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Setting and general problem

• distributed process: communication, computation, flow constrained by
given graph

• examples: distributed consensus, distributed resource allocation,
distributed estimation, Markov chains, coordination/control of
autonomous agents, iterative solution of equations, . . .

• weights on edges affect convergence behavior

• simple results known (e.g., convergence with small, positive weights)

how do we choose weights to yield fastest possible convergence?
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Example: distributed average consensus
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• compute average x̄ = 1
n

∑

i xi (using local communication, iteration)

• each node takes a weighted average of its own and neighbors’ values:

xi(t+ 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t)

• how do we choose W to make convergence as fast as possible?
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Example: distributed resource allocation

• resource allocation on a network

minimize
∑n

i=1 fi(xi)

subject to
∑n

i=1 xi = c
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• distributed weighted gradient method:

xi(t+ 1) = xi(t)−
∑

j∈Ni

Wij

(

f ′i(xi(t))− f ′j(xj(t))
)

(exchange resources proportional to differences of marginal costs)

• how do we choose W to make convergence as fast as possible?
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Example: Markov chain on a graph
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• random walk on graph with symmetric transition probabilities Pij

• (under simple conditions) distribution converges to uniform

• what edge transition probabilities give fastest mixing?
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Typical results

• using SDP, we can optimize convergence rate (or a bound on it)

• by exploiting structure, associated SDPs can be efficiently solved

• SDP duality yields bounds, insight, . . .
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Fast distributed average consensus



Distributed average consensus
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• compute average x̄ = 1
n

∑

i xi (using local communication, iteration)

• each node takes a weighted average of its own and neighbors’ values:

xi(t+ 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t)

• vector form: x(t+ 1) = Wx(t); W has sparsity pattern constraint given
by graph
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Convergence conditions and rate

• convergence ⇐⇒ limt→∞W t = 11T/n ⇐⇒

1TW = 1T , W1 = 1, ρ(W − 11T/n) < 1

– sum (and therefore average) preserved at each step
– 1 is fixed point of iteration x(t+ 1) = Wx(t)
– iteration dynamics are stable on 1⊥

• asymptotic convergence rate given by ρ(W − 11T/n)

• for symmetric W , same as ‖W − 11T/n‖
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Fastest distributed linear averaging

minimize ρ(W − 11T/n)

subject to W ∈ S, 1TW = 1T , W1 = 1

optimization variable is W ; problem data is graph (sparsity pattern S)

• hard problem when W is not symmetric

• can minimize convex upper bound ‖W − 11T/n‖

• for symmetric W , these two coincide
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Semidefinite programming formulation

(for symmetric weights)

introduce scalar variable s to bound spectral norm

minimize s

subject to −sI ¹W − 11T/n ¹ sI

W ∈ S, W = W T , W1 = 1

an SDP, hence, efficiently solved, duality theory, . . .

can also pose problem of minimizing ‖W − 11T/n‖, with nonsymmetric
W , as SDP
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Constant weights

constant weight on all edges:

xi(t+ 1) = xi(t) +
∑

j∈Ni

α(xj(t)− xi(t))

• maximum-degree weight: α = 1/maxi di
di is degree (number of neighbors) of node i

• best constant weight: α? = 2/(λ1(L) + λn−1(L))

L is Laplacian of graph; L = diag(d)−A, A is adjacency matrix

• sometimes give reasonably fast convergence
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Metropolis weights

Metropolis-Hastings weights:

Wij =
1

max{di, dj}
, {i, j} ∈ E

(self-weights given by Wii = 1−∑j∈Ni
Wij)

• adapted from Metropolis algorithms in Markov chain Monte Carlo

• Metropolis weights based on local information

• often gives reasonable convergence
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A small example
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convergence factors and convergence times:

max degree Metropolis optimal symm.
ρ(W − 11T/n) 0.746 0.743 0.600
τ = 1/ log(1/ρ) 3.413 3.366 1.958
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Optimal symmetric weights

(note: some weights are negative!)
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A larger example

