ___________  
σ​(1 − η ​ ϵ − 1 _ ϵ  ​)​

 ​​ .

By comparison, recall from equation (19) that the aggregate production function 
for the economy is

(95)	​ ​Y​t​​  = ​ N​ t​ 
​  1 _ σ−1 ​​ ​D​ it​ 

η ​ ​L​pt​​​ .

Therefore, the marginal product of production labor multiplied by ​​L​pt​​​ as a share of 
aggregate output from the social planner’s perspective is equal to 1. That is, as is 
standard in models with varieties, labor is underpaid relative to its social marginal 
product so that the economy can provide some profits to incentivize the creation of 
new varieties.

It is also interesting to compare the monopoly markup and pricing in the different 
equilibrium allocations. The price of a variety is

(96)	​ ​q​ it​ c ​  = ​ N​ t​ 
​  1 _ σ−1 ​​  = ​​ (​ψ​c​​ ​L​t​​)​​​ ​ 

1 _ σ−1 ​​​,

(97)	​ ​p​ it​ c ​  = ​
(

1 + η ⋅ ​  σ − 1 _ 
σ​(1 − η)​ ​)​ ​N​ t​ 

​  1 _ σ−1 ​​  = ​
(

1 + η ⋅ ​  σ − 1 _ 
σ​(1 − η)​ ​)​ ​​(​ψ​c​​ ​L​t​​)​​​ ​ 

1 _ σ−1 ​​​,

(98)	​ ​p​ it​ 
f ​  = ​ N​ t​ 

​  1 _ σ−1 ​​  = ​​ (​ψ​f​​ ​L​t​​)​​​ ​ 
1 _ σ−1 ​​​,

(99)	​ ​p​ it​ os​  = ​ N​ t​ 
​  1 _ σ−1 ​​  = ​​ (​ψ​os​​ ​L​t​​)​​​ ​ 

1 _ σ−1 ​​​ .

Two points are worth noting. First, the effective price paid by consumers (i.e., 
incorporating the fact that they can sell their data) in the consumers-own-data allo-
cation, ​​q​ it​ c ​​, and the actual price paid by consumers in the other allocations, ​​p​ it​ 

f ​, ​p​ it​ os​​, 
are both equal to ​​N​ t​ 1/(σ−1)​​. Of course, ​​N​t​​​ will differ across these allocations, but the 
point is that the consumer prices are both the same function of the number of firms. 
Moreover, there is no “markup” term that shows up in this expression. This is a fea-
ture of the exogenous labor supply in our environment. One way or the other, labor 
can only be used to produce goods and so the monopoly markup does not result in 
a misallocation of labor. This is true even though firms internalize that they have 
increasing returns because of the learning-by-doing associated with data.

Second, notice that the price that firms receive for their sales in the 
consumers-own-data equilibrium, ​​p​ it​ c ​​, does involve a markup term given by  
​1 + η ⋅ (σ − 1)/(σ(1 − η))​. If ​η  =  0​, this term would drop out. Instead, it 
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captures the fact that firms know that consumers can sell their data. Therefore, firms 
charge an additional markup over marginal cost to capture this revenue.

The Value of Data.—The value of data as a share of GDP is given by

(100)	​ ​​(​ 
​N​t​​ ​(​p​at​​ ​D​at​​ + ​p​bt​​ ​D​bt​​)​  ______________ ​Y​t​​

 ​ )​​​ 
c

​  = ​   η _ 
1 − η ​  ​ σ − 1 _____ σ ​ ​,

(101)	​ ​​(​ 
​N​t​​ ​(​p​at​​ ​Y​it​​ + ​p​bt​​ ​D​bt​​)​  _____________ ​Y​t​​

 ​ )​​​ 
f

​  = ​   η _  
1 − η  ​ ϵ − 1 _ ϵ  ​

 ​ ⋅ ​ σ − 1 _____ σ ​ ​ .

