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Abstract

Based on the bounds due to Doyle and Boyd, we present simple upper and lower bounds

for the `
1-norm of the `tail' of the impulse response of �nite-dimensional discrete-time linear

time-invariant systems. Using these bounds, we may in turn compute the `
1-gain of these

systems to any desired accuracy. By combining these bounds with results due to Khammash

and Pearson, we derive upper and lower bounds for the worst-case `
1-gain of discrete-time

systems with diagonal perturbations.

Keywords: SISO discrete-time LTI systems, computation of `1-gain, discrete-time systems

with diagonal perturbations, worst-case `
1-gain.

1 Notation

Z+, R, R+ and C denote the set of nonnegative integers, real numbers, nonnegative real numbers

and complex numbers respectively. All the sequences in this note are de�ned over Z+. The `
1-norm

of a complex-valued sequence u is de�ned as

kuk1
�
= sup

k�0
ju(k)j:

Thus, the `1-norm of a sequence is its peak value. The `1-norm of a complex-valued sequence u is

de�ned as

kuk1
�
=
X
k�0

ju(k)j:

For a matrix P 2 Rn�n, PT stands for the transpose. �1(P ); �2(P ); : : : ; �n(P ) are the singular

values of P in decreasing order. �(P ) denotes the spectral radius, which is the maximum magnitude

of the eigenvalues of P . I stands for the identity matrix, with size determined from context.
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2 Bounds for the `
1-gain

Consider a stable, �nite-dimensional discrete-time linear time-invariant (LTI) system described by

the state equations

x(k + 1) = Ax(k) + bu(k); x(0) = 0;

y(k) = cx(k) + du(k);
(1)

where the input u(k) 2 R, the output y(k) 2 R and the state x(k) 2 R
n. We assume that

fA; b; c; dg is minimal. The impulse response of system (1) is the real sequence given by

h(k)
�
=

(
d; k = 0;

cAk�1b; k > 0:

The `1-gain of system (1), which is the largest possible peak value of the output y over all possible

inputs u with a peak value of at most one, is just khk1:

khk1 = sup
kuk

1
>0

kyk1
kuk1

:

khk1 is usually approximated by summing only a �nite, typically large (sayN) number of terms:

SN =
NX
k=0

jh(k)j � khk1:

Obviously, SN is a lower bound for khk1, and increases monotonically to khk1 with increasing N .

The `error' khk1 � SN is just the `1 norm of the tail,
P

k>N
jh(k)j. Many simple bounds on this

error are possible; for instance, if the poles of the system (1) are distinct, we may write down a

residue expansion for the impulse response h(k):

h(k) =

(
d; k = 0;P

n

i=1 ripi
k�1; k > 0:

where p1; p2; : : : ; pn are the distinct poles of the system and ri are the residues (see for example,

[7], Chapter 2). Then, X
k>N

jh(k)j �
nX
i=1

jrij
jpijN

1� jpij
: (2)

Similar bounds are possible when the poles are not distinct.
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The �rst purpose of this note is to present more sophisticated, and in many cases, substantially

better bounds for the `1-norm of the tail. These bounds are based on Theorem 2 of [2], which

states that for the system (1),

jdj+ �1(W
1

2

o W
1

2

c ) � khk1 � jdj+ 2
nX
i=1

�i(W
1

2

o W
1

2

c ); (3)

where

Wo =
1X
k=0

(AT )kcTcAk and Wc =
1X
k=0

AkbbT (AT )k

are the observability and controllability Gramians respectively [4]. �i(W
1

2

o W
1

2

c ) are just the Hankel

singular values of the system (1).

We now observe that f0; h(N+1); h(N+2); : : :g, the tail of the impulse response of system (1),

is just the impulse response of the system fA,ANb,c,0g. Applying bounds (3) to this system, we

have for any N � 0,

�1(W
1

2

o A
NW

1

2

c ) �
X
k>N

jh(k)j � 2
nX
i=1

�i(W
1

2

o A
NW

1

2

c ): (4)

Thus, we have upper and lower bounds for khk1:

SN + �1(W
1

2

o A
NW

1

2

c ) � khk1 � SN + 2
nX
i=1

�i(W
1

2

o A
NW

1

2

c ); 8N � 0: (5)

The ratio between the upper and lower bounds for khk1 in (4) is at most 2n, whereas the ratio

between the residue-expansion based upper bound (2) and any lower bound can be arbitrarily large.

We next show that with increasing N , the di�erence between the upper and lower bounds

converges monotonically to zero. Wo satis�es the Lyapunov equation

ATWoA�Wo + cTc = 0;

which implies that

(AT )kWoA
k � (AT )k�1WoA

k�1 + (AT )k�1cTcAk�1 = 0

for k = 1; 2; : : : Therefore,

(W
1

2

o A
kW

1

2

c )
T (W

1

2

o A
kW

1

2

c ) � (W
1

2

o A
k�1W

1

2

c )
T (W

1

2

o A
k�1W

1

2

c ); k = 1; 2; : : :
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This immediately means

�i(W
1

2

o A
kW

1

2

c ) � �i(W
1

2

o A
k�1W

1

2

c ); i = 1; 2; : : : ; n and k = 1; 2; : : : ;

from which it follows that the di�erence between the upper and lower bounds in (5) converges

monotonically to zero with increasing N .

