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A Derivations and Proofs

The propositions in the paper summarize the key results from the model. This ap-

pendix shows how to derive the results.

Proof of Proposition 1. Occupational Choice

The individual’s utility from choosing a particular occupation, U(τig, wi, εi, µi), is pro-

portional to µi(γ̄w̃igεi)
3β

1−η , where w̃ig ≡ wis
φi
i (1 − si)

1−η
3β · h̄ig z̃igτig

and γ̄ ≡ 1 + γ(2) +

γ(3) is the sum of the experience terms. We first consider the occupation decision for

individuals with ability heterogeneity (so no taste heterogeneity or µi = 1). For these

people, the solution to the individual’s problem involves picking the occupation with

the largest value of w̃igεi. To keep the notation simple, we will suppress the g subscript

in what follows.

Without loss of generality, consider the probability that the individual chooses oc-

cupation 1, and denote this by p1. Then

p1 = Pr [w̃1ε1 > w̃sεs] ∀s 6= 1

= Pr [εs < w̃1ε1/w̃s] ∀s 6= 1

=

∫
F1(ε, α2ε, . . . , αM ε)dε, (A1)

where F1(·) is the derivative of the cdf with respect to its first argument and αi ≡ w̃1/w̃i.

Recall that

F (ε1, . . . , εM ) = exp

[
M∑
s=1

ε−θs

]
.

Taking the derivative with respect to ε1 and evaluating at the appropriate arguments
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gives

F1(ε, α2ε, . . . , αM ε) = θε−θ−1 · exp
[
ᾱε−θ

]
(A2)

where ᾱ ≡
∑

s α
−θ
s .

Evaluating the integral in (A1) then gives

p1 =

∫
F1(ε, α2ε, . . . , αM ε)dε

=
1

ᾱ

∫
ᾱθε−θ−1 · exp

[
ᾱε−θ

]
dε

=
1

ᾱ
·
∫
dF (ε)

=
1

ᾱ

=
1∑
s α
−θ
s

=
w̃θ1∑
s w̃

θ
s

A similar expression applies for any occupation i, so we have

pi =
w̃θi∑
s w̃

θ
s

(A3)

We now consider individuals with taste heterogeneity (so no ability heterogeneity

or εi = 1). These individuals pick the occupation with the largest value of µi(w̃ig)
3β

1−η .

The probability the individual picks occupation 1 is now given by

p1 = Pr [w̃
3β

1−η
1 µ1 > w̃

3β
1−η
s µg] ∀s 6= 1

The probability of picking occupation 1 is then given by

p1 =
w̃

3β
1−ηω

1∑
s w̃

3β
1−ηω
s

whereω is the shape parameter of the Fréchet distribution for tastes. Using the assump-

tion that ω = θ (1−η)
3β , the probability of picking occupation i is still given by equation

(A3).

Proof of Proposition 2. Geometric Average of Worker Quality
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Efficiency units of labor of an individual of cohort c in occupation i at time t is given by

hi(c, t) = h̄is(c)
φ(t)ei(c)

η. Using the results from the individual’s optimization problem,

it is straightforward to show that

hi(c, t) εi = si(c)
φi(t)γ(t− c)

(
η si(c)

φi(c)wi(c)(1− τwi (c))h̄iγ̄

1 + τhi (c)

) η
1−η

ε
1

1−η
i .

For individuals that sort on ability, the geometric average of efficiency units of labor

in an occupation is given by

e E log[hi(c,t)εi | choose i] = si(c)
φi(t)γ(t−c)

(
ηsi(c)

φi(c)wi(c)(1− τwi (c))h̄iγ̄

1 + τhi (c)

) η
1−η

e
E log

[
ε

1
1−η
i | choose i

]
.

(A4)

We need to compute e
E log

[
ε

1
1−η
i | choose i

]
. Let ε∗ denote ability in the chosen occupation.

We need to know the distribution of ε∗ raised to some power. Let yi ≡ w̃iεi denote the

key occupational choice term. Then

y∗ ≡ max
i
{yi} = max

i
{w̃iεi} = w̃∗ε∗.

Since yi is the thing we are maximizing, it inherits the extreme value distribution:

Pr [y∗ < z] = Pr [yi < z] ∀i

= Pr [εi < z/w̃i] ∀i

= F

(
z

w̃1
, . . . ,

z

w̃M

)
= exp

[
−
∑
s

w̃θsz
−θ

]
= exp{−mz−θ}.

That is, the extreme value also has a Fréchet distribution, where m ≡
∑

s w̃
θ
s .

Straightforward algebra then reveals that the distribution of ε∗, the ability of people

in their chosen occupation, is also Fréchet:

G(x) ≡ Pr [ε∗ < x] ≡ exp
[
−m∗x−θ

]
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where m∗ ≡
∑M

s=1 (w̃s/w̃
∗)θ = 1/p∗.