50 nodes, 200 edges

max degree Metropolis best constant optimal
ρ(W − 11T/n) 0.971 0.949 0.947 0.902
τ = 1/ log(1/ρ) 33.980 19.104 18.363 9.696
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Eigenvalue distributions
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Optimal weights
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Application: Data fusion in sensor networks

• estimate a vector of unknown, fixed parameters x ∈ Rm

• n sensors; each makes noisy measurement yi = Aix+ vi ∈ Rmi

independent noises vi have zero mean, covariance Σi

• aggregate measurement

y = Ax+ v =









A1

A2
...
An









x+









v1

v2
...
vn









v has covariance Σ = diag(Σ1, . . . ,Σn)
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• maximum likelihood estimate of x is weighted least-squares (WLS)
solution

xwls =
(

ATΣ−1A
)−1

ATΣ−1y

=

(

n
∑

i=1

AT
i Σ

−1
i Ai

)−1 n
∑

i=1

AT
i Σ

−1
i yi

• centralized data fusion: fusion center collects all measurements,
computes WLS solution
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A simple distributed scheme for sensor fusion

• each sensor initializes

Pi(0) = AT
i Σ

−1
i Ai, qi(0) = AT

i Σ
−1
i yi

• use distributed average consensus to compute (entrywise)

P =
1

n

n
∑

i=1

AT
i Σ

−1
i Ai, q =

1

n

n
∑

i=1

AT
i Σ

−1
i yi

• then locally compute the WLS estimate xwls = P−1q

• Metropolis weights yield simple, isotropic protocol for sensor nodes
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Fastest mixing Markov chain on a graph



Markov chain on a graph

• random walk on connected graph G = (V, E)

V = {1, . . . , n}, E = {(i, j) | i and j connected}

we’ll assume each vertex has self-loop, i.e., (i, i) ∈ E

• define Markov chain on vertices X(t) ∈ {1, . . . , n}, with transition
probabilities on edges

Pij = Prob (X(t+ 1) = j | X(t) = i)

we’ll focus on symmetric transition probability matrices P

• all results can be extended to reversible Markov chains
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Example
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∑

j 6=i

Pij
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Stationary distribution

• probability distribution πi(t) = Prob(X(t) = i) satisfies
π(t+ 1)T = π(t)TP

• since P = P T and P1 = 1, uniform distribution π = 1/n is stationary,
i.e., (1T/n)P = 1T/n

• (assuming irreducible, aperiodic)

lim
t→∞

‖π(t)− 1/n‖ = 0

i.e., distribution converges to uniform
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Second largest eigenvalue modulus (SLEM)

• since P = P T , all eigenvalues are real; can order as

1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1

• second largest eigenvalue modulus (SLEM):

µ(P ) = max
i=2,...,n

|λi(P )| = max{λ2(P ),−λn(P )}

• asymptotic rate of convergence to πst = 1/n determined by SLEM, e.g.,

sup
π(0)

‖π(t)− 1/n‖tv ≤
(√

n/2
)

µt

• associated mixing time is τ = 1/ log(1/µ)
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Example
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Convexity of mixing rate

µ(P ) is convex function of P

µ(P ) is spectral norm of P on 1⊥ = {v | 1Tv = 0}:

µ(P ) =
∥

∥

(

I − (1/n)11T
)

P
(

I − (1/n)11T
)
∥

∥

2

=
∥

∥P − (1/n)11T
∥

∥

2

(

I − (1/n)11T
)

is projection matrix onto subspace 1⊥

another proof:

• for general symmetric X, λ1(X) + λ2(X) and −λn(X) are convex

• here λ1 = 1, so max{λ2(X),−λn(X)} is convex
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Fastest mixing Markov chain (FMMC) problem

minimize µ(P ) =
∥

∥P − (1/n)11T
∥

∥

2

subject to P ≥ 0, P1 = 1, P = P T

Pij = 0, (i, j) /∈ E

• variable is matrix P ; problem data is graph

• convex optimization problem, hence efficiently solved, duality theory,
. . .
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SDP formulation of FMMC

introduce scalar variable s to bound norm of P − (1/n)11T

minimize s
subject to −sI ¹ P − (1/n)11T ¹ sI

P ≥ 0, P1 = 1, P = P T

Pij = 0, (i, j) /∈ E

an SDP in variables P , s
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Example
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Two common suboptimal schemes

let di be degree of vertex i (not counting self-loops)