We will use these expressions in the numerical examples shortly.6

Efficiency.—Comparing the amount of data shared by the planner and consum-
ers, ​​x ̃ ​​, in equations (64) and (65), it is clear that the monopolistic markup distorts 
the equilibrium allocation. One might naturally wonder if a production subsidy to 
correct this distortion would lead the Consumers Own Data allocation to be effi-
cient. This turns out not to be true, however. Creative destruction in the equilibrium 
affects incentives for entrants to introduce new varieties, and this second distortion 
requires a second instrument. More specifically, let revenue in the firm problem for 
variety ​i​ be increased by ​​s​y​​​ , and let entry costs be reduced by ​​s​e​​​. Then the subsidies 
that replicate the optimal allocation are

(102)	​ 1 + ​s​ y​ c​  = ​   1 ____________  
η + ​(1 − η)​ ​ σ − 1 _ σ  ​

 ​​,

(103)	​ 1 − ​s​ e​ c​  = ​  ρ _ ​g​L​​ ​ ⋅ ​ 
​g​L​​ + δ​(​​x ̃ ​​sp​​)​ _ 
ρ + δ​(​​x ̃ ​​sp​​)​

 ​ ⋅ ​ 
1 − η ​(σ + ​s​ y​ c​)​

  ___________ 
1 − η  ​​ .

The revenue subsidy, ​​s​ y​ c​​, is smaller than the conventional markup correction  
​σ/(σ − 1)​ because of the presence of ​η​ and increasing returns. The entry subsidy 
addresses the fact that firm size and entry are distorted in the equilibrium allocation 
by creative destruction and business stealing; see the discussion above following 
equation  (79). We know that the Consumers Own Data allocation is inefficient. 
What we see next in our numerical examples, is that this inefficiency is relatively 
small.

VIII.  Numerical Examples

We now provide a set of numerical examples to illustrate the forces in the model. 
This should not be viewed as a formal calibration that can be compared quantita-
tively to facts about the US economy. Nevertheless, we find it useful to think about 
how large the various forces in the model might possibly be.

6 When firms own the data, the total value above is the sum of own and purchased data. Since own data is not 
purchased, we price it at its shadow value ​​p​at​​  =  (α/(1 − α)) ​p​bt​​​, driven by perfect substitutability.
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How Large Is ​η​?—We have two approaches to gaining insight into the value 
of ​η​. First, from equation (100), in the equilibrium allocation in which consumers 
own data, the share of GDP spent on data is given by ​(η/(1 − η)) (( σ − 1)/σ)​ 
(and when firms own data, this formula provides an excellent approximation to the 
value of own and purchased data).7 Taking a standard value of ​σ  =  4​, this equals ​
0.75 ⋅ (η/(1 − η))​. How important is data as a factor of production? A casual guess 
is that it accounts for no more than 5 percent of GDP, which would imply a value 
of ​η  =  0.0625​. And 10 percent of GDP seems like a solid upper bound, implying 
a value of ​η  =  0.1176​. With this as motivation, we take a benchmark value of ​
η  =  0.06​ and consider robustness to values of 0.03 and 0.12, with some preference 
for the two lower values.

An alternative way to gain insight into ​η​ is to look at machine learning error rates 
and how they change with the quantity of data. Sun et al. (2017) studies how the 
error rate in image recognition applications of machine learning changes with the 
number of images in the learning sample. They examine four different approaches 
with a number of images that ranges from 10 million to 300 million. If we assume 
that the error rate is proportional to ​​M​​ −β​​ where ​M​ is the number of images, then 
we can compute an estimate of ​β​. Using their data, together with a related exer-
cise from Facebook from Joulin et al. (2015), we obtain 5 different estimates of ​β​, 
ranging from 0.033 to 0.143, with a mean of 0.082, as shown in Figure 1.8 At this 
mean value, a doubling of the amount of data leads the error rate to fall by 5.9 per-
cent. Notably, the power function fits well and there is no tendency (at least in the 
Google study) for the error rate to flatten at a high number of images. Furthermore, 
as data proliferates, firms will develop new algorithms and applications that make 
even better use of more data. Posner and Weyl (2018) suggests that this can delay or 
even offset sharp diminishing returns to data. Obviously, it would be valuable to use 
a broader set of applications in order to estimate ​β​ in different contexts; Hestness et 
al. (2017) provides estimates ranging from 0.07 to 0.35 for a variety of applications, 
including speech recognition, language translation, and image classification.