Next, we need an expression for the expected value of the chosen occupation’s abil-

ity raised to some power. Let λ be some positive exponent. Then,

E[ε∗λ] =

∫ ∞
0

ε∗λdG(ε∗)

=

∫ ∞
0

θ

(
1

p∗

)
ε∗(−θ−1+λ) e

−
(

1
p∗

)
ε∗−θ

dε∗

Recall that the “Gamma function” is Γ(α) ≡
∫∞

0 xα−1e−xdx. Using the change-of-variable

x ≡ 1
p∗ ε
∗−θ, one can show that

E[ε∗λ] =

(
1

p∗

)λ/θ ∫ ∞
0

x−
λ
θ e−xdx

=

(
1

p∗

)λ/θ
Γ

(
1− λ

θ

)
.

Applying this result to our model, we have

E
[
ε

1
1−η
i | choose i

]
=

(
1

pig

) 1
θ
· 1
1−η

Γ

(
1− 1

θ
· 1

1− η

)
.

Finally note that if x ∼ Frechet(θ), then log x ∼ Gumbel(1/θ), and E[log x] = γem
θ ,

where γem ≈ 0.5772 is the Euler-Mascheroni constant. Applying this to the expression

for E log
[
ε

1
1−η
i | choose i

]
above, we have

e
E log

[
ε

1
1−η
i | choose i

]
=

(
1

pig

) 1
θ
· 1
1−η

Γ̃

where Γ̃ ≡ e
γem
θ(1−η) . Substituting this expression into equation (A4) yields the geometric

mean of ability for individuals who sort on ability:

e E log[hi(c,t)εi | choose i] = Γ̃si(c)
φi(t)γ(t−c)

[(
ηsi(c)

φi(c)wi(c)(1− τwi (c))h̄iγ̄

1 + τhi (c)

)η (
1

pig

) 1
θ

] 1
1−η

.

(A5)

The last thing we need is efficiency units of workers that sort on preferences. Re-

member εi = Γ1−η where Γ ≡ Γ
(

1− 1
θ(1−η)

)
. Therefore quality is the same for all
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individuals and given by:

[hi(c, t)εi | choose i] = Γsi(c)
φi(t)γ(t− c)

(
ηsi(c)

φi(c)wi(c)(1− τwi (c))h̄iγ̄

1 + τhi (c)

) η
1−η

(A6)

Finally, the geometric average of the expressions in equations (A5) and (A6) where the

weights are given by 1−δ (share of workers that sorts on ability) and δ (share of workers

that sort on preferences) gives us the geometric average of quality of all workers in an

occupation in equation (5) where Γ̄ is defined as:

Γ̄ ≡ Γδ Γ̃1−δ (A7)

Proof of Proposition 3. Occupational Wage Gaps

The proof of this proposition is straightforward after substituting the results from propo-

sitions 1 and 2 into the expression for the geometric average of the two groups of

workers (workers that sort on ability and those that sort on preferences). The geometric

average of the wage of all workers is then the geometric mean of the geometric average

wage of the two groups of workers.

Proof of Proposition 4. Relative Propensities

The proof of this proposition is straightforward after substituting the results from propo-

sitions 1 and 3 into the expression for relative propensities pig
pi,wm

.

Proof of Proposition 5. Relative Labor Force Participation

This proposition is an application of propositions 3 and 4 to the home sector, assuming

no distortions for white men in all sectors and no distortions in the home sector for all

groups.

B Determinants of Labor Market and Human Capital Frictions

Following Becker (1957), we assume the owner of the firm in the final goods sector dis-

criminates against workers of certain groups. We model the “taste” for discrimination
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as lower utility of the owner when she employs workers from groups she dislikes. Her

utility is given by

Uowner = Y −
∑
i

∑
g

(
1− τwig

)
wiHig︸ ︷︷ ︸

Profit

−
∑
i

∑
g

digHig︸ ︷︷ ︸
Utility loss via discrimination

. (B1)

where Hig denotes total efficiency units of workers from group g in occupation i. The

first term denotes profits and the second term captures the extent to which owners

are prejudiced: dig is the utility loss associated with employing workers from group

g in occupation i. Because all employers are assumed to have these racist and sexist

preferences, perfect competition implies that τwig = dig/wi. Intuitively, when the owner

hires a worker from a group she dislikes, she needs to be compensated for her utility

loss via a lower wage for these workers. In equilibrium the utility loss is exactly offset

by the lower wage. Thus the frictions are ultimately pinned down by the discriminatory

tastes of (homogeneous) owners.38

A second firm (a “school”) sells educational goods e to workers who use it as an

input in their human capital. We assume the school’s owner dislikes providing e to

certain groups. The utility of the school’s owner is

Uschool =
∑
i

∑
g

(
Rig −

(
1− τhig

))
· eig︸ ︷︷ ︸

Profit

−
∑
i

∑
g

dhigeig︸ ︷︷ ︸
Utility loss via discrimination

(B2)

where eig denotes educational resources provided to workers from group g in market

sector i, Rig denotes the price of eig, and dhig represents the owner’s distaste from pro-

viding educational resources to workers from group g in sector i. We think of this

as a shorthand for complex forces such as discrimination against blacks or women

in admission to universities, or differential allocation of resources to public schools

attended by black vs. white children, or differential parental investments made toward

building up math and science skills in boys relative to girls. Groups that are discrimi-

nated against in the provision of human capital pay a higher price for e, and the higher

