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Abstract

This report describes how to optimize linear static control problems

involving �rst and second moments and yield objectives for Gaussian dis-

tributions. These problems can be cast as second-order cone programs,

which is a class of convex optimization problems that can be solved very

e�ciently.

1 Introduction

Yield is of importance in many manufacturing processes. The pro�t can be

directly proportional to the yield, or the yield can be related to quality levels

in a nonlinear way, i.e. only as long as a certain percentage of the production

meets the desired quality, the customer is paying full price for the product. In

the former case it is desirable to maximize the yield, in the latter case it is most

likely desirable to minimize the production cost subject to constraints on the

yield. Both these problems will be addressed in this paper.

In Section 2 the model to be controlled will be de�ned. For simplicity only a

static model will be considered, but the results presented can easily be extended

to the dynamic case using ideas like in [BB91]. Control of static systems in the

H1 framework has been described in [SP96], and static performance robustness

of thermal processes has been described in [KKB94]. In Section 3 the control

problems will be de�ned. Then in Section 4 the solution procedure will be

outlined. It will be seen that the problems can be cast as Second-order Cone

Programs (SOCP):s, which is a class of convex optimization problems that can

be solved very e�ciently, see [LVB97]. In sections 5 and 6 some extensions and

examples will be investigated. Finally, in Section 7, a few concluding remarks

are given.
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Figure 1: Model of the closed loop control system

2 Model

In this section the model for the control problems will be given. It is static,

multi-variable, and depicted in Figure 1. The equations relating the di�erent

variables are �
z
y

�
= P

�
u
w

�

u = Ky

where w 2 R
l is the exogenous input, z 2 R

q is the output to be controlled,

y 2 Rp is the sensed output, u 2 Rm is the actuator input, and where K and

P ,

�
Pzu Pzw
Pyu Pyw

�

are matrices of compatible dimensions. The matrix P is given and describes the

plant, whereas the matrix K, called the feedback gain, describes the controller;

it is to be determined to optimize some objective.

For K such that I � PyuK is invertible the control problem is said to be

well-posed, and simple algebra shows that z = Hw, where

H , Pzw + PzuK(I � PyuK)�1Pyw
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Most objectives are convex in H , but unfortunately not in K, which is the

optimization-variable. However, this problem can be circumvented by the fol-

lowing linear-fractional transformation:

Q ,K(I � PyuK)�1

which yields

H(Q) = Pzw + PzuQPyw

where H is now a�ne in Q. This transformation can also be extended to the

dynamic case, see e.g. [BB91]. In case I+QPyu is invertibleK can be computed

as

K = (I +QPyu)
�1Q

The case when I +QPyu is not invertible is discussed in Appendix A.

For the purpose of this report it will be assumed that w is a Gaussian random

vector with mean �w and covariances �. The covariance may be degenerate, i.e.

� need not be positive de�nite, only positive semide�nite. Notice that z is also
Gaussian with mean and covariance

m(Q) , E fz(Q)g = H(Q) �w

�2(Q) , E
n
[z(Q)�m(Q)] [z(Q)�m(Q)]

T
o
= H(Q)�HT (Q)

respectively.

3 Control Problems

In this section control problems involving yield and �rst and second moments

will be de�ned. First it will be noticed that the second moment of z is given by

M(Q) , E
�
z(Q)zT (Q)

	
= H(Q)

�
�+ �w �wT

�
HT (Q)

Furthermore for any entry zi(Q) , eTi z(Q) of z(Q) it holds that the correspond-
ing means, variances, and second moments are given by

mi(Q) = eTi m(Q)

�2i (Q) = eTi �(Q)ei

Mi(Q) = eTi M(Q)ei

Notice that they are linear and quadratic in Q, respectively. Finally the yield

of the signal zi with respect to the level �zi 2 R is de�ned as

Yi(Q) , Probfzi(Q) � �zig
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It can be expressed in the standard Gaussian distribution function �(�) as

Yi(Q) = �

�
�zi �mi(Q)

�i(Q)

�

Furthermore it holds that Yi(Q) � �i if and only if

�zi �mi(Q)

�i(Q)
� ��1(�i)

This follows from the fact that �(�) is an increasing function. Notice that

��1(�i) > 0 if and only if �i > 1=2.
It is now clear that the sets

f(Q; �i) : mi(Q) � �ig ;
�
(Q; 
2i ) : �i(Q) � 
2i

	
�
(Q; �2i ) :Mi(Q) � �2i

	
; fQ : Yi(Q) � �i > 1=2g

are convex. Hence natural optimization problems to formulate are:

minimize m1(Q); minimize �21(Q)

minimize M1(Q); maximize Y1(Q)

respectively, subject to

mi(Q) � �i; i 2 Im

�2i (Q) � 
2i ; i 2 I�

Mi(Q) � �2i ; i 2 IM

Yi(Q) � �i > 1=2; i 2 IY

where Im, I� , IM , and IY are subsets of f1; 2; : : : ; qg. Notice that more general
problems can be obtained by considering linear combinations of mi:s and posi-

tive linear combinations of �i:s andMi:s, respectively. For notational simplicity

the details are not given.