In order to map the estimate of ​β​ into the parameter ​η​ in our model, we need 
to make some assumption about how the error rate translates into productivity. If 
productivity equals the inverse of the error rate, then ​η  =  β​. However, there is no 
reason why this assumption needs to hold, and one could imagine that productivity 
is the error rate raised to some other exponent. Without knowledge of this exponent, 
we cannot map the estimates from the machine learning literature directly into ​η​. 
Hence, we prefer our earlier approach to calibration based on data’s share of GDP. 
What we find most valuable about the machine learning evidence is that it supports 
the power law formulation that is assumed in our model.

Other Parameters.—Other parameter values used in our example are reported in 
Table 2. We consider an elasticity of substitution of 4 implying that the degree of 
increasing returns in the economy is ​1/(σ − 1)  =  0.33​ when there are no data sales, 

7 We choose a large value of ​ϵ​ equal to 50, so that ​(ϵ − 1)/ϵ  ≈  1​; plugging this into equation (101) gives the 
result.

8 We are grateful to Abhinav Shrivastava and Chen Sun for providing the data from their paper and the Facebook 
paper and for help interpreting the “mAP” metric.



2850 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2020

rising to ​1/(σ − 1)) + η/(1 − η)  =  0.40​ when data is used broadly. Population 
growth in advanced economies is around 1 percent per year, but the growth rate 
of R&D labor is closer to 4  percent; as a compromise, we choose ​​g​L​​  =  0.02​. 
Combined with the returns to scale, this implies steady-state growth rates of con-
sumption per person of 0.67 percent when selling data is outlawed and 0.79 percent 
when data is used broadly. Of course these are lower than what we see in advanced 
economies, but our model omits other sources of growth, so we probably should 
not match a higher growth rate. We set ​​L​0​​ =  100​, corresponding to a workforce 
of around 100 million people; labor units are therefore millions of people. We set 
the rate of time preference to 2.5 percent (it must be larger than ​​g​L​​​). Entry requires  
​χ =  0.01​ workers; because labor units are in millions of people, this corresponds 
to 10,000 people, and with an R&D share of the population of around 1 percent, this 
would mean 100 researchers. We set the weight on own data to ​α =  0.5​; as long as ​
(1 − α) >  0​, the particular value of this parameter is inconsequential for our results.

The privacy and creative destruction parameters are less standard, so we choose 
baseline values, but also explore a wide range of values in our numerical exercise. 
Regarding the privacy cost parameters, ​κ​ and ​​κ ̃ ​​, Athey, Catalini, and Tucker (2017) 
shows that people express concerns about privacy but are willing to share once 
incentivized, even by a relatively small reward: a majority of MIT students in their 
survey were willing to share the email addresses of three close friends in exchange 

Figure 1.  Estimating ​β​ from Image Recognition Algorithms

Notes: The parameter ​β​ comes from a model in which the error rate is proportional to ​​M​​ −β​​. More specifically, ​β​ is 
estimated by regressing the log of the error rate ​1 − mAP​ on the log number of images using data from Sun et al. 
(2017) in the first three panels and from Joulin et al. (2015) in the last panel. A fifth estimate from Figure 4a of Sun 
et al. (2017) with fine tuning is omitted but yields an estimate of ​β  =  0.040​. The data are plotted in blue while the 
fitted log-linear curve is shown in green.
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for a free pizza. Nevertheless, we give an important role to privacy; an individual’s 
privacy concerns regarding all their economic activity may be different than that 
exhibited in the lab. We set ​​κ ̃ ​  =  0.20​, implying that having all of one’s data shared 
with all firms is equivalent to a reduction in consumption of 10 percent; we explore 
robustness to values between 0.02 and 0.99. Selling all of a variety’s data increases 
the rate of creative destruction by ​​δ​0​​/2​, which we calibrate to 20 percent; absent any 
other death, this corresponds to an expected lifetime of 5 years. We explore robust-
ness to values of ​​δ​0​​​ between 0.02 and 0.99.