38What is important is not that all firms discriminate but that the marginal firm discriminates (Becker,
1957). We abstract from firm heterogeneity and instead assume all firms within an occupation discrimi-
nate.
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price compensates the school owner for her disutility. Perfect competition ensures that

Rig = 1, and that τhig = dhig.

C Equilibrium

A competitive equilibrium in this economy consists of a sequence of individual choices

{C, e, s}, occupational choices in the pre-periods, total efficiency units of labor of each

group in each occupation Hig, final output Y , and an efficiency wage wi in each occu-

pation such that

1. Given an occupational choice, the occupational wagewi, and idiosyncratic ability

ε in that occupation, each individual choosesC, e, s to maximize expected lifetime

utility given by (1) subject to the constraints given by (2) and e(c) =
∑c+2

t=c e(c, t).

2. Each individual chooses the occupation that maximizes expected lifetime utility:

i∗ = arg maxi U(τwig , τ
h
ig, z̃ig, wi, εi, µi), taking as given {τwig , τhig, z̃ig, wi, h̄ig, εi, µi}.

3. A representative firm in the final good sector hires Hig in each occupation to

maximize profits net of utility cost of discrimination given by equation (B1).

4. A representative firm in the education sector maximizes profit net of the utility

cost of discrimination given by equation (B2).

5. Perfect competition in the final goods and education sectors generates τwig = dig/wi

and τhig = dhig.

6. wi(t) clears each occupational labor market.

7. Total output is given by the production function in equation (9).

The equations characterizing the general equilibrium are given in the next result.

Proposition 6 (Solving the General Equilibrium): The general equilibrium of the model

is Hsupply
ig , Hdemand

i , wi, and market output Y at each point in time such that

1. Hsupply
ig (t) aggregates the individual choices:

Hsupply
ig (t) =

∑
c

qg(c)pig(c) E [hig(c)εig(c) |Person chooses i]
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where qg(c) denotes the number of workers of group g and cohort c and the average

quality of workers is given in equation (5).

2. Hi(t)
demand satisfies firm profit maximization:

Hdemand
i (t) =

(
Ai(t)

σ−1
σ

wi(t)

)σ
Y (t)

3. wi(t) clears each occupational labor market:
∑

gH
supply
ig (t) = Hdemand

i (t).

4. Total output is given by the production function in equation (9) and equals aggre-

gate wages plus total revenues from τw.

D Identification and Estimation

This section explains how we identify and estimate the frictions and other parameters,

carried out in the program EstimateTauZ.m.

D.1 Key Equations

To estimate the model, we add one additional feature to the model. In our base case, we

assume the return to experience is the same for all occupations, groups, and cohorts.

In our robustness checks, however, these parameters may be allowed to vary. We thus

index γ (and the sum of the experience terms γ̄) by group g and occupation i in the

equations that follow.

The key equations underlying our estimation are listed below.

• Occupational Choice

pi =
w̃i

θ∑
s w̃s

θ

where w̃ig ≡ wisφii (1− si)
1−η
3β · h̄ig z̃ig

τig

and τig ≡
(1 + τhig)

η

1− τwig
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• Average Quality (geometric mean)

e E log [hig(c,t)εig(c)] = Γ̄si(c)
φ(t)γig(t−c)

[
η

1− τwig(c)
1 + τhig(c)

wi(c)h̄igγigsi(c)
φ(c)

] η
1−η ( 1

pig(c)

) 1−δ
θ(1−η)

• Average Wage (geometric mean)

wageig(c, t) ≡ (1− τwig(t))wi(t)γig(t− c)e E log [hig(c,t)εig(c)]

= Γ̄η̄ [pig(c)
δmg(c)]

1
θ

1
1−η zig(c)

− 1
1−η [1− si(c)]−

1
3β

(1− τwig(t))wi(t)γig(t− c)si(c)φ(t)

(1− τwig(c))wi(c)γigsi(c)φ(c)

wheremg(c) =

M∑
i=1

w̃ig(c)
θ

• Relative Propensity. If δ 6= 1:

pig(c, c)

pi,wm(c, c)
=

(
h̄ig

h̄i,wm

) θ
1−δ
(

τig(c, c)

τi,wm(c, c)

)− θ
1−δ
(

wageig(c, c)

wagei,wm(c, c)

)− θ(1−η)
1−δ (

γig
γi,wm

) θη
1−δ

or when δ = 1, the relative propensity equation simplifies to

wageig(c, c)

wagei,wm(c, c)
=

[
h̄ig/h̄i,wm

τig(c, c)/τi,wm(c, c)
·
(

γig
γi,wm

)η] 1
1−η

D.2 Estimate φi, zi,wm, andwi from data of young white men

The following refers to the program solveWMfor wZ.m. This program uses data on wages,

years of schooling, and occupational shares of young white men to estimate wi, zi,wm

and φi.