4 Solution

In this section the control problems of the previous section will be recast as

SOCP problems. It is fairly straight forward to see that the constraints common

to all optimization problems can be expressed as

0 � �i �Hi(Q) �w; i 2 Im���
���p�HT

1 (Q)
���
���
2

� 
i; i 2 I�
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���
���p� + �w �wTHT

i (Q)
���
���
2

� �i; i 2 IM

��1(�i)
���
���p�HT

i (Q)
���
���
2

� �zi �Hi(Q) �w; i 2 IY

The additional expressions for the di�erent optimization problems are

Problem 1:

minimize t s:t: 0 � t�H1(Q) �w

Problem 2:

minimize t s:t:
���
���p�HT

1 (Q)
���
���
2

� t

Problem 3:

minimize t s:t:
���
���p�+ �w �wTHT

1 (Q)
���
���
2

� t

Problem 4:

maximize t s:t: t
���
���p�HT

1 (Q)
���
���
2

� �z1 �H1(Q) �w

By the results in Appendix B problems 1{3 are all SOCP problems in Q and t,
since ��1(�i) > 0 for �i > 1=2. Furthermore Problem 4 is an SOCP feasibility

problem in Q for any �xed value of t > 0. Hence it can be solved by bisectioning

over t > 0. Notice that there exists a Q satisfying the inequality for t > 0 if and

only if there exist a Q such that Y1(Q) > 1=2.

P
w

u

z

y

K+
u 0

Figure 2: Model of the closed loop control system with an a�ne controller.
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5 A�ne Controllers

In this section it will be shown how the model of Section 2 can be used to

accommodate not only linear feedback but also a�ne feedback, see Figure 2.

The equations for this are: �
z
y

�
= P

�
u
w

�

u = Ky + u0

De�ne �K and �y via

u = [K u0 ]

�
y
1

�
, �K�y

and �Pzw, �Pyu, �Pyw, and �w via

�
z
�y

�
=

2
4Pzu Pzw 0

Pyu Pyw 0

0 0 1

3
5
2
4 u
w
1

3
5 ,

�
Pzu �Pzw
�Pyu �Pyw

� �
u
�w

�

from which it follows that the a�ne controller can be cast in the linear frame-

work by augmenting y and w appropriately. Notice how this formulation also

covers the case u = u0 as a special case. The di�erent strategies will in the

sequel be called

� u = u0: feed-forward

� u = Ky: feedback

� u = Ky + u0: feedback/feed-forward

Trade-O� between Yield and Production Cost

This example is designed to demonstrate the trade-o� between yield and pro-

duction cost when the latter is proportional to the energy of the control variable.

The plant is depicted in Figure 3, and it can be described with the following set

of equations:

x = Gu+ v

y = x+ e

where G 2 Rp�m and where v and e are independent random vectors of appro-

priate dimensions with means �v and �e and covariances �v and �e, respectively.

The objective to minimize is given by

M =

mX
i=1

Mi; Mi = E
�
u2i
	
; i = 1; 2; : : : ;m
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Figure 3: Model of the closed loop control system for trade-o� between yield and

production cost.

and the constraints are given by Ym+i = Prob fxi � �zig � � > 1=2; i =

1; 2; : : : ; p. This can be cast in the framework of sections 2 and 3 by de�n-

ing

Pzu =

�
I
G

�
; Pzw =

�
0 0

I 0

�

Pyu = G; Pyw = [ I I ]

and �wT = [ �vT �eT ], and � = diag(�v ;�e). The matrix G has been taken to

have uniformly distributed random entries on [0; 1]. In the same way the mean

�v has uniformly distributed random entries on [0; 1], and the covariances �v and

�e are given by �v = DTD and �e = ETE, where D and E are p� p matrices
with uniformly distributed random entries on [0; 1]. The mean of e is given by

�e = 0, and �zi = �vi + �
p
eTi �vei. The number of variables in this example is

m for the feed-forward case, mp for the feedback case, and m(p + 1) for the

feedback/feed-forward case. The number of constraints are p+ 1. The optimal

values of M for m = 10, p = 20, � = 1:0, and values of �1 = 0:51; 0:52; : : : ; 0:98
are shown in Figure 4. It is seen that the pure feed-forward design is the

most costly design and that the combined feedback/feed-forward design is the

cheapest one. Notice that the trade-o� curves not necessarily are concave, which,

however, is the case in this example. The computational time was about 8 hours

on a reasonably fast computer.