A.  Consumption-Equivalent Welfare

Consumers care about consumption as well as privacy. A consumption-equivalent 
welfare measure incorporates both. Along a balanced growth path, welfare is given by

	​ ​U​ ss​ alloc​  = ​  ​L​0​​ _ ​ρ ̃ ​ ​ ​(log ​c​ 0​ alloc​ − ​ ​κ ̃ ​ _ 
2
 ​ ​​x ̃ ​​ alloc​ 2  ​ + ​ ​g​ c​ alloc​ _ ​ρ ̃ ​ ​ )​​.

Notice that the ​​x​it​​​ “own privacy” term drops out because it is scaled by ​1/N​; recall 
equation (4). Let ​​U​ ss​ alloc​(λ)​ denote steady-state welfare when we perturb the alloca-
tion of consumption by some proportion ​λ​,

	​ ​U​ ss​ alloc​​(λ)​  = ​  ​L​0​​ _ ​ρ ̃ ​ ​ ​(log​(λ​c​ 0​ alloc​)​ − ​ κ _ 
2
 ​ ​x​ alloc​ 2  ​ + ​ ​g​ c​ alloc​ _ ​ρ ̃ ​ ​ )​​.

Then consumption equivalent welfare ​​λ​​ alloc​​ is the proportion by which consump-
tion must be decreased in the optimal allocation to deliver the same welfare as in 
some other allocation,

	​ ​U​ ss​ sp​​(​λ​​ alloc​)​  = ​ U​ ss​ alloc​​(1)​​.

Moreover, it is straightforward to see that this consumption equivalent welfare mea-
sure is given by

(104)	​ log ​λ​​ alloc​  = ​​ log ​c​ 0​ alloc​ − log ​c​ 0​ 
sp​  ​​  

Level term

​ 
 
 ​  − ​​​ ​κ ̃ ​ _ 

2
 ​​(​​x ̃ ​​ alloc​ 2  ​ − ​​x ̃ ​​ sp​ 2 ​)​  


​​  

Privacy term

​ 
 
 ​  + ​​​ ​g​ c​ alloc​ − ​g​ c​ sp​ _ ​ρ ̃ ​ ​  


​​ 

Growth term

​ 
 

 ​ ​ .

Table 2—Parameter Values

Description Parameter Value

Importance of data ​η​ 0.06
Elasticity of substitution (goods) ​σ​ 4
Weight on privacy ​κ  = ​ κ ̃ ​​ 0.20
Population level ​​L​0​​​ 100
Population growth rate ​​g​L​​​ 0.02
Rate of time preference ​ρ​ 0.025
Labor cost of entry ​χ​ 0.01
Creative destruction ​​δ​0​​​ 0.4
Weight on own data ​α​ 1/2
Elasticity of substitution (data) ​ϵ​ 50
Use of own data in OS ​​x –​​ 1

Note: Baseline parameter values for the numerical example
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That is, there is an additive decomposition of consumption-equivalent welfare into 
terms reflecting differences in the level of consumption, the extent of privacy, and 
the growth rate.

B.  Quantitative Analysis of Welfare and Property Rights

In this section  we compare consumption-equivalent welfare for the 
consumers-own-data and firms-own-data property right regimes. The parameters 
that we have the most uncertainty over are ​​δ​0​​​, ​κ​, and ​​κ ̃ ​​, so we hold all other param-
eters at the baseline calibration and explore the behavior of the model across a wide 
range values for these parameters. In the next section, we study the allocations in 
detail for a particular set of parameter values.

Figure 2 shows the ratio of consumption-equivalent welfares, ​​λ​​ c​/​λ​​ f​​, for various 
combinations of ​η​, ​​δ​0​​​, and ​​κ ̃ ​  =  κ​. When this ratio is less than 1 (the red triangular 
region in the plots) the Firms Own Data allocation is superior. In the majority of the 
plot, however, this ratio is larger than 1, indicating that the Consumers Own Data 
allocation is generally superior. In fact the result is even stronger. When ​η  =  0.06​, 
the smallest this ratio gets is 0.998. Moreover, across the three plots (for different 
values of ​η​), the lowest value this ratio ever reaches is 0.993. In other words, even 
in the relatively rare instances that the Firms Own Data allocation generates higher 
welfare, it does so by only a small amount. But when the Consumers Own Data 
allocation is superior, it typically generates substantially higher welfare.