The si andφi are determined in a straightforward fashion from years of schooling for

young white men in each cohort. In particular, we assume that the pre-market period

is 25 years long so that

si =
Years of Education

25

Then φi is determined by the individuals first-order condition for schooling. Rearrang-

ing equation (3) gives

φi =
1− η

3β
· si

1− si
.
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Next, we have 67 values of z̃i,wm as well as mwm to recover, for a total of 68 param-

eters. However, we only observe wages in 66 occupations for young white men (there

is no wage data for the home occupation), so we need two further assumptions to pin

down these parameters. One assumption is that z̃home,wm = 1. The other is that average

earnings per person in the home sector for young white men are equal to their average

earnings in some other occupation. We choose “Secretaries” for this other occupation,

but the results are robust to choosing another occupation (such as Sales).

Then, we use the equation for the average wage to back out mwm from the home

occupation, since z̃home = 1. After omitting the indices for cohort and time, the specific

equation is:

mwm =

wagei,wm z̃i,wm (1− si)
1

3β

Γ̄η
·
γi,wm
γi,wm

θ(1−η)

· pig(c)−δ

where i = home. Furthermore, we need to make an initial guess about the return to

experience term γ (We describe later how we do this).

Third, we estimate z̃i,wm for the other occupations from the equation we use above

to back out mwm from data on wages. In this case, we use data on the average wage in

the occupation, and the estimate formwm we obtained from step 2 to back out the z̃i,wm

that fits the wage equation.

Fourth, we estimate wi from the observed occupational shares. After some algebra,

the occupational share equation can be expressed as:

wi =
[pi,wm ·mwm]

1
θ

γi,wm · s
φi
i [(1− si)zi,wm]

1−η
3β

Again, τ = 1 for white men so these two terms do not show up.

Fifth, we estimate γ and γ̄ (remember we assumed a value for the experience terms

for the previous steps) from the change in the average wage of a given cohort and

occupation over time. Specifically, the ratio of the average wage in an occupation at

time t to that at time c is:

wagei,wm(c, t)

wagei,wm(c, c)
=
wi(t)(γig(t− c))sφ(t)

i

wi(c)s
φ(c)
i
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We estimate γi,wm(t − c) from the change in the average wage in an occupation, after

controlling for the change in wi and the returns to schooling. In our base case, we

assume γi,wm(t − c) is the same across all occupations and cohorts so simply take the

average across all occupations and cohorts.

D.3 Estimating τ

The next part of the estimation obtains the composite of the distortions τig ≡ (1+τh)η

1−τw .

Remember we assume τwi,wm = τhi,wm = 0 and h̄ig = h̄i,wm. These two normalizations

imply that we can express relative propensities as:

τig = p̂
− 1−δ

θ
ig · ŵage

−(1−η)

ig · ̂̄γηig
where a “hat” denotes the value of the variable relative to white men. In this equation,

ŵagei and p̂ig are data and γ̂ig and γ̂ig are estimated from the previous step.

D.4 Estimating τw, τh, and z

The next step is to estimate z and the components of τ (i.e. τw and τh) for the other

groups (non-white men). This is done in the program estimatetauz.m. We define α as

the Cobb-Douglas split of τ that recovers 1− τw. Specifically,

τα =
1

1− τw
and τ1−α = (1 + τh)η

This implies the following definitions of τw and τh as a function of τ and α:

τw = 1− τ−α

τh = (τ1−α)
1
η − 1

Our estimation of τw and τh is expressed in terms of α.

First, the home sector is assumed to be undistorted, so τw and τh for that sector are

set to zero. We then use the ”relative propensity” key equation for p̂ig at the start of this

section, together with the wage in the home sector for white men, to recover the wage

at home for the other groups.