• maximum degree chain: with dmax = maxi∈V di

Pmd
ij =

1

dmax
, (i, j) ∈ E , i 6= j,

• Metropolis-Hastings chain

Pmh
ij =

1

max{di, dj}
, (i, j) ∈ E , i 6= j

diagonal entries determined by Pii = 1−
∑

j 6=iPij
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Example

max-degree
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Fastest mixing to nonuniform distribution

• given desired equilibrium distribution π = (π1, . . . , πn)

• we consider P with same sparsity pattern as graph, but not symmetric

• we require reversible chain: πiPij = πjPji, the detailed balance

equation

• detailed balance is equivalent to ΠP = P TΠ, where Π = diag(π)

• the matrix Π1/2PΠ−1/2 is symmetric, with same eigenvalues as P

• eigenvector of Π1/2PΠ−1/2 associated with eigenvalue one is

q = (
√
π1, . . . ,

√
πn)
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• asymptotic rate of convergence of distribution to π determined by

µ(P ) =
∥

∥

∥
Π1/2PΠ−1/2 − qqT

∥

∥

∥

2

which is convex in P

• SDP formulation of fastest mixing reversible Markov chain:

minimize s
subject to −sI ¹ Π1/2PΠ−1/2 − qqT ¹ sI

P ≥ 0, P1 = 1, ΠP = P TΠ

Pij = 0, (i, j) /∈ E

variables are s, P ; problem data are π and graph
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Fast distributed resource allocation



Distributed resource allocation

• resource allocation on a network

minimize
∑n

i=1 fi(xi)

subject to
∑n

i=1 xi = c
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• distributed weighted gradient method:

xi(t+ 1) = xi(t)−
∑

j∈Ni

Wij

(

f ′i(xi(t))− f ′j(xj(t))
)

exchange resources proportional to differences of marginal costs

• how do we choose W to make convergence as fast as possible?
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Guaranteed convergence rate

• weighted gradient update: x(t+ 1) = x(t)−W∇f(x)

• must have 1TW = 0, W1 = 0

• can show
f(x(t))− f? ≤ ηt(f(x(0))− f?)

where
η = 1− λn−1

(

L1/2(W +W T −WTUW )L1/2
)

L = diag(l1, . . . , ln), U = diag(u1, . . . , un), li ≤ f ′′i (xi) ≤ ui

• hence, η gives guaranteed convergence rate
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Optimal guaranteed convergence rate

optimize guaranteed convergence rate:

maximize λn−1

(

L1/2(W +W T −WTUW )L1/2
)

subject to W ∈ S, 1TW = 0, W1 = 0

(can impose W = W T or not)

. . . can show this is convex problem; can formulate as SDP

maximize s

subject to W ∈ S, 1TW = 0, W1 = 0
[

W +WT − s
(

L−1 − (1/1TL−11)L−111TL−1
)

WT

W U−1

]

º 0
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Simple weight selection methods

• constant weight on all edges: Wij = α for (i, j) ∈ E , i 6= j

self-weights given by Wii = −
∑

j∈Ni
Wij

• max-degree weights: α = −1/(maxi∈N diui)

• Metropolis weights:

Wij = −min

{

1

diui
,

1

djuj

}

, i 6= j, (i, j) ∈ E

self-weights given by Wii = −
∑

j∈Ni
Wij
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Example

• fi(xi) =
1

2
ai(xi − ci)

2 + log
(

1 + ebi(xi−di)
)

coefficients ai ≥ 0, bi, ci, di generated randomly

• bounds on second derivatives:

li = ai ≤ f ′′i (xi) ≤ ai +
1

4
b2i = ui

• resource constraint 1Tx = 0

• randomly generated regular graph with 20 nodes, degree 3
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Example

max-degree Metropolis best constant SDP symm. SDP nonsymm.