The theory can help us understand the parameter combinations for which the 
Firms Own Data allocation is better. Recall that when consumers own data, they 
typically sell a bit less than is socially optimal, so that ​​​x ̃ ​​​ c​  < ​​ x ̃ ​​​ sp​​; the reason is that 
the markup in the economy means that firms generally value data less than the plan-
ner, so the equilibrium price of data is inefficiently low. In contrast, the amount of 
data that firms sell broadly, ​​​x ̃ ​​​ f​​, depends on the creative destruction parameter ​​δ​0​​​. As 
shown in equation (66), the lower is this parameter, the higher is ​​​x ̃ ​​​ f​​. So by choosing 
the parameter appropriately, the Firms Own Data allocation can generate a value 
of ​​​x ̃ ​​​ f​​ that is close to ​​​x ̃ ​​​ sp​​. This is what we see in Figure 2: for the right low values 
of ​​δ​0​​​, the Firms Own Data allocation is superior. Of course, as this parameter falls 
further, this raises ​​​x ̃ ​​​ f​​, and it eventually leads to ​​​x ̃ ​​​ f​  ≫ ​​ x ̃ ​​​ sp​​: if creative destruction is 
not a problem for firms, they will sell even more data than the planner desires. In 
this case, the Firms Own Data allocation becomes inferior once again. This general 
logic explains why there is a range of values for ​​δ​0​​​, on the low end, where firms 
owning data is better.9

To summarize, this sensitivity analysis that explores model behavior across the 
parameter space suggests that the Consumers Own Data allocation typically gen-
erates substantially higher welfare. It is only when the creative destruction force is 
very weak and privacy concerns are very large that the Firms Own Data policy can 
be slightly better.

9 This is also related to the bulge in the left side of the red region in the ​η  =  0.12​ plot in Figure 2. In that 
region, the firm would like to sell even more than 100 percent of its data: unconstrained by technology, it would 
choose ​​​x ̃ ​​​ f​  >  1​.
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C.  The Baseline Numerical Example

Now that we understand that welfare is generally higher when consumers own 
data, we explore allocations across property-right regimes in more detail for our 
baseline parameterization to understand the sources of the welfare differences. 
Panel A of Table 3 shows summary statistics for key variables. The fraction of data 
that is used broadly differs dramatically across the allocations. The social planner 
chooses to share 56 percent of data, even taking privacy considerations into account. 

Figure 2.  Consumption-Equivalent Welfare Ratio: ​​λ​​ c​ / ​λ​​ f​​

Notes: The plots show the ratio of consumption-equivalent welfare, ​​λ​​ c​ / ​λ​​ f​​, for various combinations of ​η​, ​​δ​0​​​, and ​​
κ ̃ ​  =  κ​. When this ratio is larger than 1, which holds for most parameter combinations, the Consumers Own Data 
allocation is superior. When this ratio is less than 1 (the red triangular region in the plots) the Firms Own Data allo-
cation is superior. The smallest and average values of ​​λ​​ c​/​λ​​ f​​ in each plot are

​η​ Minimum Mean

0.03 0.999 1.029
0.06 0.998 1.055
0.12 0.993 1.082

A black circle in each figure shows our benchmark calibration.
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When consumers own data, they sell less at 49 percent.10 As discussed earlier, the 
reason for this difference is the monopoly markup ​σ/(σ − 1)  =  1.33​ that leads the 
price at which consumers sell their data to be too low relative to what the planner 
would want. These “high use” allocations can be contrasted with the bottom two 
allocations. When firms own data, they distort the use of data in two ways. First, 
they use 100 percent of their own data, more than what consumers or the planner 
would desire. In this sense, firms do not satisfy the privacy concerns of consumers. 
Second, there is too little sharing with other firms relative to the planner: firms sell 
only 13 percent of their data to other firms. The key factor in this decision is creative 
destruction. And of course, when selling data is outlawed, the allocation features no 
data sales.