Second, we normalize z = 1 for the home sector and back out mg for the group
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based on data on the average wage in the home sector. Specifically, after some manip-

ulation, the average wage equation for the sector can be expressed as:

mg(c) =

wagehome,g(c, c)(1− shome(c)) 1
3β

Γ̄ η
·
γhome,g
γhome,g

θ(1−η)

· phome,g(c)−δ

For the other sectors, we use the same wage equation to back out z. Specifically, the

wage equation can be expressed as:

zig =
1

1− si
·

[
Γ̄ η̄ (pδigmg)

1
θ(1−η)

γig
γig

1

wageig

]3β

We now have z for all cohorts and τw and τh for the young cohort in 1960. What is

left is to pin down τw and τh for the years after 1960. From the “Average Wage” equation

in our list of key equations, we can express wage growth in a given group-occupation

as

wageig(c, t+ 1)

wageig(c, t)
=

1− τwig(t+ 1)

1− τwig(t)
· wi(t+ 1)

wi(t)
· γig(t+ 1− c)

γig(t− c)
· si(c)

φi(t+1)

si(c)φi(t)
(D1)

We use solve this equation for τwig(c, t + 1) and this becomes our estimate since every-

thing else in the equation is now observed. Then, τhig(t + 1) is obtained from τig(t + 1).

In other words, τw is the time effect in wage growth, while τh is the cohort effect.

There are two small modifications we make to this in practice. First, we set the

minimum value of τh to –0.80, though we relax this constraint in the robustness checks

(without this constraint, the revenue required to subsidize women secretaries with τh

gets implausibly large).

Second, in our model, occupations are chosen when young, so all groups have the

same labor-force participation when middle-aged and old. In the data, this is clearly

not the case. Therefore, we strip out from wage growth for a given group-occupation

using our model’s estimate of the selection effect from differential participation. Based

on the “Relative Propensity” equation in our “Key Equation” list, this effect has an

elasticity of θ(1 − η)/(1 − δ). Absent data on labor-force participation by group, we

use a common adjustment across all occupations to obtain the wage growth estimate
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used in equation (D1):

(
wagegrowthig

wagegrowthi,wm

)for estimation

=

(
wagegrowthig

wagegrowthi,wm

)data(
LFPgrowthig

LFPgrowthi,wm

) 1−δ
θ(1−η)

.

(D2)

We also report results without making this adjustment in our robustness checks.

D.5 Geometric and Arithmetic Averages

To get a closed-form solution, our model relies on geometric averaging, both with the

taste and ability types and in particular across the two types. In the micro data, how-

ever, we cannot distinguish the two types and take a simple arithmetic average. This

section describes how we go from the arithmetic average in the data to the geometric

average (of the wage or the quality of workers) in the model. In particular, the formulas

below apply specifically to the average wage, but a similar argument applies to average

quality.

To see how these are related, let x ∼ Frechet(α) with µx ≡ Ex = S Γ(1− 1/α) where

Γ( ) is the gamma function. It is straightforward to show that log x ∼ Gumbel(1/α) with

mean E[log x] = logS + γem/θ, where γem ≈ 0.5772 is the Euler-Macheroni constant.

Finally, if gx ≡ e E log x denotes the geometric mean of x, then the arithmetic mean and

the geometric mean are related by a constant factor of proportionality:

µx = gx ·
Γ(1− 1/α)

eγem/α
. (D3)

Now let G denote a geometric average (e.g. of the wage) and let A denote an arith-

metic average. In the model, we have

G = G1−δ
a Gδt

where Ga is the geometric mean within the ability types and Gt is the geometric mean

within the taste types. As part of the proof of Proposition 3, we showed that

Ga = Γ̃S

Gt = ΓSp
1

θ(1−η)

ig
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where S denotes most of the “stuff” in the model. This means that

G = G1−δ
a Gδt = Γ̄Sp

δ
θ(1−η)

ig . (D4)

Because heterogeneity in the ability types is Frechet, by equation (D3) above, the

arithmetic means are given by

Aa = Ga
Γ

Γ̃

and, because there is no heterogeneity among the taste types

At = Gt.

Then the arithmetic mean in the data is relaed to the geometric means by

A = (1− δ)Aa + δAt

= (1− δ)Ga
Γ

Γ̃
+ δQt

= (1− δ)ΓS + δΓSp
1

θ(1−η)

ig

= ΓS

(
1− δ + δp

1
θ(1−η)

ig

)
Combining this last result with (D4) gives the key relationship between the arithmetic

mean of the wage or quality and the geometric mean:

G = A · Γ̄

Γ
·

p
δ

θ(1−η)

ig

1− δ + δp
1

θ(1−η)

ig

(D5)

Given the arithmetic mean from the data, this is how we construct the geometric mean

for the wage or quality that is used in the estimation of the model.

E Numerically Solving for an Equilibrium

The numerical solution of the equilibrium of the model begins by guessing values for

Y (t) and mg(c), where c = 7 − t is the cohort born at date t. Given these values, we

compute the equilibrium solution for year t. The main part of this solution is solving
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for the wages per unit of qualitywi(t) in each occupation. These are chosen to clear the

labor market in each occupation, as in Proposition 6.