6 Worst Case Exogenous Inputs

In this section it will be shown how to consider worst case exogenous inputs.

To this end let wk de�ne a set of Gaussian random vectors with means �wk
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Figure 4: Maximal yield versus cost for feed-forward|solid line, feedback|dashed

line, and feedback/feed-forward| dotted line

and covariances �k; k 2 IP , where IP is a �nite index set. Problem 1 is then

generalized to

minimizeQ maximizek m1(Q; k)

subject to

mi(Q; k) � �i; i 2 Im; k 2 IP

�2i (Q; k) � 
2i ; i 2 I� ; k 2 IP

Mi(Q; k) � �2i ; i 2 IM ; k 2 IP

Yi(Q; k) � �i > 1=2; i 2 IY ; k 2 IP

which can be rewritten as

minimize t s:t: 0 � t�H1(Q) �wk; k 2 IP

and

0 � �i �Hi(Q) �wk ; i 2 Im; k 2 IP
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���
���p�kH

T
1 (Q)

���
���
2

� 
i; i 2 I� ; k 2 IP����
����
q
�k + �wk �wT

kH
T
i (Q)

����
����
2

� �i; i 2 IM ; k 2 IP

��1(�i)
���
���p�kH

T
i (Q)

���
���
2

� �zi �Hi(Q) �wk ; i 2 IY ; k 2 IP

The other problems can be generalized in a similar fashion.
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Figure 5: Model of the closed loop control system for the heating example.

Heating of a Room

Consider the model describing heating of a room depicted in Figure 5, which

can be described with the equations:

Tr = Gu+HTok + v

yr = Tr + er

yo = To + eo
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where Tr 2 R is the room temperature, Tok 2 R; k 2 IP de�nes a set of out-

door temperatures fTok : k 2 IP g, v 2 R is a random variable with zero mean

and variance �2v , yr 2 R is the measurement of the room temperature, er 2 R is

a random variable with zero mean and variance �2er , yo 2 R is the measurement

of the out-door temperature, and where eo 2 R is a random variable with zero

mean and variance �2eo . It is assumed that the random variables are independent

of one another. The control signal u 2 R is given by the feedback/feed-forward

structure

u = Kryr +Koyo + u0

The objective is to choose Kr, Ko and u0 as to minimize the maximal control
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Figure 6: Objectives and expected value of in-door temperature as functions of the

out-door temperature.

energy with respect to the set of out-door temperatures. The control energy is

proportional to m1(k) = E fu(k)g as long as heating and not cooling is being

performed. It would be desirable to perform the optimization subject to the

constraint Y (k) = Prob
�
Tr � Tr(k) � �Tr

	
� � > 0. This is however not

possible, but a su�cient condition is that Y2(k) = Prob fTr � Tr(k)g � 1

2
(�+1)
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and Y3(k) = Prob
�
Tr(k) � �Tr

	
� 1

2
(�+1), which are the constraints that will

be used. This problem can be cast in the framework of the previous sections by

de�ning

Pzu =

2
4 1

�G
G

3
5 ; Pzw =

2
4 0 0 0 0

�H �1 0 0

H 1 0 0

3
5

Pyu =

�
G
0

�
; Pyw =

�
H 1 1 0

1 0 0 1

�

K = [Kr Ko ] ; wT
k = [Tok v er eo ]

and �z = [�Tr
�Tr ], and where the mean and covariance of wk are given by

�wT
k = [Tok 0 0 0 ] and �k = diag(0; �2v ; �

2
er
; �2eo ), respectively. The solution

for G = 1oC=W,H = 1, Tr = 19oC, �Tr = 22oC, � = 0:80, �v = 3oC, �er = 1oC,

�eo = 2oC, and the set of out-door temperatures f�10; 0; 10; 20goC is given by

u = �12:1yr � 0:76yo + 266

The closed loop behavior as a function of the out-door temperature is shown in

Figure 6.