η 0.950 0.924 0.922 0.875 0.873
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• (in this case) η predicts the convergence rate well
• this is frequently, but not always, the case
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Computational methods



Computational methods

• interior-point methods:

– exploit sparsity and graph structure
– can solve problems with a few thousand edges

• subgradient methods:

– compute subgradient efficiently with Lanczos method
– can solve problems with 106 edges
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Exploiting structure in interior-point methods

• consider interior-point method for solving SDP

minimize s
subject to −sI ¹W − (1/n)11T ¹ sI

W1 = 1, W = W T , W ∈ S

• forming search direction equations involves frequent computing of

(sI −W + 11T/n)−1, (sI +W − 11T/n)−1

• can efficiently evaluate, exploiting sparse + rank-one structure
• still have to solve dense m×m system to find search direction

• order m3
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Weighted Laplacian formulation

we’ll consider averaging problem with symmetric weights

minimize ‖W − 11T/n‖
subject to W ∈ S, W = W T , W1 = 1

other problems a little more complicated, but similar

we’ll use weighted Laplacian formulation

minimize φ(w) = ‖I −Adiag(w)AT − 11T/n‖

with w ∈ Rm (vector of edge weights); A is (node-edge) incidence matrix
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Subgradient method

for k = 1, 2, . . .

compute a subgradient g ∈ ∂φ(w)

update weights: w := w − αkg

• subgradient (by definition) satisfies

φ(z) ≥ φ(w) + gT (z − w) for all z

• step lengths satisfy diminishing rule:

αk ≥ 0, lim
k→∞

αk = 0,

∞
∑

k=1

αk =∞

Workshop on Large Scale Nonlinear and Semidefinite Programming, Waterloo 43



Subgradient of φ

• Z = W − 11T/n = I −Adiag(w)AT − 11T/n

• if ‖Z‖ = λ1(Z), Zu = λ1(Z)u, ‖u‖ = 1, then a subgradient is

g(i,j) = −(ui − uj)
2, (i, j) ∈ E

• if ‖Z‖ = −λn(Z), Zu = λn(Z)u, ‖u‖ = 1, then a subgradient is

g(i,j) = (ui − uj)
2, (i, j) ∈ E

• can compute λ1(Z), λn(Z), associated eigenvectors very efficiently by
Lanczos method
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Example

• random graph with 104 vertices, 105 edges

• step size αk = 1/(4
√
k); started at Metropolis weights
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Fastest Mixing Continuous-time Markov Chain

and

Maximum Variance Unfolding



Continuous-time Markov chain

• continuous-time Markov chain with rate matrix Q = QT

• eigenvalues of Q ordered as

0 = λ1(Q) > λ2(Q) ≥ · · · ≥ λn(Q)

• distribution π(t) converges to uniform with rate determined by λ2

‖π(t)− 1/n‖tv ≤ (
√
n/2)eλ2(Q)t

• λ2 is positive homogenous function of Q
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Continuous-time FMMC

primal CT-FMMC

minimize
∑

{i,j}∈E

d2
ijQij

subject to Q = QT , Q1 = 0, Qij ≥ 0 for i 6= j, Q ∈ S
λ2(Q) ≥ 1

dual CT-FMMC

maximize TrX

subject to Xii +Xjj −Xij −Xji ≤ d2
ij, {i, j} ∈ E

X1 = 0, X º 0
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Maximum-variance unfolding

geometric interpretation of dual CT-FMMC problem
(Sun, Boyd, Xiao, Diaconis 2004)

• use variables x1, . . . , xn, with X =





xT1
...
xTn



 [x1 · · ·xn]

• dual problem becomes maximum-variance unfolding problem

maximize
∑n

i=1 ‖xi‖2

subject to
∑

i xi = 0, ‖xi − xj‖ ≤ dij, {i, j} ∈ E

• position n points in Rn to maximize variance, respecting local distance
constraints
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Maximum-variance unfolding

• similar to semidefinite embedding for unsupervised learning of
manifolds (L. Saul et al 2003)

• surprise: duality between CT-FMMC and max-variance unfolding
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