The only subtlety in this process is that Proposition 2 characterizes the geometric

average of quality in each occupation, while the equilibrium depends on the arithmetic

average instead.39

Perhaps not surprisingly, it is straightforward to show that the arithmetic mean of

quality in each occupation, corresponding to Proposition 2, is

Γ

(
1− 1

θ(1− η)

)
S

[
(1− δ)

(
1

pig

) 1
θ(1−η)

+ δ

]

where S ≡ si(c)
φi(t)γ(t− c)

(
ηsi(c)

φi(c)wi(c)(1−τwi (c))h̄iγ̄

1+τhi (c)

) η
1−η

. This is the expression we use

in determining the supply of talent in each occupation when solving for the equilib-

rium.

F Additional Data Details

Table F1 provides sample sizes used in our analysis for each census year. The table also

shows the share of the sample in each census year that pertains to white and black men

and women by age. Table F2 lists the 67 occupational groupings we use for our main

analysis (including the home sector).

G Additional Robustness and Results

Table G3 explores an additional set of robustness exercises for our δ = 0 results (where

all sorting is based on occupational productivities). For comparison, the first row re-

peats our benchmark results in the main paper for the share of market GDP per person

growth explained by the changing τ ’s. The next two rows show that the productivity

39To see how these are related, let x ∼ Frechet(θ) with µx ≡ Ex = S Γ(1−1/θ) where Γ( ) is the gamma
function. It is straightforward to show that log x ∼ Gumbel(1/θ) with mean E[log x] = logS + γem/θ,
where γem ≈ 0.5772 is the Euler-Macheroni constant. Finally, if gx ≡ e E log x denotes the geometric mean
of x, then the arithmetic mean and the geometric mean are related by a constant factor of proportionality:

µx = gx ·
Γ(1 − 1/θ)

eγem/θ
.
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Table F1: Sample Statistics by Census Year

1960 1970 1980 1990 2000 2010

Sample Size 624,579 674,059 3,943,034 4,607,829 5,084,891 2,889,513

Share of Sample:

White Men, Age 25-34 0.141 0.148 0.185 0.172 0.130 0.133

White Men, Age 35-44 0.155 0.140 0.131 0.156 0.162 0.136

White Men, Age 45-55 0.136 0.145 0.118 0.108 0.139 0.157

White Women, Age 25-34 0.158 0.160 0.194 0.175 0.130 0.134

White Women, Age 35-44 0.171 0.151 0.138 0.159 0.163 0.137

White Women, Age 45-55 0.145 0.157 0.127 0.113 0.143 0.162

Black Men, Age 25-34 0.015 0.016 0.021 0.023 0.021 0.021

Black Men, Age 35-44 0.015 0.015 0.014 0.019 0.024 0.022

Black Men, Age 45-55 0.013 0.014 0.012 0.012 0.017 0.023

Black Women, Age 25-34 0.019 0.020 0.026 0.027 0.024 0.024

Black Women, Age 35-44 0.018 0.019 0.018 0.022 0.027 0.025

Black Women, Age 45-55 0.015 0.016 0.015 0.015 0.020 0.026

Note: Data comes from the 1960-2000 U.S. Censuses and the pooled 2010-2012 American Community
Survey (designated as 2010). Samples restricted to black and white, men and women between the ages
of 25 and 54 (inclusive). Those in the military are excluded. Also, excluded are those not working but
actively searching for a job. Sample shares are weighted using Census and ACS provided sample weights.
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Table F2: Occupation Categories for our Base Occupational Specifications