The above argument shows that all of the Hankel singular values of the impulse response of the

`tail' system fA;ANb; c; 0g decrease monotonically (to zero, since the system is stable) as N !1.

In fact, we can say more: If we normalize the Hankel singular values by dividing them by the �rst

one, the number of `normalized' Hankel singular values that converge to nonzero values as N ! 1

equals the number of `dominant' Jordan blocks of A, that is, the number of Jordan blocks of A

which

� correspond to an eigenvalue of A with maximum magnitude, and

� which have the largest size among all Jordan blocks corresponding to an eigenvalue with

maximum magnitude.

Thus, for large N , the number of signi�cant terms in the sum
P

n

i=1 �i(W
1

2

o A
NW

1

2

c ) is just the

`e�ective order' of the tail system fA;ANb; c; 0g.

Finally, we discuss informally a scheme for �nding

Nmin = min

(
N

����� 2
nX
i=1

�i(W
1

2

o A
NW

1

2

c )� �1(W
1

2

o A
NW

1

2

c ) < �

)
;

which is the smallest value of N for which the di�erence between the upper and lower bounds in

(5) is less than �. As a preliminary step, W
1

2

c and W
1

2

o are computed. Then:

1. We �nd the smallest positive integer M such that Nmin � 2M .

This is done iteratively where at the kth iteration, we form the matrix A2k by squaring A2k�1

and check if

�1(W
1

2

o A
2kW

1

2

c ) + 2
nX
i=2

�i(W
1

2

o A
2kW

1

2

c ) < �;
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and stop if the condition is satis�ed. Clearly, M iterations are needed. Each iteration involves

three n�n matrix multiplies and one computation of singular values. For use in part (2), we

store the matrices fA;A2; : : : ; A2Mg.

2. By a simple bisection, Nmin is then located in the set f2M�1; 2M�1 + 1; : : : ; 2Mg.

We assume that M � 2, since computing Nmin is trivial otherwise. We start by forming

~A = A(2M�1+2M�2) and checking if

�1(W
1

2

o
~AW

1

2

c ) + 2
nX
i=2

�i(W
1

2

o
~AW

1

2

c ) < �:

(Note that since A2M�1 and A2M�2 are both already available from step (1), and therefore

this involves three n � n matrix multiplies and one computation of singular values.) If the

answer is yes, then N lies in the set f2M�1; 2M�1+1; : : : ; 2M�1+2M�2g. Otherwise, N lies in

the set f2M�1+2M�2; : : : ; 2Mg. By continuing this process (at most M � 1 times) of halving

the set where N lies, we may compute Nmin exactly.

Once Nmin is found, SNmin
can be computed to give khk1 to within an absolute accuracy of �

(assuming in�nite precision arithmetic; we have not considered the e�ects of data rounding here).

The exact determination of Nmin takes approximately 6M matrix multiplies and 2M compu-

tations of singular values. Forming SNmin
takes about Nmin matrix-vector multiplies and Nmin

vector-vector inner products. (Recall that 2M�1 < Nmin � 2M .) Since computing singular values

is by far the most expensive of the above calculations, it might prove advantageous to not compute

Nmin exactly, but to instead use an upper bound obtained by terminating the bisection in step (2)

earlier. Computation may be further reduced by �rst balancing system (1), so that the Gramians

Wc and Wo are diagonal and equal.

We note that for calculating the H1-norm of system (1) to within a relative accuracy �, there

exist methods (see [1]) where the computational e�ort involved depends only on � and the state

dimension n. However for determining khk1 using the bounds in (5) to within an accuracy of �

5



(relative or absolute), the number of computations depends on the system matrices A, b, c and d

as well. We know of no way to overcome this de�ciency.

3 Bounds for the worst-case `
1-gain

We now combine the results of the previous section with results from [5] to derive bounds for

the worst-case `1-gain of discrete-time LTI systems with diagonal uncertainty. We consider the

system shown in Figure 1: H is a stable discrete-time LTI plant. �1;�2; : : : ;�m are scalar LTI

perturbations that act on the system. Now, for some notation (indices i; j = 1; 2; : : : ; m):

�i : Impulse response of perturbation �i.

h00 : Open-loop (� = 0) impulse response from w to z.

hi0 : Open-loop (� = 0) impulse response from w to yi.

h0i : Open-loop (� = 0) impulse response from ui to z.

hcl(�) : Closed-loop impulse response from w to z.