The next two columns of panel A show that firm size and the number of varieties 
differ across the allocations. When firms own data or when selling is outlawed, the 
rate of creative destruction is low (see the last column). Less creative destruction 
has two countervailing effects. On the one hand, it raises the present value of prof-
its, which tends to promote entry. On the other hand, it reduces the boost to entry 
associated with business stealing. When ​ρ  > ​ g​L​​​ the business stealing effect domi-
nates and higher rates of creative destruction lead to more entry and smaller firms. 
This can be seen in panel A of Table 3, where the number of varieties is higher when 
consumers own data than in the two limited-sales allocations. Similarly, firm size is 
smaller when consumers own data.

10 In the planner and consumers-own-data allocations ​x  =  ​x ̃ ​​ because we’ve set ​κ  =  ​κ ̃ ​​ and ​α  =  1/2​.

Table 3—Numerical Example

Data Use
Creative 

destruction“own” “others” Firm size Variety Consumption Growth
Allocation ​x​ ​​x ̃ ​​ ​ν​ ​N/L  =  ψ​ ​c​ ​g​ ​δ​

Panel A. Summary statistics
Social planner 0.56 0.56 798 1,002 45.3 0.79 0.064
Consumers own data 0.49 0.49 848 955 44.7 0.79 0.048
Firms own data 1 0.13 953 867 40.7 0.79 0.003
Outlaw sales 1 0 987 843 22.4 0.67 0.000

Welfare Decomposition

Allocation ​λ​ ​log  λ​ Level term Privacy term Growth term

Panel B. Consumption-equivalent welfare
Optimal allocation 1 0 .. .. ..
Consumers own data 0.995 −0.005 −0.0128 0.0080 0.0000
Firms own data 0.925 −0.078 −0.1078 0.0303 0.0000
Outlaw sales 0.396 −0.927 −0.7037 0.0319 −0.2553

Notes: The table reports statistics from our numerical example for the different allocations using the parameter val-
ues in Table 2. The top panel shows baseline statistics along a balanced growth path. Firm size is multiplied by ​​10​​ 6​​ 
and therefore is measured in people. The bottom panel reports consumption equivalent welfare calculated according 
to equation (104). In particular, ​λ​ is the fraction by which consumption must be decreased in the optimal allocation 
to deliver the same welfare as in some alternative allocation.
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The outlaw-sales equilibrium features a smaller scale effect, which shows up both 
in economic growth being slower and in the overall level of consumption being 
substantially lower.

Panel B of Table 3 shows the welfare decomposition using the baseline param-
eter values. The allocation in which data selling is outlawed is stunningly inferior: 
consumption-equivalent welfare is only 40 percent of that of the social planner. A 
small part of this is the growth rate differential, but the bulk comes from distortions 
to the level of consumption, most importantly the missing scale effect associated 
with broad data use. Laws that prohibit data sales can have dramatic effects, reduc-
ing incomes substantially.

One institution that appropriately balances these concerns is assigning own-
ership of data to consumers. Data use is close to that of the social planner and 
consumption-equivalent welfare falls just short of optimal in this example. Consumers 
take their own privacy considerations into account but are incentivized by markets to 
sell their data broadly to a range of firms, leading them to nearly optimal allocations.

In contrast, when firms own data, concerns about creative destruction sharply 
limit the amount of data they sell to other firms. While limited sharing generates 
some privacy benefits, equal to about 3 percent of consumption, the social loss from 
nonrival data not being used by other firms is much larger. Of course, the way we’ve 
modeled privacy is ad hoc, as privacy considerations are not the main focus of the 
paper. However, our baseline parameterization of ​​κ ̃ ​​ was intentionally set to deliver 
large utility costs from lack of privacy, and still the welfare losses are dominated by 
the use of data in production.

Equilibrium welfare is just 93 percent of optimal when firms own data, compared 
to 99+ percent of optimal when consumers own data. Failing to appropriately take 
advantage of the nonrivalry of data leads consumption to be lower by more than 
7 percent along the balanced growth path, even in this example in which there are 
sharply diminishing returns to additional data.