0. Home Sector (0) 34. Police (12)

1. Executives, Administrative, and Managerial (1) 35. Guards (12)

2. Management Related (2) 36. Food Preparation and Service (13)

3. Architects (3) 37. Health Service (6)

4. Engineers (3) 38. Cleaning and Building Service (13)

5. Math and Computer Science (3) 39. Personal Service (13)

6. Natural Science (4) 40. Farm Managers (14)

7. Health Diagnosing (5) 41. Farm Non-Managers (14)

8. Health Assessment (6) 42. Related Agriculture (14)

9. Therapists (6) 43. Forest, Logging, Fishers, & Hunters (14)

10. Teachers, Postsecondary (7) 44. Vehicle Mechanic (15)

11. Teachers, Non-Postsecondary (8) 45. Electronic Repairer (15)

12. Librarians and Curators (8) 46. Misc. Repairer (15)

13. Social Scientists and Urban Planners (4) 47. Construction Trade (15)

14. Social, Recreation, and Religious Workers (4) 48. Executive (14)

15. Lawyers and Judges (5) 49. Precision Production, Supervisor (16)

16. Arts and Athletes (4) 50. Precision Metal (16)

17. Health Technicians (9) 51. Precision Wood (16)

18. Engineering Technicians (9) 52. Precision Textile (16)

19. Science Technicians (9) 53. Precision Other (16)

20. Technicians, Other (9) 54. Precision Food (16)

21. Sales, All (10) 55. Plant and System Operator (17)

22. Secretaries (11) 56. Metal and Plastic Machine Operator (17)

23. Information Clerks (11) 57. Metal & Plastic Processing Operator (17)

24. Records Processing, Non-Financial (11) 58. Woodworking Machine Operator (17)

25. Records Processing, Financial (11) 59. Textile Machine Operator (17)

26. Office Machine Operator (11) 60. Printing Machine Operator (17)

27. Computer & Communication Equip. Operator (11) 61. Machine Operator, Other (19)

28. Mail Distribution (11) 62. Fabricators (18)

29. Scheduling and Distributing Clerks (11) 63. Production Inspectors (18)

30. Adjusters and Investigators (11) 64. Motor Vehicle Operator (19)

31. Misc. Administrative Support (11) 65. Non Motor Vehicle Operator (19)

32. Private Household Occupations (13) 66. Freight, Stock, & Material Handlers (18)

33. Firefighting (12)

Notes: Our 66 market occupations are based on the 1990 Census Occupational Classification Sys-
tem. We use the 66 sub-headings (shown in the table) to form our occupational classification. See
http://www.bls.gov/nls/quex/r1/y97r1cbka1.pdf for the sub-heading as well as detailed occupations
that correspond to each sub-heading. We also include the home sector as an additional occupation.
When computing racial barriers at the state level for an appendix exercise, we use only twenty broader
occupations. The number in parentheses refers to how we group these 67 occupations into the twenty
broader occupations for the cross-state analysis. For example, all occupations with a 11 in parentheses
refers to the fact that these occupations were combined to make the 11th occupation in our broader
occupation classification.
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Table G3: Additional Robustness

Market GDP per person growth accounted for by

τh and τw τh only τw only

Benchmark 41.5% 36.0% 7.7%

Wage gaps halved 37.5% 31.1% 9.6%

Zero wage gaps 33.5% 25.5% 11.9%

Half the return to experience 42.1% 37.6% 6.4%

2/3, 1/3 split of τi,g in 1960 39.2% 34.5% 5.3%

1/3, 2/3 split of τi,g in 1960 41.7% 33.3% 12.8%

No constraint on τh 46.1% 42.5% 4.3%

Note: See notes to Table 5 in the main text. The baseline splits τ in 1960 evenly into τh and τw in
1960, but not in future years. The baseline also constrains τh to be at most –0.8. The robustness
of 2/3, 1/3 split of τi,g means that 2/3 of the initial τi,g is assigned to τwi,g in 1960. Conversely, the
robustness of 1/3, 2/3 split of τi,g means that 1/3 of the initial τi,g is assigned to τwi,g in 1960.

gains we estimate are not proportional to the gender and race wage gaps we fed into

the model. We can halve the wage gaps in all years, or even eliminate them in all years,

and the implied τ ’s still explain 37.5% or 33.5% of growth in market GDP per person,

vs. 41.5% in the baseline. One reason is that misallocation of talent by race and gender

can occur even if average wages across groups are similar. The misallocation of talent

is tied to the dispersion in the τ ’s, whereas the wage gaps are related to both the mean

and variance of the τ ’s. Another reason is that the wage gap for white women would

have widened in the absence of the changing τ ’s due to changes in the A’s and φ’s. A

key take away from this exercise is that productivity gains from changing labor market

discrimination and barriers to human capital accumulation cannot be gleaned from

the changing wage gaps alone.

Another assumption we make in our base specification is that the returns to expe-

rience are constant across groups and occupations over time. We want to stress that

allowing for general returns to experience is not adding much to our inference. The

fourth row in Table G3 illustrates this point. Specifically, in this robustness exercise, we

cut productivity growth over the life cycle (old/middle and middle/young) in half for
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each group. Such a change barely alters our baseline results.

The final three rows of Table G3 considers additional robustness checks. In our

benchmark we split the composite τig in 1960 evenly into τw and τh. Our procedure

estimates changes in τ ’s over time but we need to make an assumption on the initial

split between τh and τw given that we have nothing to discipline this initial split in

the data. If we put more weight (2/3) on τw we account for 39.2% of growth in market

GDP per person, versus 41.5% in the baseline. If we put less weight (1/3) on τw we

account for 41.7% of growth. Finally, our benchmark case constrains the values of τh to

be no smaller than –0.8. If we put no constraint on how negative τh can get, we explain

46.1% of growth vs. 41.5% in the baseline. Absent this constraint, the estimation implies

human capital subsidies that exceed GDP because of large subsidies for white women

(e.g. as secretaries).

The baseline model also implies that the “revenue” from τw and τh is changing over

time. Figure G1 shows how such revenue in our baseline model evolves from 1960

to 2010. The figure displays that the revenue from both τw and τh combined shrinks

from around 4% of GDP in 1960 to -4% of GDP in 2010. This decline results in the

market earnings growth of workers being slightly larger than market GDP growth over

the sample.

H Further Model Implications

While our model is stylized in many respects, it is able to match at least two other

important facts that were not targeted in the estimation: trends in female labor supply

elasticities and cross-state variation in survey measures of racial discrimination. In this

section of the Appendix, we discuss these results.