7 Conclusions

In this paper is at been described how linear static control problems involving

�rst and second moments and yield objectives can be solved with e�cient solvers

for SOCP problems. Both feed-forward, feedback and feedback/feed-forward

control has been addressed. It has been seen that about 200 variables are

possible to optimize with respect to about 20 constraints. The computational

time is a few minutes on a standard computer. Also it has been demonstrated

how the optimization can be made robust with respect to di�erent distributions

of the exogenous inputs.
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Appendix A

The control variable u can be computed in two di�erent ways. In case

(I +QPyu)K = Q

can be solved for K it is given by u = Ky. Notice that for any � > 0 there

is a �Q such that jjH( �Q) � H(Q)jj � � and such that
�
I + �QPyu

�
�K = �Q has

a solution. This means that it is possible to get arbitrarily close to any H(Q)
using the feedback structure u = Ky. However, the matrix K may be large in

a certain subspace. There is a way to avoid this. Compute ~y as

~y , Pyww = y0 � Pyuu0

for some arbitrary u0, where y0 is the corresponding measured output. Then

compute u as

u = Q~y = Q(y0 � Pyuu0)

How this relates to digital control is now going to be discussed. Assume that the

optimal control signal designed for the static system is used in a digital control

application using zero order hold, and that the sample interval is much larger

than the computational time so that the control signal can be written to the

D/A converters almost immediately after the measurement signal has been read

from the A/D converters. Then the following set of equations are appropriate

for describing the closed loop behavior:

z(k) = Pzuu(k) + Pzww(k)

y(k) = Pyuu(k � 1) + Pyww(k)

u(k) = Q(y(k)� Pyuu(k � 1))

where k is time index, not to be confused with the k used to index the di�erent

probability measures in the previous section. Notice that the control signal can

be written as

u(k) +QPyuu(k � 1) = Qy(k)
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It is seen that the case when I +QPyu is not invertible corresponds to integral

control, and hence it is not surprising that it cannot be implemented using

just a static feedback controller u = Ky. By writing ŷ(k) = Pzuu(k � 1) it

holds that u(k) = Q~y(k), where ~y(k) = y(k) � ŷ(k) can be interpreted as the

estimation error when estimating y(k) with ŷ(k). Notice that the observer is of
dead-beat type, i.e. the estimation error is minimized as fast as possible. This

follows from the fact that ~y(k) = Pyww(k). It is now clear that this problem

setup is a special case of the general dynamic case described in [BB91]. Also

notice that all the results in the main body of the paper can be extended to

the dynamic case including plants and controllers with poles on the stability

boundary. Finally it is concluded that the closed loop system is stable. This

follows from the fact that z(k) = H(Q)w(k), u(k) = QPyww(k) and that y(k) =
PyuQPzww(k � 1) + Pzww(k).

Appendix B

In this appendix the SOCP:s will be recast in their standard form

min
x

fTx

subject to

jjAix+ bijj2 � cTi x+ di; i 2 IL

To this end write

Q =
8:Q1 Q2 � � � Qp

9;
where Qi 2 Rm�1 and de�ne

q =

8>>>>>>>>>>:

Q1

Q2

...

Qp

9>>>>>>>>>>;
Notice that

QTP T
zuei =

8>>>>>>>>>>:

QT
1 P

T
zuei

QT
2 P

T
zuei
...

QT
p P

T
zuei

9>>>>>>>>>>;
=

8>>>>>>>>>>:

eTi PzuQ1

eTi PzuQ2

...

eTi PzuQp

9>>>>>>>>>>;
= Siq

where Si = diag(eTi Pzu) with p blocks. So with �Ai(D) = DP T
ywSj and

�bj(D) =

DP T
zwei it holds that

DHT
i (Q) = DP T

zwei +DP T
ywQ

TP T
zuei =

�Ai(D)q +�bi(D)

Now write

Pyw �w =

8>>>>>>>>>>:

t1
t2
...

tp

9>>>>>>>>>>;
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Then it holds that

QPyw �w = Tq

where

T =
8: t1Im t2Im � � � tpIm

9;
So with �cTi = eTi PzuT and �di = eTi Pzw �w it holds that

Hi(Q) �w = eTi Pzw �w + eTi PzuQPyw �w = �cTi q +
�di

For Problem 4 de�ne x = q and for the other problems de�ne xT =
8: t qT

9;.

The rest of the boring book-keeping is left as an exercise to the reader. Notice

that the extension to linear combinations discussed at the end of Section 3 is

obtained by stacking more rows to Ai and bi. Furthermore the extension to worst
case distributions discussed in Section 6 is obtained by having one constraint

for each distribution.
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