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Abstract

For a class of linear systems with unknown parameters that
lie in intervals, we present a branch and bound algorithm for
computing the worst-case covariance of the state.

1 Introduction

We consider the family of linear time-invariant systems de-
scribed by

Az + Byu+ B,w,
Cyz,
C;z,
Ay,

where z(t) € R”, w(t) € R™, 2(t) € R™, u(t),y(t) € R?,
and A, By, By, Cy and C; are real matrices of appropriate
sizes. A is a diagonal matrix, parametrized by a vector of
parameters ¢ = [g1,92,...,¢m), and is given by

z(0) =0,
(1)
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A = diag(q1 11,9203, - . ., gmIm), (2)

where I; is an identity matrix of size p;. Of course, 7" p; =

p. The rectangle in which g lies is given by Qinix = [l, u1] x
(2, ug) x «+« x [l upm).

Eliminating u and y from equations (1) yields the closed-
loop system equations:

z

z

A(g)z + By w,

C;z,

©)

where A(g) = A+ B,AC,. We note that the entries of .4(q)
are affine functions of the parameter vector g.

Loosely speaking, the above framework describes a class of
linear systems with fixed, unknown gains that lie in intervals.
Many important questions arise for such systems: robust
stability, stability margin, minimum stability degree etc. (see
[1] for a brief discussion of such questions). In this paper,
we will describe the computation of the of largest possible
trace of the state covariance, when w is unit-intensity white
noise, i.e. ,

(4)

where z, is the solution to the state equations correspond-
ing to the parameter vector g, E stands for the expected

C(Quie) = max lim Tr E zy(t)z,(t)",
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value and Tr M is the trace (sum of diagonal entries) of
the square matrix M. We assume that the system (1)
is robustly stable, that is A(g) has eigenvalues with neg-
ative real part for all ¢ € Q,;x. For convenience, we let
X(q) = limynoo E z4(t)Tz,(2).

For a fixed value of ¢, X(g) can be computed as the unique
solution to the Lyapunov equation

A(9)X(g) + X(9)A(g)" + B, BT =0. (5)

We may therefore rewrite equation (4) as

A(9)X(g) + X(a)A(g)T }

c(qinit) - flEnQ‘hxu {lTr (x(q)} +B,BT =0

C(Qinit) is the maximum possible sum of the covariance of
the state components when the system is driven by unit-
intensity white noise, and serves as a measure of the robust-
ness of the system.

There are no known analytic methods that compute
C(Qinit) exactly. However, for any rectangle Q, it is pos-
sible to compute upper and lower bounds for C(Q). These
bounds may be used with a branch and bound technique to
compute C(Qinit) to within any given accuracy ¢ > 0. We
first describe a branch and bound algorithm, and then de-
scribe the computation of simple upper and lower bounds

for C(Q).

2 The Branch and Bound Algo-

rithm
The branch and bound algorithm we present here is a minor
variation on the one presented in [2]. It finds the maximum
of a function f : R™ — R over an m-dimensional rectangle
Qinit (the subscript “init” stands for initial rectangle).
For a rectangle Q@ C Qinit we define

Pmax(Q) = max f(g)-

Then, the algorithm computes ®may(Qinit) to within an ab-
solute accuracy of ¢ > 0, using two functions ®,(Q) and
®ub(Q) defined over {Q : @ C Qinit} (which, presumably,
are easier to compute than ®y,,4(Q)). These two functions
must satisfy the following conditions:

(R1) @15(Q) < Pmax(Q) < Pub(Q).




(R2) As the maximum length of the sides of Q, denoted by
size(Q), goes to zero, the difference between upper and
lower bounds uniformly converges to zero, i.e. s

¥Ye>038 > 0such that
VQC Qinit, size(Q) < 6§ => $(Q) — Bp(Q) < e.

We now state the algorithm. The reader is referred to [2]
for datails.

The general branch and bound algorithm

In the following description, k stands for the iteration index.
Ly denotes the list of rectangles, L; the lower bound and U/}
the upper bound for ®ax(Qinit), at the end of k iterations.

k=0;

Lo = {Qinit};

Lo = ®1p(Qinit);

Uo = ®ub(Qinit);

while Uy — L > ¢, {
pick Q € Ly such that ®,,(Q) = Uy;
split Q into Qr and Qqr

along the longest edge;

Ligr = (Le = {QNHU{Qr, Qur};
Li4y = maxgee,,, ®i(Q);
Ukgr:= MaxXgeLyys QHB(Q);
k=k+1;

}

At the end of k iterations, U/; and L, are upper and
lower bounds respectively for P max(Qinit). Since ®y,(Q) and
®ub(Q) satisfy condition (R2), (Us — L) is guaranteed to
converge down to zero.

3 Bounds for C(Q)

Lower Bound

A simple lower bound C(Q) for C(Q) is just Tr (X (g.)) where
qc is the center of Q. More sophisticated lower bounds may
be obtained using local optimization methods (see the survey

[4]).

Upper Bound

An upper bound C(Q) for C(Q) is based on a simple pertur-
bation analysis of the solution to a system of linear equa-
tions. We refer the reader to [1] for details.

if ﬂ'min(SA{h]) La
if Omin(Sa(g.)) > .

o0

Tmin (S.A(gg)) ! |

S is the n? x n? matrix representing the Lyapunov operator
corresponding to the n x n matrix M, and is given by Sy =
M®@I+1®M, where “@” denotes the Kronecker product
[3]. omin(M) and omax(M) denote the smallest and largest
singular values of M respectively, and ||M||# denotes the
Frobenius norm of M. For convenience a has been used to
denote the quantity 20max(B, )size(Q)omax(Cy).
Other upper bounds are possible; see, for example, [5].
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Figure 1: Bounds on C(Qjp;) for the example.

4 An Example

We consider an example with

—-3.4121 —-0.3507 —0.6183 ]
A= 1.5654 0.2706  0.9118 |,
—-5.7336 —12.6285 —5.8585 |
0.3323 —0.1176  0.2036 ]
B, = | -0.4138 0.0659 —0.1773 |,
| —0.0152  0.1618 —0.1675 ]
[ —0.0989 —0.0823  0.0015 ]
Cy= 0.1037 0.1956 -0.0674 |,
| —0.0058 —0.0131 ~0.0525 |
0.3840 0.6101 -1.7705
B, = | 0.8395 0.4785 -—0.3519 |.
0.4718 0.6206 -0.2265
The perturbation matrix A(g) = diag[qy, g2, qa] with

=1 < ¢ < 1. Figure 1 shows the convergence of up-
per and lower bounds with iterations. At the end of 9000
iterations, the algorithm yields C(Qinit) = 7.36 to within a
relative accuracy of about 8%.
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