We assume that k�ik1 � 1 and denote by 
 the corresponding set of all possible perturbations

�.

The quantity of interest is the worst-case (i.e. maximum possible) `1-gain from w to z, which

we de�ne as

Lwc = sup
�2


khcl(�)k1:

In [5], Khammash and Pearson show that the Lwc � 1 if and only if the following condition

holds:

There exists some nonzero x = [x0; :::; xm] with xi � 0 such that

xi �
mX
j=0

khijk1xj i = 0; 1; :::; m: (COND)

Condition (COND) may be expressed simply in terms of a matrix whose (i; j)-entry is khijk1,

i; j = 0; 1; : : : ; m.
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Fact 1 Condition COND holds if and only if the spectral radius of the matrix

M =

2
66664
kh00k1 kh01k1 � � � kh0mk1
kh10k1 kh11k1 � � � kh1mk1

...
...

. . .
...

khm0k1 khm1k1 � � � khmmk1

3
77775

is at least one.

This fact, stated without proof in Theorem 1 of [6], is immediate from the following characterization

of the spectral radius of a nonnegative matrix (a matrix with nonnegative entries) M (see, for

example, page 504, corollary 8.3.3 of [3]):

�(M) = max
x�0; x 6=0

min
0�i�m; xi 6=0

1

xi

mX
j=0

Mijxj :

(Mij refers to the (i; j)-entry of M .)

By simply scaling w and z by 1=
p
 ( > 0) as in Figure 2, and applying Fact 1, we conclude

that

Lwc = supf j � (DMD) � 1g; (6)

where

D =

"
1=
p
 0

0 I

#
:

For convenience, we partition M as

M =

"
M (11) M (12)

M (21) M (22)

#
; (7)

where M (11) 2 R+, M
(12) 2 R1�m

+ , M (21) 2 Rm�1
+ and M (22) 2 Rm�m

+ .

If � (DMD) � 1 for all  > 0, then we de�ne Lwc = 1. This corresponds to the case when

�(M (22)) � 1, and the system is not `1-stable (see [5]). On the other hand, if � (DMD) < 1 for

all  > 0, we de�ne Lwc = 0. This corresponds to the case when either the �rst row (or the �rst

column) of M is identically zero (with �(M (22)) < 1). Then hcl(�) = 0 for all �.

Of course, every entry of M is the `1-gain of some LTI system; therefore, the remarks made in

Section 2 about computing `1-gains apply here as well. We may however use the fact that M is
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Figure 2: Uncertain linear system with the impulse response from w to z scaled by 1=.
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nonnegative to derive bounds on Lwc based on the bounds for the entries of M . We start with the

following fact.

Fact 2 The spectral radius of a nonnegative matrix is a nondecreasing function of its entries.

(See Corollary 8.1.19 on page 491 of [3].)

Fact 2 implies that �(DPD) is a nondecreasing function of the entries of the nonnegative

matrix P and a nonincreasing function of  > 0. These, in turn, mean that the function �(P ) of a

nonnegative matrix P de�ned by

�(P ) = supf j � (DPD) � 1g

is nondecreasing with the entries of P . We then have the following bounds for Lwc:

Theorem 1 Let �N
ij

and �N
ij

be lower and upper bounds for khijk1 computed via equation (5) for

some N > 0. Let MN

lb and MN

ub be matrices with (i; j)-entry �N
ij

and �N
ij

respectively (i; j =

0; 1; : : : ; m). Then

LNlb = �(MN

lb ) = supf j �
�
DM

N

lbD

�
� 1g;

and

LNub = �(MN

ub) = supf j �
�
DM

N

ubD

�
� 1g;

are lower and upper bounds respectively for Lwc, i.e. L
N

lb � Lwc � LNub.

Computation of LNlb and LNub is straightforward, once we make the following observation:

Fact 3 The spectral radius of a nonnegative matrix is also an eigenvalue.

(See Theorem 8.3.1 on page 503 of [3].)

Given a (m+ 1)� (m+ 1) matrix P , we �rst partition conformally as with M in equation (7)

as

P =

"
P (11) P (12)

P (21) P (22)

#
:
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Then, �(P ) = 1 if �(P (22)) � 1. Otherwise, we note that � (DPD) = �
�
D2

P
�
, and solve for

D2

Px = x for some nonzero (m+ 1)-vector x to obtain

�(P ) = P (11) + P (12)(I � P (22))�1P (21):

The above formula shows that if �(P (22)) < 1, �(P ) is just the unique solution to the equation

�(DPD) = 1.

4 Conclusion

We have presented simple bounds on the `1-gain of single-input single-output linear discrete time

systems. We have shown how to combine these bounds with recent results from [5] to compute

guaranteed bounds for the worst-case `1 gain of discrete-time LTI systems with diagonal uncer-

tainty. The bounds may be easily extended to block diagonal uncertainties as well as to continuous

time systems.
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