IX.  Discussion

Implications for IO.—Several issues related to antitrust and IO are raised by this 
framework. First, because firms see increasing returns to scale associated with data 
and, perhaps more importantly, because of the nonrivalry of data, firms in this econ-
omy would like to merge into a single economy-wide firm. Our paper provides a 
concept of a firm as the boundary of data usage and the nonrivalry of data may create 
strong pressures to increase scale. Return to the example of medical data being used 
within hospital networks to improve the accuracy of diagnoses. If hospitals merged, 
they would be able to estimate a more accurate algorithm, leading to better service 
on this dimension for all of its patients. This suggests data policy and antitrust policy 
may best be designed jointly.

Second, data may serve as a barrier to entry. A natural concern about the 
limited-sales allocations is that as a firm accumulates data, this may make it harder 
for other firms to enter. In our framework, this force appears somewhat mechani-
cally through the dependence of the rate of creative destruction ​δ (​x ̃ ​)​ on the amount 
of data sold. It would be interesting in future research to consider this force more 
explicitly, say, in a quality ladder model.
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Third, if data were produced both as a byproduct of consumption and as the result 
of active firm investment, then optimal property rights could be different. For exam-
ple, think of Waymo driving cars in an artificial town. If Waymo offers taxi rides or 
if Waymo’s probability of being destroyed depends on Tesla data, then consumer 
sales of such data could increase creative destruction. In this case, broader use of 
data might lead firms to invest too little in generating data.

The Boundaries of Data Diffusion: Firms and Countries.—At the beginning of 
the paper, we noted that both ideas and data are nonrival. Both can be expressed 
as bit strings, and it is natural to wonder about the differences between them. For 
example, while ideas give rise to increasing returns and people create ideas, growth 
theory does not typically suggest that Luxembourg and Hong Kong should be much 
poorer than Germany and China because of their relatively small size. Instead, the 
view is that ideas diffuse across countries, at least eventually and in general, so that 
the relevant scale is the scale of the global market of connected countries rather than 
that of any individual economy.

Data may be different. For example, it seems much easier to monitor and limit 
the spread of data than to limit the spread of ideas. Perhaps this is because ideas, in 
order to be useful, need to be embodied inside people in the form of human capital 
(which makes it inherently hard to keep it from spreading). In contrast, data can be 
encrypted and tightly controlled.

This raises an interesting question about whether the quantity of data that an 
organization has access to can serve as an important productivity advantage. This 
could apply to firms or even to countries. For example, the Chinese economy is 
large. Could access to the inherently larger quantities of data associated with a large 
population provide an advantage? Lee (2018) suggests “China has more data than 
the US—way more. Data is what makes AI go. A very good scientist with a ton of 
data will beat a super scientist with a modest amount of data.” Similarly, a pop-
ulation with less concern for privacy or a government that places a lower weight 
on consumer privacy might induce more data sales, leading to a higher level of 
aggregate output (but perhaps lower welfare). State-owned enterprises could be 
encouraged to share data with each other. Or, in an industry context with trade, this 
difference could lead to firms (e.g., in China) having a distinct productivity advan-
tage in data-intensive products.

X.  Conclusion

The economics of data raises many important questions. Privacy concerns have 
appropriately received a great deal of attention recently. Our framework supports 
this: when firms own data, they may overuse it and not adequately respect consumer 
privacy.

But another important consideration arises from the nonrivalry of data. Because 
data is infinitely usable, there are large social gains to allocations in which the same 
data is used by multiple firms simultaneously. Consider our own profession. There 
are clearly substantial benefits in having data from the PSID, the CPS, and the 
National Income and Product Accounts available for all to use. At the heart of these 
gains is the fact that data is nonrival. It is technologically feasible for medical data 
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to be widely used by health researchers and for all driving data to be used by every 
machine learning algorithm. Yet when firms own such data, they may be reluctant 
to sell it because of concerns over creative destruction. Our numerical examples 
suggest that the welfare costs arising from limits to using nonrival data can be large.

Government restrictions that, out of a concern for privacy, outlaw selling data 
entirely may be particularly harmful. Instead, our analysis indicates that giving 
data property rights to consumers can lead to allocations that are close to optimal. 
Consumers balance their concerns for privacy against the economic gains that come 
from selling data to all interested parties. This raises interesting design problems 
related to overcoming transaction costs that might overwhelm consumers. Our anal-
ysis shows that the value of solving these problems, perhaps via intermediaries and 
technological innovations, may be large.
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