H.1 Trends in Female Labor Supply Elasticities

Using data from the Current Population Survey, Blau and Kahn (2007) estimate that

there was a dramatic decline in female labor supply elasticity during the 1980–2000

period. Helpful for comparing with the predictions of our model, they report female la-

bor supply elasticities specifically for 25-34 year olds. We compare the model’s implied

labor supply elasticities — equal to θ(1 − LPFg) — for young white women to the es-
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Figure G1: Revenue from τ as share of GDP in the Model
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Note: The graph shows the employer revenue from discrimination in the labor and human
capital markets as a percent of GDP.

timated labor supply elasticities reported in Blau and Kahn (2007). Using our baseline

θ, the model matches both the level and the trend female labor supply elasticities well.

Blau and Kahn (2007) report labor supply elasticities for women aged 25-34 of 0.75,

0.60 and 0.35, respectively in 1980, 1990, and 2000 — a change of 0.40 over the time

period. Our comparable model estimates for young women are 0.90, 0.70, and 0.65 for

the three years - a change of 0.25 over the time period. Our estimates are only slightly

higher in levels than the Blau and Khan estimates over the three years with a roughly

similar trend.

Nothing in our model is calibrated to match either the level or the trend in labor

supply elasticities for women. As discussed earlier, we estimated θ to match the labor

supply elasticity of men in 1980. With that parameter pinned down, our model implies

that women’s labor supply elasticity is only a function of female labor force partici-

pation. The fact that we can roughly match the level of the labor supply elasticity

for young women in three different time periods suggests that our model is broadly

consistent with empirical moments outside the ones we used to calibrate the model.
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H.2 Cross State Measures of Discrimination

There are very few micro-based measures of discrimination to which we can compare

our estimated τ ’s. One such exception is the recent work by Charles and Guryan (2008).

Charles and Guryan (CG) used data from the General Social Survey (GSS) to construct

a measure of the taste for discrimination against blacks for every state. The GSS asks a

large nationally representative sample of individuals about their views on a variety of

issues. A series of questions have been asked over the years assessing the respondents

attitudes towards race. For example, questions were asked about individuals’ views on

cross-race marriage, school segregation, and the ability for homeowners to discrimi-

nate with respect to home sales. Pooling together survey questions from the mid 1970s

through the early 1990s and focusing only a sample of white respondents, Charles and

Guryan make indices of the extent of racial discrimination in each state.40 Higher

values of the CG discrimination measure imply more discrimination. They compute

their measure for 44 states.

Figure H2 shows a simple scatter plot between the CG measure of discrimination

and our measure τbm at the state level.41 Each observation in the scatter plot is a U.S.

state where the size of the circle represents the number of black men within our Census

sample. We also show the weighted OLS regression line on the figure. As seen from

the figure, there is a very strong relationship between our measures of τbm and the CG

discrimination index. The adjusted R-squared of the simple scatter plot is 0.6 and the

slope of the regression line is 0.45 with a standard error of 0.06. Places we identify as

having a high τbm are the same places Charles and Guryan find as being highly discrimi-

natory based on survey data from the GSS. The findings in Figure H2 provide additional

40We focus on their marginal discrimination measure. The concept of the marginal discriminator comes
from Beckers theory of discrimination. If there are 10 percent of blacks in the state labor market, it is only
the discrimination preferences of the white person at the 10th percentile of the white distribution that
matters for outcomes (with the first percentile being the least discriminatory).

41From our earlier estimates, we compute a composite τ measure for black men relative to white men
in each U.S. state. To ensure we have enough observations in each state, we make a few simplifying
assumptions. First, we assume that there are no cohort effects in our composite measure of τ . This allows
us to pool together all cohorts within a year when computing our measure of τ . Next, we collapse our
67 occupations to 20 occupations; see Appendix Table E2. Also, we pool together data from 1980 and
1990; we do this because the CG discrimination measure is based on data pooled from the GSS between
1977 and 1993. We then aggregate τi,bm from our 20 different occupations to one measure of τbm for each
state by taking a weighted average of the occupation level τs where the weights are based on share of the
occupations income out of total income across all occupations (both for the country as a whole). Finally,
we exclude states with an insufficient number of black households to compute our measure of τbm. Given
the CG restrictions from the GSS and our restrictions from the Census data, we are left with 37 states.
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Figure H2: Model τ ’s for Black Men vs. Survey Measures of Discrimination, by U.S. State
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Note: Figure plots measures of our model’s implied composite τ ’s for black men for each state
using pooled data from the 1980 and 1990 census (x-axis) against survey-based measures of
discrimination against blacks for each state as reported in Charles and Guryan (2008). The
Charles and Guryan data are complied using data from the General Social Survey between
1977 and 1993. We use their marginal discrimination measure for this figure.

external validity that our procedure is measuring salient features of the U.S. economy

over the last five decades.


